浙江省江山市2012年中考数学模拟试卷(二)及答案1
2012年中考数学模拟试题(含答案)
2012年中考数学科模拟试题(考试时间:100分钟满分110分一、选择题(本大题满分36分,每小题3分)1、12-的相反数是()A.2B.-2C.12D.12-2、如图,直线a、b被直线c所截,如果a∥b,那么()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1+∠2=180°3.函数yx的取值范围()A.x>0B. x≠5C. x≤5D. x≥54.如图,是某几何体的三视图,则该几何体的名称是()A.圆柱B.圆锥C.棱柱D.长方体5.一组数据按从小到大顺序排列为1,2,4,x,6,9这组数据的中位数为5,那么这组数据的众数为()A. 4B. 5C. 5.5D. 66.下列计算错误的是()A.(-2x)2=-2x2B.(-2a3)2 =4a6C.(-x)9÷(-x)3=x6D.-a2·a=-a37.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A. b=a·sinBB. a=b·cosBC. a=b·tanBD. b=a·tanB8.从标有号数1到100的100张卡片中,随意抽取一张,其号数为3的倍数的概率是()A.33100B.34100C.310D. 无法确定9如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A. AB=CD B. AD=BC C. AB=BC D .AC=BD10.抛物线y=12x2向左平移8个单位,再向下平移9个单位后,所得抛物线的表达式是()abc╮1╰2第2题图主视图左视图俯视图第4题图AB CD第9题图A . y =12(x +8)2-9 B . y =12(x -8)2+9 C . y =12(x -8)2-9 D . y =12(x +8)2+9 11.若反比例函数y =kx的图象经过点(-2,1),则此函数的图象一定经过点( )A. (-2,-1) B . (2,-1) C . (12,2) D . (12,2)12. 下列关于二次函数的说法错误的是( )A .抛物线y =-2x 2+3x +1的对称轴是直线x =34; B .点A (3,0)不在抛物线y =x 2 -2x -3的图象上; C .二次函数y =(x +2)2-2的顶点坐标是(-2,-2);D .函数y =2x 2+4x -3的图象的最低点在(-1,-5) 二、填空题(本大题满分18分,每小题3分)13.用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).14.Y =-2(x -1)2 +5 的图象开口向 ,顶点坐标为 ,当x >1时,y 值随着x 值的增大而 。
2012年中考模拟试卷数学卷
2012年中考模拟试卷数学卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种的方法来选择正确答案. 1、据萧山区旅游局统计,2012年春节约有359525人来萧旅游,将这个旅游人数 (保留三个有效数字)用科学计数法表示为( )2、 A.3。
59× B.3。
60× C.3.5 × D.3.6 ×2、下列计算正确的是()A.B.C.D.3、化简的结果是 ( )A. —x—y B。
y—x C。
x—y D。
x+y4、小明用一个半径为5,面积为15的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为 ( )A.3B.4C.5D.155、已知下列命题:①若,则。
②垂直于弦的直径平分弦。
③平行四边形的对角线互相平分. ④反比例函数y=,当k>0时,y随x的增大而减少。
⑤在同圆或等圆中,等弧所对的圆周角相等. 其中原命题与逆命题均为真命题的是( )A.①② B.③④ C.③⑤ D.②④6、如图是“北大西洋公约组织”标志的主体部分(平面图),它是由四边形OABC绕点O进行3次旋转变换后形成的.测得AB=BC,OA=OC,∠ABC=40°,则∠OAB的度数是 ( )A.117° B.116 ° C.115° D.137。
5°7、已知4个数据:,,a,b,其中a,b是方程的两个根,则这4个数据的中位数是()A.1B.C.2D.8、如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,4:10:25 ,则DE:EC= ( )A.2:3B. 2:5 C. 3:5D.3:29如图是一个正六棱柱的主视图和左视图,则图中的()A。
B. C。
2 D. 1第8题10。
定义[]为函数的特征数,下面给出特征数为[2m,1 –m,–1–m]的函数的一些结论:①当m = – 3时,函数图象的顶点坐标是(,);②当m〉0时,函数图象截x轴所得的线段长度大于;③当m〈0时,函数在x〉时,y随x的增大而减小;④当m 0时,函数图象经过同一个点。
2012年浙江省各地中考数学模拟试1
2012年浙江省各地中考数学模拟试卷阳光学习网教研组精编。
考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为100分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应的位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.5.本次考试不得使用计算器.试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1、下列运算正确的是( )A .()0a b a b +--=B .=C .2(1)(2)2m m m m -+=-+ D .20091)1(2010=--2、从下图的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的是( ).A .B .C .D .3、对于样本数据1,2,3,2,2,以下判断:①平均数为2;②中位数为2;③众数为2;④极差为2.正确的有( )A .1个B .2个C .3个D .4个4、如图是“北大西洋公约组织”标志的主体部分(平面图),它是由四边形OABC 绕点O 进行3次旋转变换后形成的.测得AB =BC ,OA =OC ,∠ABC =40°,则∠OAB 的度数是( )A .115°B .116 °C .117°D .137.5°5、如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为9,则BE=( ) A .2 B .3C. D.6.反比例函数ky x=图象的一个分支如图所示,矩形OABC 和ODEF 的面积分别为3和2, 则k 值可能为 (A )0.6. (B )1.7.(C )2.8. (D )3.9.7.如图,已知ABC ∆中,AB=AC =2,︒=∠30B ,P 是BC 边上一个动点,过点P 作PD BC ⊥,交ABC ∆其他边于点D .若设PD 为x ,BPD ∆的面积为y ,则y 与x之间的函数关系的图象大致是( )图A B C D 8.一个不透明的小正方体的6个面上分别写有数字1,2,3,4,5,6, 任意两个相对面上所写的两个数字之和为7. 将这样的几个小正 方体按照相接触的两个面上的数字之和为8摆放成一个几何体, 这个几何体的三视图如右图所示,已知图中所标注的是部分面 上所见的数字,则★所代表的数是 A .1 B .2 C .3D .4A DE BCFOy x26★主视图俯视图左视图9.已知整数x 满足0≤x ≤5,y 1=x +2,y 2=-2x +5,对任意一个x ,y 1 ,y 2中的较大值用m 表示,则m 的最小值是( )A. 2B. 3C. 5D. 7 10.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90º+ 12∠A ;②EF 不可能是△ABC 的中位线;③设OD =m ,AE +AF =n ,则S △AEF =mn ;④以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 1、己知1纳米=0.000000001米,则27纳米用科学记数法表示为 2、分解因式:244x y xy y -+= .3、有一个正十二面体,12个面上分别写有1至12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .4、如图,在Rt △ABC 中,∠C =90°,AD 是∠CAB 的平分线,tan B =21,则CD ∶DB = .5、已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是 。
真题汇总中考数学三年真题模拟 卷(Ⅱ)(含详解)
中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6 2、下面各比中,能与11:53组成比例的是( ) A .5:3 B .5:7 C .22:35 D .3:53、下列分数中不能化成有限小数的是( ) A .916 B .38 C .518 D .7504、在学校组织的魔方比赛中,小杰小孙和小兰分别用了75分钟、53分钟、1.3分钟将魔方复原,根据比赛规则用时最短者获胜,那么获得冠军的应该是( )A .小杰B .小孙C .小兰D .无法确定 5、已知:1:2a b =,:3:4b c =,那么::a b c 等于( ) A .1:2:3 B .1:2:4 C .1:3:4 D .3:6:86、在数6、15、37、46、374中,能被2整除的数共有( ) ·线○封○密○外A .1个B .2个C .3个D .4个7、20克盐完全溶解在180克水中,盐占盐水的百分比为( )A .20%B .10%C .约为11.1%D .18%8、下列哪个数不能和2,3,4组成比例( )A .1B .1.5C .223D .69、下列说法中:①比的前项相当于分数中的分母;②2:3与4:9的比值相等;③9是3与27的比例中项;④将3:4中前项乘以3,后项加上8,比值不变,错误的有( )A .0个B .1个C .2个D .3个10、圆周率是( )A .圆的周长÷直径B .圆的周长÷半径C .圆的面积÷直径D .圆的面积÷半径第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:1122+=_______; 113-=_______; 2334⨯=_____; 315÷=_______ ; 1223+=_______; 10.53-=_______; 144⨯=_______; 2043÷=_______. 2、将一个圆的半径扩大为原来的3倍,则它的面积将扩大为原来的_______倍.3、如图,在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条宽度相等的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,则可列方程为____.4x 的取值范围是_________. 5、计算:41.25-=____________. 三、解答题(5小题,每小题10分,共计50分) 1、一条公路长1500米,已修好900米,还需修全长的几分之几?2、计算:53 1.9124-+.3、在一张地图上量得上海与南京两市的距离为5厘米,上海与杭州两市的距离为3.2厘米.已知上海与南京两市的实际距离约为300千米,求上海与杭州两市的实际距离约为多少千米.4、国际奥委会会旗上的图案是由代表五大洲的五个圆环组成.现在在某体育馆前的草坪上要修剪出此图案,已知每个圆环的内、外半径分别是4米和5米,下图中两两相交成的小曲边四边形(重叠部分)的面积相等,每个为1平方米,已知修剪每平方米的人工费用为10元,求修剪出此图案要花费多少元?5、一个数加上23,再减去16等于12,求这个数. -参考答案- 一、单选题 1、 B·线○封○密○外【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-6,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-6,2、D【分析】根据比例的意义:表示两个比相等的式子叫做比例;由此依次算出各选项的比值,找出与11:53比值相等的选项组成比例.【详解】解:113 := 535A.5 5:3=3;B.5 5:7=7;C. 225:= 353;D.3 3:5=5∴11:53与3:5能够组成比例故选:D 【点睛】本题主要是应用比例的意义(表示两个比相等的式子)解决问题.3、C【分析】把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数. 【详解】 解:916分母中只含有质因数2,所以能化成有限小数; 38分母中只含有质因数2,所以能化成有限小数; 518分母中含有质因数3.所以不能化成有限小数; 750分母中只含有质因数2和5,所以能化成有限小数; 故选:C . 【点睛】 本此题主要考查什么样的分数可以化成有限小数,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数. 4、C 【分析】 本题可先将题目中的分数统一化成小数后,再进行比较即可. 【详解】 解:由于75分钟=1.4分钟,53分钟 1.7 分钟, 又1.7分钟>1.4分钟<1.3分钟. ·线○封○密○外即53分钟>75分钟>1.3分钟.所以小兰用时最短,则小兰获得冠军.故选:C .【点睛】在比较分数与小数的大小时,可根据题目中数据的特点,将它们化为统一的数据形式后再进行比较.5、D【分析】将:1:2a b =变形为:3:6a b ,:3:4b c =变形为:6:8b c 即可求解.【详解】解:由题意可知::1:23:6a b ,:3:46:8b c ,故::3:6:8a b c ,故选:D .【点睛】本题考查线段成比例,属于基础题,计算过程细心即可.6、C【分析】根据能被2整除的数的特点选择即可求解.【详解】解:末位数字是0、2、4、6、8的整数能被2整除,所以在数6、15、37、46、374中有6、46、374三个数可以被2整除.故选:C【点睛】本题考查了能被2整除的整数的特点,掌握被2、3、5整除的整数的特点是解题关键.7、B【分析】 根据题意可得盐占盐水的百分比为2010020180⨯%+,求解即可. 【详解】 解:盐占盐水的百分比为201001020180⨯%=%+, 故选:B . 【点睛】 本题考查比例,根据题意列出算式是解题的关键. 8、A 【分析】 根据比例的基本性质,两内项之积等于两外项之积逐一分析即可. 【详解】 解:根据比例的基本性质,两内项之积等于两外项之积,则: A .1423⨯≠⨯,不可以组成比例; B .1.5423⨯=⨯,可以组成比例;C .223243⨯=⨯,可以组成比例;D .2634⨯=⨯,可以组成比例; 故选:A . 【点睛】 本题考查比例,掌握比例的基本性质:两内项之积等于两外项之积是解题的关键. ·线○封○密○外9、C【分析】根据比的意义、比例的基本性质及比例中项直接进行排除即可.【详解】 由比的前项相当于分数中的分子,故①错误;由242:3=,4:939=可得②错误;由比例中项可得29=327⨯,故③正确;由将3:4中前项乘以3,前项为9,要使比值不变,故后项也要乘以3,即为12,相当于后项加上8,故④正确;所以错误的有2个;故选C .【点睛】本题主要考查比的意义及比例的基本性质,熟练掌握比和比例是解题的关键.10、A【分析】根据圆周率的定义即可得出结论.【详解】解:圆周率是圆的周长÷直径故选A .【点睛】此题考查的是圆周率,掌握圆周率是圆的周长与该圆直径的比是解题关键.二、填空题1、1 23 12 53 143 16 1 0 【分析】分别根据分数的加减乘除运算法则计算即可.【详解】1122+=1; 113-=23; 2334⨯=12; 35511533÷=⨯=; 1122433+=; 11130.532321666-=-=-=; 1414⨯=; 20403÷=. 【点睛】 本题考查了分数的四则运算,熟练掌握分数的运算法则是解题的关键. 2、9 【分析】 设原来圆的半径为r ,则扩大后的圆的半径为3r ,利用圆的面积公式即可解决问题. 【详解】 设原来圆的半径为r ,则扩大后圆的半径为3r ,原来圆的面积为:πr 2; 扩大后圆的面积为:π(3r)2=9πr 2; 原来圆的面积:扩大后圆的面积=πr 2:9πr 2=1:9; ·线○封○密○外答:它的面积将扩大为原来的9倍.故答案为:9.【点睛】本题考查了圆面积的计算,解答本题的关键是明确题意,利用圆的面积计算公式解答.3、 (80+2x )(50+2x )=5400【分析】整个挂图的面积=挂图的长×挂图的宽=(原矩形风景画的长+2x )×(原矩形风景画的宽+2x ),列出方程即可.【详解】解:∵挂图的长为80+2x ,宽为50+2x ,∴可列方程为(80+2x )(50+2x )=5400.故答案为:(80+2x )(50+2x )=5400.【点睛】本题考查了用一元二次方程解决实际问题,用x 的代数式表示挂图的长和宽是解题的关键.4、2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.5、25(或0.4) 【分析】 运用减法的性质进行简算. 【详解】 解:1.2-45=642555-= 由25=0.4 故答案为:25(或0.4) 【点睛】 此题考查分数和小数的减法运算,解答关键是按法则进行结算. 三、解答题1、25 【分析】先求出剩下的米数,再用剩下的米数除以公路的总长度即可. 【详解】 解:(1500-900)÷1500, =600÷1500, =25, 答:还需修全长的25.【点睛】·线○封○密○外本题属于求一个数是另一个数几分之几,只要找准对应量,用除法计算即可.2、17130【分析】先把第二项和第三项交换位置,再用结合律先算后面两项的差,最后算加法.【详解】解:53 1.9124-+=5 1.90.7512+- =()5 1.90.7512+- =5 1.1512+ =5311220+ =25916060+ =34160=17130 【点睛】完成本题要注意分析式中数据,运用合适的简便方法计算.3、约为192千米【分析】由题意易得图上距离与实际距离的比例尺,然后利用比例尺求解即可.【详解】解:由题意得:图上距离与实际距离的比例尺为15300=60÷, ∴上海与杭州之间的距离为13.2=19260÷(千米); 答:上海与杭州两市的实际距离约为192千米. 【点睛】 本题主要考查比例尺的应用,熟练掌握比例尺的应用是解题的关键. 4、修剪出此图案要花费1333元. 【分析】 由题意可得求需要修剪的面积,就是求五个圆环盖住的面积,又因五个圆环盖住的面积=5个圆环的面积之和-8个小曲边四边形面积,根据圆环面积=π(大圆半径的平方-小圆半径的平方),计算出一个圆环的面积,再乘5就是5个圆环面积,一个小曲边四边形面积已知,从而求出需要修剪的面积,代入进行计算即可. 【详解】 解:3.14×(52-42)×5-8×1, =3.14×(25-16)×5-8, =3.14×9×5-8, =141.3-8,=133.3(平方米);133.3×10=1333(元);答:修剪出此图案要花费1333元人工费.【点睛】本题考查圆的应用,解决本题的关键是找出等量关系式:五个圆环盖住的面积=5个圆环的面积之和-8个小曲边四边形面积. 5、0 ·线○封○密○外【分析】由加减法的意义列式:112263+-,再通分,按照同分母分数的加减法计算即可.【详解】解:由加减法的意义可得:这个数是1123140. 263666+-=+-=【点睛】本题考查的是分数的加减法的应用,分数的除法,掌握加减法的意义解决实际问题是解题的关键.。
2012年中考模拟考试数学试卷(含答案)
2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。
2012年中考数学模拟试卷(2)及答案.doc
OABC112题图2012年中考数学模拟试卷二一、选择题(本题有10小题,每小题3分,共30分)1. 3的倒数是( )A .13B .— 13C .3D .—32.如图所示的物体的主视图是( )3.下列计算正确的是( )A .2a +3b =5abB .x 2·x 3=x 6C .123=-a aD .()632a a=4.浙江在线杭州2012年1月8日讯:预计今年整个春运期间铁路杭州站将发送旅客342.78万人,与2011年春运同比增长4.7%。
用科学记数法表示342.78万正确的是( ) A .3.4278×107 B .3.4278×106 C .3.4278×105 D .3.4278×104 5.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( ) A.相交B.内切C.外切D.内含6.如图,直线l 1//l 2,则α为( )A .150°B .140°C .130°D .120° 7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 9.抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1) 10.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B.若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:ma+mb = . 12.如图,O 为直线AB 上一点,∠COB=30°,则∠1= . 13.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠AOD =50°,AD ∥OC ,则∠BOC = 度.14.三张完全相同的卡片上分别写有函数x y 2=、xy 3=、2x y =,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y 随x 的增大而增大的概率是 .15.如图,已知梯形ABCD 中,AD ∥BC ,BD 是对角线.添加下列条件之一:①AB =DC ;②BD 平分∠ABC ;③∠ABC =∠C ;④∠A +∠C =180°,能推得梯形ABCD 是等腰梯形的是 (填编号).16.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .BA图1 图2 图3三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)计算:()0|tan 45|122012π+-+o(2)当2x =-时,求22111x x x x ++++的值.18.(本题6分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)l 1l 2 50° 70° α 24y x = 12y x= ACD(第15题)19.(本题6分)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;20.(本题6分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆¼ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.21.(本题8分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(本题10分)产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销类别生产1千克成品茶叶所需鲜茶叶(千克)销售1千克成品茶叶所获利润(元)炒青 4 40毛尖 5 120(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?23.(本题10分)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.①若△DEF的面积为1000,当n为何值时,3<S n<4?(请用计算器进行探索,要求至少写出二次的尝试估算过程)②当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)BC A图甲24.(本题12分)已知:在矩形A0BC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.E 是边AC 上的一个动点(不与A ,C 重合),过E 点的反比例函数(0)ky k x=>的图象与BC 边交于点F .(1)若△OAE 、△OBF 的面积分别为S 1、S 2且S 1+S 2=2,求k 的值;(2)若OB=4,OA=3,记OEF ECF S S S =-△△问当点E 运动到什么位置时,S 有最大值,其最大值为多少?(3)请探索:是否存在这样的点E ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点E 的坐标;若不存在,请说明理由.2012年中考数学模拟试卷二参考答案题次 12345678 9 10 答案A C DB B DCACA二、填空题(本题有6小题,每小题4分,共24分) 11. m(a+b);12. 150°;13. 65;14.23;15. ①③④;16. 1+2 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)原式=1+23-1=23(2)解:原式=2221(1)111x x x x x x +++==+++ 当2x =-时,原式1211x =+=-+=- (说明:直接代入求得正确结果的给满分) 18.(本题6分)解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin30°=30CM BC CM =,∴CM=15cm .∵sin60°=BA BF ,∴23=40BF,解得BF=203,∴CE =2+15+203≈51.6cm .答:此时灯罩顶端C 到桌面的高度CE 是51.6cm .19.(本题6分)解:(1)y =x 2+2x +m=(x +1)2+m ﹣1,对称轴为x =﹣1,∵与x 轴有且只有一个公共点,∴顶点的纵坐标为0,∴C 1的顶点坐标为(﹣1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(﹣3,0)代入上式得(﹣3+1)2+k=0,得k=﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);20.(本题6分)(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2)解:四边形AOEC是菱形.∵OP⊥弦BC于点D且交⊙O于点E,∴»CE=»BE.∵C为半圆ACB¯的三等分点,∴»AC=»CE=»BE.∴∠ABC=∠ECB.∴AB∥CE.∵AB是⊙O的直径,∴AC⊥BC.又OP⊥弦BC于点D且交⊙O于点E,∴AC∥OE.∴四边形AOEC是平行四边形.又OA=OE,∴四边形AOEC是菱形.21.(本题8分)解:(1)20, 2 ,1;(2)如图(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P22.(本题10分)解:(1)设安排x人采“炒青”,20x;5(30-x).(2)设安排x人采“炒青”,y人采“毛尖”则30205(30)10245x yx x+=⎧⎪-⎨+=⎪⎩,解得:1812xy=⎧⎨=⎩,即安排18人采“炒青”,12人采“毛尖”.(3)设安排x人采“炒青”,205(30)11045205(30)10045x xx x-⎧+≤⎪⎪⎨-⎪+≥⎪⎩解得:17.5≤x≤20①18人采“炒青”,12人采“毛尖”.②19采“炒青”,11人采“毛尖”.③20采“炒青”,10人采“毛尖”.所以有3种方案.计算可得第(1)种方案获得最大利润.18×204×40+12×55×120=5040元最大利润是5040元.23.(本题10分)解:(1)正确画出分割线CD(如图,过点C作CD⊥AB,垂足为D,CD即是满足要求的分割线,若画成直线不扣分)理由:∵∠B = ∠B,∠CDB=∠ACB=90°∴△BCD ∽△ACB(2)①△DEF 经N阶分割所得的小三角形的个数为n41∴S =n41000,当n =3时,S3 =31000S≈15.62当n = 4时,S4 =41000S≈3.91 ∴当n= 4时,3 <S4<4②S 2 = S 1-n × S 1+n ,S 1-n = 4 S, S= 4 S 1+n 24.(本题12分)解:(1)∵点E 、F 在函数ky x=(k >0)的图象上, ∴设E (x 1,1k x ),F (x 2,2kx ),x 1>0,x 2>0, ∴111122k K S x x ==,S 2= 22122k K x x = , ∵S 1+S 2=2,∴22K K+=2,∴k =2; (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴1111432234ECF S EC CF k k ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭g △, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形 ∴11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△ ∴2112S k k =-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.此时,点E 坐标为(2,3),即点E 运动到AC 中点.(3)解:设存在这样的点E ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=o Q ,∴EMN MFB ∠=∠.又90ENM MBF ∠=∠=oQ ,∴ENM MBF △∽△.∴EN EM MB MF=,∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭, ∴94MB =. 222MB BF MF +=Q ,∴222913444k k ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.∴25438k EM EC ==-=,故AE=78. ∴存在符合条件的点E ,它的坐标为(78,3).。
2012年中考模拟数学试题及答案
初三检测卷(数学)试卷Ⅰ(选择题,共40分)一、选择题(本大题有10小题,每小题4分,共40分。
请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.-4的绝对值是( ▲ )A .-4B .4C .±4D .41-2.2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔 下窄,又被称为“伦敦碗”,预计可容纳8万人,分为两层,上层是55000个临时座位.将55000用科学记数法表示为 ( ▲ )A . 55×103B . 0.55×105C . 5.5×104D . 5.5×103 3.下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x +=4.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是 ( ▲ )5.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表: 则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )A .7,7 B .5,5 C .7,5D .5,76.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕 着点A 逆时针旋转得到△AC B '',则sin ∠B '的值为( ▲ ) A .31 B .1010 C . 10103 D . 3 7.如图,某种牙膏上部圆的直径为3cm ,下部底边的长度为4.8cm,现要 制作长方体牙膏盒,牙膏盒的上面是正方形,以下列数据作为正方形边 长制作牙膏盒,既节省材料又方便取放的是( ▲ ) (取1.4 )每天使用零花钱(单位:元)3 5 7 10 20 人数25431(第4题)A .B .C .D .A . 2.4cmB . 3cmC . 3.6cm D. 4.8cm 8.如图,在直角坐标系中,⊙O 的半径为1,则直线y=﹣x+与⊙O的位置关系是( ▲ )A .相切B .相交C .相离D .以上三种情形都有可能9.如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B (4,2),一次函数1y kx =-的图象平分它的面积,则k 的值为( ▲ )A .1B .21 C .-1 D .210.如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且30CDE ∠=︒.设AD=x , BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ▲ )试卷Ⅱ(非选择题,共110分)二、填空题(本大题有6小题,每小题5分, 共30分。
浙江省杭州地区2012年中考数学模拟试题2
1
2
再生资源处理量y(吨)
40
50
月处理成本z(元)与每月再生资源处理量y(吨)之间的函数关系可近似地表示为:
z= ,每处理一吨再生资源得到的新产品的售价定为100元.
(1)该单位哪个月获得利润最大?最大是多少?
(2)随着人们环保意识的增加,该单位需求的可再生资源数量受限。今年三、四月份的再生资源处理量都比二月份减少了m m%.五月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20% .如果该单位在保持三月份的再生资源处理量和新产品售价的基Байду номын сангаас上,其利润是二月份的利润的一样,求m.(m保留整数) ( )(改编)
(2)连接BC, ∵∠B=∠C,∠A=∠D ∴△APB∽△DPC ∴ (2分)
∵AB为直径, ∴∠BCA为直角, ∵cosα=
∴ ∴CD=8 (2分)
21.(本小题满分8分)
(1)1 (1分)
(2)0<sadA<2(2分)
(3)在 AB上取点D,使AD=AC,作DH⊥AC,H为垂足,
令BC=3k,AB=5k,易得AD=AC=4k (2分)
自己能写出的解答写出一部分也可以。
17、(本题6分)先化简再求值:
,并从不等式 < <tan 解中选一个你喜欢的数代入,求原分式的值.(原创)
18、(本题6分) 如图所示,A、B两个旅游点从2008至2012“五·一”的旅游人数变
化情况分别用实线和虚线表示.根据图中所示解答以下问题:
(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?
A. B. C. D.
二、认真填一填:(本题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案。
2012年浙江省杭州市中考数学模拟试卷2
2012年浙江省杭州市中考数学模拟试卷2一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.若等式成立,那么需要的条件是()A.x≥B.x<C.x≤D.x≠考点:二次根式的性质与化简。
专题:计算题。
分析:根据=|a|得到=|3x﹣2|,则|3x﹣2|=2﹣3x,即有|3x﹣2|=﹣(3x﹣2),根据绝对值的意义得到3x﹣2≤0,然后解不等式即可.解答:解:∵=|3x﹣2|,而等式,∴|3x﹣2|=2﹣3x,即|3x﹣2|=﹣(3x﹣2),∴3x﹣2≤0,∴x≤.故选C.点评:本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.2.若一个人从汽车反光镜中看到电子显示屏的数字为21,实际上电子显示屏的数字为()A.21 B.51 C.15 D.12考点:镜面对称。
分析:眼睛在平面镜中看到物体的像,物体的实际情况可以有两种方法进行判断:(1)把试卷翻过来对着光看,看到物体的实际情况.(2)根据平面镜成像特点作图找到物体的实际情况.解答:解:把试卷翻过来对着光看到“15”,所以实际上屏幕显示15.故选:C.点评:此题主要考查了镜面对称的性质,无论采用哪种方法,实际上都是根据平面镜成像特点进行判断:物体在平面镜中成虚像,物像大小相等,物像连线与镜面垂直,物像到平面镜的距离相等.3.计算(﹣3x)3•2x2的结果是()A.54x5B.﹣54x5C.54x6D.﹣54x6考点:单项式乘单项式。
分析:首先根据积的乘方计算:(﹣3x)3﹣27x3,再根据单项式乘以单项式运算法则计算﹣27x3•2x2.解答:解:(﹣3x)3•2x2=﹣27x3•2x2=(﹣27×2)•(x3•x2)=﹣54x5.故选:B.点评:此题主要考查了单项式乘以单项式运算法则,关键是注意计算顺序,掌握单项式乘以单项式计算法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.4.(2009•新疆)如图是一些相同的小正方体搭成的几何体的三视图,那么搭成这个几何体的小正方体的个数为()A.3个B.4个C.6个D.9个考点:由三视图判断几何体。
2012年人教版中考数学模拟题及答案
六、(每题10分,共20分) 23.四张质地相同的卡片如图所示. 将卡片洗匀后,背面朝上放置在 桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率; (2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你 认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公 平,请你修改规则,使游戏变得公平.
在RtAEO中,∠BAC=30°,cos30°=.
F
E
∴OA===4. …………………………3分
又∵OA=OB,∴∠ABO=30°.∴∠BOC=60°.
∵AC⊥BD,∴.
∴∠COD =∠BOC=60°.∴∠BOD=120°. 5分
∴S阴影==. 6分
法二:连结AD.
1分
∵AC⊥BD,AC是直径,
∴AC垂直平分BD.
20.
如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一
点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的
长.
第20题图
B
C
A
E
D
F
五、(每题10分,共20分)
21.为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲 坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调 查(每人只选一项内容),整理调查结果,绘制统计图如下:
时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一
年中空气质量达到良以上(含良)的天数为292
天.
15.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角
边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第
三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长3;4.
2012年中考数学模拟试题(含答案)
2012年中考数学模拟试题考试时间:120分钟,满分150分一、选择题(每题2分,共30分)1、如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a2、如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影面积等于()A.2cm2B.1cm2C.1/2cm2D.1/4cm2第2题第3题3、如图,矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于().4、一元二次方程,中,c<0.该方程的解的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定5、如图,△ABC中,AB、AC边上的高CE、BD相交于P点,图中所有的相似三角形共有()A.4对B.5对C.6对D.7对6、等边△A1B1C1内接于等边△ABC的内切圆,则的值为()A. B. C. D.7、当45°<<90°时,下列各式中正确的是()A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan8、如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是()A.(,)B.()C.(,)D.()第8题第9题9、已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.10、在同一坐标系中一次函数和二次函数的图象可能为()11、若,,三点都在函数的图象上,则的大小关系是()A. B. C. D.12、如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的函数图象是()13、如图,正三角形内接于圆,动点在圆周的劣弧上,且不与重合,则等于()A. B. C. D.第13题第14题第15题14、如图,一次函数图象经过点,且与正比例函数的图象交于点,则该一次函数的表达式为()A. B. C. D.15、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cmB.4cmC.cmD.3cm二、填空题(每题3分,共36分)16、已知,则的值为___________.17、如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为___________.第17题第18题18、如图,在中,.将其绕点顺时针旋转一周,则分别以为半径的圆形成一圆环.则该圆环的面积为__________.19、已知关于x的不等式(1-a)x>2的解集为,则a的取值范围是__________.20、方程有实数根,则锐角的取值范围是______.21、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是__________.第21题第22题22、如图,一张长方形纸片ABCD,其长AD=a,宽AB=b(a>b),在BC边上选取一点M,将ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则a/b的值是_____________.23、已知二次函数的部分图象如图所示,则关于的一元二次方程的解为___________.第23题第24题24、如图所示的抛物线是二次函数的图象,那么的值是___________.25、在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于__________.26、如图,要使输出值大于100,则输入的最小正整数是____________.27、有5张写有数字的卡片(如左图所示),它们的背面都相同,现将它们背面朝上(如右图所示),从中翻开任意一张是数字2的概率为_________.三、解答题(每题5分,共20分)28、已知y=的定义域为R ,求实数a 的取值范围.29、计算:0.25×⎝⎛⎭⎫12-2+(3.14-π)0-2sin60°.30、先化简,再求值:⎝⎛⎭⎫a a -1-1÷a a2-2a +1,其中a = 2.31、解不等式组:()②①⎪⎩⎪⎨⎧-+≤+321234xxxx四、综合题(共64分)32、(本题满分9分)“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.(1)若代销点采取降价促销的方式,试建立每吨的销售利润(元)与每吨降价(元)之间的函数关系式.(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.DEA M NCB如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)求证:△ACE≌△DCB;(2)请你判断△ACM与△DPM的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC 上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积;(2)求四边形MEFN面积的最大值.(3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由.35、(本题满分10分)如图,⊙O经过点B、D、E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.(1)试证明直线AC是⊙O的切线;(2)当AE=4,AD=2时,求⊙O的半径及BC的长.(第35题)已知:如图,直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.(1)求A、C两点的坐标;(2)求出抛物线的函数关系式;(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;(4)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3,若存在,试求出点M的坐标;若不存在,试说明理由.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案选择题答案:D答案:B答案:D答案:B答案:C答案:A答案:C答案:A答案:C答案:A答案:A答案:C答案:B答案:A答案:A二、填空题16、答案:-3.17、答案:-1,0,1,218、答案:19、答案:a>120、答案:0°<≤30°.21、答案:22、答案:23、答案:,24、答案:-125、答案:226、答案:2127. 答案:三、解答题28、确定a的取值范围,使之对任意实数x都有ax2+4ax+3≠0.解:当a=0时,ax2+4ax+3=3≠0对任意x∈R都成立;当a≠0时,要使二次三项式ax2+4ax+3对任意实数x恒不为零,必须满足:其判别式,于是,0<a <.综上,.29. 原式=14×4+1-2×32(4分)=2- 3.(8分)30. 原式=a -a +1a -1·-a (3分)=a -1a .(6分)当a =2时,原式=2-12=2-22.(8分)31.解:由 ① 得 23≤-x x , 1-≥x由 ② 得 ()x x 213 - ,323 x x -, 3 x∴ 31 x ≤-四、综合题32.(1)依题意,得……………………………………3分 (2)依题意,得………………………………………… 4分 解得…………………………………………1分…………………………………………1分答:每吨水泥的实际售价应定为元时,每天的销售利润平均可达720元. 1分34. (1)连接OE.[来源:学科网ZXXK]∵BE是∠ABC的平分线,∴∠1=∠2.∵OE=OB,∴∠1=∠3.∴∠2=∠3.∴O E∥AC.又∠C=90°,∴ ∠AEO =90°.[来源:学科网]∴ AC 是⊙O 的切线.(6分)(2)设⊙O 的半径为r ,在Rt △AEO 中,由勾股定理可得OA2=OE2+AE2.∵ AE =4,AD =2,∴ (2+r)2=r2+42.∴ r =3.∵ OE ∥AC ,∴ AO AB =OE BC .∴ 2+32+6=3BC. ∴ BC =245.(10分)35 .① A(-6,0),C(0,6) ………………………………………………………2分② …………………………………………………………………3分 ③相切,BD=6 ………………………………………………………………………3分 ④存在这样的点M ,M()或() ……………3分36 .解:(1)在矩形OABC 中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5 ……………………………… 3分(2)连结O ′D在矩形OABC 中,OC=AB ,∠OCB=∠ABC=90°,CE=BE=∴ △OCE ≌△ABE ∴EA=EO ∴∠1=∠2在⊙O ′中, ∵ O ′O= O ′D ∴∠1=∠3∴∠3=∠2 ∴O ′D ∥AE ,∵DF ⊥AE ∴ DF ⊥O ′D又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径 ,∴DF 为⊙O ′切线. ……………………………………………………………………4分(3)不同意.理由如下:①当AO=AP 时,以点A 为圆心,以AO 为半径画弧交BC 于P1和P4两点过P1点作P1H ⊥OA 于点H ,P1H=OC=3,∵AP1=OA=5∴AH=4, ∴OH=1 求得点P1(1,3) 同理可得:P4(9,3) ……………3分 ②当OA=OP 时,同上可求得:P2(4,3),P3(4,3) …………………………2分因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. ……………………1分。
2012年中考数学模拟试题及答案详解
2012年中考数学模拟试题及答案详解注意事项:1.本试卷共8页,三大题,满分120分,考试时间120分钟.2. 第Ⅰ卷上选择题和填空题在第Ⅱ卷的答题栏上答题,在第Ⅰ卷上答题无效.第Ⅰ卷一、选择题(每小题3 分,共24分)1.下列计算中,正确的是A.2x+3y=5xyB.x·x4=x4C.x8÷x2=x4D.(x2y)3=x6y32.如图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是3.平面直角坐标系中,某点在第二象限且它的横坐标、纵坐标之和为2,则该点的坐标是A.(-1,2) B.(-1,3)C.(4,-2) D.(0,2)4.如图,有反比例函数,的图象和一个圆,则图中阴影部分的面积是A. B.2C.4 D.条件不足,无法求5.正比例函数的图象经过第二、四象限,若同时满足方程,则此方程的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.当五个数从小到大排列后,其中位数是4,如果这组数据唯一的众数是6,那么这5个数可能的最大和是( )A.21 B.22 C.23 D.247.如图,在△ABC中,AC=,则AB等于A.4 B.5C.6 D.78. A是半径为5的⊙O内的一点,且OA=3,则过点A且长小于10的整数弦的条数是A.1条B.2条C.3条D.4条二、填空题(每空3分,共18分)9.分解因式2x2-4xy +2y2= .10.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= .第10题图第11题图第13题图11.如图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,尉蚂蚁停留在黑色瓷砖上的概率是 .12.关于x的分式方程有增根x=-2,则k的值是 . 13.如图,B是线段AC的中点,过点C的直线l与AC成600的角,在直线上取一点P,使∠APB=300,则满足条件的点P有 个.14.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=____时,四边形ABDC的周长最短.请把第Ⅰ卷选择题答案填在下面相对应的位置上题号12345678答案9. ;10. ; 11. ;12. ;13. ; 14. .第Ⅱ卷三、解答题:15.(5分)计算:16.(5分)17.(5分)先化简,再求值:,其中(tan45°-cos30°)18.( 6分)用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形。
2012年中考二模数学试题及答案
2012年初中升学考试模拟测试(二)数学试卷一、选择题(每小题3分.共计30分) 1.-5的相反数是( ). (A)15 (B)15- (C)5 (D)-5 2.下列运算中,正确的是( ).(A)224347a a a += (B 55534a a a -=-(C)2364312a a a ∙= (D)(33a )2÷43a =234a 3.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( ).4.下列四个点,不在函数y=12x图像上的点是( ). (A)(2,6) (B)(-2,-6) (C)(3,4) (D)(-3,4)5.在一次中学生田径运动会上,参加男子跳高的l5名运动员的成绩如下表所示:成绩/m 1.55 1.60 1.65 1.70 1.75 1.80 人数23234l则这些运动员成绩的中位数是( ).(A)1.80 (8)1.75 (C)1.70 (D)1.65 6.如图所示的几何体的主视图是( ).7.如果正五边形绕着它的中心旋转a 角后与它本身重合。
那么a 角的大小可以是( ). (A)36 (B)45 (C)720 (D)9008.关于x 的一元二次方程x 2+bx-7=0的根的情况是( ). (A)没有实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)由于不知道b 的值,不能确定根的情况 9.已知菱形的周长为40,一条对角线长为l2,那么这个菱形的面积是( ). (A)96 (B)72 (C)48 (D)40.1 0.从A 地向B 地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元, 若通话时间为x(单位:分,x ≥3且x 为整数),则通话费用y(单位:元)与通话时间x(分)函数关系式是( ).(A)y=0.8x(x≥3且x 为整数) (B)y=2.4+x(x≥3且x 为整数) (C)y=x-0.6(x≥3且x 为整数) (D)y=x(x≥3且x 为整数)二、填空题(每小题3分,共计30分)11.据报道,哈西路桥建设叉一重要工程一哈西和谐大道跨线桥开工建设.总投资250 000 000 元将250 000 000用科学记数法表示为 . 12.在函数y=12x -中,自变量x 的取值范围是 .13.把多项式3a b ab -分解因式的结果为14.如图,AB ∥CD ,CF 交AB 于点E ,∠C=520,则∠AEF= 度. 15.不等式组{x+1≤3,2x-1>0 的解集是——.16.用一个圆心角为l200,半径为6的扇形作—个圆锥的侧面,则这个 圆锥的底面圆的半径为 .17.如图,AB 是⊙0的直径,CB 是⊙0的切线,B 为切点,0C ⊥BD ,点E 为 垂足,若BD=45,EC=5,则直径AB 的长为 .18.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m) 之间的关系是: y=-21251233x x ++,那么这个男生推出铅球的距离是 m . 19.已知AABC 中,AB=1,AC=3,∠BCA=300,则∠BAC 的度数是 度.20.如图,△ABC 中,AB=10,∠B=2∠C ,AD 是高线,AE 是中线,则线段DE 的长为三、解答题(21-24题各6分.25-26题各8分。
2012年中考模拟质量测试题数学试题及答案
浙江省宁波市2012年初中毕业生学业考试模拟试卷数学试题考生须知: 1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满 分为120分,考试时间为120分钟.2.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为24()24--b ac b aa,. 试 题 卷 Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.如图,已知AB ∥CD ,∠A =80°,则∠1的度数是( ▲ ) A .100° B .110° C .80° D .120° 2.下列计算正确的是( ▲ )3= B.020=C.331-=-=3.2011年七月颁布的《国家中长期教育改革和发展规划纲要》中指出“加大教育投入.提高国家财政性教育经费支出占国内生产总值比例,2012年达到4%.”如果2012年我国国内生产总值为435 000亿元,那么2012年国家财政性教育经费支出应为(结果用科学记数法表示)( ▲ ) A .4.35×105亿元 B.1.74×105亿元 C. 1.74×104亿元 D.174×102亿 4.在ABC △中,︒=∠90C ,2=AB ,3=AC ,那么B cos 的值是( ▲ )A .21 B .22 C .23D .3 5.已知两圆的半径分别是2 cm 和4 cm ,圆心距是2cm ,那么这两个圆的位置关系是( ▲ ) A .外离 B .外切 C .相交 D .内切 6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是( ▲ )A .12B .14C .34 D .17.由二次函数1)3(22+-=x y ,可知( ▲ )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大0.16—32 D BAC 1第1题图8.如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是( ▲ ) A .不存在 B .等腰三角形C .直角三角形D .等腰三角形或直角三角形 9.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( ▲ ) A .3 B .4 C .6 D .910.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A 、B 的距离,他们设计了如图所示的测量方案:从树A 沿着垂直于AB 的方向走到E ,再从E 沿着垂直于AE 的方向走到F ,C 为AE 上一点,其中3位同学分别测得三组数据:(1) AC ,∠ACB (2) EF 、DE 、AD (3) CD ,∠ACB ,∠ADB 其中能根据所测数据求得A 、B 两树距离的有 ( ▲ ) A..0组 B .一组 C .二组 D .三组11.如图,在△ABC 中,AB =AC =5,BC =8。
2012年历年初三数学中考模拟试卷二及答案
2012年数学中考模拟试卷一、选择题(每小题2分,共16分) 1.下列计算正确的是( )A .(a 2)3=a 6B .a 2+a 2=a 4C .(3a )·(2a )2=6aD .3a -a =3 2.在学雷锋活动中,我市青少年积极报名争当“助人为乐志愿者”,仅一个月时间就有107000人报名,将107000用科学记数法表示为 ( ) A .4107.10⨯B .51007.1⨯C .60.10710⨯D .61.0710⨯3.将左图所示的Rt △ABC 绕直角边AB 旋转一周,所得几何体的主视图为( )A .B .C .D .4.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,9,10,10,8,8,这组数据的众数与中位数分别为( ) A .9与8B .8与9C .8与8.5D .8.5与95.在平面直角坐标系xoy 中,点P 的坐标是(2,-m 2-1),其中m 表示任意实数,则点P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知函数c x x y +-=22(c 为常数)的图象上有两点),(11y x A ,),(22y x B ,若211x x <<且221>+x x ,则1y 与2y 的大小关系是( )A.21y y >B. 21y y <C. 21y y =D. 1y 与2y 的大小不确定 7.如图,正方形ABCD 内接于⊙O ,点E 为DC 的中点,直线BE 交⊙O 于点F ,如果⊙O 的半径为2,则点O 到BE 的距离OM 是( ) A .21 B .52C .65 D .558.如右图,在平面直角坐标系xOy中,点A的坐标为(3-,1),点B是x轴上的一动点,以AB为边作等边三角形ABC. 当),(yxC在第一象限内时,下列图象中,可以表示y与x的函数关系的是()A. B. C. D.二、填空题(本大题第9小题4分,其余每小题2分,共20分)9.计算:____51=⎪⎭⎫⎝⎛--;____51=-;___510=⎪⎭⎫⎝⎛-;____511=⎪⎭⎫⎝⎛--.10.分解因式:24ax a-=;函数12+=xy中自变量x的取值范围是.11.方程4)4(-=-xxx的解是=1x,=2x.12.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是53,则盒子中黄球的个数是.13.已知圆锥的底面半径为5 cm,侧面积为60πcm2,则这个圆锥的母线长为cm,它的侧面展开图的圆心角是°.14.如图,弦AB和CD相交于点P,︒=∠30B,︒=∠80APC,则BAD∠的度数为°.15. 已知一个直角三角形的周长是264+,斜边上的中线长是2,则这个三角形的面积是 .Oyx1-1-11CABPDCBA16.如图直线l 交y 轴于点C ,与双曲线()0<=k xky 交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、P 、Q (Q 在直线l 上)分别向x 轴作垂线,垂足分别为D 、E 、F ,连接OA 、OP 、OQ ,设△AOD 的面积为S 1,△POE 的面积为S 2,△QOF 的面积为S 3,则S 1、S 2、S 3的大小关系为 .(用“<”连接) 17. 在平面直角坐标系xOy 中,正方形O C B A 111、1222B C B A 、2333B C B A ,…,按右图所示的方式放置.点1A 、2A 、3A ,…和点1B 、2B 、3B ,…分别在直线b kx y +=和x 轴上.已知1C (1,1-),2C (27,23-),则点3A 的坐标是 ,点n A 的坐标是_______________. 三、解答题(共18)18.(本题满分8分)(1)计算:()1260tan 112012-︒-+-(2)化简:1b -a-a -b a ÷a 2-2ab +b 2 a19(本小题10分)(1)解不等式组⎩⎪⎨⎪⎧6-2x 3 ≥0,2x >x +1, (2)解分式方程: 32121=-+--x x x .四、解答题(共15分)20.(本小题7分)2012年我市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表 消费者打算购买住房面积统计图请你根据以上信息,回答下列问题:(1)统计表中的a = ,并补全统计图; (2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为 ; (3)求被调查的消费者平均每人年收入为多少万元?第17题l CS 3S 2S 1 yxOQ PFE DBAO A 1 A 2A 3B 1 B 2 B 3C 1 C 2C 3xyy=kx+b年收入(万元)4.8 69 12 24 被调查的消费者数(人) 10a30 91第20题21.(本小题8分)如图,有A 、B 两个转盘,其中转盘A 被分成4等份,转盘B 被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A 转盘指针指向的数字记为x ,B 转盘指针指向的数字记为y ,从而确定点P 的坐标为P (x ,y ). (1)请用列表或画树状图的方法写出所有可能得到的点P 的坐标; (2)计算点P 在函数y=6x 图象上的概率.五、解答题(共12分) 22.(本小题5分)已知:如图,△ABC 中,点E 在AB 上,∠ACE=∠B ,AF 平分∠CAB 交CE 于F ,过F 作FD ∥BC 交AB 于D . 求证:AC=AD .23.(本小题7分)已知:如图,在梯形ABCD 中,AD∥BC,AB=AD ,∠BAD 的平分线AE 交BC 于点E ,连接DE .求证:四边形ABED 是菱形;1 32 4 6 A B 5 7 (第21题)六.探究与画图(共13分) 24.(本题满分5分)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4), 矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b ,则满足条件的k 的值可以是 .(只须写两个.....)CB A D图3P EF DA B C 图1 P EF DA B C 图2图4备用25.(本题满分8分)我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形. (1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题,并说明理由; (2)在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt △ABC 是奇异三角形,求a :b :c ; (3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A 、B 重合),D 是半圆弧ADB 的中点,C 、D 在直径AB 的两侧,若在⊙O 内存在点E ,使AE =AD ,CB =CE .试说明△ACE 是奇异三角形.七、解答题(共3小题,共26分)26.(本题满分7)如图,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线 43-=x y 经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线xk y =也经过A 点.(1) 求点A 的坐标和k 的值;(2)若点P 为x 轴上一动点.在双曲线上是否存在一点Q ,使得△P AQ 是以点A 为直角顶点的等腰三角形.若存在,求出点Q 的坐标,若不存在,请说明理由.AB O PC yxAB O·Pyx备用图27.(本小题9)将右图所示的长方体石块(a > b > c )放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm 3/s ,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图1 ~ 图3所示.在这三种情况下,水槽内的水深h cm 与注水时间 t s 的函数关系如图4 ~ 图6所示.根据图象完成下列问题:(1)请分别写出三种放置方式的示意图和与之相对应的函数关系图象(只须填序号):图1与图 ,图2与图 ,图3与图 ;(2)水槽的高= cm ;石块的长a = cm ;宽b = cm ;高c = cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .s图4图5图6图2图1图328.(本题满分10)如图,二次函数452+-=x x y 的图象与x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C ,有一个动点E 从点B 出发以每秒一个单位向点A 运动,过E 作y 轴的平行线,交ABC ∆的边BC 或AC 于点F ,以EF 为边在EF 右侧作正方形EFGH ,设正方形EFGH 与ABC ∆重叠部分面积为S ,E 点运动时间为t 秒.(1)求顶点C 的坐标和直线AC 的解析式;(2)求当点F 在AC 边上,点G 在BC 边上时t 的值;(3)写出点E 从点B 向点A 运动过程中,S 关于t 的函数关系式及相应t 的取值范围.备用图1备用图22012年数学中考模拟试卷参考答案一、选择题(本大题共8小题,每小题2分,共16分) 题号 1 2 3 4 5 6 7 8 答案ABCCDBDA二、填空题(每题2分,共20分)9.51,51,1,-5; 10.)12)(12(-+x x a ,1-≠x ; 11.=1x 1,=2x 4; 12.6; 13.12,150; 14.50; 15.25; 16.S 3<S 1<S 2; 17.()1129933(,);5()4,()4422n n --⨯-18.(本小题满分8分)(1)解:原式32-1-31+= ……3分 3-= ……………4分 (2)解:原式=1b -a -a -b a ·a(a -b )2………2分=1b -a -1a -b ………………………3分=-2a -b .……………………………4分19.(本小题满分10分)(1)解:解不等式①,得x ≤3.……………………2分解不等式②,得x >1.……………………4分 所以不等式组的解集是1<x ≤3. ………5分(2)解:去分母得 x-1+1=3(x-2)……………2分解得 x=3. ………………4分 经检验:x=3是原方程的根.所以原方程的根为x=3.………………5分 20.(本小题满分7分)解:(1)a =50…1分,如图;…2分(2)52%;…4分 (3)100124912309506108.4⨯+⨯+⨯+⨯+⨯=7.5(万元)故被调查的消费者平均每人年收入为7.5万元. …7分 21. (本小题满分8分)解:(1树状图参照给分,若有个别错误,酌情扣分………………………4分 (2)共有12个等可能的结果,其中在函数y =6x图象上(记为事件A )的结果有2个:(1,6),(3,2).…………………………………………6分 ∴P (A )=212=16……………………………………………………8分22. (本题满分5分)证明:∵FD ∥BC ,∴∠B=∠ADF ……1分∵∠B=∠ACE ,∴∠ACE=∠ADF ……2分∵AF 平分∠CAB ,∴∠CAF=∠DAF ,……3分∵在△ACF 和△ADF 中∠ACE=∠ADF ,∠ACE=∠ADF ,AF=AF ∴△ACF ≌△ADF ,……4分 ∴AC=AD .……5分23.(本小题满分7分)证明:∵AE 平分∠BAD ,∴∠BAE=∠DAE ,……1分∵AB=AD ,AE=AE ,∴△BAE ≌△DAE ,……2分 ∴BE=DE ,……3分∵AD ∥BC ,∴∠DAE=∠AEB ,……4分 ∴∠BAE=∠AEB ,∴AB=BE ,……5分 ∴AB=BE=DE=AD ,……6分∴四边形ABED 是菱形.……7分24.(本小题满分5分) 解:(1)如右图;……2分 (2)23458 k .……5分 (写出58得1分,另一个得2分)F EDABCMP25.(本小题满分8分)解:(1)设等边三角形的一边为a,则a2+a2=2a2,∴符合“奇异三角形”的定义.∴是真命题;……2分(2)∵∠C=90°,∴a2+b2=c2①,∵Rt△ABC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=2a,c=3a,∴a:b:c=1:2:3……5分(3)∵①AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,AC2+BC2=AB2,在Rt△ADB中,AD2+BD2=AB2,∵点D是半圆弧ADB的中点,∴弧AD=弧DB,∴AD=BD,∴AB2=AD2+BD2=2AD2,∴AC2+CB2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2,∴△ACE是奇异三角形; (8)分26.(本小题满分7分)(1)过点A分别作AM⊥y轴于M点,AN⊥x轴于N点,∵△AOB是等腰直角三角形,∴AM=AN.设点A的坐标为(a,a),点A在直线y=3x-4上,∴a=3a-4,解得a=2,则点A的坐标为(2,2)……2分,∴k = 4 ……3分(2)假设双曲线上存在一点Q,使得△P AQ是等腰直角三角形.过B作BQ⊥x轴交双曲线于Q点,连接AQ,过A点作AP⊥AQ交x轴于P点,则△APQ为所求作的等腰直角三角形.…4分理由:在△AOP与△ABQ中,∠OAB-∠P AB=∠P AQ-∠P AB,∴∠OAP=∠BAQ,AO=BA,∠AOP=∠ABQ=45°,∴△AOP≌△ABQ(ASA),…5分∴AP=AQ,∴△APQ是所求的等腰直角三角形.∵B(4,0),∴Q(4,1)…6分经检验,在双曲线上存在一点Q(4,1),使得△P AQ是以点A为直角顶点的等腰三角形.…7分说明:应有4种情况,其他3种情况不符合27.(本小题满分9分) (1)图4;图6;图5…………………2分(对2个得1分,全对得2分)(2)水槽的高= 10 cm ;石块的长a = 10 cm ;宽b = 9 cm ;高c = 6 cm ;………4分(每对2个得1分)(3)由题意可知C 点的坐标为(45,9),D 点的坐标为(53,10)设直线CD 的函数关系式为y kx b =+,∴945,1053.k b k b =+⎧⎨=+⎩ 解得1,827.8k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线CD 的函数关系式为127.88y x =+ …………………………6分 (4)石块的体积为abc =540 cm 3,根据图4和图6可得:10540(106)535321S S --=-, 解得S=160 cm 2.………………………………………………9分28.(本小题满分10分)(1)452+-=x x y =49)25(2--x ,顶点C 的坐标为(49,25-)…1分452+-=x x y =)4)(1(--x x ,故点A (1,0)B (4,0) …2分。
2012年浙江省初中模拟考试数学试卷(1)及答案
2012年浙江省初中模拟考试1九年级 数学试题卷(满分150分,考试用时120分钟)一、选择题:(本大题共10小题,每小题4分,满分40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不不给分)1.-2的绝对值是( ) A . -2 B . 2 C .12 D . 12- 2.如图,直线AB 、CD 被直线EF 所截,则∠3的同旁内角是( ) A .∠1 B .∠2 C .∠4 D .∠5 3.小明的讲义夹里放了大小相同的试卷共10页,其中语文4页、数学3页、英语5页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ) A .21 B .103C .52D .101 4.抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++ B .()213y x =+-C .()213y x =-- D .()213y x =-+5.如图,下列水平放置的几何体中,左视图不是..长方形的是( ) 12354A B C D EF(第2题图)6.如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .8 7.同学们玩过滚铁环吗?当铁环的半径是30cm ,手柄长40cm .当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm 时,铁环所在的圆与手柄所在的直线的位置关系为( )A .相离B .相交C .相切D .不能确定 8.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数2y x =-图象上的概率是( ) A .12B .13 C .14 D .169.如图,在ABC ∆中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值是( )A .B .C .D .QPCBAOABMP O A . 4.8 B .4.75 C .5 D .210.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经过2012次后它停在哪个数对应的点上 ( ) A .1 B .2 C .3 D .5 二、填空题(本题共6小题,每小题5分,共30分) 11.因式分解22x x -= .12.如图,已知点P 为反比例函数4y x=的图象上的一点,过点P 作横轴的垂线,垂足为M ,则OPM ∆的面积为 .13.已知关于x 的方程2220x x k -+=的一个根是1,则k = . 14.如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= . 15.小明的圆锥形玩具的高为12cm ,母线长为13cm ,则其侧面积是 2cm .16.一个长方形的长与宽分别为163cm 和16cm ,绕它的对称中心134O C BA旋转一周所扫过的面积是 2cm ;旋转90度时,扫过的面积是2cm .三、解答题:(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17.(1)计算:002012124sin 60+-⨯; (2)解不等式()()21331x x -+≤+.18.求代数式的值:2222(2)42x x x x x x -÷++-+,其中12x =.19.为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如右表:根据上面提供的信息,回答下列问题: (1)求随机抽取学生的人数 ; (2)统计表中b = ;(3)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.体育成绩(分) 人数(人) 百分比(%) 26 8 1627 a 2428 15 d 29 b e 30 c 1020.已知:如图,在□ABCD 中,E 是CA 延长线上的点,F 是AC 延长线上的点,且AE = CF .求证:(1)△ABE ≌△CDF ; (2)BE ∥DF .21.我市某服装厂主要做外贸服装,由于技术改良,2011年全年每月的产量y (单位:万件)与月份x 之间可以用一次函数10y x =+表示,但由于“欧债危机”的影响,销售受困,为了不使货积压,老板只能是降低利润销售,原来每件可赚10元,从1月开始每月每件降低0.5元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江山市2012年中考数学模拟试卷二态度决定一切,细节决定成败!一、选择题(本题共10小题,每小题3分,共30分) 1.-3的相反数是( ▲ )A .3B . -3C .31 D .31-2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ▲ )A.30°B. 40°C. 60°D. 70°3.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲ )4.若反比例函数k y x=的图象经过点(1,3),则此反比例函数的图象在( ▲ )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.计算2(2)3a a -⋅的结果是( ▲ )A. 26a - B. 36a - C. 312a D. 36a6.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 5 6 人 数25431则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )元A .3,3B .2,3C .2,2D .3,5 7.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2. 5米,底面半径为2米,则做这把遮阳伞需用布料的面积是( ▲ )平方米(接缝不计) A . π3 B .π4 C .π5 D .π4258.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ▲ )A .2(1)y x =- B . 2(1)y x =+ C .21y x =- D .21y x =+ 9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒AC BD E(第2题图)(第9题图)10.如图,在直角梯形A B C D中,AD∥BC,90C∠= ,cmBC10=,6cmC D=,2cmA D=,动点P、Q同时从点B出发,点P沿BA、AD、DC运动到点C停止,点Q沿B C运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为(s)t,B P Q△的面积为y2(cm).下图中能正确表示整个运动中y关于t的函数关系的大致图象是(▲)A. B. C. D.二、填空题(本题共6小题,每小题4分,共24分)11.比较大小:1-▲31(填“>”、“=”或“<”).12.若二次根式12-x有意义,则x的取值范围是▲.13.一元二次方程(3)0x x+=的解为▲.14.已知CBA,,是⊙O上不同的三个点,︒=∠60AOB,则=∠ACB▲15.已知双曲线2yx=,kyx=的部分图象如图所示,P是y轴正半轴上过点P作A B∥x轴,分别交两个图象于点,A B.若2P B P A=,则=k▲.16.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是▲。
P ABxyO(第15题图)(第10题图)(第7题图)2.5米2米三、解答题(本题有8小题,共66分.务必写出解答过程) 17.(本题6分)计算:11|2|()( 3.14)8co s 452π---+-+⨯︒.18、(本题6分)解方程组:2241x y x y +=⎧⎨-=⎩19.(本题6分)如图,正方形网格中,每一个小正方形的边长都是1,ABC ∆的三个顶点都在格点(每个小正方形的顶点)上,O 为AC 的中点,若把ABC ∆绕点O 顺时针旋转900. (1) 画出ABC ∆旋转后的图形;(2)求点B 所经过的路径长.20.(本题8分)已知:如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE . 求证:GF =GC .ABCO(第19题图)GFEDCBA0 14 23 次数(次)2 3 5 6 7人数(人)O51女生 男生4 21.(本题8分)2011年3月10日,云南盈江县发生里氏5.8级地震。
萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援。
救援队利用生命探测仪在某建筑物废墟下方探测到点 C 处有生命迹象,已知废墟一侧地面上两探测点A 、B 相距3米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度。
(结果精确到0.1米,参考数据:2 1.41,3 1.73≈≈)22.(本题10分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1) 该班级女生人数是 ▲ ,女生收看“两会”新闻次数的中位数是 ▲ ; (2) 对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人 数占其所在群体总人数的百分比叫做 该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻 的“关注指数”比女生低5%,试求 该班级男生人数;(3) 为进一步分析该班级男、女生 收看“两会”新闻次数的特点,小明 给出了男生的部分统计量(如表1).根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看 “两会”新闻次数的波动大小.(表1)BCA23.(本题10分)学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sad A =B C A B=底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题: (1)sad 60︒的值为( )A.12B. 1C.32D. 2(2)对于0180A ︒<<︒,∠A 的正对值sad A 的取值范围是 . (3)已知3sin 5α=,其中α为锐角,试求sad α的值.24.(本题12分)如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=4.5,AD=3,∠DCB=45°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作正方形EFGH.设E点移动距离为x(x>0).⑴正方形EFGH的边长是____(用含有x的代数式表示),当x=1.5时,点G的位置在_______;⑵若正方形EFGH与梯形ABCD重叠部分面积是y,求:①当0<x≤1.5时,y与x之间的函数关系式;②当1.5<x≤4.5时,y与x之间的函数关系式;⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.参考答案及评分细则AACBBBCADD 11、〈 12、x ≥1213、x 1=0, x 2=-3 14、︒30或︒150 15.4-16、 (26 ,50)17.解: 原式=2-2+1+2222⨯=318、① + ② 得: 6x =3 ········································································································· 2分 ∴ x =12········································································································· 3分 把x =12代入①,得: 2×12+ y =2∴ y =1 ·············································································································· 5分∴ 方程组的解是121x y ⎧=⎪⎨⎪=⎩6分19.(1)图略; (图正确,2分) (2)180r n l π=(4分) =25π (6分)20、 证明:∵AB ⊥BE ,DE ⊥BE∴∠ABC=∠DEF BF =CE∴BF+FC =CE+FC,即BC=EF ∵AB =DE∴△ABC ≌△DEF ∴∠ACB=∠DFE ∴GF =GC21.解:如图,过点C 作CD ⊥AB 交AB 于点D. --------------1分 ∵探测线与地面的夹角为30°和 60°∴∠CAD=30°,∠CBD=60° ------------1分 在Rt △BDC 中,BDCD =︒60tan∴360tan CD CD BD ==︒------------------1分在Rt △ADC 中,ADCD =︒30tanGFEDCBABCDHA∴3330tan CD CD AD ==︒---------------1分∵3=-=BD AD AB ∴3333=-CD CD --------------2分∴)(6.2273.13233米≈⨯==CD -----------------1分答:生命所在点C 的深度大约为2.6米。