8.2_消元——解二元一次方程组__加减

合集下载

人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组

人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
1.教学重点
-理解消元的概念及其在解二元一次方程组中的应用;
-掌握通过加减法对二元一次方程组进行消元的具体步骤;
-学会运用加减消元法求解二元一次方程组,并能够正确验证结果;
-能够将实际问题转化为二元一次方程组,运用加减消元法解决问题。
举例说明:
(1)对于方程组:
\[
\begin{cases}
2x + 3y = 8 \\
在学生小组讨论的过程中,我也注意到有些小组在讨论时偏离了主题,这可能是因为他们对讨论的主题理解不够深入。为了改善这一点,我计划在今后的教学中,加强对学生讨论方向的引导,确保他们的讨论能够紧扣主题,提高讨论的效率。
-在验证解时,确保代入原方程组中的每个方程都满足,以避免漏解或多解。
举例说明:
(1)对于方程组:
\[
\begin{cases}
5x + 3y = 16 \\
3x - 5y = 23
\end{cases}
\]
学生可能会难以确定如何消去变量,需要指导他们通过乘以适当的数来调整系数,如将第一个方程乘以3,第二个方程乘以5,得到:
x - y = 2
\end{cases}
\]
然后应用加减消元法求解。
2.教学难点
-理解消元的本质,即如何通过变换使方程组中的某个变量的系数相同或互为相反数;
-在进行加减消元时,正确选择相加或相减的方程,避免计算错误;
-在消元过程中,注意保持等式两边的平衡,避免出现计算错误;
-对于系数不是整数倍的方程组,如何通过乘以适当的数使得系数相同或互为相反数;
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
一、教学内容
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组

8.2消元 --二元一次方程组的解法(加减法1)

8.2消元 --二元一次方程组的解法(加减法1)

解 ①-②,得 -2x=12 x =-6 解: ①+②,得 8x=16 x =2
a+2b=8 四、已知a、b满足方程组 已知 、 满足方程组 2a+b=7 则a+b= 5
在解方程组
ax + by = 2 cx − 3y = 5
x =1 时,小张正确的解是 ,小李由于看错 y = 2
二.选择题 选择题
6x+7y=-19① ①
1. 用加减法解方程组
6x-5y=17② ②
应用( 应用( B)
A.①-②消去 ① ②消去y B.①-②消去 ① ②消去x B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组 方程组
3x-2y=5
消去y后所得的方程是( ) 消去 后所得的方程是(B 后所得的方程是
你够细心吗? 你够细心吗
这个方程组的两个方程中,y的系数有什么关系 利用 这个方程组的两个方程中 的系数有什么关系?利用 的系数有什么关系 这种关系你能发现新的消元方法吗? 这种关系你能发现新的消元方法吗
x+y=22 ① 2x+y=40 ② 这两个方程中未知数y的系数相同 的系数相同, 这两个方程中未知数 的系数相同 ②-①可消去未知数 ① y,得 得 x=18 代入① 把x=18代入①,得 代入 得 y=4.
像这样,通过对方程组中的两个方程进行加或减的运算就 像这样 通过对方程组中的两个方程进行加或减的运算就 可以消去一个未知数,得到一个一元一次方程 得到一个一元一次方程,这种方法叫做 可以消去一个未知数 得到一个一元一次方程 这种方法叫做 加减消元法,简称加减法. 简称加减法 加减消元法 简称加减法
①-②也能消去 ② 未知数y,求得 未知数 求得 x吗? 吗

8.2.2_消元——二元一次方程组的解法(加减消元)

8.2.2_消元——二元一次方程组的解法(加减消元)

3.变式训练 3x 2 y 4 (1)选择:二元一次方程组 的解是(
5 x 2 y 6
x 1 x 1 B. 1 y y 1 2
).
A.
x 1 C. 1 y 2
2
x 1 D. 1 y 2
作业:
1、把你今天学到的知识讲给你的朋友或同学。 2、课本 P103 3 (1)、(4) 6、7、8
例:解方程组:
2x 3 y 1 5x 3 y 6 (1) (2)
1 3y x 解法一:由(1)得: (3) 2 1 3y 5 3y 6 把(3)代人(2)得 2
解法二:由(1)得:3 y=1-2x (3) 把(3)代人(2)得5x-(1-2x)=6 解法三:(1)+(2)得 : 7x=7 x=1
(B)、试试你的能力:
1、解方程组 2 x 3 y 6
2 x 3 y 2
(1) (2)
解:(1)+(2)得 4x=4,x=1 4 (1)–(2)得 6y=8,y= 3 ∴ x=1
4 y= 3 2、已知 3a+b=9 ,求16a–2b的值。 5a–2b=3
解:两式相加得8a–b=12 ∴ 16a–2b=2(8a–b)=2×12=24
4 x 2 y 14 (2) 5 x y 7
x 3 y 20 (3) 3x 7 y 100
2 x 3 y 8 (4) 5 y 7 x 5
3、创新思维: (A)写出一个二元一次方程组,且满足下列条 件: (1)含有2个未知数x和y; (2)能用“加法”消去x,求出y。Fra bibliotek思考题
解方程组

8.2.消元--解二元一次方程组(加减法)

8.2.消元--解二元一次方程组(加减法)
由 ②-①得:x=6
由①+②得: 5x=10
两个二元一次方程中同一未知数的系数相反 或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,得到一个一元一次方程, 这种方法叫做加减消元法,简称加减法.
用直接消元法解方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数 二元 一元
基本思路: 加减消元:
主要步骤: 加减
求解 回代 写解
消去一个未知数后化 为一元一次方程 求出一个未知数的值 代入原方程求出另一个 未知数的值 写出方程组的解
一.填空题:
x+3y=17
1.已知方程组 2x-3y=6 y 分别相加 就可以消去未知数 只要两边 25x-7y=16 两个方程
2.已知方程组
8.2 加减消元 二元一次方程解法
1、根据等式性质填空:
<1>若a=b,那么a±c= b±c .(等式性质1) <2>若a=b,那么ac= bc . (等式性质2)
思考:若a=b,c=d,那么a±c=b±d吗? 2、用代入法解方程的关键是什么? 二元
代入 转化
一元
3、解二元一次方程组的基本思路是什么?
A.6x=8 B.6x=18 C.6x=5 D.x=18
三.指出下列方程组求解过程中 有错误步骤,并给予订正: 7x-4y=4 ①
3x-4y=14①

5x+4y=2 5x-4y=-4② 解:①-②,得 解 ①-②,得 2x=4-4, -2x=12 x= 0 x =-6 解: ①-②,得 解: ①+②,得 8x=16 2x=4+4, x =2 x= 4
消元: 二元
一元

8.2解二元一次方程组加减消元法(三)

8.2解二元一次方程组加减消元法(三)
数 学
新课标(RJ) 数学 七年级下册
8.2 消元——解二元一次方程组
加减消元法(三)
8.2
消元——解二元一次方程组
教材重难处理
教材【第111页第3题的第(2)小题】分层分析
2 ( x - y ) x + y - =-1,① 3 4 解方程组: 6(x+y)-4(2x-y)=16.②
[分析] (1)方程①去分母、去括号、合并同类项,得形如 a1x +b1y=c1 的方程:
5x-11y ____________ =-12.③
8.2
消元——解二元一次方程组
(2)方程②去括号、合并同类项、化简,得形如 a2x+b2y=c2 的方程:
-x+5y _______________ =8.④ 28 .解得 y=______ 2 . (3)③+④×5,得 14y=______ 2 2 代入方程④,解得 x=______ (4)将 y=______ . 2 , x= 2 所以原方程组的解是 2 y= 2 W . a1x+b1y=c1, a2x+b2y=c2 (5) 这类方程组需要先整理成形如 __________________ 的方
8.2
消元——解二元一次方程组
解:设灌溉用井打 x 口,生活用井打 y 口.由题意,得
x+y=58, 4x+0.2y=80, x=18, 解这个方程组,得 y=40,
答:灌溉用井和生活用井各打18口和40口. [归纳总结] 找出等量关系,构建方程组模型,是解决实际问
题的一种常用方法.
方程组
3x 5 y m 2 ① 2 x 3 y m
的解也是方
程 x y 8 的解,求m的值 解:①-②得: x 2y 2 ③

8.2消元——解二元一次方程组加减消元法解二元一次方程组(2)2024学年人教版数学七年级下册

8.2消元——解二元一次方程组加减消元法解二元一次方程组(2)2024学年人教版数学七年级下册
2



解第
方八
程章



加减消元法
3 + 5 = 21
2 − 5 = −11

2x-5y=7

2x+3y=-1 ②
由①+②得: 5x=10

由 ②-①得:8y=-8
两个二元一次方程中同一未知数的系数相反
或相等时,将两个方程的两边分别相加或相减,
就能消去这个未知数,得到一个一元一次方程,
这种方法叫做加减消元法,简称加减法.










= 0.2
答:1台大型收割机1小时收割小麦0.4公顷,1台小型收
割机1小时小麦0.2公顷.
达标检测
A组
1.利用加减消元法解方程组下列做法正确的是(
A.要消去y,可以将①×5+②×2
B.要消去x,可以将①×3+②×(-5)
C.要消去y,可以将①×5+②×3
D.要消去x,可以将①×(-5)+②×2
C组
达标检测
−− = − −


5、解方程组
+ =


6.一条船顺流航行,每小时行20km,道流航行,每
小时行16km求轮船在静水中的速度与水的流速。
1、某个未知数的系数相等或互为相反数,
即系数的绝对值相等的二元一次方程组如何
消元?
2、某个未知数的系数的绝对值不相等,但
成整数倍的二元一次方程组如何消元?
1、会运用加减消元法解
二元一次方程组.
2、体会解二元一次方程
组的基本思想----“消
元”。

8.2 消元——加减消元法解二元一次方程组(教案)

8.2 消元——加减消元法解二元一次方程组(教案)

8.2 消元——加减消元法解二元一次方程组(教案)一、教材分析“用加减消元法解二元一次方程组”是在学习了“用代入消元法解二元一次方程组”的基础上的进一步学习,同时又是后续学习“解三元一次方程组”的重要基础。

代入法和加减法是解二元一次方程组的两种有效途径,而且是解二元一次方程组的通法,“用加减消元法解二元一次方程组”是对“用代入消元法解二元一次方程组”的有力补充和完善,两者相辅相成,各见长处。

二、教学目标1、知识技能:掌握用加减消元法解二元一次方程组。

2、过程与方法:经历探究加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化未知为已知”的化归思想方法。

3、情感态度与价值观:在探索用加减法解二元一次方程组的过程中享受成功的快乐,感受数学知识的实际用价值,养成良好的学习习惯。

三、教学重点与难点(一)教学重点:用加减法解二元一次方程组。

(二)教学难点:如何运用加减法进行消元。

四、教学方法:本节课采用“探索---发现---比较”的教学法。

五、教学辅助手段教师采用多媒体PPT演示六、教学设计过程(一)温故而知新一〃1. 根据等式性质填空:<1>若a =b ,那么a ±c = . (等式性质1)<2>若a =b ,那么ac = . (等式性质2)<3>思考:若a =b ,c =d ,那么a ±c =b ±d 吗?2.用代入法解方程的关键是什么?3、解二元一次方程组的基本思路是什么?4.请你代入消元法解下面这个方程组:⎩⎨⎧=+=+40222y x y x具体步骤是:由①得 =y . ③,把③代入①得 .从而达到消元的目的。

(即把二元一次方程变成我们较熟悉的一元一次方程)(二)提出问题,阅读课本,得出加减法的定义。

1. 解这个方程组⎩⎨⎧=+=+40222y x y x 除了用代入法,还有别的方法吗? 2. 请大家认真阅读课本99面第二个思考前的内容。

8.2消元__二元一次方程组的解法(加减法)学案

8.2消元__二元一次方程组的解法(加减法)学案

课题8.2消元---二元一次方程组的解法年级:七年级 备课人:娄婷婷 课型:新授 课时:新课标:掌握加减消元法,能解二元一次方程组。

一、指导思想与理论依据涉及求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具。

本章在学生对一元一次方程已有认识的基础上,对二元一次方程组进行讨论,并在二元一次方程组的基础上,学习讨论三元一次方程组及解法。

由此为今后进一步学习不等式组以及二次函数奠定基础。

本章主要内容包括:利用二元一次方程组分析与解决实际问题,二元一次方程组及其相关概念,消元思想和代入法、加减法解二元一次方程组以及三元一次方程组解法举例。

其中,以方程组为工具分析问题、解决含有多个未知数的问题既是本章的重点,又是难点。

使学生经历建立二(三)元一次方程组这种数学模型并应用它们解决实际问题的过程,体会方程组的特点和作用,掌握运用方程组解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识,是本章的中心任务。

由于含有两(三)个以及多个未知数的实际问题中数量关系比较多,在某些问题中数量关系比较隐蔽,所以列方程组表示问题中的数量关系通常是教学中的难点。

二、教学背景(一)学生情况分析七年级学生由于才进入初中,绝大部分同学都能跟上现有的进度,上课发言尚积极,个别同学表现的还比较出色,但也有部分同学的理解能力和接受能力不尽人意,学习成绩极不理想。

从课堂上看,他们的注意力不能长时间集中,很容易分心,作业和试卷上的错误比较多,对于老师的问题一问三不知,在今后的教学过程中对这些孩子要特别注意。

部分学生有主动学习的行为,深得老师赞赏。

比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会,表现欲较强。

但仍有少部分学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。

(二)教学方式与教学手段抓住七年级学生表现欲强的特征,多让学生自主学习与小组合作学习相结合,老师起点拨作用,把课堂还给学生。

8.2 消元----解二元一次方程组(4)

8.2   消元----解二元一次方程组(4)

解:设1台大收割机和1台小收割机每小时各收割 小麦x hm2和y hm2.根据两种工作方式中的等量关系, 得方程组: 同一个未知 2(2 x 5 y) 3.6, 去括号,得 4 x 10 y 3.6, ①
②-①,得 11x=4.4,
5(3x 2 y) 8.
数的系数相 同,则两个 方程消减
问 题
分 抽 析 象
15 x 10 y 8. ②
方程组
求 检 解 验
解这个方程,得 x=0.4, 把x=0.4代入①,得y=0.2, x 0.4, 所以这个方程组的解是 y 0.2.
解 答
答:1台大收割机和1台小收割机每小时各收割小麦0.4 hm2和重要.
解:设轮船在静水中的速度为x km/h,水的流速为y km/h,根据题意, x y 20, 得 x 18, 解这个方程组,得 x y 16. y 2. 答:轮船在静水中的速度为18 km/h,水的流速为2 km/h.
6.运输360吨化肥,装载了6节火车皮与15辆汽车;运输440吨化 肥,装载了8节火车皮与10辆汽车.每节火车皮与每辆汽车平 均各装多少吨化肥?
y 1.
x 11, y 2.
x 3 y 5,① 请模仿小军的“整体代换”法解方程组 3 x 10 y 13.②
7.某工厂第一车间工人人数比第二车间工人人数的2倍少10 人,若从第一车间抽调5人到第二车间,那么两个车间的人 数一样多, 问原来每个车间各有多少名工人? 第一车间原有工人30名,第二车间原有工人20名
6.列方程组解应用题的一般步骤有哪些?
课后演练
x 1 y, 3 1. 二元一次方程组 的解是( D 2( x 1) y 6

8.2消元——二元一次方程组的解法(加减消元法2)

8.2消元——二元一次方程组的解法(加减消元法2)

3 x+y
3
+
xy 2
xy 2
1, 7;
3(x+y) 2(x y)பைடு நூலகம் 8,

x+y
6
x 3
y
4; 3
解二元一次方程组:
解:法1.整理,得

x
3
x
3
y 2 y 2
3, 1;
2x 3y 18,
解 2, 得xyx= =36y,
2.
6;
x
法2.令
3 y
设元 2
a, b
2x- y=8 ④
所以原方程组 的解是
由③-④得: y= -1
练习2.下列方程组各选择哪种消元法来解比
较简便?并用相应的方法求解。
(1) Y=2x
(2) x-2y=y-1
3x-4y=5
代入法
x y
1, 2.
(3) 2x+3y=9
4x-5y=7
2x-3y=10
代入或 x 11, 加减法 y 4. (4) 9x-5y=19
8.2.2 加减消元法(2)
1、解二元一次方程组的方法有哪些? 代入法和加减法
2、解二元一次方程组:
(1)32xx+2yy
1, 3;
(代入法)
(2)52xx63yy170,(; 加减法)
x 1, y 1 x 2, y 1
(3)53xx
2y 4y
1, 13.
(任意方法)
x y
1, 2.
解,得: m = 1
(3)
2(x 5
3(x 5
y) y)
3(x 2
(x y
y ) =8, )= 1.

8.2.2 消元-解二元一次方程组(加减消元法)

8.2.2 消元-解二元一次方程组(加减消元法)

B.6x=18 C.6x=5
D.x=18
三、用加减法解下列方程组 用加减法解下列方程组
3x + 2 y = 8 (1) 3x − 4 y = 2 ② x + 2 y = 9 ( 2) 3x − 2 y = −1 ②
例3:解方程组
当两个方程 中的同一未 阅读课本思考: 知数的系数 知数的系数 1、①×3的具体步骤是什么? 不相同且不 3(3x+ 4y) = 3× 16 ( ) × 互为相反数 则应将 时,则应将 9x+ 12y = 48 ③ 两个方程变 2、②×2的具体步骤是什么? 形,将某个 2(5x - 6y) = 2× 33 ( ) × 未知数的系 数变为相同 数变为相同 10x - 12y = 66 ④ 或互为相反 3、以上两个步骤的目的是什么? 数再进行加 使两方程未知项y 的系数互为相反数, 减消元。 使两方程未知项 的系数互为相反数, 减消元。 从而使用③ ④消去y. 从而使用③+④消去
次方程,这种方法叫做加减消元法 加减消元法,简称加减法 加减法。 加减消元法 加减法
方法解读: 方法解读:
利用加减消元法解方程组时,在方程组的两 利用加减消元法解方程组时 在方程组的两 加减消元法解方程组时 个方程中: 个方程中 (1)某个未知数的系数互为相反数,则可以直接 某个未知数的系数互为相反数 某个未知数的系数互为相反数, 把这两个方程中的两边分别相加, 把这两个方程中的两边分别相加, 消去这个未知数; 消去这个未知数 (2)如果某个未知数系数相等,则可以直接 如果某个未知数系数相等 如果某个未知数系数相等, 把这两个方程中的两边分别相减, 把这两个方程中的两边分别相减, 消去这个未知数。 消去这个未知数
《恒谦教育教学资源库》 恒谦教育教学资源库》

初中数学 学案:8.2 消元——解二元一次方程组

初中数学 学案:8.2  消元——解二元一次方程组

消元——解二元一次方程组(2)(加减法)【学习目标】 1.会运用加减消元法解二元一次方程组.2.能体会解二元一次方程组的基本思想——“消元”.【学习重点】加减法解二元一次方程组.【学习难点】理解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.【学习过程】一、自主学习1.回忆用代入法解二元一次方程组,并解方程组:⎩⎨⎧=+=+.162,10y x y x2.完成下面的解题过程:(用加减法解方程组并与同学生说明为什么用“加”或“减”的) (1)①②3x 7y 9 , 4x 7y 5.⎧+=⎨-=⎩ 解:①+②,得____________.解这个方程,得x=____.把x=____代入____,得_________,y=_____. 所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩二、合作交流探究与展示1.认真自学课本94-95页;我们知道,对于方程组⎩⎨⎧=+=+.162,10y x y x , 可以用代入消元法求解.观察这个方程组的两个方程,y 的系数 ,所以可以作 运算消元.尝试解方程组.(2) ①②3x 7y 9 , 4x 7y 5. ⎧+=⎨+=⎩ 解:②-①,得____________. 解这个方程,得x=____. 把x=____代入____,得_________, y=_____.解:2.联系上面的方法解下列方程组:410 3.615108x y x y +=⎧⎨-=⎩归纳:两个二元一次方程中,同一个未知数的系数_______或______ 时,把这两个方程的两边分别 _______或________ ,就能________这个未知数,得到一个____________方程,这种方法叫做加减消元法,简称加减法.归纳加减消元法步骤:3.想一想如何使方程组中的某一未知数系数相同或相反.1.用加减法解方程组:(2)⎩⎨⎧=-=+.3365,1643y x y x分析:这两个方程中没有同一个未知数的系数相反或相等,直接加减这两个方程不能消元.我们对方程变形,使得这两个方程中某个未知数的系数相反或相等.解:三、当堂检测 (1、2、3题为必做题,4题为选做题)1.已知方程组⎩⎨⎧=-=+;632,173y x y x 两个方程只要两边 就可以消去未知数 ,得方程 .2.已知方程组 ⎩⎨⎧=+=-;10625,167325y x y x 两个方程只要两边 就可以消去未知数 ,得方程 .3.解下列方程组:⎩⎨⎧-=-=+.223,6321y x y x )( ⎪⎩⎪⎨⎧=+-=;32,123-21)3(y x y x4.⎩⎨⎧=+=+7282b a b a b a 满足方程组、已知,则a +b = . 四、课外作业 P98 4,P111 1参考答案一、自主学习1.回忆用代入法解二元一次方程组,并解方程组:⎩⎨⎧=+=+.162,10y x y x 解:⎩⎨⎧==46y x2.完成下面的解题过程:(用加减法解方程组并与同学生说明为什么用“加”或“减”的)(1)①②3x 7y 9 , 4x 7y 5. ⎧+=⎨-=⎩ 解:①+②,得_7x=14___________.解这个方程,得x=__2__. 把x=__2__代入__②__,得___8-7y=5______, y=__73___. 所以这个方程组的解是⎪⎩⎪⎨⎧==732y x二、合作交流探究与展示1.认真自学课本94-95页; 我们知道,对于方程组⎩⎨⎧=+=+.162,10y x y x , 可以用代入消元法求解.观察这个方程组的两个方程,y 的系数 1 ,所以可以作 减法 运算消元.尝试解方程组.(2) ①②3x 7y 9 , 4x 7y 5.⎧+=⎨+=⎩ 解:②-①,得_4x-3x=5-9___________. 解这个方程,得x=__-4__.把x=___-4_代入_②___,得___-16+7y=5______, y=___3__.所以这个方程组的解是⎩⎨⎧=-=34y x解: ⎩⎨⎧==46y x2.联系上面的方法解下列方程组:410 3.615108x y x y +=⎧⎨-=⎩解:⎪⎩⎪⎨⎧==49558y x归纳:两个二元一次方程中,同一个未知数的系数___相反____或__相等____ 时,把这两个方程的两边分别 __相加_____或___相减_____ ,就能___消去_____这个未知数,得到一个___一元一次_________方程,这种方法叫做加减消元法,简称加减法.归纳加减消元法步骤:(1)将原方程组的两个方程化为有一个未知数的系数相反或相等的两个方程;(2)把这两个方程相加或相减,消去一个未知数;(3)解所得的一元一次方程;(4)求另一个未知数的值;(5)写出原方程组的解.1.用加减法解方程组:(2)⎩⎨⎧=-=+.3365,1643y x y x分析:这两个方程中没有同一个未知数的系数相反或相等,直接加减这两个方程不能消元.我们对方程变形,使得这两个方程中某个未知数的系数相反或相等. 解:⎪⎩⎪⎨⎧-==216y x三、当堂检测 (1、2、3题为必做题,4题为选做题)1.已知方程组⎩⎨⎧=-=+;632,173y x y x 两个方程只要两边 相加 就可以消去未知数 y ,得方程 3x=23 .2.已知方程组 ⎩⎨⎧=+=-;10625,167325y x y x 两个方程只要两边 减 就可以消去未知数 x ,得方程-67Y=26 .3.解下列方程组:⎩⎨⎧-=-=+.223,6321y x y x )( ⎪⎩⎪⎨⎧=+-=;32,123-21)3(y x y x 解:⎪⎪⎩⎪⎪⎨⎧==1322136y x ,⎩⎨⎧==11y x 4.⎩⎨⎧=+=+7282b a b a b a 满足方程组、已知,则a +b = 5 .。

七年级下册数学教案消元-解二元一次方程组

七年级下册数学教案消元-解二元一次方程组

学校教师备课笔记学校教师备课笔记茄子西红柿FECADB教学环节教学活动设计意图让学生感受列表法的直观,体会用列表法梳理数量关系的好处,培养学生使用列表法的意识.学生交流解法,碰撞思维火花,体会一题多解的问题情境,学会从多种角度考虑问题.考查学生对探究问题的理解程度,同时让学生体会数学来源于生活,又服务于生活.教师活动学生活动备用图(1)学生先齐读,再小声读题,划出关键词句,明确问题让我们做什么.(2)学生分享找出的关键词句.(3)小组合作交流,完成三个任务:①找出等量关系;②设出恰当的未知数;③列出方程组.(4)学生代表板演解题过程并讲解.(5)学生讲完解法一后,教师引导学生重新回顾解法一,并给出下面的表格,由表格可以清楚地看出各个数据和等量关系,然后提倡学生采用列表法梳理等量关系.2.类比延展请加入生活中的其它实际背景(如:消毒液、花坛、黑板、墙报、窗户等)对这道题进行改编并写在下面的横线上.______________________________________________________四、当堂检测1.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?设生产螺栓x人,生产螺帽y人,列方程组为( )茄子西红柿未知边长x y种植面积10x10y单位产量之比 1 2总产量之比10x2×10y法二:解:如图1,一种种植方案为:茄子、西红柿的种植区域分别为长方形AEFD和BCFE.设AE=x m,BE=y m.(31):(42)3:2÷÷=则⎩⎨⎧==+2:310:1020yxyx解这个方程组得⎩⎨⎧==812yx答:过长方形土地的长边上离一端12 m处,把这块地分为两个长方形.较大一块地种茄子,较小一块地种西红柿.学生自由发言根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,这些消毒液应该分装大、小瓶两种产品各多少瓶?教学环节教学活动设计意图教师活动学生活动A.⎩⎨⎧==+yxyx241590B.⎩⎨⎧==yxyx4548-90C.⎩⎨⎧==+yxyx243090D.⎩⎨⎧=-=yxyx24)15(2-902.如图,8块相同的长方形地砖拼成一个大长方形,大长方形的宽为60 cm,每块长方形地砖的长和宽分别是多少?五、归纳总结PPT回放几张重点幻灯片,引导学生回顾本节所学内容,谈一谈有哪些收获.六、布置作业必做题:1.课本P102 习题8.3 4、5选做题:课本P102 习题8.3 7学生讲解1.C2.解:设长方形的长为xcm,宽为ycm根据题意,列方程组⎩⎨⎧=++=6032yxyxx解这个方程组,得⎩⎨⎧==1545yx答:长方形的长为45cm,宽为15cm。

人教七年级数学下课件8.2消元——解二元一次方程组第2课时用加减法解二元一次方程组

人教七年级数学下课件8.2消元——解二元一次方程组第2课时用加减法解二元一次方程组

解:(1)设出租车的起步价是 x 元,超过 1.5 千米后每千米收费 y 元.依 题意得,xx++((46..55--11..55))yy==1104..55,解得xy==42..5,答:出租车的起步 价是 4.5 元,超过 1.5 千米后每千米收费 2 元
(2)4.5+(5.5-1.5)×2=12.5(元).答:小张乘出租车从市政府到娄底 南站(高铁站)走了 5.5 千米,应付车费 12.5 元
【综合运用】 16.(13 分)(2015·娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为 0~ 1.5 千米,超过 1.5 千米的部分按每千米另收费. 小刘说:“我乘出租车从市政府到娄底汽车站走了 4.5 千米,付车费 10.5 元.” 小李说:“我乘出租车从市政府到娄底汽车站走了 6.5 千米,付车费 14.5 元.” 问:(1)出租车的起步价是多少元?超过 1.5 千米后每千米收费多少元? (2)小张乘出租车从市政府到娄底南站(高铁站)走了 5.5 千米,应付车费多少元?
x=2, A.y=-4
x=2, B.y=4
x=-2, C.y=4
x=-2, D.y=-4
3.(4 分)解方程组32xx-+33yy==41,②①时,用加减消元法最简便的是( A )
A.①+② B.①-② C.①×2-②×3 D.①×3+②×2
4.(4 分)用加减法解方程组44xx+ -33yy= =62.,若先求 x 的值,应先将两个方程组___加_____; 若先求 y 的值,应先将两个方程相___减_____.
13.(2015·武汉)定义运算“*”,规定 x*y=ax2+by,其中 a,b 为常数,且 1*2=5,2*1=
6,则 2*3=___1_0____.

消元——解二元一次方程组--加减消元法

消元——解二元一次方程组--加减消元法

8.2(2)消元——解二元一次方程组--加减消元法一.【知识要点】1.解二元一次方程组的基本思想:消元2.解二元一次方程组的基本方法:代入消元法.加减消元法.整体构造法3.基本步骤:(1)“造同”(即将某一个未知数的系数通过“同乘”的方式构成“绝对值相同型”);(2)加减消元求解;(3)结论二.【经典例题】1.用加减消元法解方程组()5361322x y x y -=⎧⎨-=-⎩①② (2)1340.30.4 1.6x y x y ⎧+=⎪⎨⎪+=⎩ (3)4(x y 1)3(1y)2223x y --=--⎧⎪⎨+=⎪⎩三.【题库】【A 】1.若7172x y a b -与22313x y a b +-是同类项,则x=______,y=________ 2.已知方程组5,1mx n my n +=⎧⎨-=⎩的解是1,1.x y =⎧⎨=⎩,则m ,n 的值是( ) (A )1,2.m n =⎧⎨=⎩ (B )1,2.m n =-⎧⎨=-⎩ (C )2,3.m n =⎧⎨=⎩ (D )3,2.m n =⎧⎨=⎩【B 】1.加减消元法解下列二元一次方程组。

(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x()3533123x y x y -=⎧⎪⎨-=⎪⎩ (4)⎩⎨⎧=--=-01383272n m n m()341655633x y x y +=⎧⎨-=⎩ ()23563212x y x y -=-⎧⎨+=⎩()8+973717374x y x y =⎧⎨-=⎩①②()23183424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩()3259429m n m n -=⎧⎨+=⎩()35710425x y x y -=⎧⎨+=⎩()651111447x y x y -=⎧⎨--=⎩【C 】1.加减消元法解下列二元一次方程组。

()()()413121223x y yxy--=--⎧⎪⎨+=⎪⎩(2)()()⎪⎩⎪⎨⎧=-++=--+6322432y x y x y x y x2.解方程组231367x y x y +=⎧⎨-=⎩①②,用加减消元法消去y ,变形正确的是( )A.⨯①2-②B.3⨯⨯①-②2C.+⨯①2②D.3+⨯⨯①②23.用加减法解方程组()()⎪⎩⎪⎨⎧=+=+2431322b a b a ,最简单的方法是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.已知方程组
25x-7y=16, 两个方程 25x+6y=10
就可以消去未知数 x .
只要两边 分别相减
2 x 3 y 7, 3.(芜湖·中考)方程组 x 3y 8
的解是 .
① ②
【解析】先观察3y与-3y互为相反数,再用① + ② 得:3x=15,x=5.最后把x=5代入①得:y= -1.
按小丽的思路,你能消去 一个未知数吗?
小丽
分析: (3x + 5y) + (2x - 5y)= ①左边 + ② 左边 =
3x 5y 21 ,① 2 x 5 y -11 .②
21 + (-11) ②右边 ① 右边 +
3x+5y +2x-5y=10 5x+0y =10
5x=10
通过本课时的学习,需要我们掌握: 1.解二元一次方程组的基本思路是消元. 2.消元的方法有:代入消元和加减消元. 3.解二元一次方程组的一般步骤:消元、求解、写解.
把每一件简单的事做好就不简单,把 每一件平凡的事做好就不平凡。
解:①-②,得 2x=4-4, × x=0 订正: 解:①-②,得 2x=4+4, x=4
x=-6 订正:解:①+②,得 8x=16 x=2
×
x+y=20, ① 6.(潼南·中考)解方程组 2x-y=25. ②
【解析】由①+②,得3x=45; x=15. 把x=15代入①,得 15+y=20 y=5. 所以这个方程组的解是 x 15, y 5.
x5 【答案】 y 1
2 x y 5, 4.(泉州·中考)已知x,y满足方程组 x 2 y 4,
则x-y的值为 .
2x+y=5, ① 【解析】 方程①-②得x-y=1. x 2y=4,②
【答案】1
5.指出下列方程组求解过程中有错误的步骤,并给予订正: 7x-4y=4, 5x-4y=-4. ① ② 3x-4y=14, ① 5x+4y=2. 解: -2x=12 ② ①-②,得
x=2 把x=2代入①,得y=3,
x 2, 3x 5y 21 的解是 所以 2x 5y -11 y 3.
参考小丽的思路,怎样解下面的二元一次方程组呢? 2x-5y=7, 2x+3y=-1. ① ②
分析:观察方程组中的两个方程,未知数x的系数相等, 即都是2.所以把这两个方程两边分别相减,就可以消去 未知数x,得到一个一元一次方程.
x 3, 所以原方程组的解是 y 2.
当方程组中两方程不具备
上述特点时,必须用等式 性质来改变方程组中方程 的形式,即得到与原方程 组同解的且某未知数系数 的绝对值相等的新的方程 组,从而为加减消元法解
方程组创造条件.
用加减消元法解方程组:
x 1 y 3 2 1, ① x 1 y 2. ② 2 4
变形 代入 求解 写解
怎样解下面的二元一次方程组呢?
3x 5y 21, 2x 5y -11.


把②变形得:x
5 y 11 2
代入①,不就消去x了!
小 彬
把②变形得 5 y 2 x 11 可以直接代入①呀!
小明
5 y和 5 y
互为相反数……
由③-④得:
y= -1
把y= -1代入② , 7 解得: x , 2 所以,原方程组的解是
解:由①×6,得
2x+3y=4 ③ 由②×4,得 2x - .
1.已知方程组
x+3y=17, 两个方程 2x-3y=6
就可以消去未知数 y .
只要两边 分别相加
一元.
主要步骤: 加减 求解 写解
消去一个元; 分别求出两个未知数的值; 写出原方程组的解.
【例】用加减法解方程组:
分析:
2x 3y 12, 3x 4y 17. ②
① ①×3得: 6x+9y=36 ③ ②×2得: 6x+8y=34 ④ ③-④得: 解得: y=2, x=3, 把y=2代入①,
8.2 消元——解二元一次方程组
第2课时
1.掌握用加减消元法解二元一次方程组的步骤; 2.熟练运用消元法解简单的二元一次方程组; 3.培养学生的分析能力,能迅速根据所给的二元一次方 程组,选择一种简单的方法解方程组.
1.解二元一次方程组的基本思路是什么? 消元: 二元
一元
2.用代入法解方程的步骤是什么?
解:由 ②-①得:8y=-8
y=-1 把y =-1代入①,得 2x-5×(-1)=7 解得:x=1
x 1, 所以原方程组的解是 y 1.
上面这些方程组的特点是什么? 解这类方程组的基本思路是什么?主要步骤有哪些? 特点:
同一个未知数的系数相同或互为相反数.
加减消元: 二元
基本思路:
相关文档
最新文档