最新人教版高中数学必修三第三章概率3.3几何概型教案

合集下载

高中数学教案 必修3教案 第三章 概率 3.3几何概型

高中数学教案 必修3教案 第三章 概率 3.3几何概型

几何概型一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法;(6)会利用均匀随机数解决具体的有关概率的问题.2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、 情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。

二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。

例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。

2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、 例题分析:课本例题略例1 判下列试验中事件A 发生的概度是古典概型,还是几何概型。

最新人教版高中数学必修三几何概型优质教案

最新人教版高中数学必修三几何概型优质教案

§3.3 几何概型§3.3.1 几何概型一、教材分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X落到[0,1]区间内任何一点是等可能的,则称X 为[0, 1]区间上的均匀随机数.二、教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

最新人教版高中数学必修3第三章《几何概型》教案1

最新人教版高中数学必修3第三章《几何概型》教案1

几何概型教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。

(2)通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。

3、情感态度与价值观:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。

教学重点理解几何概型的定义、特点,会用公式计算几何概率。

教学难点(1) 等可能性的判断和几何概型与古典概型的区别。

(2) 把求未知量的问题转化为几何概型求概率的问题。

教辅手段投灯片,计算机及多媒体教学.教学过程一、以旧带新——设置情景处理方式(一)借助课件,提出问题,引导学生回顾1、古典概型的特点2、古典概型的公式(二)引导学生独立思考,解决问题:如课本P135图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。

2、如图,山姆的意大利馅饼屋中设有一个投标靶,该靶为正方形板,边长为18厘米,投中半径为1厘米的最内层圆域,可得一个大馅饼;投中半径为1厘米到2厘米之间的环域,可得一个中馅饼;投中半径为2厘米到3厘米之间的环域,可得一个小馅饼;我们假设每一个顾客都能投镖中靶,并且假设每个圆的周边没有宽度,即每个投镖不会击中线上,试求一个顾客将赢得:(a )一张大馅饼(b )一张中馅饼(c )一张小馅饼(d )没有得到馅饼的概率。

(3)与体积有关的几何概型问题(取水问题):有一杯500毫升的水, 其中含有1个细菌, 用一个小杯从这杯水中取出2毫升, 求小杯水中含有这个细菌的概率.四、归纳提升---深化概念处理方式引导学生归纳本课时的主要学习内容,交流成果教师帮助完善。

3.3《几何概型》教案(新人教必修3)

3.3《几何概型》教案(新人教必修3)

3.3.1几何概型教学目标:初步体会几何概型的意义。

教学重点:初步体会几何概型的意义。

教学过程:1.古典概型要求样本点总数为有限.若是有无限个样本点,特别是连续无限的情况,虽是等可能的,也不能利用古典概型.但是类似的算法可以推广到这种情形.若样本空间是一个包含无限个点的区域Ω(一维,二维,三维或n 维),样本点是区域中的一个点.此时用点数度量样本点的多少就毫无意义.“等可能性”可以理解成“对任意两个区域,当它们的测度(长度,面积,体积,…)相等时,样本点落在这两区域上的概率相等,而与形状和位置都无关”.在这种理解下,若记事件A={任取一个样本点,它落在区域g ⊂Ω},则A 的概率定义为 P(A)=的测度的测度Ωg . 这样定义的概率称为几何概率.2.例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻,故 P(A)=53=Ω的长度的长度g . 例2(会面问题)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.因为两人谁也没有讲好确切的时间,故样本点由两个数(甲乙两人各自到达的时刻)组成.以7点钟作为计算时间的起点,设甲乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y) | 0≤x ≤60,0≤y ≤60},画成图为一正方形.会面的充要条件是|x -y| ≤20,即事件A={可以会面}所对应的区域是图中的阴影线部分.P(A)=9560)2060(60222=--=Ω的面积的面积g课堂练习:略小结:通过实例初步体会几何概型的意义课后作业:略3.4概率的应用教学目标:结合实际问题情景,理解概率的应用教学重点:结合实际问题情景,理解概率的应用教学过程:1.概率依赖于观察者至少在数学中概率是依赖于观察者的。

人教A版高中数学必修3第三章 概率3.3 几何概型教案(2)

人教A版高中数学必修3第三章 概率3.3 几何概型教案(2)

第三章概率3.3 几何概型一、教学目标1.核心素养通过学习古典概型,初步形成基本的数学抽象和数学建模能力.2.学习目标(1)理解几何概型基本事件的特点.(2)会用几何概型公式解决实际实际问题.(2)掌握利用计算器(计算机)产生均匀随机数的方法.3.学习重点理解几何概型的特点,会用几何概型解决随机事件出现的概率如何计算问题.4.学习难点基本事件出现等可能性.二、教学设计(一)课前设计1.预习任务任务1阅读P135-P140,思考:几何概型与古典概型的异同在哪儿?任务2如何利用几何概型公式解决实际问题中的概率问题?2.预习自测1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.()(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.()(4)随机模拟方法是以事件发生的频率估计概率.()(5)与面积有关的几何概型的概率与几何图形的形状有关.()解:√√√√×2.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是( )A .0.5B .0.4C .0.004D .不能确定 解:C3.用均匀随机数进行随机模拟,可以解决( ) A.只能求几何概型的概率,不能解决其他问题 B.不仅能求几何概型的概率,还能计算图形的面积 C.不但能估计几何概型的概率,还能估计图形的面积 D.最适合估计古典概型的概率. 解:C(二)课堂设计 1.知识回顾 (1)古典概型的基本事件的特点.(2)古典概型计算公式.2.问题探究问题探究一 几何概型基本事件的特点有哪些?(★▲)●活动一 创设情景,区分古典概型与几何概型飞镖游戏:如图所示,规定射中红色区域表示中奖.则下列各圆盘的中奖概率如何计算呢?(1) (2) (3)图(1)是将圆盘五等分,飞镖分别射在五个相同的扇形区域作为五个等可能基本事件,每个基本事件的发生是等可能性的,概率为51.图(2)三块区域圆心角之比为1:2:3。

人教版高中数学必修三 第三章 概率几何概型教案

人教版高中数学必修三 第三章 概率几何概型教案

几何概型教案一、教学目标:(1)知识与技能目标 :通过具体实例正确理解几何概型定义及与古典概型的区别;掌握几何概型的概率计算公式并能解决简单实际问题 。

(2)过程与方法目标 :通过解决引例问题及归纳定义、公式,体验从特殊到一般的思想方法;通过实际问题,培养学生数学建模能力;通过对问题的观察、对比和交流讨论,领悟类比思想与转化思想.(3)情感、态度与价值观目标 :通过对几何概型的教学,培养学生独立思考探索的能力,增强学生合作交流的机会,帮助学生树立科学的世界观和辩证的思想.二、教学重点、难点:重点:几何概型的判断及几何概型中概率的计算公式难点:选择正确的几何度量,通过数学建模解决实际问题三、教学方法:引导发现式四、教学手段:多媒体辅助式教学五、教学过程;(一) 复习提问上节课我们学习了古典概型,大家还记得它的特点和求概率公式吗?1、古典概型的两个特点:(1)有限性:试验中所有可能出现的基本事件只有有限个.(2)等可能性:每个基本事件出现的可能性相等.2、计算古典概型的公式:(二)问题情境我们来看一个很简单的古典概型问题 1、从区间[0,10]内任取一个整数 ,求取到(1,3)x ∈的概率。

2、从区间[0,10]内任取一个实数 ,求取到(1,3)x ∈的概率。

(三)归纳特点从刚才问题中,你能发现上述概型有什么特点吗?(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等.如果满足这两个特点的概型我们把他叫做几何概型。

(四)得出定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。

概率计算公式:x xP(A)= 构成事件A 的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)(五)例题分析【例1】某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:假如他在0~60分钟之间任何一个时刻打开收音机是等可能的,但0~60之间有无穷个时刻,不能用古典概型的公式计算随机事件发生的概率。

人教版高中数学必修三(教案)3.3几何概型(2课时)

人教版高中数学必修三(教案)3.3几何概型(2课时)

第一课时 3.3.1 几何概型教学要求:结合已学过两种随机事件发生的概率的方法,更进一步研究试验结果为无穷多时的概率问题理解几何概型的定义与计算公式.教学重点:初步体会几何概型的意义.教学难点:对几何概型的理解.教学过程:一、复习准备:1. 回忆基本事件的两个特点:(1)任何两个基本事件是互斥的。

(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.回忆古典概型有两个特征:有限性和等可能性.3.提出问题:在现实生活中,常常遇到试验结果是无穷多的情况,那又怎样计算呢?二、讲授新课:1. 教学:几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability )简称为几何概型.在几何概型中,事件A 概率计算公式为:()()()A P A =构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积几何概型的特点:在一个区域内均匀分布,只与该区域的大小有关.几何概型与古典概型的区别:试验的结果不是有限个.例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻,故3()5g P A ==Ω的长度的长度 例2.某个人午觉醒来,他打开收音机。

想听电台报时,求他等待的时间不多于10分钟的概率.分析:在0到60分钟任一时刻打开收音机是等可能的,但0到60分钟之间有无穷个时刻,不能用古典概型的公式计算,,因为是等可能的,所以他在哪一时段打开收音机的概率只与该时段的长度有关而与位置无关,这符合几何概型的要求.)3. 小结: 如何利用几何概型事件和随机模拟方法来求一些求知量?三、巩固练习:1.(会面问题)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.答案:592.猪八戒每天早上7点至9点之间起床,求它在7点半之前起床的概率.(将问题转化为时间长度)1. 作业:P137,A 组第1题第二课时 3.3.2均匀随机数的产生教学要求:让学生知道如何利用计算机Excel 软件产生均匀随机数关利用随机模拟方法估计求知量.教学重点:体会随机模拟中的统计思想.教学难点:如何把求未知量的问题转化为几何概型概率的问题.教学过程:一、复习准备:1. 回忆:几何概型的定义,以及相关的古典概型中的随机模拟方法.二、讲授新课:1.教学:均匀随机数的产生操作方法与整数值随机数产生的方法相同,前面学生有了基础这里易掌握只要老师在课堂是带学生操作一次就行。

最新人教版高中数学必修3第三章《第三章概率》示范教案

最新人教版高中数学必修3第三章《第三章概率》示范教案

示范教案整体设计教学分析本章是对第三章知识和方法的归纳与总结,从总体上把握本章,使学生的基本知识系统化和网络化,基本方法条理化,本章共有三部分内容,随机事件的概率是基础,在此基础上学习了古典概型和几何概型,要注意它们的区别和联系.三维目标1.归纳、总结本章知识,形成知识网络.2.让学生体验归纳在数学中的重要性,提高直觉思维能力. 3.通过合作学习交流,感受与他人合作的重要性. 重点难点教学重点:知识系统化、网络化,并初步形成一些基本技能. 教学难点:画知识网络图. 课时安排 1课时教学过程 导入新课思路1.大家都知道,农民伯伯在春天忙着耕地、播种、浇水、沲肥、治虫,非常辛苦,到了秋天,他们便忙着收获.到了收获的季节,他们既高兴又紧张,因为收获比前面的工作更重要,收获的多少决定着一年的收成.我们前面的学习就像播种,今天的章节复习就像收获,希望大家重视今天的小结学习.教师点出课题.思路2.为了系统掌握本章的知识,我们复习本章内容,教师直接点出课题. 推进新课 新知探究 提出问题1.事件与概率包括几部分? 2.古典概型包括几部分?3.随机数的含义与应用包括几部分? 4.本章涉及的主要数学思想是什么? 5.画出本章的知识结构图. 讨论结果: 1.事件与概率随机事件是本章的主要研究对象,基本事件是试验中不能再分的最简单的随机事件. (1)概率的概念在大量重复进行的同一试验中,事件A 发生的频率mn 总是接近于某一常数,且在它的附近摆动,这个常数就是事件A 的概率P(A),概率是从数量上反映一个事件.求某一随机事件的概率的基本方法是:进行大量重复试验,用这个事件发生的频率近似地作为它的概率.(2)概率的意义与性质①概率是描述随机事件发生的可能性大小的度量,事件A 的概率越大,其发生的可能性就越大;概率越小,事件A 发生的可能性就越小.②由于事件的频数总是小于或等于试验的次数,所以频率在[0,1]之间,从而任何事件的概率都在[0,1]之间,即:0≤P(A)≤1.概率的加法公式:如果事件A 与事件B 互斥,则P(A ∪B)=P(A)+P(B). (3)频率与概率的关系与区别频率是概率的近似值.随着试验次数的增加,频率会越来越接近概率,频率本身也是随机的,两次同样的试验,会得到不同的结果;而概率是一个确定的数,与每次试验无关.2.古典概型 (1)古典概型①试验中所有可能出现的基本事件只有有限个;(有限性) ②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.(2)古典概型的概率计算公式为:P(A)=A 所包含的基本事件的个数基本事件的总数.在使用古典概型的概率公式时,应该注意: ①要判断该概率模型是不是古典概型;②要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数. 学习古典概型要通过实例理解古典概型的特点:实验结果的有限性和每一个实验结果出现的等可能性.要学会把一些实际问题化为古典概型,不要把重点放在“如何计数”上.3.随机数的含义与应用(1)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的基本特点①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等.(3)几何概型的概率公式:P(A)=μAμΩ.其中μΩ表示区域Ω的几何度量,μA 表示区域A 的几何度量.(4)随机数是在一定范围内随机产生的数,可以利用计算器或计算机产生随机数来做模拟试验,估计概率,学习时应尽可能利用计算器、计算机来处理数据,进行模拟活动,从而更好地体会概率的意义.4.本章涉及的主要思想是化归与转化思想(1)古典概型要求我们从不同的背景材料中抽象出两个问题:一是所有基本事件的个数即总结果数n ,二是事件A 所包含的结果数m ,最后化归为公式P(A)=mn.(2)几何概型中,要首先求出试验的全部结果所构成的区域长度和构成事件的区域长度,最后化归为几何概型的概率公式求解.5.本章知识结构图如下所示:应用示例思路1例1下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答问题.(1)完成上面表格.(2)估计该油菜子发芽的概率约是多少.分析:(1)代入公式得频率;(2)估计频率的稳定值即为概率. 解:(1)由n An得各批种子发芽的频率:22=1;45=0.8;910=0.9;6070=0.857;116130=0.892;269300=0.896;1 3471 500=0.898;1 7942 000=0.897;2 6883 000=0.896.所以从左到右依次填入:1,0.8,0.9,0.857,0.892,0.896,0.898,0.897,0.896.(2)由于每批种子的发芽的频率稳定在0.897附近,所以估计该油菜子发芽的概率约为0.897.点评:概率知识成为近几年高考考查的新热点之一,多与现实生活结合考查,强化概率的应用性.高考中以直接考查互斥事件的概率与运算为主,随机事件的有关概率和频率在高考中鲜见单独考查,但是由于是基础,一些概念会经常应用,所以应引起重视.(1)求两枚骰子点数相同的概率;(2)求两枚骰子点数之和为5的倍数的概率. 分析:利用列举法计算全部结果.解:用(x ,y)表示同时抛出的两枚均匀骰子中一枚骰子向上的点数是x ,另一枚骰子向上的点数是y ,则全部结果有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6). 即同时抛出两枚均匀骰子共有36种结果.则同时抛出两枚均匀骰子的结果是有限个,属于古典概型. (1)设“两枚骰子的点数相同”为事件A ,事件A 有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共6种,则P(A)=636=16.即两枚骰子点数相同的概率是16.(2)设“两枚骰子点数之和为5的倍数”为事件B ,事件B 有(1,4),(2,3),(3,2),(4,1),(4,6),(5,5),(6,4)共7种, 则P(B)=736.即两枚骰子点数之和为5的倍数的概率是736.点评:古典概型是本章的重要内容,更是高考考查的重要内容之一,选择、填空或解答题三种题型都有可能出现.试题的设计主要是考查公式P(A)=mn 的应用及与其他知识的综合.思路2例 在以3为半径的圆内任取一点P 为中点作圆的弦,求弦长超过圆内接等边三角形边长的概率.分析:满足弦长超过圆内接等边三角形边长的点P 在圆内接等边三角形边的内切圆内,转化为几何概型求解.解:设弦长超过圆内接等边三角形的边长为事件A.在以半径为3的圆内任取一点P 的结果有无限个,属于几何概型. 如图所示,△BCD 是圆内接等边三角形,再作△BCD 的内切圆,则满足“弦长超过圆内接等边三角形边长”的点P 在等边三角形△BCD 的内切圆内,可以计算得:等边三角形△BCD 的边长为3,等边三角形△BCD 的内切圆的半径为32,所以事件A 构成的区域面积是等边三角形△BCD 的内切圆的面积为π×(32)2=34π,全部结果构成的区域面积是π×(3)2=3π,所以P(A)=34π3π=14,即弦长超过圆内接等边三角形的边长的概率是14.点评:几何概型是新增内容,在高考中鲜见考查随机模拟,主要涉及几何概型的概率求解问题,难度不会太大,题型可能较灵活,涉及面可能较广.几何概型的三种类型为长度型、面积型和体积型,在解题时要准确把握,要把实际问题作合理化转化;要注意古典概型和几何概型的区别(基本事件的个数的有限性与无限性),正确选用几何概型解题. =12,事件A 的区域是 知能训练1.下列说法正确的是( )A .任何事件的概率总是在(0,1)之间B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定解析:任何事件的概率总是在[0,1]之间,所以A 不正确;频率不是客观存在的,与试验次数有关,所以B 不正确;概率不是随机的,在试验前已经确定,所以D 不正确.很明显C 正确.答案:C2.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是( )A.1999B.11 000C.9991 000D.12解析:概率不受实验次数的限制,在实验前已经确定,抛掷一枚质地均匀的硬币,每次正面朝上的概率都是12.答案:D3.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A .A 与C 互斥B .B 与C 互斥C .任何两个均互斥D .任何两个均不互斥 解析:三件产品不全是次品包含三种情况:三件产品全不是次品或一件正品两件次品或两件正品一件次品,所以B 与C 互斥.答案:B4.有一种电子产品,它可以正常使用的概率为0.992,则它不能正常使用的概率是________.解析:正常使用和不能正常使用是对立事件,所以不能正常使用的概率是1-0.992=0.008.答案:0.0085.小明和小刚各掷一枚骰子,出现点数之和为10的概率是________.解析:设(x ,y)表示小明抛掷骰子点数是x ,小刚抛掷骰子点数是y ,则该概率属于古典概型.所有的基本事件是:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6). 即有36种基本事件.则出现点数之和为10的基本事件有(4,6),(5,5),(6,4)共3种,所以出现点数之和为10的概率是336=112.答案:1126.我国西部一个地区的年降水量在下列区间内的概率如下表所示:则年降水量在[200,300]范围内的概率是________.解析:年降水量在[200,300]范围内包含在[200,250)和[250,300],则年降水量在[200,300]范围内的概率是0.13+0.12=0.25.答案:0.257.从甲、乙、丙、丁四个人中选两名代表, 求:(1)甲被选中的概率; (2)丁没被选中的概率.解:选出的两名代表有甲乙或甲丙或甲丁或乙丙或乙丁或丙丁共6种.(1)记甲被选中为事件A ,则P(A)=36=12.(2)记丁被选中为事件B ,则P(B )=1-P(B)=1-12=12.8.如下图所示,阴影部分是一个等腰三角形ABC ,其中一边过圆心O ,现在向圆面上随机撒一粒豆子,求这粒豆子落到阴影部分的概率.解:向圆面上随机撒一粒豆子,其结果有无限个,属于几何概型. 设圆的半径为r ,全部结果构成的区域面积是圆面积πr 2,阴影部分的面积是等腰直角三角形ABC 的面积r 2,则这粒豆子落到阴影部分的概率是r 2πr 2=1π,即这粒豆子落到阴影部分的概率是1π.拓展提升某初级中学共有学生2 000名,各年级男、女生人数如下表:(1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?分析:(1)利用抽到初二年级女生的概率解得x 的值;(2)先计算出初三年级学生数,根据抽样比确定在初三年级抽取的人数.解:(1)由题意得x2 000=0.19,解得x =380.(2)抽样比是482 000=3125,初三年级学生数是2 000-(373+380+377+370)=500. 则应在初三年级抽取500×3125=12(名). 课堂小结本节课复习了第三章的基本知识,并形成知识网络,对概率问题重点进行了复习巩固. 作业本章小节Ⅲ.巩固与提高1、3.设计感想 这章内容与其他数学知识联系较少,其解题方法独特,对同学们的思维能力、分析及解决问题能力要求较高.钻研课本,理解概念,弄清公式的“来龙去脉”,尤其是公式中字母的内涵.在此基础上,适当地做一些练习,并及时归纳解题方法,不断反思及加深自己对数学知识(概念、公式等)的理解.备课资料一名数学家=10个师的由来第二次世界大战中,美国曾经宣称:一名优秀数学家的作用超过10个师的兵力.你可知道这句话的由来吗?1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律.一定数量的船(如100艘)编队规模越小,编次就越多(如每次20艘,就要5个编次);编次越多,与敌人相遇的概率就越大.比如5位学生放学都回自己家里,老师要找一位同学的话,随便去哪家都行,但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%.美国海军接受了数学家的建议,命令船队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降低为1%,大大减少了损失,保证了物资的及时供应.。

高中数学 第3章 概率 3.3 几何概型数学教案

高中数学 第3章 概率 3.3 几何概型数学教案

3.3 几何概型3.3.1 几何概型3.3.2 均匀随机数的产生学习目标核心素养1.通过具体问题感受几何概型的概念,体会几何概型的意义.(重点)2.会求一些简单的几何概型的概率.(重点、难点) 3.会用随机模拟的方法近似计算事件的概率.(重点)1.通过求简单几何概型的概率,培养数学运算素养.2.借助面积、体积等问题,养成直观想象素养.1.几何概型的概念(1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的特点①试验中所有可能出现的结果(基本事件)有无限多个.②每个基本事件出现的可能性相等.2.几何概型的概率公式:P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积3.均匀随机数(1)均匀随机数的概念在随机试验中,如果可能出现的结果有无限多个,并且这些结果都是等可能发生的,我们就称每一个结果为试验中全部结果所构成的区域上的均匀随机数.(2)均匀随机数的产生①计算器上产生[0,1]的均匀随机数的函数是RAND函数.②Excel软件产生[0,1]区间上均匀随机数的函数为“rand()”.(3)用模拟的方法近似计算某事件概率的方法①试验模拟的方法:制作两个转盘模型,进行模拟试验,并统计试验结果.②计算机模拟的方法:用Excel软件产生[0,1]区间上均匀随机数进行模拟(注意操作步骤).(4)[a,b]上均匀随机数的产生利用计算器或计算机产生[0,1]上的均匀随机数x=RAND,然后利用伸缩和平移交换,x=x1*(b-a)+a就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能出现的.1.下列概率模型中,几何概型的个数为( )①从区间[-10,10]上任取一个数,求取到的数在[0,1]内的概率;②从区间[-10,10]上任取一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]上任取一个整数,求取到大于1而小于3的数的概率;④向一个边长为4 cm的正方形内投一点,求点离中心不超过1cm 的概率.A .1B .2C .3D .4 C [①②中的概率模型是几何概型,因为区间[-10,10]上有无数个数,且每个数被取到的机会相等;③中的概率模型不是几何概型,因为区间[-10,10]上的整数只有21个,是有限的;④中的概率模型是几何概型,因为在边长为4 cm 的正方形内有无数个点,且该区域内的任何一个点被投到的可能性相同.]2.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45B.35C.25D.15B [区间[-2,3]的区间长度为5,在上面随机取一数X ,使X ≤1,即-2≤X ≤1.其区间长度为3,所以概率为35.] 3.如图,一颗豆子随机扔到桌面上,则它落在非阴影区域的概率为( )A.19B.16C.23D.13C [试验发生的范围是整个桌面,非阴影部分面积占桌面的23,而豆子落在任一点是等可能的,所以豆子落在非阴影区域的概率为23.] 4.如图AB 是圆O 的直径,OC ⊥AB ,假设你在图形中随机撒一粒黄豆,则它落到阴影部分的概率为________.1π[设圆的半径为R ,则圆的面积为S =πR 2,阴影的面积S 阴=12·2R ·R =R 2,故所求概率P =S 阴S =R 2πR 2=1π.] 与长度、角度有关的几何概型1.几何概型与古典概型的区别是什么?[提示] 几何概型的试验结果是无限的,古典概型的试验结果是有限的.2.解决几何概型问题概率的关键是什么?[提示] 确定所求概率与区域长度、角度、面积、体积中的哪一个有关.3.“P (A )=0⇔A 是不可能事件”,“P (A )=1⇔A 是必然事件”,这两种说法是否成立?[提示] (1)无论是古典概型还是几何概型,若A 是不可能事件,则P (A )=0肯定成立;若A 是必然事件,则P (A )=1肯定成立.(2)在古典概型中,若事件A 的概率P (A )=0,则A 为不可能事件;若事件A 的概率P (A )=1,则A 为必然事件.(3)在几何概型中,若事件A 的概率P (A )=0,则A 不一定是不可能事件,如:事件A 对应数轴上的一个点,则其长度为0,该点出现的概率为0,但A 并不是不可能事件;同样地,若事件A 的概率P (A )=1,则A 也不一定是必然事件.【例1】 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.思路点拨:本例是与哪种区域有关的几何概型问题?[解] 点M 随机地落在线段AB 上,故线段AB的长度为试验的全部结果所构成的区域长度.在AB 上截取AC ′=AC ,当点M 位于图中的线段AC ′上(不包括点C ′)时,AM <AC ,故线段AC ′即为构成事件A 的区域长度.于是P (AM <AC )=P (AM <AC ′)=AC ′AB =AC AB =22.即AM 小于AC 的概率为22. 1.(变条件)在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与直线AB 交于点M ,求AM 小于AC 的概率.[解] 由题意,应看成射线CM 在∠ACB 内是等可能分布的,在AB 上截取AC ′=AC (如图),则∠ACC ′=67.5°,故满足条件的概率为67.590=34. 2.(变结论)本例条件不变. (1)若求AM 不大于AC 的概率,结果有无变化?(2)求AM 大于AC 的概率.[解] (1)结果不变.几何概型中,一点在线段上的长度视为0,包含与不包含一点,不改变概率的结果.(2)如图,点M 随机地落在线段AB 上,故线段AB 的长度为试验的全部结果所构成的区域长度,在AB 上截取AC ′=AC ,当点M 位于线段C ′B 上时,AM >AC ,故线段C ′B 即为构成事件的区域长度.∴P (AM >AC )=P (AM >AC ′)=C ′B AB =1-22. 求解与长度有关的几何概型的关键点在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找d 的过程中,确定边界点是问题的关键,但边界点是否取到不会影响事件A 的概率.与面积、体积有关的几何概型的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3(2)在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π思路点拨:(1)根据几何图形特征.分别计算区域Ⅰ、Ⅱ、Ⅲ的面积应用面积型几何概型定义判断.(2)所求概率涉及到体积问题应用与体积有关的几何概型公式求解.(1)A (2)D [(1)法一:设直角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则区域Ⅰ的面积即△ABC 的面积,为S 1=12bc ,区域Ⅱ的面积S 2=12π×⎝ ⎛⎭⎪⎫c 22+12π×⎝ ⎛⎭⎪⎫b 22-⎣⎢⎢⎡⎦⎥⎥⎤π×⎝ ⎛⎭⎪⎫a 222-12bc =18π(c 2+b 2-a 2)+12bc =12bc ,所以S 1=S 2,由几何概型的知识知p 1=p 2,故选A.法二:不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅲ的面积S 3=π×222-2=π-2,区域Ⅱ的面积S 2=π×12-(π-2)= 2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A. (2)由题意可知这是一个几何概型问题,棱长为1的正方体的体积V 1=1,球的直径是正方体的体对角线长,故球的半径R =32,球的体积V 2=43π×⎝ ⎛⎭⎪⎪⎫323=32π,则此点落在正方体内部的概率P =V 1V 2=233π.] 解与面积体积相关的几何概型问题的三个关键点 1根据题意确认是否是与面积体积有关的几何概型问题;2找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积体积; 3套用公式,从而求得随机事件的概率.[跟进训练]1.(1)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8(2)有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.(1)B (2)23 [(1)设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π·121×2=π4. (2)先求点P 到点O 的距离小于1或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于1或等于1的概率为:23π2π=13,故点P 到点O 的距离大于1的概率为:1-13=23.] 均匀随机数与随机模拟方法2形的面积.[解] 以直线x =1,x =-1,y =0,y =1为边界作矩形,(1)利用计算器或计算机产生两组0~1区间的均匀随机数,a 1=RAND ,b =RAND ;(2)进行平移和伸缩变换,a =2(a 1-0.5);(3)数出落在阴影内的样本点数N 1,用几何概型公式计算阴影部分的面积.例如做1 000次试验,即N =1 000,模拟得到N 1=698,所以P =N 1N =阴影面积矩形面积=6981 000, 即阴影面积S =矩形面积×6981 000=2×6981 000=1.396. 用随机模拟方法估计几何概型的步骤①确定需要产生随机数的组数,如长度、角度型只用一组,面积型需要两组;②由基本事件空间对应的区域确定产生随机数的范围;③由事件A 发生的条件确定随机数应满足的关系式;④统计事件A 对应的随机数并计算A 的频率来估计A 的概率.[跟进训练]2.现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.[解] (1)利用计算器或计算机产生两组0至1区间内的均匀随机数a 1,b 1(共N 组);(2)经过平移和伸缩变换,a =2(a 1-0.5),b =2(b 1-0.5);(3)数出满足不等式b <2a -43,即6a -3b >4的数组数N 1.所求概率P ≈N 1N. 可以发现,试验次数越多,概率P越接近25144.1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型.2.几何概型主要用于解决与长度、面积、体积有关的问题.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)几何概型的基本事件有无数多个.( )(2)几何概型的概率与构成事件的区域形状无关.( )(3)随机数只能用计算器或计算机产生.( )(4)x是[0,1]上的均匀随机数,则利用变量代换y=(b-a)x+a 可得[a,b]上的均匀随机数.( )[答案](1)√(2)√(3)×(4)√2.已知地铁列车每10 min一班,在车站停1 min,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.18A [试验所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=110.] 3.如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.16[记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P (A )=60°360°=16.] 4.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边长作一个正方形,求作出的正方形面积介于36 cm 2与81 cm 2之间的概率.[解] 如图所示,点M 落在线段AB 上的任一点上是等可能的,并且这样的点有无限多个.设事件A 为“所作正方形面积介于36 cm 2与81 cm 2之间”,它等价于“所作正方形边长介于6 cm 与9 cm 之间”.取AC =6 cm ,CD =3 cm ,则当M 点落在线段CD 上时,事件A发生,所以P (A )=|CD ||AB |=312=14.。

人教版高中数学必修3-3.3《几何概型》参考教案1

人教版高中数学必修3-3.3《几何概型》参考教案1

3.3.1 几何概型教学目标:1、学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型及古典概型;3、提高学生判断与选择几何概型的概率公式的能力。

教学重点与难点:重点:1、几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择教学方法:“学生为主体,教师为主导”的探究性学习模式板书设计:教学过程:【知识回顾】古典概型的特点及其概率公式: (1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。

古典概型包含基本事件的个数、事件的概率公式:基本事件的总数【课前练习】(赌博游戏):甲乙两赌徒掷色子,规定掷一次谁掷出6点朝上则谁胜,请问甲、乙赌徒获胜的概率谁大?学生分析:色子的六个面上的数字是有限个的,且每次都是等可能性的,因而可以利用古典概型;学生求解:1;6p =甲16p =乙。

(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?① ②学生分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;2、利用B 区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B 区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长 法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积 【问题猜想】1.两个问题概率的求法一样吗?若不一样,请问可能是什么原因导致的?2.你是如何解决这些问题的?3.有什么方法确保所求的概率是正确的?学生对比分析:。

人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_3

人教A版高中数学必修3《三章 概率  3.3 几何概型  3.3.2 均匀随机数的产生》优质课教案_3

《几何概型》教学设计一、教学目标(一)知识与技能1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.2.理解并掌握几何概型的概念.3.掌握几何概型的概率公式,会进行简单的几何概率计算.(二)过程与方法1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.(三)情感、态度、价值观1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.二、教学重点与难点教学重点:了解几何概型的基本特点及进行简单的几何概率计算.教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.三、教学方法与教学手段教学方法:“自主、合作、探究”教学法教学手段:电子白板、实物投影、多媒体课件辅助四、教学过程(一)复习回顾问题.古典概型的特点及概率公式分别是什么?你熟悉常见的古典概型?你能举例吗?答:①基本事件发生的等可能性②基本事件只有有限个古典概型的概率公式:[处理方式]多媒体课件展示问题,简洁明了。

(利用电子白板文字展示功能)【设计意图】回顾古典概型的相关知识,为引出下面要学的几何概型作铺垫。

(二)问题情境取一根长度为3m的绳子,拉直后在任意位置剪断.要求剪得两段的长都不小于1m的概率有多大?问题(1)试验中一个基本事件是什么?答:试验:剪在绳子上的每一点都是一个基本事件.问题(2)基本事件有多少个?答:基本事件有无限个.问题(3)每个基本事件发生是否等可能?答:每个基本事件发生都是等可能的.[处理方式]多媒体课件展示,电子白板笔点击答案,这样与学生互动起来,清晰自然。

(利用电子白板文字、图片展示功能,作图功能)在这两个问题中,基本事件有无数多个,虽然类似于古典概型的“等可能性”还存在,但是显然不是古典概型,那它是什么概型呢?【设计意图】引发认知冲突,引入几何概型。

人教版高中数学必修3第三章概率-《3.3几何概型》教案

人教版高中数学必修3第三章概率-《3.3几何概型》教案

几何概型一、教学目标(1)学生能掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)能识别实际问题中概率模型是否为几何概型。

(3)会利用几何概型公式对简单的几何概型问题进行计算。

二、教学重点与难点教学重点:(1)几何概型的特点及与古典概型的区别(2)几何概型概率计算公式及应用。

教学难点:把求未知量的问题转化为几何概型求概率的问题;三、教学方法与手段让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。

感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。

四、教学过程一、 创设情境 引入新课【知识回顾】(1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。

古典概型包含基本事件的个数、事件的概率公式:基本事件的总数 【课前练习】判断下列试验中事件发生的概率是否为古典概型?(1)抛掷两颗骰子,求出现两个“4点”的概率;(学生口答)(2)5本不同的语文书,4本不同的数学书,从中任取2本,取出的书恰好都是数学书的概率;(学生口答)(3)取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m的概率;学生分析:剪刀落在绳子的任意一个位置是等可能的,但剪刀落的位置是无限个的,因而无法利用古典概型;(4)下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?(1)(2)学生分析:指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;(5)有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.学生分析:细菌在1升水的杯中任何位置的机会是等可能的,但细菌所在的位置却是无限多个的,因而不能利用古典概型。

高中数学必修3教学设计:第3章 概率 3-3 几何概型2 精

高中数学必修3教学设计:第3章 概率 3-3 几何概型2 精

3.3几何概型(2)教学目标:1.了解几何概型的基本概念、特点和意义;2.了解测度的简单含义;3.了解几何概型的概率计算公式;4.能运用其解决一些简单的几何概型的概率计算问题.教学重点:测度的简单含义,即:线的测度就是其长度,平面图形的测度就是其面积,立体图形的测度就是其体积等.教学难点:如何确定事件的测度(是长度还是面积、体积等).教学方法:谈话、启发式.教学过程:一、知识回顾1.复习与长度有关的几何概型.有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?二、学生活动从每一个位置剪断都是一个基本事件,基本事件有无限多个.但在每一处剪断的可能性相等,故是几何概型.三、建构数学古典概型与几何概型的对比.相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型的概率公式.积等)的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件A A P =)( 四、数学运用1.例题.与面积(或体积)有关的几何概型例 1 在1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL ,含有麦锈病种子的概率是多少?解:取出10mL 麦种,其中“含有病种子”这一事件记为A ,则.1001为含有麦锈病种子的概率:答1001100010所有种子的体积取出种子的体积P(A)===变式训练:1.街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上, 掷一枚半径为1 cm 的小 圆板.规则如下:每掷一次交5角钱,若小圆板压 在正方形的边上,可重掷一次;若掷在正方形内,须再交5角钱可玩一次; 若掷在或压在塑料板的顶点上,可获 1元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为.8132979222=- 探究提高:几何概型的概率计算公式中的“测度”,既包含本例中的面积,也可以包含线段的长度、体积等,而且这个“测度”只与“大小”有关,而与形状和位置无关.与角度有关的几何概型例2 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.解:在AB 上截取AC′=AC , 故AM <AC 的概率等于AM <AC ′的概率. ACB MC ’记事件A 为“AM 小于AC ”,222)(=='==ACAC AB C A AB AC A P 答:AM <AC 的概率等于22. 思考:在等腰直角三角形ABC 中,过点C 在∠C 内作射线CM ,交AB 于M ,求AM 小于AC 的概率.此时的测度是作角是均匀的,就成了角的比较了. P (A )=43283'==∠∠ππACB ACC D d 例3 课本的例4.可化为几何概型的概率问题例4 甲、乙两人约定在6时到7时之间在某处会面, 并约定先到者应等候另一人一刻钟,过时即可离去. 求两人能会面的概率.思维启迪:在平面直角坐标系内用x 轴表示甲到达 约会地点的时间,y 轴表示乙到达约会地点的时间,用0分到60分表示6时到7时的时间段,则横轴0到60与纵轴0到60的正方形中任一点的坐标(x ,y )就表示甲、乙两人分别在6时到7时时间段内到达的时间.而能会面的时间由|x -y |≤15所对应的图中阴影部分表示.以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x -y |≤15.在如图所示平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形区域,而事件A “两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得: .167600302526003604560)(222=-=-==S S A P A 所以,两人能会面的概率是.167 A CBM C’2.练习.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊时间都是4小时,求它们中 的任何一条船不需要等待码头空出的概率;(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.解 (1)设甲、乙两船到达时间分别为x ,y ,则0≤x <24,0≤y <24且y -x ≥4或y -x ≤-4.作出区域⎪⎩⎪⎨⎧-<->-<≤<≤44,240,240x y x y y x 或设“两船无需等待码头空出”为事件A ,.362524242020212)(=⨯⨯⨯⨯=A P 则 (2)当甲船的停泊时间为4小时,乙船的停泊时间为2小时,两船不需等待码头空出,则满足x -y ≥2或y -x ≥4,设在上述条件时“两船不需等待码头空出”为事件B ,画出区域.2882215764422424222221202021)(.24,240,240==⨯⨯⨯+⨯⨯=⎪⎩⎪⎨⎧>->-<≤<≤B P y x x y y x 或五、要点归纳与方法小结本节课学习了以下内容:1.适当选择观察角度,把问题转化为几何概型求解;2.把基本事件转化为与之对应的区域D ;3.把随机事件A 转化为与之对应的区域d ;4.利用几何概型概率公式计算.。

人教版高中数学必修3第三章概率-《3.3.1几何概型》教案

人教版高中数学必修3第三章概率-《3.3.1几何概型》教案

3.3.1 几何概型整体设计教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X落到[0,1]区间内任何一点是等可能的,则称X为[0,1]区间上的均匀随机数.三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时教学过程导入新课思路1复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.思路2下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?为解决这个问题,我们学习几何概型.思路3在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.推进新课新知探究提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31.第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例思路1例1 判断下列试验中事件A发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X服从[0,60]上的均匀分布,X 称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.思路2例1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P (A )=(60-40)/60=1/3. 即此人等车时间不多于10分钟的概率为1/3.点评:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如右图中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G .设晚餐在x (6≤x≤7)时开始,晚报在y (5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y )对应.于是试验的所有可能结果就与G 中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图中的阴影区域g 就表示“晚报在晚餐开始之前被送到”.容易求得g 的面积为87,G 的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P (A )=87 的面积的面积G g . 变式训练 在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.所以取出的种子中含有麦锈病的种子的概率是0.01.知能训练1.已知地铁列车每10 min 一班,在车站停1 min,求乘客到达站台立即乘上车的概率. 解:由几何概型知,所求事件A 的概率为P(A)=111. 2.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率.解:记“灯与两端距离都大于2 m”为事件A,则P(A)=62=31. 3.在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( )A.0.5B.0.4C.0.004D.不能确定解析:由于取水样的随机性,所求事件A :“在取出2 mL 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004. 答案:C4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如右图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P(A )=ar a a a r -=的长度的长度],0[],(.拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.这是一个几何概率问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如下图).所求概率为P=95604060222=-=的面积的面积G g .2.(蒲丰(Buffon)投针问题)平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见下图左).样本空间为Ω:{(φ,x),0≤φ≤π,0≤x≤a/2},为一矩形.针与平行线相交的充要条件是g:x≤2lsinφ(见下图右).所求概率是P=的面积的面积Ωgππφφπaladl22/sin)2/(0=∙∙=⎰.注:因为概率P可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N次,(或一次投针若干枚,总计N枚),统计与平行线相交的次数n,则P≈n/N.又因a与l 都可精确测量,故从2l/aπ≈n/N,可解得π≈2lN/an.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位.设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.作业课本习题3.3A组1、2、3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题名称几何概型授课教师
科目高中数学班级
教学
目标
1.理解几何概型的特点。

2.会应用几何概型的计算公式求几何概型的概率。

3.体会生活和学习中与几何概型有关的实例。

教学重点
难点
重点:几何概型的特点及公式的应用。

难点:几何概型的应用。

教学过程设计意图




【知识回顾】(你已做好知识准备了吗?你一定还记
得以下知识吧!)
1.请看下面的例子并回答问题:
(1)投掷一颗骰子,观察向上的点数。

(2)一先一后投掷两枚硬币,观察正反面出现的情
况。

想一想:这两个试验是什么类型的?
2. 古典概型的两个特点:
3.古典概型的计算公式:
【创设情境】探究合作(师生互动,合作探究,分组
展示,点拨提升!)
探究一:
引例1:从区间[1,6]中任取一个实数。

引例2:取一个边长为2a的正方形 (如图),随
机地向正方形内丢一粒豆子。

思考:上述试验还是不是古典概型?为什么?
温故知新,类
比正弦函数
的图象和性
质,研究余弦
函数




齐读学习目标、学习重点、学习难点:
【学习目标】1.理解几何概型的特点。

2.会应用几何概型的计算公式求几何概型的概率。

3.体会生活和学习中与几何概型有关的实例。

【重点】几何概型的特点及公式的应用
【难点】几何概型的应用
师生互认学
习目标,引导
学生带着目
标进入新课
学习,有的放
矢。

新课讲授
新课讲授小组内讨论:参照古典概型的特点,上述试验的特点
是什么?
特点:(1)_________________________________;
(2)______________________________________。

具有上述特点的试验称为几何概型。

我们通过上面的试验,得出了几何概型的概念,
明确了几何概型事件的两个基本特点。

那么如何用数
学表达式来解决几何概型事件的概率问题呢?
探究二:
问题1:从区间[1,6]中任取一个实数,求取到的数比
3小的概率是多少?
问题2:下面是运动会射箭比赛的靶面,靶面半径为
10cm,黄心半径为1cm.现一人随机射箭,假设每箭都
能中靶,且射中靶面内任一点都是等可能的, 请问射
中黄心的概率是多少?
问题3:500ml水样中有一只草履虫,从中随机取出2ml
水样放在显微镜下观察,问发现草履虫的概率?
通过以上三个问题,类比古典概型,你是否能够得出
几何概型的计算公式呢?
在几何概型中,事件A的概率的计算公式如下:
通过问题引
导,让学生初
步感知本节
课的主要问
题,并对比前
节课古典概
型内容完成
思维推理,训
练,训练四基
中的基本技
能和基本思
想。

思维衔接,承
上启下
用古典概型
事件的公式,
尝试表达问
题事件,启发
类比思维,学
生尝试思考
二者之间的
联系
通过三个问
题,类比古典
概型事件的
公式得出几
何概型事件
概率的计算
公式,尤其是
最高点,最低
点,和与x
轴类比的两
个交点ue几
何概型在试
验中出现无
限多个结果,
新课讲授3.典例分析
例1:一海豚在水池中自由游弋,水池为长30m,宽为
20m的长方形。

求此海豚嘴尖离岸边不超过 2m 的概
率。

例2:某人一觉醒来,发现表停了,他打开收音机,想听
电台整点报时,求他等待的时间不多于10分钟的概率。

注意:总结解决几何概型问题的解题步骤。

记事件----构造几何图形-----计算几何度量
----求概率------下结论
且与事件的
区域长度有
关。

得出几何
概型事件的
基本条件。


外,理解好面
积或或体积
的含义。

学生几何概
型公式自主
归纳几何概
型事件的解
题步骤。

通过典型例
题,进行公式
应用的训练,
开拓学生思
维,训练学生
的数学建模、
数学运算、数
据分析的基
本素养。

当堂达标【当堂检测】(分组展示,比一比,看谁做得又对又快!)
1.如右下图,假设在每个图形上随机撒一粒芝麻,分别
计算它落到阴影部分的概率。

2.取一根长度为3米的绳子,拉直后在任意位置剪断,
那么剪得的两段长都不小于1米的概率有多大?
巩固所学知
识,提高课堂
知识的运用
能力。

()
P A
构成事件A的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
劳务承包合同书
甲方: 新疆如初冷藏保鲜有限责任公司 乙方:
兹有乙方承包甲方 位于温宿国家农业科技园内厂区维修 项目,根据《中华人民共和国民法通则》、《中华人民共和国合同法》和有关规定,按照平等、自愿、协商一致的原则,双方签订劳务项目承包合同如下:
几何概型的特点.
2.几何概型的计算公式:
3.公式的运用.
()构成事件的区域几何度量(如长度、面积或体积)试验全部结果所构成的区域几何度量(如长度、面积或体积)A P A
一、劳务承包项目:新疆如初冷藏保鲜有限责任公司厂区维修
二、承包期限:2019年8月-2019年10月
三、承包费用:
四、承包费支付方式:乙方完工后经甲方验收合格,甲方以现金或支票方式按月向乙方支付承包费用。

五、甲方提供条件:甲方向乙方提供必要的劳动条件和劳动工具。

六、承包期内乙方的职责、任务和要求:
(一)、乙方及其所聘人员必须自觉遵守和服从国家、地方政府的法律法规和甲方园区管理规定和各种规章制度,爱护甲方的公共财物和设施及环境。

(二)。

相关文档
最新文档