2019年七年级下册数学期末考试模拟试题BS
【北师大版】七年级下册数学《期末考试题》(含答案解析)
2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
2019年七年级数学下期末试卷(含答案)
2019年七年级数学下期末试卷(含答案)一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm 2.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1 B .0C .-2D .-1 3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)4.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块5.计算2535-+-的值是( )A .-1B .1C .525-D .255- 6.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒7.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°8.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=0 9.2-的相反数是( ) A .2-B .2C .12D .12- 10.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1 B .-1 C .2 D .-211.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,812.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°二、填空题13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.14.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.15.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 16.不等式3x 134+>x 3+2的解是__________.17.化简(2-1)0+(12)-2-9+327-=________________________. 18.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 19.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________ 20.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.三、解答题21.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).22.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?23.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.24.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数.25.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.3.B解析:B【解析】试题解析:已知点M(2,-3),则点M 关于原点对称的点的坐标是(-2,3),故选B .4.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y 块,而黑皮共有边数为5x 块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x ,y . 则, 解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D .5.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】 解:2535+-(253525351-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 6.B解析:B【解析】【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案.【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补),∴318018074106BAC ∠=︒-∠=︒-︒=︒,故选B .【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.7.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.8.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.9.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .10.B解析:B【解析】【分析】 把代入x-ay=3,解一元一次方程求出a 值即可.【详解】 ∵是关于x ,y 的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.11.C解析:C【解析】【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B (-4,-1)的对应点D 的横坐标为-4+4=0,点D 的纵坐标为-1+2=1,故D (0,1).故选C .【点睛】此题考查了坐标与图形的变化----平移,根据A (-2,3)变为C (2,5)的规律,将点的变化转化为坐标的变化是解题的关键.12.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.二、填空题13.m>-2【解析】【分析】首先解关于x 和y 的方程组利用m 表示出x+y 代入x+y >0即可得到关于m 的不等式求得m 的范围【详解】解:①+②得2x+2y =2m+4则x+y =m+2根据题意得m+2>0解得m >解析:m >-2【解析】【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②, ①+②得2x +2y =2m +4,则x +y =m +2,根据题意得m +2>0,解得m >﹣2.故答案是:m >﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式.14.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能 解析:25【解析】【分析】【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩.即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.15.3【解析】解:由题意可得:①-②得:4m+2n=6故2m +n=3故答案为3 解析:3【解析】解:由题意可得:3731m n n m +=⎧⎨-=⎩①②,①-②得:4m +2n =6,故2m +n =3. 故答案为3. 16.x >-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x >-3解析:x >-3【解析】 3134x +>3x +2, 去分母得:3(313)424,x x +>+ 去括号得:939424,x x +>+ 移项及合并得:515,x >- 系数化为1得:3x >- .故答案为x >-3.17.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键解析:-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.18.m>3【解析】试题分析:因为点P 在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P 在第二象限,所以,30{0m m -<>,解得:考点:(1)平面直角坐标;(2)解不等式组19.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a<【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.20.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.三、解答题21.(1)∠1=40°;(2)∠AEF+∠GFC=90°;(3)60°﹣α.【解析】【分析】(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出∠EGD13=(180°﹣60°)=40°,进而得到∠1=40°;(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠GFC=90°;(3)根据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB∥CD,∴∠1=∠EGD.又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.22.安排25人加工甲部件,则安排60人加工乙部件,共加工200套.【解析】试题分析:首先设安排甲部件x个人,则(85-x)人生产乙部件,根据甲零件数量的3倍等于乙零件数量的2倍列出方程进行求解.试题解析:设甲部件安排x人,乙部件安排(85-x)人才能使每天加工的甲、乙两种部件刚好配套由题意得:3×16x=2×10(85-x)解得:x=25 则85-x=85-25=60(人)答:甲部件安排20人,乙部件安排60人才能使每天加工的甲、乙两种部件刚好配套.考点:一元一次方程的应用.23.(1)a=5,b=2,c=3;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值.(2)将a、b、c的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.24.(1)证明见解析;(2)50°.【解析】证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC∴∠A=∠D∴AB∥CD(2) ∵∠1+∠2 =180°又∵∠CGD+∠2=180°∴∠CGD=∠1∴CE∥FB∴∠C=∠BFD,∠CEB +∠B=180°又∵∠BEC=2∠B+30°∴2∠B+30°+∠B=180°∴∠B=50°又∵AB∥CD∴∠B=∠BFD∴∠C=∠BFD=∠B=50°.25.证明见解析.【解析】【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.。
2019年齐齐哈尔市七年级数学下期末模拟试卷带答案
2019年齐齐哈尔市七年级数学下期末模拟试卷带答案一、选择题1.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,则∠AOM的度数为()A.40°B.50°C.60°D.70°2.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.3.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤54.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°5.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=06.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩7.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间 D .在1.4和1.5之间8.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( )A .1B .-1C .2D .-29.不等式4-2x >0的解集在数轴上表示为( ) A . B . C .D .10.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180° 11.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②二、填空题13.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.14.不等式71x ->的正整数解为:______________. 15.如果a 的平方根是3±,则a =_________16.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°17.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .18.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____. 19.已知a >b ,则﹣4a +5_____﹣4b +5.(填>、=或<)20.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者 答对题数 答错题数 得分 A 19 1 112 B 18 2 104 C 17 3 96 D101040三、解答题21.(1)计算:2020011(1)(2019)3sin 60()2π---+--+o(2)解不等式组:34223154x x x x +≥⎧⎪⎨+--≥⎪⎩①②,并求整数解。
北师大版2019学年数学七年级下期末试题含答案(共10套)
北大师版2019学年七年级数学期末试卷(一)(全卷共4页,三大题,共24小题;满分100分;考试时间90分钟)友情提示:所有答案都必须填在答题卷上,答在本试卷上无效.学校 班级 座号 姓名一、选择题(共10小题,每小题3分,满分30分;每小题只有一个正确的选项,请将答案填入答题卷的相应位置)1.下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( )A .5, 1, 3B .2, 4, 2C .3, 3, 7D .2, 3, 4 2. 下列世界博览会会徽图案中是轴对称图形的是( )A .B .C .D . 3. 近似数0.0386精确到________位有________个有效数字.( )A .千分,3B .千分,4C .万分,3D .万分,4 4. 计算:=-÷)2(628a a ( )A .63a - B .43a - C .63a D .43a 5. 小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为( )A.81 B. 97 C. 92 D . 167 6. 下列多项式乘法中,可以用平方差公式计算的是( ) A .)32)(2(b a b a -+ B .)1)(1(x x ++ C .)2)(2(y x y x +- D .))((y x y x +-- 7. 下列计算正确..的是( ) A .262)31(2x x x x --=-- B .22=-a aC .3252a a a += D .235a a a ⋅= 8. 如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立...的是( ) A .∠B=∠C B .AD ∥BC C .∠2+∠B=180° D .AB ∥CD9. 弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:第5题图第8题图下列说法错误..的是( ) A. 弹簧的长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量 B. 如果物体的质量为x kg ,那么弹簧的长度y cm 可以表示为y=12+0.5x C. 在弹簧能承受的范围内,当物体的质量为7kg 时,弹簧的长度为16cm D.在没挂物体时,弹簧的长度为12cm10.室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示 数如右图所示,则这时的实际时间应是( )A .3∶20B .3∶40C .4∶20D .8∶20 二、填空题(共6小题,每小题3分,满分18分.请将答案填入答题卷的相应位置)11. 单项式23ab -的次数是 . 12. 计算:223)2(x x ∙= .13. 空气就是我们周围的气体.我们看不到它,也品尝不到它的味道,但是在刮风的时候,我们就能够感觉到空气的流动.已知在0摄氏度及一个标准大气压下1cm 3空气的质量是0.001293克,数0.001293用科学计数法表示为___________. 14. 已知∠α,∠β互为补角,且∠β=70°,则∠α= °. 15. 如图,已知∠1=∠2,请你添加一个条件使△ABC ≌△BAD ,你添加的条件是 (填一个即可). 16. 如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,若∠BOC=120°, 则∠A=________°.三、解答题(满分52分.请将解答过程填入答题卷的相应位置.作.图或添辅助线用铅笔画完,需用水笔再描黑...................) 17.(本题满分5分)计算:022010)14.3()31()1(π--+--18.(本题满分7分)化简求值: x y x x x 2)2()1(2+---,其中5,51==y x19.(本题满分6分)在校运动会上,育才中学七年级⑴班的同学为了给参加比赛的同学加油助威,每人提前制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如右图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法...........).第15题图ABCO第16题图第10题图20.(本题满分6分)如图是非洲象、长颈鹿、兔子、蝴蝶等动物奔跑(飞行)时的最高时65 36非洲象 蝴蝶 (1)从图中你能获得哪些信息?请写出两条. (2)图中那个动物被画得又高又大?为什么?(3)为什么非洲象被画得和比它小得多的蝴蝶差不多大?21.(本题满分6分)仔细想一想,完成下面的说理过程。
北师大版七年级数学下册2019-2020年度第二学期期末模拟测试卷一(含答案)
北师大版七年级数学下册2019-2020 年度第二学期期末模拟测试卷一一、选择题(共10 小题,每小题 3 分,计30 分,每小题只有一个选项是符合要求的)1.下列计算正确的是()A.3a2﹣4a2=a2 B.a2•a3=a6 C.a10÷a5=a2 D.(a2)3=a62.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)3.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3 相差2 的概率是()A.B.C.D.5.已知三角形三边分别为2,a﹣1,4,那么a 的取值范围是()A.1<a<5 B.2<a<6 C.3<a<7 D.4<a<66.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了 10 分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路7.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形8.已知实数a、b 满足a+b=2,ab=,则a﹣b=()A.1 B.﹣ C.±1 D.±9.如图:∠A+∠B+∠C+∠D+∠E+∠F 等于()A.180°B.360°C.540°D.720°10.如图,在△ABC 中,点D、E、F 分别是BC、AD、EC 的中点,若△ABC 的面积是16,则△BEF 的面积为()A.4 B.6 C.8 D.10二、填空题(共 4 小题,每小题 3 分,计12 分)11.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300 亿元人民币等值专项贷款,将300 亿元用科学记数法表示为元.12.∠1 与∠2 有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=.13.如图,点P 关于OA、OB 的对称点分别为C、D,连接CD,交OA 于M,交OB 于N,若PMN 的周长=8 厘米,则CD 为厘米.14.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是(只需添加一个条件即可)三、解答题(共9 小题,计78 分解答应写出过程)15.(12分)计算(1)106÷10﹣2×100(2)(a+b﹣3)(a﹣b+3)(3)103×97(利用公式计算)(4)(﹣3a2b)2(2ab2)÷(﹣9a4b2)16.(6分)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.17.(6分)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x),其中x=﹣,y=1.18.(6分)如图,在正方形网格中,△ABC 是格点三角形,画出△ABC 关于直线l对称的△A1B1C1.19.(9分)将分别标有数字 1,2,3 的三张卡片洗匀后,背面朝上放在桌面上.请完成下列各题.(1)随机抽取1 张,求抽到奇数的概率.(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?(3)在(2)的条件下,试求组成的两位数是偶数的概率.20.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F 的度数.21.(9分)如图,直线 AB 与 CD 相交于点 O,∠AOM=90°.(1)如图1,若射线OC 平分∠AOM,求∠AOD 的度数;(2)如图2,若∠BOC=4∠NOB,且射线OM 平分∠NOC,求∠MON 的度数.22.(10分)已知一个等腰三角形的两个内角分别为(2x﹣2)°和(3x﹣5)°,求这个等腰三角形各内角的度数.23.(12 分)如图 1,在△ABC 中,∠BAC=90°,AB=AC,过点 A 作直线 DE,且满足BD⊥DE 于点 D,CE⊥DE 于点 E,当 B,C 在直线 DE 的同侧时,(1)求证:DE=BD+CE.(2)如果上面条件不变,当B,C 在直线DE 的异侧时,如图2,问BD、DE、CE 之间的数量关系如何?写出结论并证明.(3)如果上面条件不变,当B,C 在直线DE 的异侧时,如图3,问BD、DE、CE 之间的数量关系如何?写出结论并证明.参考答案一、选择题1.D.2.D.3.C.4.B.5.C.6.B.7.A.8.C.9.B.10.A.二、填空题(共4 小题,每小题3 分,计12 分)11.3×1010.12.60°或120°.13.8.14.AE=AC.三、解答题(共9 小题,计78 分解答应写出过程)15.解:(1)原式=106+2+0=108;(2)原式=a2﹣(b﹣3)2=a2﹣b2+6b﹣9;(3)原式=(100+3)×(100﹣3)=1002﹣32=10000﹣9=9991;(4)原式=(9a4b2)•(2ab2)÷(﹣9a4b2)=﹣2ab2.16.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.17.解:原式=(x2+4xy+4y2﹣9x2+y2﹣5y2)÷2x=(﹣8x2+4xy)÷2x=﹣4x+2y,当x=﹣、y=1 时,原式=﹣4×(﹣)+2×1=2+2=4.18.解:如图,△A1B1C1 即为所求.19.解:(1)在这三张卡片中,奇数有:P(抽到奇数)=;(2)可能的结果有:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(3)由(2)得组成的两位数是偶数的概率==.20.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC 和△DEF 中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°21.解(1)∵∠AOM=90°,OC 平分∠AOM,∴∠AOC=∠AOM=×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°,即∠AOD 的度数为135°;(2)∵∠BOC=4∠NOB∴设∠NOB=x°,∠BOC=4x°,∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°,∵OM 平分∠CON,∴∠COM=∠MON=∠CON=x°,∵∠BOM=x+x=90°,∴x=36°,∴∠MON=x°=×36°=54°,即∠MON 的度数为54°.22.解:①当(2x﹣2)°和(3x﹣5)°是两个底角时,2x﹣2=3x﹣5,x=3,∴三个内角分别是4°,4°,172°;②当2x﹣2 是顶角时,2x﹣2+2(3x﹣5)=180°,解得x=24,∴三个内角分别是46°,67°,67°;③当3x﹣5 是顶角时,3x﹣5+2(2x﹣2)=180°,解得x=27,∴三个内角分别是76°,52°,52°23.(1)证明:如图1,∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.在△ADB 和△CEA 中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)解:BD=DE+CE,理由:如图2,∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°.∴∠BAD+∠ABD=90°.∵∠BAD+∠EAC=90°∴∠ABD=∠EAC.在△ADB 和△CEA 中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AE=AD+ED,∴BD=DE+CE.(3)解:DE=CE﹣BD,理由是:如图3,同理易证得:△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD﹣AE,∴DE=CE﹣BD.。
江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)
江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.2.计算x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy23.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣54.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.26.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y (x+2)28.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠39.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=______.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=______.13.已知:x a=4,x b=2,则x a+b=______.14.一个n边形的内角和是1260°,那么n=______.15.若正有理数m使得是一个完全平方式,则m=______.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为______.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=______°.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 中点,且S△ABC=4平方厘米,则S△BEF的值为______.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.解不等式组,并把它的解集在数轴上表示出来.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为______;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC 的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千b瓦时的部分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.【考点】负整数指数幂.【分析】根据负整数指数幂的运算方法:a﹣p=,求出用分数表示4﹣2的结果是多少即可.【解答】解:∵4﹣2==,∴用分数表示4﹣2的结果是.故选:D.【点评】此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.2.计算x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy2【考点】整式的除法.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.根据法则即可求出结果.【解答】解:x2y3÷(xy)2,=x2y3÷x2y2,=x2﹣2y3﹣2,=y.故选C.【点评】本题考查单项式除以单项式运算.(1)单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式;(2)单项式除法的实质是有理数除法和同底数幂除法的组合.3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.5【考点】二元一次方程的解.【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.2【考点】一元一次不等式的整数解.【分析】解不等式求得x的范围,再该范围内可得其最大整数解.【解答】解:移项、合并,得:2x≤5,系数化为1,得:x≤2.5,∴不等式的最大整数解为2,故选:D.【点评】本题主要考查解不等式的能力,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.6.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等【考点】命题与定理.【分析】利用平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,错误,是假命题,符合题意;B、垂直于同一直线的两条直线平行,正确,是真命题,不符合题意;C、对顶角相等,正确,是真命题,不符合题意;D、同角的余角相等,正确,是真命题,不符合题意;故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及余角的定义等知识,难度不大.7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y (x+2)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2Y,进而利用完全平方公式分解因式即可.【解答】解:2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.8.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3【考点】平行线的判定.【分析】根据题意,结合图形对选项一一分析,排除错误答案.【解答】解:A、∠1=∠3正确,内错角相等两直线平行;B、∠2+∠4=180°正确,同旁内角互补两直线平行;C、∠4=∠5正确,同位角相等两直线平行;D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个【考点】平行线的性质;余角和补角.【分析】先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.【解答】解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18【考点】整式的混合运算.【分析】阴影部分面积等于两个正方形面积之和减去两个直角三角形面积,求出即可.【解答】解:∵a+b=ab=6,∴S=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)= [(a+b)2﹣3ab]=×(36﹣18)=9,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=3x2﹣7x+2.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=3x2﹣6x﹣x+2=3x2﹣7x+2,故答案为:3x2﹣7x+2【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=﹣8.【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:∵a+b=﹣2,a﹣b=4,∴a2﹣b2=(a+b)(a﹣b)=﹣8.故答案为:﹣8.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.13.已知:x a=4,x b=2,则x a+b=8.【考点】同底数幂的乘法.【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵x a=4,x b=2,∴x a+b=x a•x b=8.故答案为:8.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.14.一个n边形的内角和是1260°,那么n=9.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.【解答】解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.【点评】此题主要考查了多边形的内角和公式,关键是掌握内角和公式.15.若正有理数m使得是一个完全平方式,则m=.【考点】完全平方式.【分析】根据完全平方式的结构解答即可【解答】解:∵是一个完全平方式,且m为正数,∴m=2×=.故答案为:.【点评】本题是完全平方公式的应用,掌握完全平方式的结构是解题的关键.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为30°.【考点】平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【解答】解:已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°﹣60°﹣90°=30°.故答案为:30°.【点评】此题考查了学生对平行线性质的应用,关键是由平行线性质得出同位角相等求出∠3.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=30°.【考点】平行线的性质.【分析】根据三角形的内角和得到∠C=75°,根据平行线的性质得到∠AED=∠C=75°,由折叠的想知道的∠DEF=∠AED=75°,于是得到结论.【解答】解:∵∠A+∠B=105°,∴∠C=75°,∵BC∥DE,∴∠AED=∠C=75°,∵把△ABC沿线段DE折叠,使点A落在点F处,∴∠DEF=∠AED=75°,∴∠FEC=180°﹣∠AED﹣∠DEF=30°,故答案为:30.【点评】此题考查了折叠的性质以及平行线的性质.此题比较简单,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 中点,且S△ABC=4平方厘米,则S△BEF的值为1cm2.【考点】三角形的面积.【分析】根据等底等高的三角形的面积相等可知,三角形的中线把三角形分成面积相等的两个三角形,然后求解即可.【解答】解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC=×4=2cm2,∵E是AD的中点,∴S△BDE=S△CDE=×2=1cm2,∴S△BEF=(S△BDE+S△CDE)=×(1+1)=1cm2.故答案为:1cm2.【点评】本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:7x=56,即x=8,把x=8代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可【解答】解:,解不等式①得x≥﹣2,解不等式②得x<4,故不等式组的解为:﹣2≤x<4,把解集在数轴上表示出来为:【点评】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【考点】完全平方公式.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【考点】平行线的判定与性质.【分析】(1)根据垂直定义求出∠CDF=∠EFB=90°,根据平行线的判定推出即可;(2)根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出BC∥DG,根据平行线的性质得出∠3=∠ACB即可.【解答】解:(1)CD平行于EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°.【点评】本题考查了平行线的性质和判定的应用,能正确运用性质和判定进行推理是解此题的关键,难度适中.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为3;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.【考点】解二元一次方程.【分析】(1)把x看做已知数求出y即可;(2)把表示出的y代入已知不等式求出x的范围即可;(3)把表示出的x代入已知不等式求出y的范围即可.【解答】解:(1)方程3x﹣2y=6,解得:y=;(2)由题意得:﹣1<≤3,解得:<x≤4;(3)由题意得:x=,代入不等式得:﹣1<≤3,解得:﹣<y≤,则y的最大值为.【点评】此题考查了解二元一次方程,把一个未知数看做已知数表示出另一个未知数是解本题的关键.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC 的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.【考点】三角形内角和定理.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再由角平分线的性质求出∠BAD的度数,由直角三角形的性质求出∠BAE 的度数,根据∠EAD=∠BAD﹣∠BAE即可得出结论;(2)首先利用三角形内角和定理可求出∠BAC的度数,进而可求出∠BAD的度数,由题意可知∠BAG=∠BAC,再利用已知条件和三角形外角和定理即可求出∠G的度数.【解答】解:(1)∵在△ABC中,∠B=62°,∠C=38°,∴∠BAC=180°﹣62°﹣38°=80°.∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=40°.∵AE⊥BC于点E,∴∠AEB=90°,∴∠BAE=90°﹣62°=28°,∴∠EAD=∠BAD﹣∠BAE=40°﹣28°=12°;(2)∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°,∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=(180°﹣x°﹣y°),AG平分∠BAD,∴∠BAG=∠BAD=(180°﹣x°﹣y°),∵∠BDF=∠BAD+∠B,∴∠G=∠BDF﹣∠GAD=x°,【点评】本题考查角平分线的定义、三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【考点】等腰三角形的性质;二元一次方程组的解;三角形三边关系.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千b瓦时的部分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)利用居民甲用电200千瓦时,交电费170元;居民乙用电400千瓦时,交电费400元,列出方程组并解答;(2)根据当居民月用电量0≤x≤150时,0.8x≤0.85x,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,分别得出即可.【解答】解:(1)依题意得出:,解得:.故:a=0.8;b=1.(2)设试行“阶梯电价”收费以后,该市一户居民月用电x千瓦时,其当月的平均电价每千瓦时不超过0.85元.当居民月用电量0<x≤150时,0.8x≤0.85x,故x≥0,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,解得:150≤x≤200,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,解得:x≤,不符合题意.综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过200千瓦时时,其月平均电价每千瓦时不超过0.85元.【点评】此题主要考查了一次函数的应用以及分段函数的应用,根据自变量取值范围不同得出x的取值是解题关键.。
2019年七年级下册数学期末考试模拟试题BS
2019年七年级下册数学期末考试模拟试题一、选择题1. 某风景点的周长约为 3578 m ,若按比例尺 1:2000缩小后,其周长大约相当于( )A .一个篮球场的周长B .一张乒乓球台台面的周长C .《中国日报》的一个版面的周长D .《数学》课本封面的周长答案:C2.如图,将平行四边形AEFG 变换到平行四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是( )A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍答案:D3.下列事件中,属于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个数比5大D .打开数学书就翻到第10页答案:D4.不改变分式yx x 7.0213.1--的值,把它的分子、分母的系数化为整数,其结果正确的是( ) A .y x x 72113-- B .y x x 721013-- C .y x x 7201013-- D .y x x 720113-- 答案:C5.下列方程组不是..二元一次方程组的是( ) A .⎩⎨⎧x +y =5x -y =2 B .⎩⎨⎧x -y =0y =2 C .⎩⎪⎨⎪⎧x 1+y =5y =3 D .⎩⎪⎨⎪⎧2x +3y =1x -y =1答案:C6.1x -1=1x 2-1的解为( ) A .0B .1C .-1D .1或-1 答案:A7.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( )A .PD=PCB .PD ≠PCC .PD 、PC 有时相等,有时不等D .PD >PC答案:A8.把0.000295用科学计数法表示并保留两个有效数字的结果是( )A .43.010-⨯B .53010-⨯C .42.910-⨯D .53.010-⨯ 答案:A9.下列说法中,正确的是( )A .买一张电影票,座位号一定是偶数B .投掷一枚均匀的硬币,正面一定朝上C .三条任意长的线段可以组成一个三角形D .从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大答案:D10.给出以下长度线段(单位:cm )四组:①2、5、6;②4、5、10;③3、3、6;④7、24、25.其中能组成三角形的组数是( )A .1B .2C .3D .4答案:B11.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB 、AD 的中点,下列叙述不正确...的是( ) A .这种变换是相似变换B .对应边扩大到原来到2倍C .各对应角度数不变D .面积是原来2倍 答案:D12.在等式(-a-b )( )=a 2-b 2中,括号里应填的多项式是( )A .a-bB .a+bC .-a-bD .b-a答案:D13. 下列长度的三条线段不能..组成三角形的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6答案:A14.方程组2321x y x y +=⎧⎨-=⎩的解是( ) A .53x y =-⎧⎨=⎩ B .11x y =-⎧⎨=-⎩ C .11x y =⎧⎨=⎩ D .35x y =⎧⎨=-⎩答案:C15. 下列方程中,是二元一次方程的是( )A .230x +=B .122x y -=C .351x y -=D .3xy =答案:C16.若关于x 的分式方程2344m x x =+--有增根,则m 的值为( ) A . -2 B . 2 C .2± D .4答案:A17.下列长度的三条线段,能组成三角形的是( )A . 1,2,3B .1,3,5C . 2,2,4D .2,3,4答案:D18. 如图,AD=BC ,AC=BD ,AC ,BD 交于点E ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对答案:C19.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( )A .必然事件B .不确定事件C .不可能事件D .无法判断 答案:B20.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm 答案:D21.已知方程3233x x x =---有增根,则这个增根一定是( ) A .2x = B .3x = C .4x = D .5x =答案:B22.如图放置着含30°的两个全等的直角三角形ABC 和EBD ,现将△EBD 沿BD 翻折到△E ′BD 的位置,DE ′与AC 相交于点F ,则∠AFD 等于( )A .45°B .30°C .20°D .15°答案:B23.不改变分式 1.3120.7x x y--的值,把它的分子、分母的系数化为整数,其结果正确的是( )A . 13127x x y --B .131027x x y --C .1310207x x y --D .131207x x y-- 答案:C24.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带( )A .①B .②C .③D .①和②答案:C25.下列多项式中,不能运用平方差公式分解因式的是( )A . 24m -+B .22x y --C .221x y -D .22()()m a m a --+答案:B26.已知2x y m =⎧⎨=⎩是二元一次方程531x y +=的一组解,则m 的值是( ) A . 3 B . -3 C .113 D .113- 答案:B27.如图,在△ABC 中,DE 是边AB 的垂直平分线,AB=6,BC=8,AC=5,则△ADC 的周长是( )A.14 B .13 C .11 D . 9答案:B28.小数表示2610-⨯结果为( )A . 0.06B . -0.006C .-0.06D .0.006 答案:A29.用如图所示的两个转盘设计一个“配紫色”的游戏,则获胜的概率为( )A .12B .13C .14D .2330.小华和小明到同一早餐店买馒头和豆浆. 已知小华买了 5 个馒头和 6 杯豆浆;小明买 了 7个馒头和 3杯豆浆,且小华花的钱比小明少1元.关于馒头与豆浆的价钱,下列叙述正确的是( )A .4个馒头比6杯豆浆少2元B .4个馒头比 6 杯豆浆多 2元C .12个馒头比 9 杯豆浆少 1 元D .12个馊头比 9杯豆浆多 1 元 答案:B二、填空题31. 请写出二元一次方程112x y -=的一组解 . 解析:略32.一个汽车牌照在镜子中的像为,则该汽牌照号码为 .解析:SM17963 33.当x =__________时,分式x 2-9x -3的值为零. 解析:3-=x34.用科学记数法表示0.0000907得 .解析:9.07×10-535.如图,∠BAC=800,∠ACE=1400,则∠ABD= 度.解析:12036.箱子中有6个红球和2个白球,它们除颜色外都相同.摇匀后,若随意摸出一球,摸到红球的概率是_____ _.解析:43 37.下列图形中,轴对称图形有 个.解析:338.三角形的两边长分别为2、 5,第三边长x 也是整数,则当三角形的周长取最大值时 x 的值为__________.解析:639.长方形是轴对称图形,它有 条对称轴.解析:240.如图,在△ABC 中,∠BAC=45°,现将△ABC 绕点A 逆时针旋转30°至△ADE 的位置.则∠DAC= .41.已知3x-2y=5,用关于x的代数式表示y,为y=___ _____.解析:253-x42.如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为___________ cm.解析:2343.在写有1,2,3,4,5,6,7,8,9的九张卡片中随机抽取一张,是奇数的概率是 .解析:9544.已知3x-2y=5,用关于x的代数式表示y,为y= .解析:253-x45.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=8 cm,BD=7cm,AD=3 cm,则DC= cm.解析:546.如图,是由四个形状大小完全相同的长方形拼成的图形,利用面积的不同表示法,写出一个代数恒等式: .解析:22()()4a b a b ab+=-+,或22()4()a b ab a b+-=-或22()()4a b a b ab+--=47.如图,一块等腰直角的三角板ABC,在水平桌面上绕点 C按顺时针方向旋转到A′B′C 的位置,使A,C,B′三点共线,那么旋转角度的大小为 .解析:135°48.某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 .解析:1 549.如图,△ABC向右平移 3个单位长度后得到△DEF,已知∠B= 35°,∠A= 65°,BC=5,则∠F= ,CE= .解析:80°,250.一副三角板如图所示叠放在一起,则图中α的度数是 .解析:75°51.如图,在△ABC中,∠A=90°,BE平分∠ABC,DE⊥BC,垂足为 D,若DE=3cm,则AE=cm.解析:352.如图,AD是△ABC 的中线. 如果△ABC 的面积是18 cm2,则△ADC 的面积是cm2.解析:953.如图,在图①中,互不重叠....的三角形共有 4个,在图②中,互不重叠....的三角形共有7个,在图③中,互不重叠....的三角形共有10个,…,则在第n个图形中,互不重叠的三角形共有个(用含n的代数式表示).解析:31n54.若分式13a -无意义,242b b --的值为 0,则ab = . 解析:-655.请你从式子24a ,2()x y -,1,2b 中,任意选两个式子作差,并将得到的式子进行因式分解: .解析:不唯一.如241(21)(21)a a a -=+-56.如图,将△ABC 绕着点A 按逆时针方向旋转70°后与△ADE 重合,已知∠B=105°,∠E=30°,那么∠BAE= 度.解析:2557.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 米,则根据题意,可列出方程为 .解析:312312126x x -=+ 58.如图,现有边长为a 的正方形纸片 1张、边长为b 的正方形纸片 2张,边长分别为a 、b 的长方形纸片3张,把它们拼成一个长方形. 请利用此拼图中的面积关系,分解因式 .解析:()(2)a b a b ++59. 若△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B =∠B ′,∠C=70°,AB=15 cm ,则∠C ′= ,A ′B ′= .解析:70°,15cm60. 计算y x x y x y---= . 解析:-1三、解答题61.解二元一次方程组358 2 1.x yx y+=⎧⎨-=⎩,解析:11. xy=⎧⎨=⎩,62.解方程组278ax bycx y+=⎧⎨-=⎩时,小明正确地解出32xy=⎧⎨=-⎩,小红把c看错了,解得22xy=-⎧⎨=⎩,试求a,b,c的值.解析:4a=,5b=,2c=-63.如图,(1)如图,在正方形 ABCD 中,E是AD 的中点,F 是 BA 延长线上的一点,AF =12AB. 请说明△ABE≌△ADF;(2)回答下列问题:①在图中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到△ADF 的位置?答:.②指出图中线段 BE 与 DF 之间的数量关系和位置关系.答:.解析:(1)根据 SAS 说明全等:AE = AF,AB =AD,∠BAE = ∠DAF;(2)①△ABE 绕点 A 逆时针旋转 90°到△ADF 的位置;③BE= DF且BE⊥DF64.仔细观察下图,认真阅读对话.根据对话内容,试求出饼干的标价是多少?解析:8元65.解方程(组):(1)⎩⎨⎧=+=-42352y x y x (2) 164412-=-x x解析:(1)⎩⎨⎧-==12y x ;(2)0=x .66.如图,已知∠EFD=∠BCA ,BC=EF ,AF=DC.则AB=DE.请说明理由. (填空)解:∵AF=DC(已知) ∴AF+ =DC+即 在△ABC和△ 中 B C=EF( )∠ =∠ ( )∴△ABC≌△ ( )∴AB=DE( )解析:FC ,FC ,AC=DF ,DEF ,已知,DFE ,ACB ,已知,AC=DF ,DEF ,SAS , 全等三角形的对应边相等. A BC D EF67.(1)观察下列各式:544622⨯=- ,10491122⨯=- ,164151722⨯=-…… 试用你发现的规律填空:___4495122⨯=-,___4646622⨯=-;(2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.解析:(1)50, 65;(2))1(4)2)(2()2(22+=-+++=-+n n n n n n n .68.某种商品因多种原因上涨25%,甲、乙两人分别在涨价前后花800元购买该商品,两人所购的件数相差10件,问该商品原售价是多少元?解析:设原售价为x 元,由题意得:1025.1800800=-xx ,解得16=x . 69.由 16 个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图). 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.解析:略70.如图,E 是BC 的中点,∠1=∠2,AE=DE .求证:AB=DC .解析:证明:∵ E 是BC 的中点 ,∴ BE=CE在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE∴ △ABE ≌△DCE ,∴AB=DC . 证明:∵ E 是BC 的中点 ,∴ BE=CE在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE71.阅读理解题:阅读下列材料关于x 的方程11x c x c +=+的解是1x c =,21x c=; 11x c x c -=-的解是1x c =,21x c=- 22x c x c +=+的解是1x c =,22x c=; 33x c x c +=+的解是1x c =,23x c=; … (1)请观察上述方程与解的特征,比较关于x 的方程m m x c x c+=+(0m ≠)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证; (2)由上迷的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数,方程右边的形式与左边完全相同,只把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x 的方程2211x a x a +=+--.解析:(1)1x c =,2m x c =;验证略;(2)1x a =,211a x a +=- 72. 解方程组:(1)225x y x y =⎧⎨+=⎩; (2)25324x y x y -=⎧⎨+=⎩解析:(1) 21x y =⎧⎨=⎩ (2) 21x y =⎧⎨=-⎩73.学校准备暑期组织学生去观看比赛,有A ,B ,C 三种球类门票,E ,F 两种体操类门票.小明任意选一种球类门票和一种体操类门票.恰好选中他所喜欢的 A 类门票和F 类门票的概率是多少(要求用树状图或列表方法求解)? 16解析:1674.(1)计算:2(2)()()(32)x y x y x y y y x +-+--+(2)因式分解2231212mp mpq mq ++解析:(1)222xy y + (2)23(2)m p q +75.如图,在△ABD 和△ACE 中,有下列四个等式:①AB= AC ;②AD= AE ;③∠1=∠2 ;④BD=CE.请你以其中三个等式作为条件,写在已知栏中,余下的作为结论,写在结论栏中,并说明结论成立的理由.已知:结论:说明理由:解析:已知:AB=AC ,AD=AE ,BD=CE ,结论:∠1 =∠2.理由:通过证明△ABD ≌△ACE(SSS)得到.或已知:AB=AC ,AD=AE ,∠1=∠2,结论:BD=CE.理由:通过证明△ABD ≌△ACE(SAS)得到.76.(1)解方程1211x -=-. (2)利用(1)的结果,先化简代数式21(1)11x x x +÷--,再求值.解析:(1)满足方程1211x -=-的解是2x = (2)21(1)(1)(1)1213111x x x x x x x xx -++÷=⨯=+=+=--- 77.你喜欢玩游戏吗?现在请你玩一个转盘游戏,如图所示的两个转盘中,指针落在每个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针指向一个数字,用所指的两个数字作乘积,请你:(1)列举(用列表或画树状图法)所有可能得到的数字之积;(2)求出数字之积为奇数的概率.解析:(1)所有可能得到的数字之积列表如下:1 2 3 4 5 6 11 2 3 4 5 6 22 4 6 8 10 12 33 6 9 12 15 184 4 8 12 16 20 24或用树状图法(略);(2)P(数字之积为奇数)=61244= 78.已知:如图,在△ABC 中,AB=BC ,∠ABC=90°.F 为 AB 延长线上一点,点E 在BC 上,BB=BF ,连接AB 、EF 和 CF.求证:AE =CF.解析:在△ABE 和△CBF 中,因为 AB=BC ,∠ABE ∠CBF=90°,BE =BF ,所以△ABE ≌△CBF ,所以AE =CF.79.如图,在四边形ABCD 中,线段AC 与 BD 互相垂直平分,垂足为点 0.(1)四边形ABCD 是轴对称图形吗?如果是,它有几条对称轴?分别是什么?(2)图中有哪些相等的线段?(3)写出图中所有的等腰三角形.(4)判断点 0到∠ABC 两边的距离大小关系,你能得到关于等腰三角形的怎样的结论?请用一句话叙述出来.解析:80.解下列方程组:(1)⎩⎨⎧-=-=+421y x y x (2)⎪⎩⎪⎨⎧=-=+1332y x y x解析:(1)⎩⎨⎧=-=21y x ;(2)⎩⎨⎧==34y x .。
2019北师大版七年级下册数学期末试卷(有答案)-七下数学期末试卷北师大版
七年级下学期期末水平质量检测数学试卷全卷满分:120 分钟考试时间:120 分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效一、细心填一填(每小题3分,共计24 分)21. 计算:(2x 3y)2= ;(2a - b)(-b 2a)= .2.如果x2 kx 1是一个完全平方式,那么k 的值是.3. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006 年中央财政用于“三农”的支出将达到33970000 万元,这个数据用科学记数法可表示为万元.4. 等腰三角形一边长是10 ㎝,一边长是 6 ㎝,则它的周长是.5. 如图,已知∠ BAC= ∠DAE=90°,AB=AD ,要使△ ABC ≌△ ADE ,还需要添加的条件是6. 现在规定两种新的运算“﹡”和“◎”:a﹡b=a2 b 2;a◎ b=2ab, 如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2 ◎(-1)]= .7. 某物体运动的路程s(千米)与运动的时间t (小时)关系如图所示,则当8. 某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示,则该汽车的号码是.二、相信你的选择(每小题只有一个正确的选项,9. 下列图形中不.是.正方体的展开图的是(千米.t=3 小时时,物体运动所经过的路程为每小题3分,共27分)A10. 下列运算正.确.的是(5 5 10A .a a a B.11. 下列结论中,正确..的是(22 A.若a b,则a2 b2DC. 若a2 b2 ,则a bC.a a )01 a aD.a4122B. 若a b,则a2 b21D. 若a b , 则a12. 如图,在△ ABC 中,D、E分别是AC、BC 上的点,若△ADB ≌△EDB ≌△ EDC,则∠ C 的度数是() A.1513. 观察一串数:A.2 (n-1)14. 下列关系式中,A. a b 2C. a b215. 如图表示某加工厂今年前 5 个月每月生产某种产品的产量 A.1 月至3月每月产量逐月增加,4、5 两月产量逐月减小B.1 月至3月每月产量逐月增加,4、5 两月产量与 3 月B.20 °C.25 °D.30 0,2,4,6,⋯.第n个数应为()C.2 (n+1)D.2n +1第14题B.2n - 1正确..的是()22ab22abB. a b a bD. a b2a2a2b22ab b2c(件)与时间t(月)之间的关系,则对这种产品来说,该厂(c(件)持平C.1 月至 3 月每月产量逐月增加,4、5两月产量均停止生产D. 1 月至 3 月每月产量不变,16. 下列图形中,不一.定..是轴对称图形的是(A. 等腰三角形17. 长度分别为3cm,B. 线段5cm,7cm,A. 1B. 24、5 两月均停止生产)C. 钝角D. 直角三角形9cm 的四根木棒,能搭成(首尾连结)三角形的个数为(C. 3D. 4三、精心算一算(18 题 5分,18. 2y6 2y4 3219. 先化简2x 1 3x 1 3x19 题 6 分,共计11分)1 5x x 1 ,再选取一个你喜欢的数代替x ,并求原代数式的值.四、认真画一画(20 题 5 分,20. 如图,某村庄计划把河中的水引到水池21 题 5 分,共计10分)M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)M理由是:21. 两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成最多可以设计出几种?(至少设计四种)是:同的轴对第称图23形题(所画三角形可与原三角形有重叠的部分),你第24题五、请你做裁判(第22 题小 5 分,第23 小题 5 分,共计10分)22. 在“五·四”青年节中,全校举办了文艺汇演活动小丽想出了一个办法,她将一个转盘(均质的)均分成游戏规定:随意转动转盘,若指针指到3,. 小丽和小芳都想当节目主持人,但现在只有一个名额.6 份,如图所示.则小丽去;若指针指到2,则小芳去. 若你是小芳,会同意这个办法吗?为什么?23. 一个长方形的养鸡场的长边靠墙,墙长小赵也打算用它围成一个鸡场,其中长比宽多14米,其它三边用竹篱笆围成,现有长为35 米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多2 米,你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?5 米;六、生活中的数学(8 分),24.某种产品的商标如图所示,O是线段AC、BD 的交点,并且在△ABO 和△DCO 中AC BDAOB DOC ABO DCOAB CD你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程. (请将答案写在右侧答题区)七.探究拓展与应用满分30 分,25.几何探究题(30 分)请将题答在右侧区域。
北师大版2019年七年级数学下册期末试卷(附答案)
北师大版2019年七年级数学下册期末试卷(附答案)(全卷三个大题,共21个小题,满分100分,考试时间90分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.下面四幅图形中,轴对称图形的是( )2.下列图形中不是..正方体的展开图的是( )D3.下列说法中,正确的是( ) A .随机事件发生的概率为12B .小概率事件发生的概率为0C .掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次D .不可能事件发生的概率为04.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是( )A .5,1,3B .2,4,2C .3,3,7D .2,3,4 5.下列计算正确的是( )A .(ab )2=a 2b 2B .2(a +1)=2a +1C .a 2+a 3=a 6D .a 6÷a 2=a 36.a ,b 两数在数轴上的的位置如右图所示,结论正确的是( )A .1a >-B .0>⨯b aC .0b a -<<-D .a b >7.如下图所示,点E 为△ABC 外部一点,点D 在BC 边上,线段DE 与AC 相交于点F ,若∠1=∠2,∠E =∠C ,AE =AC ,则以下结论正确的是( )A .△ABC ≌△AFEB .△AFE ≌△ADCC.△AFE≌△DFC D.△ABC≌△ADE8. 等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°二、填空题(本大题共6个小题,每小题4分,满分24分)9.等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .10.已知在一个标准大气压下1 cm3空气的质量是0.001 293克,那么10 cm3空气的质量用科学记数法表示为____________.11.如下图所示,AD//EG∥BC,AC∥EF,假设∠1=50°,则∠AHG=__________.B CF12.学校图书馆现有500本图书可供学生借阅,假设每名学生一次只能借4本书(不能多也不能少),那么剩下的书y(本)和借书学生人数x(人)之间的关系式是________________.13.如下图所示,在△ABC中,AB=10cm,AC=8cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD 的周长为cm.Array14.若a2+b2=4,a+b=2,则ab的值为__________.三、解答题(本大题共7个小题,满分52分)15.计算:(4分)(2a3b2-4a4b3+6a5b4)÷(-2a3b2)16.(5分)先化简,再求值:[(2x-y)2+(2x-y)(2x+y)]÷(4x),其中x=2,y=-1.17.(7分)教育部规定,中小学生每天在校体育活动时间不低于1h,为了解这项政策的落实情况,相关部门在某学校进行了随机抽查,调查结果绘制成如下两张不完整统计图。
2019年七年级数学下期末一模试卷附答案
2019年七年级数学下期末一模试卷附答案一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70°2.下面不等式一定成立的是( ) A .2aa < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >3.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°4.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( )A .-1B .-2C .1D .25.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩6.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( )A .a =2,b =1B .a =2,b =3C .a =-2,b =3D .a =-2,b =17.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A .1个B .2个C .3个D .4个 8.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D .9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-210.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.11.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1) 12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2二、填空题13.若264a =,则3a =______.14.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________. 15.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°16.如果一个数的平方根为a+1和2a-7, 这个数为 ________ 17.3的平方根是_________.18.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______. 19.结合下面图形列出关于未知数x ,y 的方程组为_____.20.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.三、解答题21.七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数; (3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.22.某校在“传承经典”宣传活动中,计划采用四种形式:A-器乐,B-舞蹈,C-朗诵,D-唱歌.每名学生从中选择并且只能选择一种自己最喜欢的形式,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题:(1)本次调查的学生共有 人,补全条形统计图; (2)求扇形统计图中“B -舞蹈”项目所对应扇形的圆心角度数; (3)该校共有1200名学生,请估计选择最喜欢“唱歌”的学生有多少人?23.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 220a b b --=.()1则C 点的坐标为______;A 点的坐标为______.()2已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.24.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根. 25.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解. 【详解】∵OE 平分∠BON , ∴∠BON =2∠EON =40°, ∴∠COM =∠BON =40°, ∵AO ⊥BC , ∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°. 故选B . 【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC 的度数是关键.2.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D . 【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.B解析:B 【解析】分析:先根据平行线的性质得出∠2+∠BAD =180°,再根据垂直的定义求出∠2的度数. 详解:∵直线a ∥b ,∴∠2+∠BAD =180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°. 故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.4.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.5.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.6.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.7.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.8.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.A【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.10.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确. 故选D .11.C解析:C【解析】分析:让A 点的横坐标减3,纵坐标加2即为点B 的坐标. 详解:由题中平移规律可知:点B 的横坐标为1-3=-2;纵坐标为-1+2=1, ∴点B 的坐标是(-2,1). 故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.12.D解析:D 【解析】 【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D.此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a=,∴a=±8.2故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.15.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.16.9【解析】【分析】根据一个正数的平方根互为相反数可得出a的值代入后即可得出这个正数【详解】由题意得:a+1=﹣(2a﹣7)解得:a=2∴这个正数为:(2+1)2=32=9故答案为:9【点睛】本题考查解析:9【解析】【分析】根据一个正数的平方根互为相反数可得出a的值,代入后即可得出这个正数.【详解】由题意得:a+1=﹣(2a﹣7),解得:a=2,∴这个正数为:(2+1)2=32=9.故答案为:9.【点睛】本题考查了平方根及解一元一次方程的知识,解答本题的关键是掌握正数的两个平方根互为相反数.17.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:18.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.19.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250325x y x y +=⎧⎨=+⎩. 【解析】【分析】根据图形列出方程组即可.【详解】由图可得250325x y x y +=⎧⎨=+⎩. 故答案为250325x y x y +=⎧⎨=+⎩. 【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.20.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩ 【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩;又∵8.31.2ab=⎧⎨=⎩,∴28.31 1.2xy+=⎧⎨-=⎩,解得6.32.2 xy=⎧⎨=⎩.故答案为6.32.2 xy=⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.三、解答题21.(1)200;(2)见解析,36°;(3)120【解析】【分析】(1)从两个统计图可得,“小说”的有80人,占调查人数的40%,可求出调查人数;(2)求出“科普常识”人数,即可补全条形统计图:)样本中,“其它”的占调查人数的20200,因此圆心角占360°的,10%,可求出度数;(3)样本估计总体,样本中“科普常识”占30%,估计总体400人的30%是喜欢“科普常识”的人数.【详解】(1)80÷40%=200人,答:一共有200名学生参与了本次问卷调查;(2)200×30%=60人,补全条形统计图如图所示:360°×20200=36°,(3)400×30%=120人,答:该年级有400名学生喜欢“科普常识”的学生有120人.【点睛】本题考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.22.(1)100,见解析;(2)72︒;(3)480人【解析】【分析】(1)根据A 项目的人数和所占的百分比求出总人数即可;(2)根据扇形统计图中的数据可以求得“舞蹈”所对应的扇形的圆心角度数; (3)根据统计图中的数据可以估计该校1200名学生中有多少学生最喜欢唱歌.【详解】解:(1)本次调查的学生共有:30÷30%=100(人); 故答案为:100;(2)10030104020---=(人)2036072100︒⨯=︒ (3)401200480100⨯=(人) 【点睛】 此题考查条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)()2,0;()0,4 ;(2)1;(3)2.分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC ∠∠∠+进行计算即可.详解:(1)∵2a b -+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D S OP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=V V (),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1; (3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°. 又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.24.(1)a =5,b =2,c =3 ;(2)±4.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值.(2)将a、b、c的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是13的整数部分,∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.25.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【解析】【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD)=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求出∠DAC、∠ACB、∠CBE的度数.。
2019新北师大版初中七年级下册数学期末考试试卷及答案(精)
(北师大版)七年级数学下册期末模拟检测试卷及答案(本检测题满分:120分 时间:120分钟)一、选择题(每小题3分,共30分) 1.如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( ) A .100° B .60° C .40° D .20° 2.计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( )A .2m 2n -3mn +n 2B .2n 2-3mn 2+n 2C .2m 2-3mn +n 2D .2m 2-3mn +n 3.观察图形…并判断照此规律从左到右第四个图形是( )A .B .C .D .4.下列说法正确的个数为( )⑴形状相同的两个三角形是全等三角形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.A.3B.2C.1D.05.某电视台“走基层”栏目的一位记者乘汽车赴360 km 处的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( ) A .汽车在高速公路上的行驶速度为100 km/h B .乡村公路总长为90 kmC .汽车在乡村公路上的行驶速度为60 km/hD .该记者在出发后4.5 h 到达采访地6.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A.13 B.16 C.12 D.147.如图所示,在△ABC 中,AQ =PQ ,PR =PS ,,RAP SAP ∠=∠PR ⊥AB 于点R ,PS ⊥AC 于点S ,则三个结论①AS =AR ;②QP ∥AR ;③△BPR ≌△QPS 中( )A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确CBA8.如图所示是一个风筝的图案,它是以直线AF 为对称轴的轴对称图形,下列结论中不一定成立的是( )A.△ABD ≌△ACDB.AF 垂直平分EGC.直线BG ,CE 的交点在AF 上D.△DEG 是等边三角形9.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题,如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1为( ) A.60° B.30° C.45° D.50° 10.如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等的是( ) A.∥B.C.∠=∠D.∠=∠二、填空题(每小题3分,共24分)11.若代数式x 2+3x +2可以表示为(x -1)2+a (x -1)+b 的形式,则a +b 的值是 .12.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为4、8、9的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的和为奇数,则甲获胜;若所抽取的两张牌面数字的和为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)13.如图所示,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2,则∠BPC =________.14.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数,)表格中反映的变量是 ,自变量是 ,因变量是 .(2)估计小亮家4月份的用电量是 千瓦时,若每千瓦时电是0.49元,估计他家4月份应交的电费是 元.15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:第9题图第8题图第7题图21PCBA第13题图第10题图根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1). 16.如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.17.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF .给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是 (将你认为正确的结论的序号都填上). 18.如图所示,在△中,是的垂直平分线,,△的周长为,则△的周长为______.三、解答题(共66分)19.(6分)下列事件哪些是随机事件,哪些是确定事件? (1)买20注彩票,中500万.(2)袋中有50个球,1个红球,49个白球,从中任取一球,取到红球. (3)掷一枚均匀的骰子,6点朝上.(4)100件产品中有2件次品,98件正品,从中任取一件, 刚好是正品.(5)太阳从东方升起. (6)小丽能跳高.20.(7分)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间关系的图象如图所示,根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人都行驶在途中?(不包括起点和终点)21.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投ABDCO E第16题图 第18题图第17题图Oy /kmx /min掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 22.(8分)把一副扑克牌中的三张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你利用列表法分析游戏规则对双方是否公平,并说明理由. 23.(8分)在正方形网格图①、图②中各画一个等腰三角形,每个等腰三角形的一个顶点为格点A ,其余顶点从格点B 、C 、D 、E 、F 、G 、H 中选取,并且所画的三角形不全等.第24题图321G BA CD E24.(9分)如图,于点,于点,.请问:平分吗?若平分,请说明理由.25.(10分)已知:在△中,,,点是的中点,点是边上一点.(1)垂直于点,交于点(如图①),求证:.(2)垂直,垂足为,交的延长线于点(如图②),找出图中与相等的线段,并证明.26.(10分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ;(2)AB =BC +AD .参考答案1.A 解析:过点C 作CD ∥a ,∵ a ∥b ,∴ CD ∥a ∥b , ∴ ∠ACD =∠1=40°,∠BCD =∠2=60°, ∴ ∠3=∠ACD +∠BCD =100°.故选A .2.C 解析:(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )=-8m 4n ÷(-4m 2n )+12m 3n 2÷(-4m 2n )-4m 2n 3÷(-4m 2n )=2m 2-3mn +n 2.故选C .第23题图第25题图①②第26题图3.D 解析:观察图形可知:单独涂黑的角顺时针旋转,只有D符合.故选D.4. C 解析:(1)形状相同但大小不一样的两个三角形也不是全等三角形,所以(1)错误;(2)全等三角形中互相重合的边叫做对应边,互相重合的角叫做对应角,如果两个三角形是任意三角形,就不一定有对应角或对应边了,所以(2)错误;(3)正确,故选C.5.C 解析:A.汽车在高速公路上的行驶速度为180÷2=90(km/h),故本选项错误;B.乡村公路总长为360-180=180(km),故本选项错误;C.汽车在乡村公路上的行驶速度为90÷1.5=60(km/h),故本选项正确;D.2+(360-180)÷[(270-180)÷1.5]=2+3=5 (h),故该记者在出发后5 h到达采访地,故本选项错误.故选C.6. C 解析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为12.7.B 解析:∵PR=PS,PR⊥AB于点R,PS⊥AC于点S,AP=AP,∠RAP=∠SAP,∴△ARP≌△ASP,∴AS=AR.∵AQ=PQ,∴∠QPA=∠QAP,∴∠RAP=∠QPA,∴QP∥AR.∴①,②都正确.而在△BPR和△QPS中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR≌△QPS.故本题仅①和②正确.故选B.8. D 解析:A.因为此图形是轴对称图形,正确;B.对称轴垂直平分对应点连线,正确;C.由三角形全等可知,BG=CE,且直线BG,CE的交点在AF上,正确;D.题目中没有60°条件,不能判断是等边三角形,错误.故选D.9.A 解析:∵台球桌四角都是直角,∠3=30°,∴∠2=60°.∵∠1=∠2,∴∠1=60°,故选A.10. C 解析:A.∵∥,∴∠=∠.∵∥∴∠=∠.∵,∴△≌△,故本选项可以证出全等;B.∵=,∠=∠,∴△≌△,故本选项可以证出全等;C.由∠=∠证不出△与△全等,故本选项不可以证出全等;D.∵∠=∠,∠∠,,∴△≌△,故本选项可以证出全等.故选C.11.11 解析:∵x2+3x+2=(x-1)2+a(x-1)+b=x2+(a-2)x+(b-a+1),∴a-2=3,b-a+1=2,∴a=5,∴b-5+1=2,∴b=6,∴a+b=5+6=11,故答案为11.12.不公平解析:甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平.13.110°解析:因为∠A=40°,∠ABC= ∠ACB,所以∠ABC= ∠ACB=(180°-40°)=70°.又因为∠1=∠2,∠1+∠PCB =70°,所以∠2+∠PCB =70°, 所以∠BPC =180°-70°=110°.14.(1)日期、电表读数 日期 电表读数 (2)120 58.8解析:(1)变量有两个:日期和电表读数,自变量为日期,因变量为电表读数; (2)每天的用电量:(49﹣21)÷7=4,4月份的用电量=30×4=120千瓦时, ∵ 每千瓦时电是0.49元,∴ 4月份应交的电费=120×0.49=58.8(元). 15.解析:由表知,种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值. 16.4 解析:△和△,△和△△和△△和△共4对.17.①②③ 解析:∵ ∠E =∠F =90°,∠B =∠C ,AE =AF , ∴ △ABE ≌△ACF .∴ AC =AB ,∠BAE =∠CAF ,BE =CF ,∴ ②正确.∵ ∠B =∠C ,∠BAM =∠CAN ,AB =AC ,∴ △ACN ≌△ABM ,∴ ③正确. ∵∠1=∠BAE -∠BAC ,∠2=∠CAF -∠BAC ,又∵ ∠BAE =∠CAF , ∴ ∠1=∠2,∴ ①正确, ∴ 题中正确的结论应该是①②③.18. 19 解析:因为是的垂直平分线,所以,所以因为△的周长为,所以所以.所以△的周长为19.解:(1)买20注彩票,中500万,虽然可能性极小,但可能发生,是随机事件; (2)袋中有50个球,1个红球,49个白球,从中任取一球,取到红球,是随机事件; (3)掷一枚均匀的骰子,6点朝上,是随机事件;(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品,是随机事件; (5)太阳从东方升起,是确定事件;(6)小丽能跳高,不可能发生,是确定事件. 20.解:由图象可知:(1)甲先出发,先出发10 min 乙先到达终点,先到5 min . (2)甲的速度为6÷30=0.2(km/min ),乙的速度为6÷15=0.4(km/min ). (3)在甲出发后10 min 到25 min 这段时间内,两人都行驶在途中. 21.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事 件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概 率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数 不一定是100次.22.解:游戏规则不公平.理由如下: 列表如下:由上表可知,所有可能出现的结果共有9种, 故3193==,3296==. ∵31<32,∴ 此游戏规则不公平,小李赢的可能性大. 23. 解:以下答案供参考.图④、⑤、⑥中的三角形全等,只需画其中一个. 24. 解: 理由:因为于点,于点(已知),所以(垂直的定义),所以∥(同位角相等,两直线平行), 所以(两直线平行,内错角相等),(两直线平行,同位角相等).又因为(已知),所以(等量代换).所以平分(角平分线的定义). 25.(1)证明:因为垂直于点,所以∠,所以.又因为∠∠,所以∠∠.第23题答图因为, ∠,所以.又因为点是的中点,所以.因为,,,所以△≌△(ASA),所以.(2)解:.证明如下:在△中,因为,∠,所以,∠∠.因为,即∠,所以,所以.因为为等腰直角△斜边上的中线,所以,.在△和△中,,,,所以△≌△,所以.26.分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等).∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,∠ADE=∠FCE,DE=CE,∠AED=∠FEC,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的对应边相等).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等).又BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF.∵BC+CF,又AD=CF(已证),∴AB=BC+AD(等量代换).。
2019年七年级数学下期末一模试卷含答案
2019年七年级数学下期末一模试卷含答案一、选择题1.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 2.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=103.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠1=∠AC .∠1=∠4D .∠A=∠34.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩5.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个6.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个7.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D .8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<- B .32b -<≤-C .32b -≤≤-D .-3<b<-29.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .10.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°11.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y < C.xy 22< D .2x 2y -<-12.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.不等式组11{2320x x ≥--<的解集为________.14.如图5-Z -11是一块长方形ABCD 的场地,长AB =102 m ,宽AD =51 m ,从A ,B 两处入口的中路宽都为1 m ,两小路汇合处路宽为2 m ,其余部分种植草坪,则草坪的面积为________m 2.15.已知a 、b 满足(a ﹣1)22b +,则a+b=_____.16.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.17.已知方程1(2)(3)5m n m xn y --+-=是二元一次方程,则mn =_________; 18.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 19.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.20.不等式30x -+>的最大整数解是______三、解答题21.解方程组:(1)用代入法解34225x y x y +=⎧⎨-=⎩(2)用加减法解52253415x y x y +=⎧⎨+=⎩22.如图,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A 1 ,B 1 ,C 1 ;(2)画出平移后三角形A 1B 1C 1;(3)求三角形ABC 的面积.23.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.24.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG,∠CED=∠GHD(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.解析:A 【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.3.B解析:B【解析】【分析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.解析:D【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键. 5.B解析:B【解析】【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①② 由①得x <m ;由②得x >2;∵m 的取值范围是4<m <5,∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个. 故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.6.C解析:C【解析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x >-4,系数化为1,得:x <2,故选D .【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9.D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.10.D解析:D【解析】【分析】【详解】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD ,∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°,∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线,∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°.故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.12.D 解析:D【解析】解:∵直线l 1∥l 2,∴∠3=∠1=44°.∵l 3⊥l 4,∠2=90°-∠3=90°-44°=46°.故选D .二、填空题13.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x<解析:223x -≤<【解析】 112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 14.5000【解析】试题解析:由图片可看出剩余部分的草坪正好可以拼成一个长方形且这个长方形的长为102−2=100m 这个长方形的宽为:51−1=50m 因此草坪的面积故答案为:5000解析:5000【解析】试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102−2=100m ,这个长方形的宽为:51−1=50m ,因此,草坪的面积2501005000m .=⨯=故答案为:5000.15.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.16.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频解析:20【解析】【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.17.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.18.-3【解析】分析:解出已知方程组中xy 的值代入方程x+2y=k 即可详解:解方程组得代入方程x+2y=k 得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x ,y 的值代入方程x+2y=k 即可.详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k ,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.19.(±30)【解析】解:若x 轴上的点P 到y 轴的距离为3则∴x=±3故P 的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x 轴上的点P 到y 轴的距离为3,则3x =,∴x =±3.故P 的坐标为(±3,0).故答案为:(±3,0).20.2【解析】解不等式-x+3>0可得x <3然后确定其最大整数解为2故答案为2点睛:此题主要考查了不等式的解法和整数解得确定解题关键是利用不等式的基本性质3解不等式然后才能从解集中确定出最大整数解解析:2【解析】解不等式-x+3>0,可得x <3,然后确定其最大整数解为2.故答案为2.点睛:此题主要考查了不等式的解法和整数解得确定,解题关键是利用不等式的基本性质3解不等式,然后才能从解集中确定出最大整数解.三、解答题21.(1)21x y =⎧⎨=-⎩;(2)50x y =⎧⎨=⎩【解析】【分析】(1)根据代入法解方程组,即可解答;(2)根据加减法解方程组,即可解答.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由②得25y x =- ③把③代入①得34(25)2x x +-=解这个方程得2x =把2x =代入③得1y =-所以这个方程组的解是21x y =⎧⎨=-⎩(2)5225? 3415?x y x y +=⎧⎨+=⎩①② ①×②得10450x y += ③③—②得735x =,5x =把5x =代入①得0y =所以这个方程组的解是50x y =⎧⎨=⎩ 【点睛】此题考查解二元一次方程组,解题的关键是明确代入法和加减法解方程组.22.(1)A 1(4,7),B 1(1,2),C 1(6,4);(2)见解析;(3)192【解析】【分析】(1)根据平移的规律变化结合平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△ABC 所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1) 观察图形可知点A (-2,2),点B (-5,-3),点C (0,-1),所以将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度后所得对应点的坐标为:A 1(3,5),B 1(0,0),C 1(5,2);(2)△A 1B 1C 1如图所示;(3)△ABC 的面积=5×5-12×5×2-12×2×3-12×3×5 =25-5-3-7.5=25-15.5=9.5.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【解析】【分析】(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,根据题目中的等量关系:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a、b为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组为:3217 2318 x yx y+=⎧⎨+=⎩解得34 xy=⎧⎨=⎩答:1辆A型车辆装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b-∵a、b都是整数∴92ab=⎧⎨=⎩或55ab=⎧⎨=⎩或18ab=⎧⎨=⎩答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A型车1辆,B型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.24.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE ∥GF ;(2)根据平行线的性质可得∠C=∠FGD ,根据等量关系可得∠FGD=∠EFG ,根据内错角相等,两直线平行可得AB ∥CD ,再根据平行线的性质可得∠AED 与∠D 之间的数量关系;(3)根据对顶角相等可求∠DHG ,根据三角形外角的性质可求∠CGF ,根据平行线的性质可得∠C ,∠AEC ,再根据平角的定义可求∠AEM 的度数.本题解析:(1)证明:∵∠CED=∠GHD , ∴CE ∥GF(2)答:∠AED+∠D=180°理由:∵CE ∥GF ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB ∥CD , ∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE ∥GF ,∴∠C=180°﹣130°=50°∵AB ∥CD ,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°. 点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.25.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥ 14333m ≥14333m ≥的最小整数是434答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元. 则3235023370a b c a b c ++=⎧⎨++=⎩ ∴ 444720a b c ++=∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.。
2019年七年级数学下期末一模试题附答案
2019年七年级数学下期末一模试题附答案一、选择题1.已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是()A.1B.0C.-2D.-12.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .3.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=05.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩6.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.87.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cm B.2cm;C.小于2cm D.不大于2cm8.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm9.下列说法正确的是()A.两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.10.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°11.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-112.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-二、填空题13.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.14.若方程33x x m +=-的解是正数,则m 的取值范围是______. 15.不等式71x ->的正整数解为:______________.16.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.17.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.18.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者 答对题数 答错题数 得分 A 19 1 112 B 18 2 104 C 17 3 96 D10104019.如图,将周长为10的三角形ABC 沿BC 方向平移1个单位长度得到三角形DEF ,则四边形ABFD 的周长为__________.20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表. 组别 成绩分组(单位:分) 频数 A 50≤x <60 40 B 60≤x <70 a C 70≤x <80 90 D 80≤x <90 b E 90≤x <100100 合计c根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?22.一个正数x 的两个平方根是2a -3与5-a ,求x 的值.23.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足2(8)c 40a +++=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动. (1)直接写出点B 的坐标,AO 和BC 位置关系是;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S ∆∆=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.24.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠Q 与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒Q (已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b Q (已知),得13∠=∠( ).3∴∠=________(等量代换).25.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b-值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:2423m n m n -=⎧⎨-=⎩①② ②-①得m+n=-1. 故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n 这个整体式子的值.2.A解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.3.B解析:B 【解析】解:∵3104<<,∴41015<<.故选B .10 的取值范围是解题关键.4.B解析:B 【解析】 【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得. 【详解】解:A .x-y 2=1不是二元一次方程; B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程; 故选B . 【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.5.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.6.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.7.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.8.C解析:C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.9.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D .10.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=, 去分母得:2210x x --=,代入公式得:22212x ±== 解得:341212x x ==, 经检验12x =综上,所求方程的解为12或-1.故选D.【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.12.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C (32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.14.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】+=-33x x m2x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.16.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.17.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822<≤x【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x>8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.18.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩, 解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.19.12【解析】试卷分析:根据平移的基本性质由等量代换即可求出四边形ABFD 的周长解:根据题意将周长为10个单位的△ABC 沿边BC 向右平移1个单位得到△DEF 可知AD=1BF=BC+CF=BC+1DF=解析:12【解析】试卷分析:根据平移的基本性质,由等量代换即可求出四边形ABFD 的周长.解:根据题意,将周长为10个单位的△ABC 沿边BC 向右平移1个单位得到△DEF , 可知AD =1,BF =BC +CF =BC +1,DF =AC ;又因为AB +BC +AC =10,所以,四边形ABFD 的周长=AD +AB +BF +DF =1+AB +BC +1+AC =12.故答案为12.点睛:本题主要考查平移的性质.解题的关键在于要利用平移的性质找出相等的线段.20.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O 则直线与坐标轴围成的三角形是以OAOB 为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛 解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.三、解答题21.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.x=49【解析】试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a -3+5-a =0,可求出a =2-,即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x .试题解析: 因为一个正数x 的两个平方根是2a -3与5-a ,所以2a -3+5-a =0,解得a =2-,所以2a -3=7-,所以49x =.23.(1)(-4,-4) ,BC ∥AO ;(2)P (−4,0);(3)∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【解析】【分析】(1)由2(8)40a c +++=解出c ,得到B 点,易知BC ∥AO ;(2)过B 点作BE ⊥AO 于E ,设时间经过t 秒,AP =2t ,OQ =t ,CQ =4-t ;用t 表示出PAB S ∆与QBC S ∆,根据2PAB QBC S S ∆∆=列出方程解出t 即可;(3)要分情况进行讨论,①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图1所示,利用平行线的性质可得到∠PQB =∠OPQ +30°;②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图2所示,同样利用平行线的性质可得到,∠BQP +∠OPQ =150°【详解】(1)由2(8)40a c +++=得到c+4=0,得到c=-4(-4,-4) ,BC ∥AO(2)过B 点作BE ⊥AO 于E设时间经过t 秒,则AP =2t ,OQ =t ,CQ =4-t∵BE =4,BC =4,∴APB 1AP 2S V =·1BE 2442t t =⨯⨯= ()BCQ 11 S CQ?BC 448222t t ==⨯-⨯=-V ∵APB BCQ 2S S =V V∴()4282t t =-解得t =2∴AP =2t =4∴P (−4,0)(3) ①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图一所示,∴∠OPQ=∠PQH .又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ=30°. ∴∠OPQ +∠BCQ =∠PQH +∠BQH .∴即∠PQB =∠OPQ +∠CBQ.即∠PQB =∠OPQ +30°②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图二所示,∴∠OPQ =∠PQJ.又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ =30°. ∴∠HQB +∠BQP +∠PQJ =180°,∴30°+∠BQP +∠OPQ =180°即∠BQP +∠OPQ =150°综上所述∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【点睛】本题重点考察非负项的性质、三角形面积的计算、平行线的性质等知识点,综合程度比较高,第三问对Q点进行分情况讨论,作出辅助线是解题关键24.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a∥b(已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x yx y-=⎧⎨+=-⎩和方程组②45228ax byax by+=-⎧⎨-=⎩,解方程组①,得12 xy=⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。
2019年七年级数学下期末一模试题及答案(1)
2019年七年级数学下期末一模试题及答案(1)一、选择题1.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤52.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°3.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩5.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.56.已知4<m<5,则关于x的不等式组420x mx-<⎧⎨-<⎩的整数解共有()A.1个B.2个C.3个D.4个7.如图,下列能判断AB∥CD的条件有()①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .48.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-210.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)11.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1) 12.过一点画已知直线的垂线,可画垂线的条数是( ) A .0B .1C .2D .无数二、填空题13.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.14.3a ,小数部分是b 3a b -=______.15.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.16.若二元一次方程组3354x yx y+=⎧⎨-=⎩的解为x ay b=⎧⎨=⎩,则a﹣b=______.17.已知(m-2)x|m-1|+y=0是关于x,y的二元一次方程,则m=______.18.结合下面图形列出关于未知数x,y的方程组为_____.19.用不等式表示x的4倍与2的和大于6,________;此不等式的解集为________.20.如果点M(a-1,a+1)在x轴上,则a的值为___________.三、解答题21.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.(1)求y关于x的函数表达式.(2)若购进A种的数量不少于B种的数量.①求至少购进A种多少本?②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)22.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?23.解不等式组523(1)13222x xx x+>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.24.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO 的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.4.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.5.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.6.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.7.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB 与CD 这两条直线,故是错误的.8.A解析:A 【解析】 【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数. 【详解】解:∵点P (2x-6,x-5)在第四象限,∴260{50x x ->-<, 解得:3<x <5. 故选:A . 【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.9.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.10.D解析:D 【解析】 【分析】根据同位角的定义,对每个图进行判断即可. 【详解】(1)图中∠1和∠2是同位角;故本项符合题意; (2)图中∠1和∠2是同位角;故本项符合题意; (3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.11.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510 xy=⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==.故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.14.【解析】【详解】若的整数部分为a 小数部分为b∴a=1b=∴a -b==1故答案为1解析:【解析】 【详解】a ,小数部分为b , ∴a =1,b1,-b1)=1. 故答案为1.15.100【解析】【分析】根据对顶角相等求出∠AOC 再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE ∴∠AOE=∠AOC=40°∴∠COE=8解析:100 【解析】 【分析】根据对顶角相等求出∠AOC ,再根据角平分线和邻补角的定义解答. 【详解】解:∵∠BOD=40°, ∴∠AOC=∠BOD=40°, ∵OA 平分∠COE , ∴∠AOE=∠AOC=40°, ∴∠COE=80°. ∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.16.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x ay b=⎧⎨=⎩代入方程组3354x yx y+=⎧⎨-=⎩,得:3354a ba b+=⎧⎨-=⎩①②,①+②,得:4a﹣4b=7,则a﹣b=74,故答案为74.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值.17.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.18.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250 325x yx y+=⎧⎨=+⎩.【解析】【分析】根据图形列出方程组即可.【详解】由图可得250 325 x yx y+=⎧⎨=+⎩.故答案为250 325 x yx y+=⎧⎨=+⎩.【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.19.4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式进而求解即可【详解】解:由题意得4x+2>6移项合并得:4x>4系数化为1得:x>1故答案为:4x+2>6x>1【点睛】本题主解析:4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式,进而求解即可.【详解】解:由题意得,4x+2>6,移项、合并得:4x>4,系数化为1得:x>1,故答案为:4x+2>6,x>1.【点睛】本题主要考查列一元一次不等式,解题的关键是抓住关键词语,弄清运算的先后顺序和不等关系,列出不等式.20.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0解析:-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值.【详解】∵点M(a-1,a+1)在x轴上,∴a+1=0,解得a=-1,故答案为:-1.【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.三、解答题21.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c>y∴c>300235c x--∴c>30037x-,∵购进A 种的数量不少于B 种的数量,∴x ≥y∴x ≥300235c x -- ∴c ≥150﹣4x ∴c >30037x -, 且x ,y ,c 为正整数,∴C 种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.22.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,23.512x -<„,-2 【解析】【分析】 先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】 解:523(1)13222x x x x +>-⎧⎪⎨-⎪⎩①②„ 解不等式①得52x >-, 解不等式②得1x ≤,∴512x -<„,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).24.(1)C(5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.∠=∠+∠,理由见解析;25.(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【解析】【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.。
北师大版2019年七年级数学下册期末试卷(附答案)
北师大版2019年七年级数学下册期末试卷(附答案)(全卷三个大题,共21个小题,满分100分,考试时间90分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.下面四幅图形中,轴对称图形的是( )2.下列图形中不是..正方体的展开图的是( )D3.下列说法中,正确的是( ) A .随机事件发生的概率为12B .小概率事件发生的概率为0C .掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次D .不可能事件发生的概率为04.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是( )A .5,1,3B .2,4,2C .3,3,7D .2,3,4 5.下列计算正确的是( )A .(ab )2=a 2b 2B .2(a +1)=2a +1C .a 2+a 3=a 6D .a 6÷a 2=a 36.a ,b 两数在数轴上的的位置如右图所示,结论正确的是( )A .1a >-B .0>⨯b aC .0b a -<<-D .a b >7.如下图所示,点E 为△ABC 外部一点,点D 在BC 边上,线段DE 与AC 相交于点F ,若∠1=∠2,∠E =∠C ,AE =AC ,则以下结论正确的是( )A .△ABC ≌△AFEB .△AFE ≌△ADCC.△AFE≌△DFC D.△ABC≌△ADE8. 等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°二、填空题(本大题共6个小题,每小题4分,满分24分)9.等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .10.已知在一个标准大气压下1 cm3空气的质量是0.001 293克,那么10 cm3空气的质量用科学记数法表示为____________.11.如下图所示,AD//EG∥BC,AC∥EF,假设∠1=50°,则∠AHG=__________.B CF12.学校图书馆现有500本图书可供学生借阅,假设每名学生一次只能借4本书(不能多也不能少),那么剩下的书y(本)和借书学生人数x(人)之间的关系式是________________.13.如下图所示,在△ABC中,AB=10cm,AC=8cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD 的周长为cm.Array14.若a2+b2=4,a+b=2,则ab的值为__________.三、解答题(本大题共7个小题,满分52分)15.计算:(4分)(2a3b2-4a4b3+6a5b4)÷(-2a3b2)16.(5分)先化简,再求值:[(2x-y)2+(2x-y)(2x+y)]÷(4x),其中x=2,y=-1.17.(7分)教育部规定,中小学生每天在校体育活动时间不低于1h,为了解这项政策的落实情况,相关部门在某学校进行了随机抽查,调查结果绘制成如下两张不完整统计图。
2019年北师大版七年级下册数学期末试卷
2018-2019学年下学期期末考试七年级数学(北师大版)注意:本试卷分试题卷和答题卡两部分,考试时间90分钟,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡一、选择题(每小题3分,共30)1.以下是回收、绿色包装、节水、低碳四个标志,其中是轴对称图形的是();;;2.下列计算正确的是()A.(2x+y)2=4x2+2xy+y2B.(2x4)3=8x7C.-2x6÷x2=-2x3D.(x-y)(y-x)2=(x-y)33.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°4.下列事件中,属于不确定事件的是()A.△在ABC中,∠A+∠B+∠C=180B.如果a、b为有理数,那么a+b=b+aC.两个负数的和是正数D.若∠α=∠β,则∠α和∠β是一对对顶角5.如图,在折纸活动中,聪聪制作了一张△ABC纸片,点D、E别在边AB、AC上,△将ABC沿着DE折叠压平,A 与A'重合,若∠A=65°,则∠1+∠2=()A.120°B.130° C.105°D.75°6.小茗同学骑自行车去上学,一开始以某一速度匀速行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是加快车速.如图所示的四个图象中(S表示距离,t表示时间)符合以上情况的图象是()4B.13C.23D.37.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短8.如图,在一个等边三角形纸片中取三边的中点,以虚线为折痕折叠纸片,图中阴影部分的面积是整个图形面积的()A.189.如图,两个正方形的面积分别为25,16,两阴影部分的面积分别为a,b(a>b),则(a-b)等于()A.9B.8C,7 D.610.如图,△锐角ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC',△AEB△≌AEB',且C'D∥EB'∥BC,BE、CD交于点F,若∠BAC=36°,则∠BFC的大小是()A.106°B.108° C.110°D.112°二、填空题(每小题3分,共15分)11.英国两位物理学家安德烈和康斯坦丁成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料其理论厚度仅0.00000000034米,将0.00000000034这个数用科学记数法可表示为2.已知∠A=35°,则∠A的余角的3倍是13.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在3号板上的概率是16.(6分)先化简,再求值[(x+2y)2-(x+y)(3x-y)-5y2]÷(2x),其中x=-,y=1。
2019年七年级数学下期末一模试题带答案
2019年七年级数学下期末一模试题带答案一、选择题1.已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是()A.1B.0C.-2D.-12.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块,16块B.8块,24块C.20块,12块D.12块,20块3.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°5.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩6.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是()队名比赛场数胜场负场积分前进1410424光明149523远大147a21卫星 14 4 10 b 钢铁 14 0 14 14 ……………A .负一场积1分,胜一场积2分B .卫星队总积分b =18C .远大队负场数a =7D .某队的胜场总积分可以等于它的负场总积分7.2-的相反数是( ) A .2-B .2C .12D .12-8.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1B .a =2,b =3C .a =-2,b =3D .a =-2,b =19.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为() A .()8,3--B .()4,2C .()0,1D .()1,810.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <611.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,412.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______.14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .15.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…16.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).17.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 18.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________.三、解答题21.(1)计算:2020011(1)(2019)360()2π---+-+o(2)解不等式组:34223154x xx x+≥⎧⎪⎨+--≥⎪⎩①②,并求整数解。
七年级2019学年度第二学期期末模拟试卷
七年级数学下试卷 第1页,共12页七年级数学下试卷 第2页,共12页…………密…………封…………线…………内…………不…………要…………答…………题…………○………班级: 姓名: 学号:七年级2019学年度第二学期期末模拟试卷数学试题一、选择题(每小题3分,共30分)1.9的算术平方根是( )A .81B .3C .-3D .±3 2.已知实数a ,b ,若a>b ,则下列结论错误的是( )A .-3a>-3b B.a 5>b5 C .3+a>b +3 D .2a -5>2b -5 3.在实数3.14,-227,-9,1.7,5,0,-π,4.262 262 226…(两个6之间一次增加一个“2”)中,无理数有( )A .2个B .3个 C .4个 D .5个 4.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解全国中学生的用眼卫生情况 5.如图,点O 为直线AB 上一点,OC ⊥OD.如果∠1=35°,那么∠2的度数是(C)A .35°B .45C .55°D .65°6.已知⎩⎨⎧x =4,y =3是方程组⎩⎨⎧ax +by =10,bx +ay =6的解,则a -b 的值是( )A .-4B .4C .-2D .27.某正数的两个不同的平方根是2a -1与-a +2,则这个数是( )A .1B .3C .-3D .98.若方程组⎩⎨⎧2a -3b =10,3a +2b =28的解是⎩⎨⎧a =8,b =2,则方程组⎩⎨⎧2(x +2)-3(y -1)=10,3(x +2)+5(y -1)=28的解是( )A.⎩⎨⎧x =8y =2B.⎩⎨⎧x =10y =2C.⎩⎨⎧x =6y =3D.⎩⎨⎧x =10y =19.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是( )A .270°B .250°C .210°D .180°10.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点A 1(-1,1),第二次点A 1向右跳到A 2(2,1),第三次点A 2跳到A 3(-2,2),第四次点A 3向右跳动至点A 4(3,2),…,依此规律跳动下去,则点A 2 017与点A 2 018之间的距离是( )A .2 017B .2 018C .2 019D .2 020二、填空题(每小题3分,共15分) 11.计算:|1-2|+(3)2= .12.某班学生参加环保知识竞赛,已知竞赛得分都是整数,把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息可得,成绩不及格(低于60分)的学生占全班参赛人数的百分率是 .13.如图,将一张长方形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点C′,D′处,C′E 交AF 于点G .若∠CEF =71°,则∠GFD′= .14.如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10 cm ,两块横放的墙砖比两块竖放的墙砖低40 cm ,则每块墙砖的截面面积是 .…………○…………密…………封…………线…………内…………不…………要…………答…………题…………15.若关于x 的不等式组⎩⎨⎧x -a>3,1-2x>x -2无解,则a 的取值范围是 .三、解答题(共75分) 16.(10分)解方程组:(1)⎩⎨⎧4x +y =15,①3x -2y =3;② (2)⎩⎨⎧3(x -1)=y +5,5(y -1)=3(x +5). 17.(10分)(1)解不等式:x +5>1+2x ;(2)解不等式组⎩⎪⎨⎪⎧12x -1>3-32x ,①3x -7≤8,②并写出其整数解.18.(7分)实数a ,b 在数轴上的位置如图所示,请化简:|a -b|-a 2-(a +b )2.19.(8分)完成下面的证明:如图,AB 和CD 相交于点O ,EF ∥AB ,∠C =∠COA ,∠D =∠BOD.求证:∠A =∠F.20.(8分)如图所示的平面直角坐标系中,A(4,3),B(3,1),C(1,2),将三角形ABC 平移后得到三角形DEF ,已知B 点平移的对应点E(0,-3)(A 点与D 点对应,C 点与F 点对应).(1)画出平移后的三角形DEF ,并写出点D 的坐标为 ,点F 的坐标为 ;(2)求三角形ABC 的面积.21.(10分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了 名学生;(2)被调查的学生中,最喜爱丁类图书的有 人,最喜爱甲类图书的人数占本次被调查人数的 ;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍.若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人? 22.(10分)打折前,买60件A 商品和30件B 商品用了1 080元,买50件A 商品和10件B 商品用了840元.(1)买一件A 商品和一件B 商品各要多少元?(2)若两种商品按相同的折扣打折,打折后,买500件A 商品和500件B 商品,比不打折至少节约1 000元钱,问折扣应满足什么条件?七年级数学下试卷 第5页,共12页七年级数学下试卷 第6页,共12页…………密…………封…………线…………内…………不…………要…………答…………题…………○………班级: 姓名: 学号:23.(12分)如图,已知AM ∥BN ,∠A =60°.点P 是射线AM 上一动点(与点A 不重合),BC ,BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D. (1)求∠CBD 的度数; (2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是30°.答案解析一、选择题(每小题3分,共30分)1.9的算术平方根是(B)A .81B .3C .-3D .±32.已知实数a ,b ,若a>b ,则下列结论错误的是(A)A .-3a>-3b B.a 5>b5C .3+a>b +3D .2a -5>2b -53.在实数3.14,-227,-9,1.7,5,0,-π,4.262 262 226…(两个6之间一次增加一个“2”)中,无理数有(B)A .2个B .3个C .4个D .5个 4.以下问题,不适合用全面调查的是(D)A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解全国中学生的用眼卫生情况5.如图,点O 为直线AB 上一点,OC ⊥OD.如果∠1=35°,那么∠2的度数是(C)A .35°B .45C .55°D .65°6.已知⎩⎨⎧x =4,y =3是方程组⎩⎨⎧ax +by =10,bx +ay =6的解,则a -b 的值是(B)A .-4B .4C .-2D .27.某正数的两个不同的平方根是2a -1与-a +2,则这个数是(D)A .1B .3C .-3D .98.若方程组⎩⎨⎧2a -3b =10,3a +2b =28的解是⎩⎨⎧a =8,b =2,则方程组⎩⎨⎧2(x +2)-3(y -1)=10,3(x +2)+5(y -1)=28的解是(C)A.⎩⎨⎧x =8y =2B.⎩⎨⎧x =10y =2 C.⎩⎨⎧x =6y =3 D.⎩⎨⎧x =10y =1 9.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c相交于点B ,C ,则∠1+∠2的度数是(A)A .270°B .250°C .210°D .180°10.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点A 1(-1,1),第二次点A 1向右跳到A 2(2,1),第三次点A 2跳到A 3(-2,2),第四次点A 3向右…………○…………密…………封…………线…………内…………不…………要…………答…………题…………跳动至点A 4(3,2),…,依此规律跳动下去,则点A 2 017与点A 2 018之间的距离是(C)A .2 017B .2 018C .2 019D .2 020二、填空题(每小题3分,共15分) 11.计算:|1-2|+(3)2=2+2.12.某班学生参加环保知识竞赛,已知竞赛得分都是整数,把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息可得,成绩不及格(低于60分)的学生占全班参赛人数的百分率是20%.13.如图,将一张长方形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点C′,D′处,C′E 交AF 于点G .若∠CEF =71°,则∠GFD′=38°.14.如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10 cm ,两块横放的墙砖比两块竖放的墙砖低40 cm ,则每块墙砖的截面面积是525__cm 2.15.若关于x 的不等式组⎩⎨⎧x -a>3,1-2x>x -2无解,则a 的取值范围是a ≥-2.三、解答题(共75分) 16.(10分)解方程组:(1)⎩⎨⎧4x +y =15,①3x -2y =3;②解:①×2+②,得11x =33,解得x =3. 将x =3代入①,得12+y =15,解得y =3. ∴方程组的解为⎩⎨⎧x =3,y =3.(2)⎩⎨⎧3(x -1)=y +5,5(y -1)=3(x +5).解:整理,得⎩⎨⎧3x -y =8,①3x -5y =-20.②①-②,得4y =28,解得y =7.把y =7代入①,得3x -7=8,解得x =5. ∴方程组的解为⎩⎨⎧x =5,y =7.17.(10分)(1)解不等式:x +5>1+2x ; 解:x -2x >1-5, -x >-4, x <4.七年级数学下试卷 第9页,共12页七年级数学下试卷 第10页,共12页…………密…………封…………线…………内…………不…………要…………答…………题…………○………班级: 姓名: 学号:(2)解不等式组⎩⎪⎨⎪⎧12x -1>3-32x ,①3x -7≤8,②并写出其整数解.解:解不等式①,得x >2. 解不等式②,得x ≤5.∴不等式组的解集为2<x ≤5. ∴整数解为3,4,5.18.(7分)实数a ,b 在数轴上的位置如图所示,请化简:|a -b|-a 2-(a +b )2.解:由数轴可知,a <0,a -b<0,a +b >0, ∴原式=(b -a)-(-a)-(a +b) =b -a +a -a -b =-a.19.(8分)完成下面的证明:如图,AB 和CD 相交于点O ,EF ∥AB ,∠C =∠COA ,∠D =∠BOD.求证:∠A =∠F.证明:∵∠C =∠COA ,∠D =∠BOD , 又∵∠COA =∠BOD(对顶角相等), ∴∠C =∠D(等量代换).∴AC ∥BD(内错角相等,两直线平行).∴∠A =∠ABD(两直线平行,内错角相等). ∵EF ∥AB ,∴∠F =∠ABD(两直线平行,同位角相等). ∴∠A =∠F(等量代换).20.(8分)如图所示的平面直角坐标系中,A(4,3),B(3,1),C(1,2),将三角形ABC 平移后得到三角形DEF ,已知B 点平移的对应点E(0,-3)(A 点与D 点对应,C 点与F 点对应).(1)画出平移后的三角形DEF ,并写出点D 的坐标为(1,-1),点F 的坐标为(-2,-2);(2)求三角形ABC的面积.解:(1)如图所示.(2)S 三角形ABC =2×3-12×1×3-12×1×2-12×1×2 =6-32-1-1 =52.21.(10分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题: (1)本次共调查了200名学生;(2)被调查的学生中,最喜爱丁类图书的有15人,最喜爱甲类图书的人数占本次被调查人数的40%;…………○…………密…………封…………线…………内…………不…………要…………答…………题…………(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍.若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人? 解:设男生人数为x 人,则女生人数为1.5x 人,由题意,得 x +1.5x =1 500×20%,解得x =120. 则1.5x =180.答:估计该校最喜爱丙类图书的女生和男生分别有180人,120人.22.(10分)打折前,买60件A 商品和30件B 商品用了1 080元,买50件A 商品和10件B 商品用了840元.(1)买一件A 商品和一件B 商品各要多少元?(2)若两种商品按相同的折扣打折,打折后,买500件A 商品和500件B 商品,比不打折至少节约1 000元钱,问折扣应满足什么条件?解:(1)设买一件A 商品要x 元,买一件B 商品要y 元,根据题意,得 ⎩⎨⎧60x +30y =1 080,50x +10y =840,解得⎩⎨⎧x =16,y =4.答:买一件A 商品要16元,买一件B 商品要4元. (2)设两种商品都打a 折销售,根据题意,得500×(16+4)-500×(16+4)a10≥1 000, 解得a ≤9.答:至少打九折.23.(12分)如图,已知AM ∥BN ,∠A =60°.点P 是射线AM 上一动点(与点A 不重合),BC ,BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D. (1)求∠CBD 的度数; (2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是30°.解:(1)∵AM ∥BN ,∴∠A +∠ABN =180°. ∵∠A =60°, ∴∠ABN =120°.∵BC ,BD 分别平分∠ABP 和∠PBN ,∴∠CBP =12∠ABP ,∠DBP =12∠NBP. ∴∠CBD =12∠ABN =60°.(2)不变化,∠APB =2∠ADB. 证明:∵AM ∥BN ,∴∠APB =∠PBN ,∠ADB =∠DBN. 又∵BD 平分∠PBN , ∴∠PBN =2∠DBN. ∴∠APB =2∠ADB.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年七年级下册数学期末考试模拟试题一、选择题1. 某风景点的周长约为 3578 m ,若按比例尺 1:2000缩小后,其周长大约相当于( )A .一个篮球场的周长B .一张乒乓球台台面的周长C .《中国日报》的一个版面的周长D .《数学》课本封面的周长答案:C2.如图,将平行四边形AEFG 变换到平行四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是( )A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍答案:D3.下列事件中,属于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个数比5大D .打开数学书就翻到第10页答案:D4.不改变分式yx x 7.0213.1--的值,把它的分子、分母的系数化为整数,其结果正确的是( ) A .y x x 72113-- B .y x x 721013-- C .y x x 7201013-- D .y x x 720113-- 答案:C5.下列方程组不是..二元一次方程组的是( ) A .⎩⎨⎧x +y =5x -y =2 B .⎩⎨⎧x -y =0y =2 C .⎩⎪⎨⎪⎧x 1+y =5y =3 D .⎩⎪⎨⎪⎧2x +3y =1x -y =1答案:C6.1x -1=1x 2-1的解为( ) A .0B .1C .-1D .1或-1 答案:A7.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( )A .PD=PCB .PD ≠PCC .PD 、PC 有时相等,有时不等D .PD >PC答案:A8.把0.000295用科学计数法表示并保留两个有效数字的结果是( )A .43.010-⨯B .53010-⨯C .42.910-⨯D .53.010-⨯ 答案:A9.下列说法中,正确的是( )A .买一张电影票,座位号一定是偶数B .投掷一枚均匀的硬币,正面一定朝上C .三条任意长的线段可以组成一个三角形D .从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大答案:D10.给出以下长度线段(单位:cm )四组:①2、5、6;②4、5、10;③3、3、6;④7、24、25.其中能组成三角形的组数是( )A .1B .2C .3D .4答案:B11.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB 、AD 的中点,下列叙述不正确...的是( ) A .这种变换是相似变换B .对应边扩大到原来到2倍C .各对应角度数不变D .面积是原来2倍 答案:D12.在等式(-a-b )( )=a 2-b 2中,括号里应填的多项式是( )A .a-bB .a+bC .-a-bD .b-a答案:D13. 下列长度的三条线段不能..组成三角形的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6答案:A14.方程组2321x y x y +=⎧⎨-=⎩的解是( ) A .53x y =-⎧⎨=⎩ B .11x y =-⎧⎨=-⎩ C .11x y =⎧⎨=⎩ D .35x y =⎧⎨=-⎩答案:C15. 下列方程中,是二元一次方程的是( )A .230x +=B .122x y -=C .351x y -=D .3xy =答案:C16.若关于x 的分式方程2344m x x =+--有增根,则m 的值为( ) A . -2 B . 2 C .2± D .4答案:A17.下列长度的三条线段,能组成三角形的是( )A . 1,2,3B .1,3,5C . 2,2,4D .2,3,4答案:D18. 如图,AD=BC ,AC=BD ,AC ,BD 交于点E ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对答案:C19.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( )A .必然事件B .不确定事件C .不可能事件D .无法判断 答案:B20.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm 答案:D21.已知方程3233x x x =---有增根,则这个增根一定是( ) A .2x = B .3x = C .4x = D .5x =答案:B22.如图放置着含30°的两个全等的直角三角形ABC 和EBD ,现将△EBD 沿BD 翻折到△E ′BD 的位置,DE ′与AC 相交于点F ,则∠AFD 等于( )A .45°B .30°C .20°D .15°答案:B23.不改变分式 1.3120.7x x y--的值,把它的分子、分母的系数化为整数,其结果正确的是( )A . 13127x x y --B .131027x x y --C .1310207x x y --D .131207x x y-- 答案:C24.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带( )A .①B .②C .③D .①和②答案:C25.下列多项式中,不能运用平方差公式分解因式的是( )A . 24m -+B .22x y --C .221x y -D .22()()m a m a --+答案:B26.已知2x y m =⎧⎨=⎩是二元一次方程531x y +=的一组解,则m 的值是( ) A . 3 B . -3 C .113 D .113- 答案:B27.如图,在△ABC 中,DE 是边AB 的垂直平分线,AB=6,BC=8,AC=5,则△ADC 的周长是( )A.14 B .13 C .11 D . 9答案:B28.小数表示2610-⨯结果为( )A . 0.06B . -0.006C .-0.06D .0.006 答案:A29.用如图所示的两个转盘设计一个“配紫色”的游戏,则获胜的概率为( )A .12B .13C .14D .2330.小华和小明到同一早餐店买馒头和豆浆. 已知小华买了 5 个馒头和 6 杯豆浆;小明买 了 7个馒头和 3杯豆浆,且小华花的钱比小明少1元.关于馒头与豆浆的价钱,下列叙述正确的是( )A .4个馒头比6杯豆浆少2元B .4个馒头比 6 杯豆浆多 2元C .12个馒头比 9 杯豆浆少 1 元D .12个馊头比 9杯豆浆多 1 元 答案:B二、填空题31. 请写出二元一次方程112x y -=的一组解 . 解析:略32.一个汽车牌照在镜子中的像为,则该汽牌照号码为 .解析:SM17963 33.当x =__________时,分式x 2-9x -3的值为零. 解析:3-=x34.用科学记数法表示0.0000907得 .解析:9.07×10-535.如图,∠BAC=800,∠ACE=1400,则∠ABD= 度.解析:12036.箱子中有6个红球和2个白球,它们除颜色外都相同.摇匀后,若随意摸出一球,摸到红球的概率是_____ _.解析:43 37.下列图形中,轴对称图形有 个.解析:338.三角形的两边长分别为2、 5,第三边长x 也是整数,则当三角形的周长取最大值时 x 的值为__________.解析:639.长方形是轴对称图形,它有 条对称轴.解析:240.如图,在△ABC 中,∠BAC=45°,现将△ABC 绕点A 逆时针旋转30°至△ADE 的位置.则∠DAC= .41.已知3x-2y=5,用关于x的代数式表示y,为y=___ _____.解析:253-x42.如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为___________ cm.解析:2343.在写有1,2,3,4,5,6,7,8,9的九张卡片中随机抽取一张,是奇数的概率是 .解析:9544.已知3x-2y=5,用关于x的代数式表示y,为y= .解析:253-x45.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=8 cm,BD=7cm,AD=3 cm,则DC= cm.解析:546.如图,是由四个形状大小完全相同的长方形拼成的图形,利用面积的不同表示法,写出一个代数恒等式: .解析:22()()4a b a b ab+=-+,或22()4()a b ab a b+-=-或22()()4a b a b ab+--=47.如图,一块等腰直角的三角板ABC,在水平桌面上绕点 C按顺时针方向旋转到A′B′C 的位置,使A,C,B′三点共线,那么旋转角度的大小为 .解析:135°48.某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 .解析:1 549.如图,△ABC向右平移 3个单位长度后得到△DEF,已知∠B= 35°,∠A= 65°,BC=5,则∠F= ,CE= .解析:80°,250.一副三角板如图所示叠放在一起,则图中α的度数是 .解析:75°51.如图,在△ABC中,∠A=90°,BE平分∠ABC,DE⊥BC,垂足为 D,若DE=3cm,则AE=cm.解析:352.如图,AD是△ABC 的中线. 如果△ABC 的面积是18 cm2,则△ADC 的面积是cm2.解析:953.如图,在图①中,互不重叠....的三角形共有 4个,在图②中,互不重叠....的三角形共有7个,在图③中,互不重叠....的三角形共有10个,…,则在第n个图形中,互不重叠的三角形共有个(用含n的代数式表示).解析:31n54.若分式13a -无意义,242b b --的值为 0,则ab = . 解析:-655.请你从式子24a ,2()x y -,1,2b 中,任意选两个式子作差,并将得到的式子进行因式分解: .解析:不唯一.如241(21)(21)a a a -=+-56.如图,将△ABC 绕着点A 按逆时针方向旋转70°后与△ADE 重合,已知∠B=105°,∠E=30°,那么∠BAE= 度.解析:2557.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 米,则根据题意,可列出方程为 .解析:312312126x x -=+ 58.如图,现有边长为a 的正方形纸片 1张、边长为b 的正方形纸片 2张,边长分别为a 、b 的长方形纸片3张,把它们拼成一个长方形. 请利用此拼图中的面积关系,分解因式 .解析:()(2)a b a b ++59. 若△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B =∠B ′,∠C=70°,AB=15 cm ,则∠C ′= ,A ′B ′= .解析:70°,15cm60. 计算y x x y x y---= . 解析:-1三、解答题61.解二元一次方程组358 2 1.x yx y+=⎧⎨-=⎩,解析:11. xy=⎧⎨=⎩,62.解方程组278ax bycx y+=⎧⎨-=⎩时,小明正确地解出32xy=⎧⎨=-⎩,小红把c看错了,解得22xy=-⎧⎨=⎩,试求a,b,c的值.解析:4a=,5b=,2c=-63.如图,(1)如图,在正方形 ABCD 中,E是AD 的中点,F 是 BA 延长线上的一点,AF =12AB. 请说明△ABE≌△ADF;(2)回答下列问题:①在图中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到△ADF 的位置?答:.②指出图中线段 BE 与 DF 之间的数量关系和位置关系.答:.解析:(1)根据 SAS 说明全等:AE = AF,AB =AD,∠BAE = ∠DAF;(2)①△ABE 绕点 A 逆时针旋转 90°到△ADF 的位置;③BE= DF且BE⊥DF64.仔细观察下图,认真阅读对话.根据对话内容,试求出饼干的标价是多少?解析:8元65.解方程(组):(1)⎩⎨⎧=+=-42352y x y x (2) 164412-=-x x解析:(1)⎩⎨⎧-==12y x ;(2)0=x .66.如图,已知∠EFD=∠BCA ,BC=EF ,AF=DC.则AB=DE.请说明理由. (填空)解:∵AF=DC(已知) ∴AF+ =DC+即 在△ABC和△ 中 B C=EF( )∠ =∠ ( )∴△ABC≌△ ( )∴AB=DE( )解析:FC ,FC ,AC=DF ,DEF ,已知,DFE ,ACB ,已知,AC=DF ,DEF ,SAS , 全等三角形的对应边相等. A BC D EF67.(1)观察下列各式:544622⨯=- ,10491122⨯=- ,164151722⨯=-…… 试用你发现的规律填空:___4495122⨯=-,___4646622⨯=-;(2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.解析:(1)50, 65;(2))1(4)2)(2()2(22+=-+++=-+n n n n n n n .68.某种商品因多种原因上涨25%,甲、乙两人分别在涨价前后花800元购买该商品,两人所购的件数相差10件,问该商品原售价是多少元?解析:设原售价为x 元,由题意得:1025.1800800=-xx ,解得16=x . 69.由 16 个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图). 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.解析:略70.如图,E 是BC 的中点,∠1=∠2,AE=DE .求证:AB=DC .解析:证明:∵ E 是BC 的中点 ,∴ BE=CE在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE∴ △ABE ≌△DCE ,∴AB=DC . 证明:∵ E 是BC 的中点 ,∴ BE=CE在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE71.阅读理解题:阅读下列材料关于x 的方程11x c x c +=+的解是1x c =,21x c=; 11x c x c -=-的解是1x c =,21x c=- 22x c x c +=+的解是1x c =,22x c=; 33x c x c +=+的解是1x c =,23x c=; … (1)请观察上述方程与解的特征,比较关于x 的方程m m x c x c+=+(0m ≠)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证; (2)由上迷的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数,方程右边的形式与左边完全相同,只把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x 的方程2211x a x a +=+--.解析:(1)1x c =,2m x c =;验证略;(2)1x a =,211a x a +=- 72. 解方程组:(1)225x y x y =⎧⎨+=⎩; (2)25324x y x y -=⎧⎨+=⎩解析:(1) 21x y =⎧⎨=⎩ (2) 21x y =⎧⎨=-⎩73.学校准备暑期组织学生去观看比赛,有A ,B ,C 三种球类门票,E ,F 两种体操类门票.小明任意选一种球类门票和一种体操类门票.恰好选中他所喜欢的 A 类门票和F 类门票的概率是多少(要求用树状图或列表方法求解)? 16解析:1674.(1)计算:2(2)()()(32)x y x y x y y y x +-+--+(2)因式分解2231212mp mpq mq ++解析:(1)222xy y + (2)23(2)m p q +75.如图,在△ABD 和△ACE 中,有下列四个等式:①AB= AC ;②AD= AE ;③∠1=∠2 ;④BD=CE.请你以其中三个等式作为条件,写在已知栏中,余下的作为结论,写在结论栏中,并说明结论成立的理由.已知:结论:说明理由:解析:已知:AB=AC ,AD=AE ,BD=CE ,结论:∠1 =∠2.理由:通过证明△ABD ≌△ACE(SSS)得到.或已知:AB=AC ,AD=AE ,∠1=∠2,结论:BD=CE.理由:通过证明△ABD ≌△ACE(SAS)得到.76.(1)解方程1211x -=-. (2)利用(1)的结果,先化简代数式21(1)11x x x +÷--,再求值.解析:(1)满足方程1211x -=-的解是2x = (2)21(1)(1)(1)1213111x x x x x x x xx -++÷=⨯=+=+=--- 77.你喜欢玩游戏吗?现在请你玩一个转盘游戏,如图所示的两个转盘中,指针落在每个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针指向一个数字,用所指的两个数字作乘积,请你:(1)列举(用列表或画树状图法)所有可能得到的数字之积;(2)求出数字之积为奇数的概率.解析:(1)所有可能得到的数字之积列表如下:1 2 3 4 5 6 11 2 3 4 5 6 22 4 6 8 10 12 33 6 9 12 15 184 4 8 12 16 20 24或用树状图法(略);(2)P(数字之积为奇数)=61244= 78.已知:如图,在△ABC 中,AB=BC ,∠ABC=90°.F 为 AB 延长线上一点,点E 在BC 上,BB=BF ,连接AB 、EF 和 CF.求证:AE =CF.解析:在△ABE 和△CBF 中,因为 AB=BC ,∠ABE ∠CBF=90°,BE =BF ,所以△ABE ≌△CBF ,所以AE =CF.79.如图,在四边形ABCD 中,线段AC 与 BD 互相垂直平分,垂足为点 0.(1)四边形ABCD 是轴对称图形吗?如果是,它有几条对称轴?分别是什么?(2)图中有哪些相等的线段?(3)写出图中所有的等腰三角形.(4)判断点 0到∠ABC 两边的距离大小关系,你能得到关于等腰三角形的怎样的结论?请用一句话叙述出来.解析:80.解下列方程组:(1)⎩⎨⎧-=-=+421y x y x (2)⎪⎩⎪⎨⎧=-=+1332y x y x解析:(1)⎩⎨⎧=-=21y x ;(2)⎩⎨⎧==34y x .。