2010年浙江省舟山市中考数学试卷附答案
舟山市中考数学试卷
舟山市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在0,-2,1,-3这四个数中,绝对值最小的是()A . -3B . 1C . -2D . 02. (2分) (2017七下·昭通期末) 下列命题正确的是()A . 若a>b,b<c,则a>cB . 若a>b,则ac>bcC . 若a>b,则ac2>bc2D . 若ac2>bc2 ,则a>b3. (2分)下列因式分解正确的是()A . x3﹣x=x(x2﹣1)B . x2+3x+2=x(x+3)+2C . x2﹣y2=(x﹣y)2D . x2+2x+1=(x+1)24. (2分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是A .B .C .D .5. (2分)如图,在一次函数y=-x+3的图像上取点P,作PA⊥x轴,垂足为A;作PB⊥y轴,垂足为B;且矩形OAPB的面积为2,则这样的点P共有().A . 4个B . 3个C . 2个D . 1个6. (2分)下列平面图形,既是中心对称图形,又是轴对称图形的是()A . 等腰三角形B . 正五边形C . 平行四边形D . 矩形7. (2分)(2017·雁塔模拟) 如图,G是正方形形ABCD的边BC上一点,DE、BF分别垂直AG于点E、F,则图中与△ABF相似的三角形有()A . 1个B . 2个C . 3个D . 4个8. (2分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()A . 众数是98B . 平均数是90C . 中位数是91D . 方差是569. (2分) (2016九上·仙游期末) 抛物线的顶点坐标为()A .B .C .D .10. (2分)(2019·永康模拟) 已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x =1,其图象的一部分如图所示,下列说法中①abc<0;②2a+b=0;③当﹣1<x<3时,y>0;④2c﹣3b<0.正确的结论有()A . ①②B . ②③④C . ①③D . ①②④二、填空题 (共8题;共8分)11. (1分)在1~1000这1000个自然数中,立方根为有理数的个数为________12. (1分)在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示________.13. (1分)函数y=的自变量的取值范围是________ .14. (1分) (2017七下·汶上期末) 根据图中各点的位置,在数轴上A,B,C,D四个点中,其中表示的数与4﹣的结果最接近的点是________.15. (1分) (2020七下·江阴月考) 如图,把△ABC沿EF翻折,叠合后的图形如图.若∠A=60°,∠1=80°,则∠2的度数为________.16. (1分) (2019八下·忻城期中) 如图,在△ABC中,∠ACB=90°,∠A=30°,D是AB的中点,BC=3,则CD=________.17. (1分)如图,AB为⊙O的直径,半径OA的垂直平分线交⊙O于点C,D,P为优弧AC上一点,则∠APC=________°.18. (1分)如图,AB是圆O的直径,OB=3,BC是圆 O的弦,∠ABC的平分线交圆 O于点 D,连接OD,若∠BAC=20°,弧AD的长等于________.三、解答题 (共10题;共89分)19. (5分) (2016七上·昌邑期末) 已知A= ,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.20. (10分)解下列不等式(组),并在数轴上表示解集:(1)≥ ﹣1;(2).21. (5分)已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.22. (5分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜;B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案获胜概率更高?23. (9分) (2019八下·温州期中) 某校为了解八年级学生的视力情况,随机抽样调查了部分八年级学生的视力,以下是根据调査结果绘制的统计表与统计图的一部分.根据以上信息,解答下列问题:分组视力人数A 3.95≤x≤4.252B 4.25<x≤4.55aC 4.55<x≤4.8520D 4.85<x≤5.15bE 5.15<x≤5.453(1)统计表中,a=________,b=________;(2)视力在4.85<x≤5.15范围内的学生数占被调查学生数的百分比是________;(3)本次调查中,视力的中位数落在________组;(4)若该校八年级共有400名学生,则视力超过4.85的学生约有多少人?24. (5分)(2020·黄冈模拟) 如图所示,某施工队要测量隧道长度,米,,施工队站在点D处看向B,测得仰角,再由D走到处测量,米,测得仰角为,求隧道长.(,,).25. (15分) (2018九上·花都期中) 为满足市场需求,某超市在八月十五“中秋节”来临前夕,购进一种品牌的月饼,每盒进价40元,根据以往的销售经验发现:当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)写出每天的销售量盒与每盒月饼上涨元之间的函数关系式.(2)当每盒售价定为多少元时,当天的销售利润元最大?最大利润是多少?(3)为稳定物价,有关管理部门限定,这种月饼每盒的利润不得高于进价的,那么超市每天获得最大利润是多少?26. (10分)(2019·襄阳) 如图,点是的内心,的延长线和的外接圆圆相交于点,过作直线 .(1)求证:是圆的切线;(2)若,,求优弧的长.27. (15分) (2020八下·来宾期末) 在菱形ABCD中,∠B=60°,点E在射线BC上运动,点F在射线CD上,∠EAF=60°。
【十年中考真题系列】嘉兴、舟山卷 第四章 三角形与四边形
【十年中考真题系列】嘉兴、舟山卷 第四章 三角形与四边形1.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( )(A )4 (B )5 (C )6 (D )9 2.已知一个正多边形的内角是140°,则这个正多边形的边数是( )(A )6 (B )7 (C )8 (D )93.如图,AB //CD ,EF 分别为交AB ,CD 于点E ,F ,∠1=50°,则∠2的度数为( )(A )50° (B )120° (C )130° (D )150°(第3题)(第4题)(第5题)(第6题)4.如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果 AE EC = 2 3 ,那么 AB AC=( )(A ) 13(B )2 3(C )2 5(D )3 55.如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )(A )2 3 (B )3 3 (C )4 3 (D )6 36.如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC =a 米,∠A =90°,∠C =40°,则AB 等于( )米.(A )a sin40°(B )a cos40°(C )a tan40°(D )atan40°7.已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( )(A )40° (B )60° (C )80° (D ) 90°8.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F . AC 与DF 相交于点G ,且AG =2,GB =1,BC =5,则 DEEF 的值为( ) (A ) 1 2(B )2(C )2 5(D )3 5(第8题)(第9题)(第10题)(第11题)9.欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是;画Rt △ABC ,使∠ACB =90°,BC =a 2 ,AC =b ,再在斜边AB 上截取BD = a2 .则该方程的一个正根是( ) (A )AC 的长(B )AD 的长(C )BC 的长(D )CD 的长10.如图,在平面直角坐标系xOy 中,已知点A (2,0),B (1,1).若平移点A 到点C ,使以点O ,A ,C ,B 为顶点的四边形是菱形,则正确的平移方法是( ) (A )向左平移1个单位,再向下平移1个单位ABCDFA BC DE(B )向左平移(22-1)个单位,再向上平移1个单位 (C )向右平移2个单位,再向上平移1个单位 (D )向右平移1个单位,再向上平移1个单位11.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )(A ) 5(B )13 6(C )1(D )5 612.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )(A ) (B ) (C ) (D )13.一张矩形纸片ABCD ,已知AB =3,AD =2,小明按所给图步骤折叠纸片,则线段DG 长为( )(A ) 2(B )2 2(C )1(D )2(第13题)(第14题)14.数学活动课上,四位同学围绕作图问题:“如图,已知直线l 和l 外一点P ,用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q ”. 分别作出了下列四个图形.其中作法错误的是( )(A ) (B ) (C ) (D )15.如图,在一张矩形纸片ABCD 中,AD =4 cm ,点E ,F 分别是CD 和AB 的中点.现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH .若HG 的延长线恰好经过点D ,则CD 的长为( )(A )2 cm(B )2 3 cm (C )4 cm (D )3 3cm(第15题)(第16题)(第17题)(第18题)16.如图,等腰△ABC 中,底边BC =a ,∠A =36°,∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD 于E ,设k =5-12,则DE =( ) (A )k 2a(B )k 3a(C )a k 2(D )a k 317.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为斜边并且在AB 的同一侧作等腰直角△ACD 和△BCE ,连结AE 交CD于点M ,连结BD 交CE 于点N ,给出以下三个结论:①ADEBMN∥AB;②1MN=1AC+1BC;③MN≤14AB,其中正确结论的个数是()(A)0 (B)1 (C)2 (D)318.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14 cm2,四边形ABCD面积是11 cm2,则①②③④四个平行四边形周长的总和为()(A)48 cm (B)36 cm (C)24 cm (D)18 cm19.如图,在△ABC中,AB=AC,∠A=40°,则△ABC的外角∠BCD=_______度.D(第19题)(第20题)(第21题)(第22题)20.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=_______.21.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为_________.22.如图,一张三角形纸片ABC,AB=AC=5. 折叠该纸片,使点A落在BC的中点上,折痕经过AC上的点E,则AE的长为__________.23.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为______米.(第23题)(第24题)(第25题)(第26题)24.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3,于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知ABAC=13,则EFDE=________.25.如图,已知菱形ABCD的一个内角∠BAD=80º,对角线AC、BD相交于点O,点E在AB上且BE =BO,则∠BAD=_______.26.如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为______,小球P所经过的路程为_________.27.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=13,tan∠BA3C=17,计算tan∠BA4C=,……按此规律,写出tan∠BA n C=(用含n的代数式表示).FEDCAA DCB(第27题)(第28题)28.如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是__________.29.如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF 为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是__________.(第29题)(第30题)(第31题)30.一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12 cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为.(结果保留根号)31.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF.给出以下四个结论:①AGAB=FGFB;②点F是GE的中点;③AF=23AB;④S△ABC=S△BDF,其中正确的结论序号是___________.32.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.33.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.34.如图,在□ABCD中,已知点E在AB上,点F在CD上且AE=CF.(1)求证:DE=BF;(2)连结BD,并写出图中所有的全等三角形.(不要求证明)35.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.36.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?37.已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.38.如图,正方形ABCD中,点E,F分别在AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.39.已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,且DE=DF .求证:△ABC 是等边三角形.40.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,BD 与AE 、AF 分别相交于G 、H .(1)求证:△ABE ∽△ADF ;(2)若AG =AH ,求证:四边形ABCD 是菱形.41.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上. (1)如图1,当n =1时,求正三角形的边长a 1; (2)如图2,当n =2时,求正三角形的边长a 2;(3)如题图,求正三角形的边长a n (用含n 的代数式表示).ADCBGHF图1图242.以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH . (1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°),① 试用含α的代数式表示∠HAE ; ② 求证:HE =HG ;③ 四边形EFGH 是什么四边形?并说明理由.43.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB ′C ′,即如图①,我们将这种变换记为[θ,n ].(1)如图①,对△ABC 作变换[60°,3]得△AB ′C ′,则S △AB ′C ′:S △ABC =_____;直线BC 与直线B ′C ′所夹的锐角为_____度;(2)如图②,△ABC 中,∠BAC =30°,∠ACB =90°,对△ABC 作变换[θ,n ]得△AB 'C ',使点B 、C 、C ′在同一直线上,且四边形ABB 'C '为矩形,求θ和n 的值; (3)如图③,△ABC 中,AB =AC ,∠BAC =36°,BC =l ,对△ABC 作变换[θ,n ]得△AB ′C ′,使点B 、C 、B ′在同一直线上,且四边形ABB 'C '为平行四边形,求θ和n 的值.A BCDHEFG(图2)E BFGDHAC(图3)(图1)A BCDH EFG44.类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.45.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠B的平分线BB′方向平移得到△A′B′C′,连结A A′,BC′. 小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC =2AB.试探究BC,CD,BD的数量关系.46.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.(1)概念理解:请你根据上述定义举一个等邻角四边形的例子; (2)问题探究:如图1,在四边形ABCD 中,BE 平分∠ABC 交CD 于点E ,AD ∥BE ,∠D =80°,∠C =40° ,探究四边形ABCD 是否为等邻角四边形,并说明理由; (3)应用拓展:如图2,在Rt △ABC 与Rt △ABD 中,∠C =∠D =90°,BC =BD =3,AB =5,将Rt △ABD 绕着点A 顺时针旋转角α(0°<∠α<∠BAC ),得到Rt △AB 'D '(如图3),当凸四边形AD 'BC 为等邻角四边形时,求出它的面积.47.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC =6,BC =3,∠ACB =30°,试判断△ABC 是否是“等高底”三角形请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于BC 所在直线的对称图形得到△A 'BC ,连结AA '交直线BC 于点D .若点B 是△AA 'C 的重心,求ACBC的值. (3)应用拓展:如图3.已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的2倍.将△ABC 绕点C 按顺时针方向旋转45° 得到△A 'B 'C ,AC 所在直线交l 2于点D .求CD 的值.图1D'D 图2BDCE48.如图,AM 是△ABC 的中线,D 是线段AM 上一点(不与点A 重合).DE ∥AB 交AC 于点F ,CE ∥AM ,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形; (2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由. (3)如图3,延长BD 交AC 于点H ,若BH ⊥AC ,且BH =AM .①求∠CAM 的度数;②当FH =3,DM =4时,求DH 的长.49.如图1,已知点E ,F ,G ,H 分别是四边形ABCD 各边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:(1)如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A ,C ,B 都在格点上,在格点上找一点D ,使点C 与BC ,CD ,DA 的中点F ,G ,H 组成的四边形CFGH 是正方形.画出点D ,并 求正方形CFGH 的边长.图3图1 图2EH EH FG50.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=1.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?51.小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.11。
2010年浙江省舟山中考数学试题及答案
(第2题) C AED B浙江省2010年初中毕业生学业考试(舟山卷)数 学 试 题 卷考生须知:1.本卷共三大题,24小题.全卷满分为120分,考试时间为120分钟.2.将试卷Ⅰ的答案做在答题卡上,将试卷Ⅱ的答案做在答题卷的相应位置上,做在试题卷上无效. 3.请用钢笔或圆珠笔将姓名、准考证号分别填写在答题卡和答题卷的相应位置上. 4. 考试时不能使用计算器.温馨提示:用心思考,细心答题,相信你一定会有出色的表现!参考公式:二次函数c bx ax y ++=2(a ≠0)图象的顶点坐标是(2b a -,244ac b a-).试 卷 Ⅰ请用铅笔将答题卡上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题.一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,将答题卡上相应的位置涂黑.不选、多选、错选均不给分) 1. 下面四个数中,负数是A .-3B .0C .0.2D .3 2. 如图,D ,E 分别是△ABC 的边AC 和BC 的中点,已知DE =2,则AB = A .1 B .2 C .3 D .43. 不等式x <2在数轴上表示正确的是4.某班50这次听力测试成绩的众数是 A .5分B .6分C .9分D .10分5. 已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是A .15B .25C .35D .236. 如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是A .两个相交的圆B .两个内切的圆C .两个外切的圆D .两个外离的圆B . D . A .C .7. 下列四个函数图象中,当x >0时,y 随x 的增大而增大的是8. 如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是A .2m +3B .2m +6C .m +3D .m +69. 小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是A .120πcm 2B .240πcm 2C .260πcm 2D .480πcm 210. 如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是A .2225y x = B .2425y x = C .225y x =D .245y x =试 卷 Ⅱ请将本卷的答案或解答过程用钢笔或圆珠笔写在答题卷上. 二、填空题(本大题有6小题,每小题4分,共24分) 11. 分解因式:x 2-9= ▲ . 12. 若点(4,m )在反比例函数8y x=(x ≠0)的图象上,则m 的值是 ▲ . 13.如图,直线DE 交∠ABC 的边BA 于点D ,若DE ∥BC ,∠B =70°, 则∠ADE 的度数是 ▲ .14. 玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有 ▲种.15. 已知a ≠0,12S a=,212S S =,322SS =,…,201020092S S =,则2010S = ▲ (用含a 的代数式表示).16. 如图,△ABC 是⊙O 的内接三角形,点D 是BC 的中点,已知∠AOB =98°,∠COB =120°.则∠ABD 的度数是 ▲ .(第10题)ABCD(第9题) (第16题)(第13题)CAE D B (第8题)三、解答题(本大题有8小题,共66分,请务必写出解答过程)17. (本题6分)计算:012sin302+--︒.18. (本题6分)解方程组23, 37.x yx y-=⎧⎨+=⎩①②19. (本题6分)已知:如图,E,F 分别是ABCD的边AD,BC的中点.求证:AF=CE.20. (本题8分)如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16cm,4 cos5OBH∠=.(1)求⊙O的半径;(2)如果要将直线l向下平移到与⊙O相切的位置,平移的距离应是多少?请说明理由.A DEB C(第19题)A BOHC(第20题)l21. (本题8分)黄老师退休在家,为选择一个合适的时间参观2010年上海世博会,他查阅了5月10日至16日(星期一至星期日)每天的参观人数,得到图1、图2所示的统计图,其中图1是每天参观人数的统计图,图2是5月15日(星期六)这一天上午、中午、下午和晚上四个时间段参观人数的扇形统计图.请你根据统计图解答下面的问题:(1) 5月10日至16日这一周中,参观人数最多的是哪一天?有多少人?参观人数最少的又是哪一天?有多少人?(2) 5月15日(星期六)这一天,上午的参观人数比下午的参观人数多多少人 (精确到1万人)? (3) 如果黄老师想尽可能选择参观人数较少的时间去参观世博会,你认为他选择什么时间比较合适?(第21题)22. (本题10分)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上.(1) 判断△ABC 和△DEF 是否相似,并说明理由;(2) P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个 点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).23. (本题10分)小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1) 小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2) 下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以 110米/分的速度回家,中途没有再停留.问: ① 小刚到家的时间是下午几时?② 小刚回家过程中,离家的路程s (米)与时间t (分)之间的函数关系如图,请写出点B 的坐标,并求出线段 CD 所在直线的函数解析式.A CB FE D P 1P 2P 3P 4(第22题)P 5 )24. (本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.(1)当点BB的横坐标;(2)如果抛物线2y ax bx c=++(a≠0)的对称轴经过点C①当a=,12b=-,c=A,B两点是否都在这条抛物线上?并说明理由;②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m若不存在,请说明理由.(第24题)浙江省2010年初中毕业生学业考试(舟山卷)数学试题参考答案及评分标准一、二、11. (x +3)(x -3) 12. 2 13. 70° 14. 4 15. 1a16. 101°三.解答题(本题有8小题,共66分) 17. (本题6分)解:原式=111222++-(每项计算1分)……4分 =3.……2分18. (本题6分) 解法1:①+②,得 5x =10. ∴ x =2.……3分 把x =2代入①,得 4-y =3. ∴ y =1. ……2分 ∴ 方程组的解是2,1.x y =⎧⎨=⎩……1分解法2:由①,得 y =2x -3. ③……1分 把③代入②,得 3x +2x -3=7. ∴ x =2. ……2分 把x =2代入③,得 y =1.……2分 ∴ 方程组的解是2,1.x y =⎧⎨=⎩……1分19. (本题6分) 证明:方法1:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点,∴ AE = CF . ……2分又 ∵ 四边形ABCD 是平行四边形,∴ AD ∥BC ,即AE ∥CF .∴ 四边形AFCE 是平行四边形. ……3分∴ AF =CE .……1分方法2:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点, ∴ BF =DE . ……2分 又 ∵ 四边形ABCD 是平行四边形, ∴ ∠B =∠D ,AB =CD . ∴ △ABF ≌△CDE . ……3分 ∴ AF =CE . ……1分ADEBC(第19题)20. (本题8分)解:(1) ∵ 直线l 与半径OC 垂直,∴ 1116822HB AB ==⨯=. ……2分∵ 4cos 5HB OBH OB ∠==, ∴ OB =54HB =54×8= 10.……2分(2) 在Rt △OBH 中,6OH . ……2分 ∴ 1064CH =-=.所以将直线l 向下平移到与⊙O 相切的位置时,平移的距离是4cm . ……2分21.(本题8分)解:(1) 参观人数最多的是15日(或周六),有34万人; ……2分参观人数最少的是10日(或周一),有16万人. ……2分 (2) 34×(74%-6%)=23.12≈23.上午参观人数比下午参观人数多23万人. ……2分 (3) 答案不唯一,基本合理即可,如选择星期一下午参观等. ……2分22. (本题10分)解:(1) △ABC 和△DEF 相似. ……2分根据勾股定理,得AB =AC =BC =5 ;DE =,DF =EF = ∵AB AC BC DE DF EF === ……3分 ∴ △ABC ∽△DEF .……1分 (2) 答案不唯一,下面6个三角形中的任意2个均可.……4分△P 2P 5D ,△P 4P 5F ,△P 2P 4D , △P 4P 5D ,△P 2P 4 P 5,△P 1FD .23. (本题10分)解:(1) 小刚每分钟走1200÷10=120(步),每步走100÷150=23(米), 所以小刚上学的步行速度是120×23=80(米/分). ……2分 小刚家和少年宫之间的路程是80×10=800(米). ……1分 少年宫和学校之间的路程是80×(25-10)=1200(米).……1分A BO H C (第20题)lACBFEDP 1 P 2P 3P 4(第22题)P 5(2) ①1200300800300306045110-+++=(分钟), 所以小刚到家的时间是下午5:00. ……2分② 小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,花时9002045=分,此时小刚离家1 100米,所以点B 的坐标是(20,1100). ……2分线段CD 表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s (米)与行走时间t (分)之间的函数关系,由路程与时间的关系得 1100110(50)s t =--, 即线段CD 所在直线的函数解析式是6600110s t =-. ……2分 (线段CD 所在直线的函数解析式也可以通过下面的方法求得: 点C 的坐标是(50,1100),点D 的坐标是(60,0)设线段CD 所在直线的函数解析式是s kt b =+,将点C ,D 的坐标代入,得 501100,600.k b k b +=⎧⎨+=⎩ 解得 110,6600.k b =-⎧⎨=⎩所以线段CD 所在直线的函数解析式是1106600s t =-+) 24. (本题12分)解:(1) ∵ 点O 是AB 的中点, ∴12OB AB == ……1分 设点B 的横坐标是x (x >0),则222x +=,……1分解得1x =2x =舍去). ∴ 点B……2分(2) ①当a =12b =-,c =212y x =-- ……(*)2y x =-. ……1分以下分两种情况讨论.情况1:设点C 在第一象限(如图甲),则点Ctan 301OC OB =⨯︒==. ……1分 由此,可求得点C 的坐标为), ……1分点A 的坐标为(), ∵ A ,B 两点关于原点对称, ∴ 点B 的坐标为,). 将点A 的横坐标代入(*),即等于点A 的纵坐标;(甲)将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标.∴在这种情况下,A,B两点都在抛物线上.……2分情况2:设点C在第四象限(如图乙),则点C的坐标为),点A的坐标为),点B的坐标为(,).经计算,A,B两点都不在这条抛物线上.……1分(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)②存在.m的值是1或-1.……2分(22()=--+,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点y a x m am cC在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)。
最新浙江省舟山市初三中考数学试卷
浙江省舟山市中考数学试卷一、选择题:1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.93.(3分)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c ﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,44.(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利5.(3分)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样6.(3分)若二元一次方程组的解为,则a﹣b=()A.1 B.3 C. D.7.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.(3分)用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=39.(3分)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()A. B.C.1 D.210.(3分)下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④二、填空题11.(4分)分解因式:ab﹣b2= .12.(4分)若分式的值为0,则x的值为.13.(4分)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.14.(4分)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是.15.(4分)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C= ,…按此规律,写出tan∠BAnC= (用含n的代数式表示).16.(4分)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH 的长是.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为.(结果保留根号)三、解答题17.(6分)(1)计算:()2﹣2﹣1×(﹣4);(2)化简:(m+2)(m﹣2)﹣×3m.18.(6分)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.19.(6分)如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.20.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n 的值;若不存在,说明理由.21.(8分)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.22.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)23.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.24.(12分)如图,某日的钱塘江观测信息如下:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数:s=t2+bt+c(b,c是常数)刻画.(1)求m值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v是加速前的速度).浙江省舟山市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.(3分)(•舟山)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.3.(3分)(•舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,4【解答】解:∵数据a,b,c的平均数为5,∴(a+b+c)=5,∴(a﹣2+b﹣2+c﹣2)=(a+b+c)﹣2=5﹣2=3,∴数据a﹣2,b﹣2,c﹣2的平均数是3;∵数据a,b,c的方差为4,∴[(a﹣5)2+(b﹣5)2+(c﹣5)2]=4,∴a﹣2,b﹣2,c﹣2的方差=[(a﹣2﹣3)2+(b﹣2﹣3)2+(c﹣﹣2﹣3)2]=[(a﹣5)2+(b﹣5)2+(c﹣5)2]=4.故选B.4.(3分)(•舟山)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.5.(3分)(•舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A .红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C .两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样【解答】解:红红和娜娜玩“锤子、剪刀、布”游戏,所有可能出现的结果列表如下:由表格可知,共有9种等可能情况.其中平局的有3种:(锤子,锤子)、(剪刀,剪刀)、(布,布).因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,故选项B,C,D不合题意;故选:A.6.(3分)(•嘉兴)若二元一次方程组的解为,则a﹣b=()A.1 B.3 C. D.【解答】解:∵x+y=3,3x﹣5y=4,∴两式相加可得:(x+y)+(3x﹣5y)=3+4,∴4x﹣4y=7,∴x﹣y=,∵x=a,y=b,∴a﹣b=x﹣y=故选(D)7.(3分)(•嘉兴)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选D.8.(3分)(•舟山)用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3【解答】解:∵x2+2x﹣1=0,∴x2+2x+1=2,∴(x+1)2=2.故选:B.9.(3分)(•舟山)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()A. B.C.1 D.2【解答】解:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=DC′=,故选A.10.(3分)(•嘉兴)下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2﹣6(3+n)+10,当x=3﹣n时,y=(n﹣3)2﹣6(n﹣3)+10,∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(n﹣3)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2﹣6(n+1)+10,当x=n时,y=n2﹣6n+10,(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣5,∵n是整数,∴2n﹣5是整数,故③正确;∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,∴当x>3时,y随x的增大而增大,x<0时,y随x的增大而减小,∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a <3,b>3时,a<b,故④是假命题.故选C.二、填空题11.(4分)(•淮安)分解因式:ab﹣b2= b(a﹣b).【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).12.(4分)(•舟山)若分式的值为0,则x的值为 2 .【解答】解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.13.(4分)(•舟山)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为(32+48π)cm2.【解答】解:连接OA、OB,∵=90°,∴∠AOB=90°, ∴S △AOB =×8×8=32, 扇形ACB (阴影部分)==48π,则弓形ACB 胶皮面积为(32+48π)cm 2, 故答案为:(32+48π)cm 2.14.(4分)(•嘉兴)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是 3球 .【解答】解:∵由图可知,3球所占的比例最大, ∴投进球数的众数是3球. 故答案为:3球.15.(4分)(•舟山)如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C=1,tan ∠BA 2C=,tan ∠BA 3C=,计算tan ∠BA 4C=,…按此规律,写出tan ∠BA n C=(用含n 的代数式表示).【解答】解:作CH⊥BA4于H,由勾股定理得,BA4==,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H==,∴tan∠BA4C==,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BAnC=,故答案为:;.16.(4分)(•嘉兴)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC 与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是12﹣12 .现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为12﹣18 .(结果保留根号)【解答】解:如图1中,作HM⊥BC于M,HN⊥AC于N,则四边形HMCN是正方形,设边长为a.在Rt△ABC中,∵∠ABC=30°,BC=12,∴AB==8,在Rt△BHM中,BH=2HM=2a,在Rt△AHN中,AH==a,∴2a+=8,∴a=6﹣6,∴BH=2a=12﹣12.如图2中,当DG∥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,∴HH1=BH﹣BH1=9﹣15,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2=18﹣30+[6﹣(12﹣12)]=12﹣18.故答案分别为12﹣12,12﹣18.三、解答题17.(6分)(•舟山)(1)计算:()2﹣2﹣1×(﹣4);(2)化简:(m+2)(m﹣2)﹣×3m.【解答】解:(1)原式=3﹣×(﹣4)=3+2=5;(2)原式=m2﹣4﹣m2=﹣4.18.(6分)(•舟山)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.【解答】解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.19.(6分)(•舟山)如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EF D=70°.20.(8分)(•舟山)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n 的值;若不存在,说明理由.【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.∵B(m,﹣1)在Y=﹣上,∴m=2,由题意,解得,∴一次函数的解析式为y=﹣x+1.(2)∵A(﹣1,2),B(2,﹣1),∴AB=3,①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,∵n>0,∴n=0不合题意舍弃.②当AP=AB时,22+(n+1)2=(3)2,∵n>0,∴n=﹣1+.③当BP=BA时,12+(n﹣2)2=(3)2,∵n>0,∴n=2+.综上所述,n=﹣1+或2+.21.(8分)(•舟山)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.【解答】解:(1)由统计图可知:月平均气温最高值为30.6℃,最低气温为5.8℃;相应月份的用电量分别为124千瓦时和110千瓦时.(2)当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;(3)能,因为中位数刻画了中间水平.22.(10分)(•舟山)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈114.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈18,CG=15,∴OH=24+15+18=57,OP=OH﹣PH=57﹣46.53=10.47≈10.5,∴他应向前10.5cm.23.(10分)(•舟山)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.【解答】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴=,∴=,解得x=1+或1﹣(舍弃),∴DH=1+.24.(12分)(•舟山)如图,某日的钱塘江观测信息如下:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数:s=t2+bt+c(b,c是常数)刻画.(1)求m值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v是加速前的速度).【解答】解:(1)12时10分﹣11时40分=30分,12÷30=0.4(千米/分).答:m的值为30,∴m的值为30.潮头从甲地到乙地的速度为0.4千米/分.(2)0.4×(30+40﹣59)=4.4(千米),4.4÷(0.4+0.48)=5(分钟).答:小红出发五分钟后与潮头相遇.(3)将B(30,0)、C(55,15)代入s=t2+bt+c中,得:,解得:,∴曲线BC的函数关系式为s=t2﹣t﹣.令0.4+(t﹣30)=0.48,解得:t=35,当t=35时,s=t2﹣t﹣=2.2.根据题意得:t2﹣t﹣﹣0.48(t﹣35)﹣2.2=1.8,整理得:t2﹣70t+1000=0,解得:t=50或t=20(不合题意,舍去),∵50﹣30+5=25(分钟),∴小红与潮头相遇到落后潮头1.8千米共需25分钟.。
DA浙江省舟山市中考真题
浙江省2010年初中毕业生学业考试(舟山卷)数学试题参考答案及评分标准一、二、11. (x +3)(x -3) 12. 2 13. 70° 14. 4 15. 1a16. 101°三.解答题(本题有8小题,共66分) 17. (本题6分) 解:原式=111222++- (每项计算1分)……4分 =3.……2分 18. (本题6分)解法1:①+②,得 5x =10. ∴ x =2.……3分 把x =2代入①,得 4-y =3. ∴ y =1.……2分 ∴ 方程组的解是2,1.x y =⎧⎨=⎩……1分 解法2:由①,得 y =2x -3. ③……1分 把③代入②,得 3x +2x -3=7. ∴ x =2. ……2分 把x =2代入③,得 y =1.……2分 ∴ 方程组的解是2,1.x y =⎧⎨=⎩……1分19. (本题6分) 证明:方法1:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点,∴ AE = CF . ……2分又 ∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,即AE ∥CF .∴ 四边形AFCE 是平行四边形. ……3分∴ AF =CE .……1分方法2:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点, ∴ BF =DE . ……2分又 ∵ 四边形ABCD 是平行四边形, ∴ ∠B =∠D ,AB =CD . ∴ △ABF ≌△CDE . ……3分∴ AF =CE .……1分ADEBC (第19题)20. (本题8分)解:(1) ∵ 直线l 与半径OC 垂直,∴ 1116822HB AB ==⨯=. ……2分∵ 4cos 5HB OBH OB ∠==, ∴ OB =54HB =54×8= 10. ……2分(2) 在Rt △OBH 中,6OH =.……2分 ∴ 1064CH =-=.所以将直线l 向下平移到与⊙O 相切的位置时,平移的距离是4cm .……2分21.(本题8分)解:(1) 参观人数最多的是15日(或周六),有34万人; ……2分参观人数最少的是10日(或周一),有16万人. ……2分 (2) 34×(74%-6%)=23.12≈23.上午参观人数比下午参观人数多23万人. ……2分 (3) 答案不唯一,基本合理即可,如选择星期一下午参观等. ……2分22. (本题10分)解:(1) △ABC 和△DEF 相似. ……2分根据勾股定理,得AB =AC =BC =5 ;DE =DF =EF =∵AB AC BC DE DF EF == ……3分 ∴ △ABC ∽△DEF . ……1分 (2) 答案不唯一,下面6个三角形中的任意2个均可.……4分△P 2P 5D ,△P 4P 5F ,△P 2P 4D , △P 4P 5D ,△P 2P 4 P 5,△P 1FD .23. (本题10分)解:(1) 小刚每分钟走1200÷10=120(步),每步走100÷150=23(米), 所以小刚上学的步行速度是120×23=80(米/分).……2分 小刚家和少年宫之间的路程是80×10=800(米). ……1分 少年宫和学校之间的路程是80×(25-10)=1200(米).……1分(2) ①1200300800300306045110-+++=(分钟), ABO HC (第20题)lACBFEDP 1 P 2P 3P 4(第22题)P 5所以小刚到家的时间是下午5:00. ……2分 ② 小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,花时9002045=分,此时小刚离家1 100米,所以点B 的坐标是(20,1100). ……2分线段CD 表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s (米)与行走时间t (分)之间的函数关系,由路程与时间的关系得 1100110(50)s t =--, 即线段CD 所在直线的函数解析式是6600110s t =-. ……2分 (线段CD 所在直线的函数解析式也可以通过下面的方法求得: 点C 的坐标是(50,1100),点D 的坐标是(60,0)设线段CD 所在直线的函数解析式是s kt b =+,将点C ,D 的坐标代入,得 501100,600.k b k b +=⎧⎨+=⎩ 解得 110,6600.k b =-⎧⎨=⎩所以线段CD 所在直线的函数解析式是1106600s t =-+) 24. (本题12分)解:(1) ∵ 点O 是AB 的中点, ∴12OB AB == ……1分 设点B 的横坐标是x (x >0),则222x +=,……1分解得1x =,2x =(舍去). ∴ 点B……2分(2) ①当a 12b =-,c =212y x =--……(*) 2y x =. ……1分以下分两种情况讨论.情况1:设点C 在第一象限(如图甲),则点C,tan301OC OB =⨯︒==. ……1分由此,可求得点C 的坐标为), ……1分 点A 的坐标为(), ∵ A ,B 两点关于原点对称,∴ 点B 的坐标为). 将点A 的横坐标代入(*),即等于点A 的纵坐标;(甲)(乙)将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标.∴在这种情况下,A,B两点都在抛物线上.……2分情况2:设点C在第四象限(如图乙),则点C的坐标为,),点A的坐标为),点B的坐标为(,).经计算,A,B两点都不在这条抛物线上.……1分(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)②存在.m的值是1或-1.……2分(22()=--+,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1 y a x m am c时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)。
2010中考数学试题及答案
2010中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 0.33333C. πD. √2答案:D2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A4. 一个正数的倒数是:A. 它自己B. 它的相反数C. 它的平方D. 1除以它答案:D5. 下列哪个式子是正确的?A. 2x + 3 = 5x - 1B. 3x - 4 = 4x + 3C. 2x + 3 = 2x - 3D. 5x + 2 = 5x - 2答案:A6. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 下列哪个不是二次根式?A. √3B. √xC. √x + 1D. √x²答案:D8. 如果一个数的立方是27,那么这个数是:A. 3B. -3C. 9D. -9答案:A9. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 正数或零答案:D10. 下列哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 6, 8C. 1, 2, 4, 8D. 3, 6, 9, 12答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
答案:512. 一个数的绝对值是4,这个数可能是________或________。
答案:4 或 -413. 如果一个数的平方是16,那么这个数是________或________。
答案:4 或 -414. 一个圆的直径是10,那么它的半径是________。
答案:515. 如果一个三角形的三个内角分别是40度、50度和90度,那么这是一个________三角形。
答案:直角16. 一个数的立方根是2,那么这个数是________。
(中考精品)浙江省舟山市中考数学真题(解析版)
数学卷Ⅰ(选择题)一、选择题(本题有10小题,请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. 若收入3元记为+3,则支出2元记为()A. 1B. -1C. 2D. -2 【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.2. 如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【答案】B【解析】【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.3. 根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为( )A. 82.5110⨯B. 72.5110⨯C. 725.110⨯D. 90.25110⨯【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a ×10n ,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=82.5110⨯.故选:A【点睛】本题考查用科学记数法表示较大数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键. 4. 用尺规作一个角的角平分线,下列作法中错误的是( )A. B.C. D.【答案】D【解析】【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∴OAB OCB ≅ ,∴AOB COB ∠=∠,∴OB 平分AOC ∠.的故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∴OBC OAD ≅ ,∴OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∴AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∴AEC BED ≅△△,∴AE BE =,∵,EAO EBO OA OB ∠=∠=,∴AOE BOE ∠=∠,∴OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∴CD OB ∥,COD CDO =∠∠,∴DOB CDO ∠=∠,∴COD DOB ∠=∠,∴OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∴AOB CBO ≅ ,∴,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.5. 的值在( )A. 4和5之间B. 3和4之间C. 2和3之间D. 1和2之间【答案】C【解析】【分析】根据无理数的估算方法估算即可.<<∴23<<故选:C .【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.6. 如图,在ABC 中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,EF AC ∥,GF AB ∥,则四边形AEFG 的周长是( )A. 32B. 24C. 16D. 8【答案】C【解析】 【分析】根据EF AC ∥,GF AB ∥,可得四边形AEFG 是平行四边形,从而得到FG =AE ,AG =EF ,再由EF AC ∥,可得∠BFE =∠C ,从而得到∠B =∠BFE ,进而得到BE =EF ,再根据四边形AEFG 的周长是2(AE +EF ),即可求解.【详解】解∶∵EF AC ∥,GF AB ∥,∴四边形AEFG 是平行四边形,∴FG =AE ,AG =EF ,∵EF AC ∥,∴∠BFE =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF ,∴四边形AEFG 的周长是2(AE +EF )=2(AE +BE )=2AB =2×8=16.故选:C【点睛】本题主要考查了平行四边形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的判定和性质,等腰三角形的性质是解题的关键.7. A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A. A B x x >且22A B S S >.B. A B x x >且22B A S S <.C. A B x x <且22A B S S >D. A B x x <且22B A S S <. 【答案】B【解析】 【分析】根据平均数、方差的定义,平均数越高成绩越好,方差越小成绩越稳定解答即可.【详解】根据平均数越高成绩越好,方差越小成绩越稳定.故选:B .【点睛】此题考查平均数、方差的定义,解答的关键是理解平均数、方差的定义,熟知方差是衡量一组数据波动大小的量,方差越小表明该组数据分布比较集中,即波动越小数据越稳定.8. 上学期某班的学生都是双人同桌,其中14男生与女生同桌,这些女生占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多,设上学期该班有男生x 人,女生y 人,根据题意可得方程组为( )A. 445x y x y +=⎧⎪⎨=⎪⎩B. 454x y x y +=⎧⎪⎨=⎪⎩C. 445x y x y -=⎧⎪⎨=⎪⎩D.454x y x y -=⎧⎪⎨=⎪⎩ 【答案】A【解析】【分析】设上学期该班有男生x 人,女生y 人,则本学期男生有(x +4)人,根据题意,列出方程组,即可求解.【详解】解:设上学期该班有男生x 人,女生y 人,则本学期男生有(x +4)人,根据题意得:445x y x y +=⎧⎪⎨=⎪⎩. 故选:A【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.9. 如图,在Rt ABC 和Rt BDE 中,90ABC BDE ∠=∠=︒,点A 在边DE 的中点上,若AB BC =,2DB DE ==,连结CE ,则CE 的长为( )C. 4【答案】D【解析】 【分析】过点E 作EF ⊥BC ,交CB 延长线于点F ,过点A 作AG ⊥BE 于点G ,根据等腰直角三角形的性质可得BE =,∠BED =45°,进而得到AB BC ==,EG AG AE ===,BG =,再证得△BEF ∽△ABG,可得BF EF ==,然后根据勾股定理,即可求解. 【详解】解:如图,过点E 作EF ⊥BC ,交CB 延长线于点F ,过点A 作AG ⊥BE 于点G ,在Rt BDE 中,∠BDE =90°,2DB DE ==,∴BE ==BED =45°,∵点A 在边DE 的中点上,∴AD =AE =1,∴AB ==,∴AB BC ==,∵∠BED =45°,∴△AEG 是等腰直角三角形,∴EG AG AE ===,∴BG = ∵∠ABC =∠F =90°,∴EF ∥AB ,∴∠BEF =∠ABG ,∴△BEF ∽△ABG , ∴BE BF EF AB AG BG====,解得:BF EF ==∴CF =,∴CE ==故选:D【点睛】本题主要考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理是解题的关键.10. 已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A. 52 B. 2 C. 32 D. 1【答案】B【解析】分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+ ∴2239(3)3(24ab a ka ka a k a k k =+=+=+- ∵ab 的最大值为9∴0k <,且当32a k =-时,ab 有最大值,此时994ab k =-= 解得14k =- ∴直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B . 【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值.卷Ⅱ(非选择题)二、填空题(本题有6小题)11. 分解因式:2m m +=___________.【答案】(1)m m +【解析】【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式技巧正确计算是解题关键. 12. 正八边形的一个内角的度数是____ 度.【的【答案】135【解析】【分析】根据多边形内角和定理:(n ﹣2)•180°(n≥3且n 为正整数)求出内角和,然后再计算一个内角的度数即可.【详解】正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为: 1080°÷8=135°,故答案为135.13. 不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是_____. 【答案】25 【解析】【分析】直接根据概率公式求解.【详解】解:∵盒子中装有3个红球,2个黑球,共有5个球, ∴从中随机摸出一个小球,恰好是黑球的概率是25; 故答案为:25. 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.14. 如图,在直角坐标系中,ABC 的顶点C 与原点O 重合,点A 在反比例函数ky x=(0k >,0x >)的图象上,点B 的坐标为(4,3),AB 与y 轴平行,若AB BC =,则k =_____.【答案】32【解析】【分析】根据AB BC =求出A 点坐标,再代入k y x=即可.【详解】∵点B 的坐标为(4,3)∴5OB ==∵AB BC =,点C 与原点O 重合,∴5AB BC BO ===∵AB 与y 轴平行,∴A 点坐标为(4,8)∵A 在k y x =上 ∴84k =,解得32k = 故答案为:32.【点睛】此题主要考查了反比例函数图象上点的坐标性质;得出A 点坐标是解题关键. 15. 某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).【答案】k n【解析】 【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:k PB x nPB ⋅=⋅ 解得k x n= 故答案为:k n . 【点睛】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.16. 如图,在廓形AOB 中,点C ,D 在 AB 上,将 CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则 E F 的度数为_______;折痕CD 的长为_______.【答案】 ①. 60°##60度②.【解析】【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可. 【详解】作O 关于CD 的对称点M ,则ON =MN 连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将 CD沿弦CD 折叠 ∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . ∴ME ⊥OA ,MF ⊥OB ∴90MEO MFO ∠=∠=︒ ∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即 E F 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF = ∴MEO MFO ≅ (HL )∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ====∴CD =故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.三、解答题(本题有8小题)17. (101)--. (2)解不等式:841x x +<-. 【答案】(1)1;(2)3x > 【解析】【分析】(1)根据零指数幂、立方根进行运算即可;(2)根据移项、合并同类项、系数化为1,进行解不等式即可. 【详解】(1)原式21=-1=. (2)移项得:418x x -<--, 合并同类项得:39x -<-, 系数化为得: 3x >.【点睛】此题考查了零指数幂、立方根、解不等式等知识,熟练掌握运算法则是解题的关键.18. 小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =,求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【答案】赞成小洁的说法,补充AB CB =,见解析 【解析】【分析】赞成小洁的说法,补充:AB CB =,由四边相等的四边形是菱形即可判断. 【详解】赞成小洁的说法,补充:AB CB =. 证明: AC BD ⊥,OB OD =,∴AB AD =,CB CD =.又∵AB CB =. ∴AB AD CB CD ===, ∴四边形ABCD 是菱形.【点睛】本题考查菱形的判定以及线段垂直平分线的性质,熟练掌握菱形的判定是解题的关键.19. 观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++ (2)见解析 【解析】【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++. (2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. 【小问1详解】解:∵第一个式子()1111123621221=+=+++, 第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++, ……∴第(n +1)个式子1111(1)n n n n =+++; 【小问2详解】解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边, ∴1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.20. 6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象. ②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少? (2)数学思考:请结合函数图象,写出该函数的两条性质或结论. (3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【答案】(1)①见解析;②200y =,21x =(2)①当27x ……时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x << 【解析】【分析】(1)①根据表格数据在函数图像上描点连线即可; ②根据函数图像估计即可;(2)从增减性、最值等方面说明即可;(3)根据图像找到y =260时所有的x 值,再结合图像判断即可. 【小问1详解】 ①②观察函数图象: 当4x =时,200y =;当y 的值最大时,21x =;21x =. 【小问2详解】 答案不唯一.①当27x ……时,y 随x 的增大而增大; ②当14x =时,y 有最小值80. 【小问3详解】根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<,【点睛】本题考查函数图像的画法、从函数图像获取信息,准确的画出函数图像是解题的关键.21. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长. (2)求点A ,B 之间的距离. 【答案】(1)3.4cm(2)22.2cm 【解析】【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得DF EF =,20DCF ECF ∠=∠=︒,再利用锐角三角函数,即可求解;(2)连结AB .设纸飞机机尾的横截面的对称轴为直线l ,可得对称轴l 经过点C .从而得到四边形DGCE 是矩形,进而得到DE =CG ,然后过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,可得1202GDC CEH DCE ∠=∠=∠=︒,从而得到2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,再利用锐角三角函数,即可求解.【小问1详解】解:如图2,过点C 作CF DE ⊥于点F ,∵CD CE =,∴DF EF =,CF 平分DCE ∠. ∴20DCF ECF ∠=∠=︒,∴sin 2050.34 1.7DF CD ︒=⋅≈⨯=, ∴2 3.4cm DE DF ==. 【小问2详解】解:如图3,连结AB .设纸飞机机尾的横截面的对称轴为直线l ,∵纸飞机机尾的横截面示意图是一个轴对称图形, ∴对称轴l 经过点C . ∴AB l ⊥,DE l ⊥, ∴AB ∥DE .过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H , ∵DG ⊥AB ,HE ⊥AB , ∴∠EDG =∠DGH =∠EHG =90°, ∴四边形DGCE 矩形, ∴DE =HG , ∴DG ∥l , EH ∥l , ∴1202GDC CEH DCE ∠=∠=∠=︒, ∵AD CD ⊥,BE ⊥CE ,∴2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,∴cos 20100.949.4,cos 20100.949.4AG AD BH BE =⋅︒≈⨯==⋅︒≈⨯=, ∴22.2cm AB BH AG DE =++=.【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.22. 某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名是中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下: 调查问卷(部分)1.你每周参加家庭劳动时间大约是_________h ,如果你每周参加家庭劳动时间不足2h ,请回答第2个问题;2.影响你每周参加家庭劳动的主要原因是_________(单选). A .没时间B .家长不舍得C .不喜欢D .其它中小学生每周参加家庭劳动时间x (h )分为5组:第一组(00.5x <…),第二组(0.51x <…),第三组(1 1.5x <…),第四组(1.52x <…),第五组(2x …).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组? (2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h ,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议. 【答案】(1)第二组(2)175人(3)该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量 【解析】【分析】(1)根据中位数的定义求解即可;(2)根据扇形统计图求出C 所占的比例再计算即可; (3)根据统计图反应的问题回答即可. 【小问1详解】1200人的中位数是按从小到大排列后第600和601位的平均数,而前两组总人数为308+295=603∴本次调查中,中小学生每周参加家庭劳动时间的中位数落在第二组; 【小问2详解】由扇形统计图得选择“不喜欢”的人数所占比例为143.2%30.6%8.7%17.5%---- 而扇形统计图只统计不足两小时的人数,总人数为1200-200=1000 ∴选择“不喜欢”的人数为100017.5%175⨯=(人) 【小问3详解】答案不唯一、言之有理即可.例如:该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量;③学校开设劳动拓展课程:等等.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23. 已知抛物线1L :2(1)4y a x =+-(0a ≠)经过点(1,0)A . (1)求抛物1L 的函数表达式.(2)将抛物线1L 向上平移m (0m >)个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移n (0n >)个单位得到抛物线3L .已知点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,若当6t >时,都有s r >,求n 的取值范围.【答案】(1)2()4y x =+-(2)4m =(3)3n > 【解析】【分析】(1)根据待定系数法即可求解. (2)根据平移的性质即可求解.(3)根据平移的性质对称轴为直线1x n =-,10a =>,开口向上,进而得到点P 在点Q 的左侧,分两种情况讨论:①当P ,Q 同在对称轴左侧时,②当P ,Q 在对称轴异侧时,③当P ,Q 同在对称轴右侧时即可求解. 【小问1详解】解:将(1,0)A 代入得:20(11)4a =+-, 解得:1a =,∴抛物线1L 的函数表达式:2()4y x =+-. 【小问2详解】∵将抛物线1L 向上平移m 个单位得到抛物线2L ,∴抛物线2L 的函数表达式:2(1)4y x m =+-+. ∴顶点(1,4)m --+,∴它关于O 的对称点为(1,4)m -, 将(1,4)m -代入抛物线1L 得:40m -=, ∴4m =. 【小问3详解】把1L 向右平移n 个单位,得3L :2(1)4y x n =+--,对称轴为直线1x n =-,10a =>,开口向上,∵点(8,)P t s -,(4,)Q t r -, 由6t >得:824t t -<<-, ∴点P 在点Q 的左侧,①当P ,Q 同在对称轴左侧时,14n t ->-,即3n t >-,∵6t >,∴3n >,②当P ,Q 在对称轴异侧时, ∵s r >,∴1(8)4(1)n t t n --->---, 解得:3n >,③当P ,Q 同在对称轴右侧时,都有s r <(舍去), 综上所述:3n >.【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象平移变换,熟练掌握待定系数法及平移的性质结,巧妙运用分类讨论思想是解题的关键.24. 如图1.在正方形ABCD 中,点F ,H 分别在边AD ,AB 上,连结AC ,FH 交于点E ,已知CF CH =.(1)线段AC 与FH 垂直吗?请说明理由.(2)如图2,过点A ,H ,F 的圆交CF 于点P ,连结PH 交AC 于点K .求证:KH AK CH AC=. (3)如图3,在(2)的条件下,当点K 是线段AC 的中点时,求CP PF 的值. 【答案】(1)AC FH ⊥,见解析(2)见解析(3)32CP PF = 【解析】【分析】(1)证明Rt Rt CDF CBH △△≌(HL ),得到DCF BCH ∠=∠,进一步得到FCA HCA ∠=∠,由△CFH 是等腰三角形,结论得证;(2)过点K 作KG AB ⊥于点G .先证△AKG ∽△ACB ,得AK KG AC CB=,证△KHG ∽CHB 可得KH KG CH CB=,结论得证; (3)过点K 作KG AB ⊥点G .求得12GH BH =,设GH a =,2BH a =,则KG =AG =GB =3a ,则CH CF =,勾股定理得FH =,EH =,由FPH HEC △∽△得PF FH EH CH=,得PF =,CP =,即可得到答案. 【小问1详解】证明:∵四边形ABCD 是正方形,∴CD CB =,90D B ∠=∠=︒,又∵CF CH =,∴Rt Rt CDF CBH △△≌(HL ),∴DCF BCH ∠=∠.又∵45DCA BCA ∠=∠=︒,∴FCA HCA ∠=∠.∵CF CH =∴△CFH 是等腰三角形,∴AC FH ⊥.【小问2详解】证明:如图1,过点K 作KG AB ⊥于点G .∵CB AB ⊥,∴KG CB ∥.∴AKG ACB △∽△, ∴AK KG AC CB=. ∵PHA DFC ∠=∠,DFC CHB ∠=∠,∴KHG CHB ∠=∠.∴KHG CHB △∽△, ∴KH KG CH CB=, ∴AK KH AC CH =. 小问3详解】解:如图2,过点K 作KG AB ⊥点G .∵点K 为AC 中点:由(2)得12KH AK CH AC ==, ∴12GH KH BH CH ==, 设GH a =,2BH a =,则3KG AG GB a ===,∴6CB AB a ==,4AH a =,∴CH CF =,∵AF AH =,【∴FH =,EH =,∵180FPH FAH ∠+∠=︒,∴90FPH CEH ∠=︒=∠,又∵CHE PFH ∠=∠,∴FPH HEC △∽△, ∴PF FH EH CH=.∴PF =,∴CP CF PF =-=, ∴32CP PF =. 【点睛】此题考查正方形的性质、相似三角形的判定和性质、勾股定理、直角三角形全等的判定定理等知识,熟练掌握相似三角形的判定和性质是解题的关键。
数学中考浙江试题及答案
数学中考浙江试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 4答案:B2. 函数y = 2x + 3的图象与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)答案:B3. 已知一个三角形的两个内角分别是30°和60°,那么第三个内角的度数是?A. 60°B. 90°C. 120°D. 150°答案:B4. 计算下列表达式的结果:(2x - 3)(x + 4)。
A. 2x^2 + 5x - 12B. 2x^2 - 5x + 12C. 2x^2 + 5x + 12D. 2x^2 - 5x - 12答案:A5. 一个数的平方根是4,那么这个数是?A. 16B. 8C. -16D. -8答案:A6. 已知一个圆的直径是10厘米,那么这个圆的周长是?A. 31.4厘米B. 15.7厘米C. 10厘米D. 5厘米答案:A7. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x > 1D. x < 1答案:A8. 计算下列表达式的结果:(3x^2 - 2x + 1) - (2x^2 + 3x - 4)。
A. x^2 - 5x + 5B. x^2 - 5x - 3C. x^2 + 5x + 5D. x^2 + 5x - 3答案:A9. 一个正方体的体积是64立方厘米,那么它的表面积是?A. 96平方厘米B. 256平方厘米C. 128平方厘米D. 384平方厘米答案:A10. 计算下列表达式的结果:(2x + 3)(2x - 3)。
A. 4x^2 - 9B. 4x^2 + 9C. 4x^2 + 6x - 9D. 4x^2 - 6x + 9答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是5,那么这个数可以是______。
浙江省舟山市中考数学试卷(解析版)
浙江省舟山市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选多选、错选,均不得分)1.(3分)(2014年浙江舟山)﹣3的绝对值是()A.﹣3 B. 3 C. D.考点:绝对值.专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣3|=3.故﹣3的绝对值是3.故选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014年浙江舟山)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A. 6 B.7 C.8 D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.(3分)(2014年浙江舟山)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A. 3.844×108B.3.844×107C.3.844×109D.38.44×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 400 000有9位,所以可以确定n=9﹣1=8.解答:解:384 400 000=3.844×108.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2014年浙江舟山)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.5.(3分)(2014年浙江舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B. 4 C. 6 D.8考点:垂径定理;勾股定理.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8,故选D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.6.(3分)(2014年浙江舟山)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6 D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.(3分)(2014年浙江舟山)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC 的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm考点:平移的性质.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.解答:解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8.(3分)(2014年浙江舟山)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A. 1.5 B. 2 C. 2.5 D. 3考点:圆锥的计算.分析:半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.解答:解:设圆锥的底面半径是r,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选D.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.(3分)(2014年浙江舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为()A.2cm B.2cm C.4cm D. 4cm考点:翻折变换(折叠问题).分析:先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.解答:解:∵点E,F分别是CD和AB的中点,∴EF⊥AB,∴EF∥BC,∴EG是△DCH的中位线,∴DG=HG,由折叠的性质可得:∠AGH=∠ABH=90°,∴∠AGH=∠AGD=90°,在△AGH和△AGD中,,∴△ADG≌△AHG(SAS),∴AD=AH,∠DAG=∠HAG,由折叠的性质可得:∠BAH=∠HAG,∴∠BAH=∠HAG=∠DAG=∠BAD=30°,在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=2,∴CD=AB=2.故选B.点评:本题考查了翻折变换、三角形的中位线定理,解答本题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质.10.(3分)(2014年浙江舟山)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D. 2或﹣或考点:二次函数的最值.专题:分类讨论.分析:根据对称轴的位置,分三种情况讨论求解即可.解答:解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时,二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.点评:本题考查了二次函数的最值问题,难点在于分情况讨论.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2014年浙江舟山)方程x2﹣3x=0的根为0或3 .考点:解一元二次方程-因式分解法.分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.(4分)(2014年浙江舟山)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.13.(4分)(2014年浙江舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.考点:列表法与树状图法.分析:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.解答:解:由题意可画出树状图:,所有的可能有9种,两人同坐3号车的概率为:.故答案为:.点评:此题主要考查了树状图法求概率,列举出所有可能是解题关键.14.(4分)(2014年浙江舟山)如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为 6 .考点:旋转的性质;相似三角形的判定与性质.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.(4分)(2014年浙江舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).考点:两条直线相交或平行问题.分析:依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.解答:解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为(1,4),(3,1).点评:本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.16.(4分)(2014年浙江舟山)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是①③⑤.考点:圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的性质;相似三角形的判定与性质.专题:推理填空题.分析:(1)由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.(2)根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.(3)连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一”可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.(4)利用相似三角形的判定与性质可证到△DBF是等边三角形,只需求出BF就可求出DB,进而求出AD长.(5)首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积.解答:解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图2所示.∵AB是半圆的直径,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.(3)当AD=2时,连接OC,如图3所示.∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB、AF,如图4所示.∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴=.∵FC=EF,∴FH=FD.∴FH=DH.∵DE∥BC,∴∠FHC=∠FDE=90°.∴BF=BD.∴∠FBH=∠DBH=30°.∴∠FBD=60°.∵AB是半圆的直径,∴∠FAB=30°.∴FB=AB=4.∴DB=4.∴AD=AB﹣DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×4=16.∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.故答案为:①、③、⑤.点评:本题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,综合性强,有一定的难度.三、解答题(本题有8小题,第17~19题每小题6分,第20,21题每小题6分,第22,23题每小题6分,第24题12分,共66分)17.(6分)(2014年浙江舟山)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果.解答:解:(1)原式=2+4﹣4×=2+4﹣2=4;(2)原式=x2+4x+4﹣x2+3x=7x+4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014年浙江舟山)解方程:=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x﹣1)﹣4=x2﹣1,去括号得:x2﹣x﹣4=x2﹣1,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.19.(6分)(2014年浙江舟山)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:选项频数频率A m 0.15B 60 pC n 0.4D 48 0.2(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)用D选项的频数除以D选项的频率即可求出被调查的学生人数;(2)用被调查的学生人数乘以A选项的和C频率求出m和n,用B选项的频数除以被调查的学生人数求出p,再画图即可;(3)用该校的总人数乘以该校全体学生中选择B选项频率即可.解答:解:(1)这次被调查的学生有48÷0.2=240(人);(2)m=240×0.15=36,n=240×0.4=96,p==0.25,画图如下:(3)若该校有1600名学生,则该校全体学生中选择B选项的有1600×0.25=400(人).点评:此题考查了条形统计图和频数、频率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.20.(8分)(2014年浙江舟山)已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.解答:(1)证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFED为菱形,理由:∵△DOE≌△BOF,∴BF=DE,又∵BF∥DE,∴四边形EBFD是平行四边形,∵BO=DO,∠EOD=90°,∴EB=DE,∴四边形BFED为菱形.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键.21.(8分)(2014年浙江舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A 型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.(10分)(2014年浙江舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点:二次函数的应用;反比例函数的应用.分析:(1)①利用y=﹣200x2+400x=﹣200(x﹣1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班.解答:解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.点评:此题主要考查了反比例函数与二次函数综合应用,根据图象得出正确信息是解题关键.23.(10分)(2014年浙江舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.考点:四边形综合题.分析:(1)利用“等对角四边形”这个概念来计算.(2)①利用等边对等角和等角对等边来证明;②举例画图;(3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;(Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.解答:解:(1)如图1∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣70°﹣80°﹣80°=130°;(2)①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,(3)(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,∴BE=AB﹣AE=5﹣2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.24.(12分)(2014年浙江舟山)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.考点:二次函数综合题.专题:综合题.分析:(1)首先可得点A的坐标为(m,m2),再由m的值,确定点B的坐标,继而可得点E的坐标及BE、OE的长度,易得△ABE∽△CBO,利用对应边成比例求出CO,根据轴对称的性质得出DO,继而可求解S的值;(2)分两种情况讨论,(I)当0<m<2时,将BE•DO转化为AE•BO,求解;(II)当m >2时,由(I)的解法,可得S关于m的函数解析式;(3)①首先可确定点A的坐标,根据===k,可得S△ADF=k•S△BDF•S△AEF=k•S△BEF,从而可得===k,代入即可得出k的值;②可得===k,因为点A的坐标为(m,m2),S=m,代入可得k与m的关系.解答:解:(1)∵点A在二次函数y=x2的图象上,AE⊥y轴于点E且AE=m,∴点A的坐标为(m,m2),当m=时,点A的坐标为(,1),∵点B的坐标为(0,2),∴BE=OE=1.∵AE⊥y轴,∴AE∥x轴,∴△ABE∽△CBO,∴==,∴CO=2,∵点D和点C关于y轴对称,∴DO=CO=2,∴S=BE•DO=×1×2=;(2)(I)当0<m<2时(如图1),∵点D和点C关于y轴对称,∴△BOD≌△BOC,∵△BEA∽△BOC,∴△BEA∽△BOD,∴=,即BE•DO=AE•BO=2m.∴S=BE•DO=×2m=m;(II)当m>2时(如图2),同(I)解法得:S=BE•DO=AE•OB=m,由(I)(II)得,S关于m的函数解析式为S=m(m>0且m≠2).(3)①如图3,连接AD,∵△BED的面积为,∴S=m=,∴点A的坐标为(,),∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∴k===;②k与m之间的数量关系为k=m2,如图4,连接AD,∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∵点A的坐标为(m,m2),S=m,∴k===m2(m>2).点评:本题考查了二次函数的综合,涉及了三角形的面积、比例的性质及相似三角形的判定与性质、全等三角形的性质,解答本题的关键是熟练数形结合思想及转化思想的运用,难度较大.。
浙江省舟山市中考数学真题试卷(解析版)
数学浙江省舟山市中考数学试题一.选择题(本题有10小题,每题3分,共30分.请选出各题中唯一正确选项,不选.多选.错选,均不得分)1. 下列几何体中,俯视图...为三角形是()A. B. C. D.【答案】C【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到是上表面;C中,三棱柱从正上看,看到是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A.圆锥俯视图是带圆心圆,故本选项错误;B.长方体俯视图均为矩形,故本选项错误;C.三棱柱俯视图是三角形,故本选项正确.D.四棱锥俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图知识,从上面向下看,想象出平面投影是解答重点;2. 20185月25日,中国探月工程“鹊桥号”中继星成功运行于地月拉格朗日点,它距离地球约.数1500000用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数.【解答】解:将1500000用科学记数法表示为:.故选B.【点评】本题考查了科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.3. 20181~4月我国新能源乘用车月销售情况如图所示,则下列说法错误..是()A. 1月份销售为2.2万辆B. 从2月到3月月销售增长最快C. 4月份销售比3月份增加了1万辆D. 1~4月新能源乘用车销售逐月增加【答案】D【解析】【分析】观察折线统计图,一一判断即可.【解答】观察图象可知:A. 1月份销售为2.2万辆,正确.B.从2月到3月月销售增长最快,正确.C., 4月份销售比3月份增加了1万辆,正确.D. 1~4月新能源乘用车销售先减少后增大.故错误.故选D.【点评】考查折线统计图,解题关键是看懂图象.4. 不等式解在数轴上表示正确是()A.B.C.D.【答案】A【解析】【分析】根据解不等式,可得不等式解集,根据不等式解集在数轴上表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式解集,解一元一次不等式,解题关键是解不等式.5. 将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边虚线剪去一个角,展开铺平后图形是()A.(A)B.(B)C.(C)D.(D)【答案】A【解析】【分析】根据两次折叠都是沿着正方形对角线折叠, 展开后所得图形顶点一定在正方形对角线上, 根据③剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形对角线折叠,根据③剪法,展开后所得图形顶点一定在正方形对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠过程,得到关键信息,如本题得到展开后图形顶点在正方形对角线上是解题关键.6. 用反证法证明时,假设结论“点在圆外”不成立,那么点与圆位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【答案】D【解析】【分析】在假设结论不成立时要注意考虑结论反面所有可能情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定。
舟山市中考数学真题含答案
舟山市2015年中考数学真题(含答案)舟山市2015年中考数学真题(含答案)一、选择题(本题有10小题,每小题3分,共30分)1.计算2-3的结果是A.-1B.-2C.1D.22.下列四个图形分别是四届国际数学家大会的会标:其中属于中心对称图形的有A.1个B.2个C.3个D.4个3.截至今年4月10日,舟山全市蓄水量为84327000m3,数据84327000用科学计数法表示为A.0.8437×108B.8.437×107C.8.437×108D.8437×1034.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是A.5B.100C.500D.100005.如图,直线∥∥,直线AC分别交,,于点A,B,C;直线DF分别交,,于点D,E,F。
AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为A.B.2C.D.6.与无理数最接近的整数是A.4B.5C.6D.77.如图,在△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙O的半径为A.2.3B.2.4C.2.5D.2.68.一元一次不等式≥4的解在数轴上表示为9.数学活动课上,四位同学围绕作图问题:“如图,已知直线和外一点P,用直尺和圆规作直线PQ,使PQ⊥于点Q。
”分别作出了下列四个图形。
其中作法错误的是10.如图,抛物线交轴于点A(,0)和B(,0),交轴于点C,抛物线的顶点为D。
下列四个命题:①当时,;②若,则;③抛物线上有两点P(,)和Q(,),若,且,则;④点C关于抛物线对称轴的对称点为E,点G,F分别在轴和轴上,当时,四边形EDFG周长的最小值为。
其中真命题的序号是A.①B.②C.③D.④二、填空题(本题有6小题,每小题4分,共24分)11.因式分解:=▲12.把二次函数化为形如的形式:▲13.把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是▲14.一张三角形纸片ABC,AB=AC=5。
浙江省舟山市中考数学试卷及答案.doc
浙江省舟山市中考数学试卷一、选择题(本题有12小题,每小题4分,共48分,其中只有一个选项是正确的,不选、多选、错选均不给分)1.下列各数中是正整数的是().A.1 B.-2 C.0.3 D .22.如图,长方体的面有().A.4个 B.5个 C.6个 D.7个3.要使根式3x-有意义,则字母x的取值范围是()A.x≠3 B.x≤3 C.x>3 D.x≥34.下列计算正确的是().A.(ab)2=ab2B.a2·a3=a4C.a5+a5=2a5D.(a2)3=a65.已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为().A.15πcm2B.cm2C.12πcm2D.30πcm26.如图,已知A、B、C是⊙O上的三点,若∠ACB=44°,则∠AOB的度数为().A.44° B.46° C.68° D.88°7.已知反比例函数的图象经过点(-2,1),则反比例函数的表达式为()A.y=-2xB.y=2xC.y=-12xD.y=12x8.用换元法解方程21xx--21xx-+2=0,如果设y=21xx-,那么原方程可化为().A.y2-y+2=0 B.y2+y-2=0C.y2-2y+1=0 D.y2+2y-1=09.二次函数y=x2+10x-5的最小值为().A.-35 B.-30 C.-5 D.0.我们知道,“两点之间线段最短”,“直线外一点与直线上各点连结的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O于A、B两点,PC切⊙O于点C,则点P到⊙O 的距离是().A.线段PO的长度 B.线段PA的长度C.线段PB的长度 D.线段PC的长度11.数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为().A.S△ABC>S△DEF B.S△ABC<S△DEF C.S△ABC=S△DEF D.不能确定12.假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,•从一间蜂房爬到右边相邻的蜂房中去.例如.蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法().A.7 B.8 C.9 D.10二、填空题(本大题为选做题,在8小题中做对6小题即得满分30分,•多做答错不扣分)13.分解因式:x2-4=_______.14.已知2,则代数式a2-1的值为________.15.如图,一扇窗户打开后,用窗钩BC可将其固定,•这里所运用的几何原理是________.16.小宁想知道校园内一棵大树的高度(如图),他测得CB的长度为10米,∠ACB=•50°,请你帮他算出树高AB约为________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50•°≈1.2)17.请写出一个图象不经过...第二象限的一次函数解析式_______.18.已知正六边形的外接圆的半径是a,则正六边形的周长是________.19.日常生活中,“老人”是一个模糊概念,•有人想用“老人系数”来表示一个人的老年人的年龄x(岁)x≤60 60<x<80 x≥80x- 1该人的“老人系数” 0 6020按照这样的规定,一个年龄为70岁的人,他的“老人系数”为________.刚中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;•②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟,以上各道工序,除④外,一次只能进行一道工序,小刚要将面条煮好,最少用________分钟.三、解答题(共7题,第21题~23题每题8分,第24题10分,第25、26题每题12分,•第27题14分,共72分)π)021.(本题8分)计算:8+|-2|-(3-22.(本题8分)学习了统计知识后,•班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,•请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数.(2)求该班共有多少名学生.(3)在图1中,将表示“乘车”的部分补充完整.23.(本题8分)设x 1、x 2是关于x 的方程x 2-(m-1)x-m=0(m ≠0)的两个根,且满足11x+21x =-23,求m 的值. 24.(本题10分)如果正方形网格中的每一个小正方形边长都是1,则每个小格的顶点叫做格点. (1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为35、22. (2)在图2中,线段AB 的端点在格点上,请画出以AB 为一边的三角形,•使这个三角形的面积为6(要求至少画出3个).(3)在图3中,△MNP 的顶点M 、N 在格点上,P 在小正方形的边上,•问这个三角形的面积相当于多少个小方格的面积?在你解出答案后,说说你的解题方法.25.(本题12分)近阶段国际石油价格猛涨,中国也受其影响,为了降低运行成本,•部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.假设一辆出租车日平均行程为300千米.(1)使用汽油的出租车,假设每升汽油能行驶12千米.当前的汽油价格为4.6•元/升,当行驶时间为t天时,所耗的汽油费用为p元,试写出p关于t的函数关系式.(2)使用液化气的出租车,假设每千克液化气能行驶15~16千米,•当前的液化气价格为4.95元/千克,当行驶时间为t天时,所耗的液化气费用为w元,试求w•的取值范围(用t表示).(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)、(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益(用字谈谈感想).26.(本题12分)如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).(1)求抛物线的对称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP•是什么四边形?并证明你的结论;(3)连结CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.27.(本题14分)如图1,在直角坐标系中,点A的坐标为(1,0),•以OA•为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连结BC,•以BC•为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论.(2)随着点C位置的变化,点E的位置是否会发生变化,若没有变化,求出点E•的坐标;若有变化,请说明理由.(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.参考答案一、选择题(本题有12小题,每小题4分,共48分)1.A 2.C 3.D 4.C 5.A 6.D 7.A 8.D 9.B 10.B 11.C 12.B 二、填空题(本大题为选做题,在8小题中做对6小题即得满分30分,•多做答错不扣分) 13.(X+2)(x-2) 14.1 15.三角形具有稳定性 16.12 17.k>0,b≤0即可•18.6a 19.0.5(填12不扣分)2三、解答题(共7题,第21~23题每题8分,第24题10分,第25、26题每题12分,•第27题14分,共72分)21.解:8+|-2|-(3-π)0=22+2-1=22+122.解:(1)(1-50%)×360°=108°(2)0%=40(人)(3)画图正确23.解:∵△=(m+1)2≥0.∴对于任意实数m,方程恒有两个实数根x1、x2.又∵x1+x2=m-1,x1x2=-m,且m≠0,∴11x+21x=-23,∴1212x xx x+=-23,∴1mm--=-23,3m-3=2m∴m=324.25.解:(1)p=300×4.612t,即p=115t(2)300×4.9516t≤w≤300×4.9516t,即148516t≤w≤99t(3)115t-99t≤8000t≤500答:最多500天能收回改装设备的成本.26.解:(1)x=-42aa=-2,∴抛物线的对称轴是直线x=-2设点A的坐标为(x,0),12x-+=-2,∴x=-3,A的坐标(-3,0)(2)四边形ABCP是平行四边形∵CP=2,AB=2,∴CP=AB又∵CP∥AB∴四边形ABCP是平行四边形(3)通过△ADE ∽△CDP 得出DE :PD=1:2 或通过△ADE ∽△ACO 得出AD :AC=1:3通过△ADE ∽△PAE 得出方程12=3t·t或通过△APD ∽△ACP 得出方程t 2+1=13解得将B (-1,0)代入抛物线y=a x 2+4ax+t ,得t=3a ,a=3抛物线的解析式为y=3x 2+327.解:(1)两个三角形全等∵△AOB 、△CBD 都是等边三角形 ∴OBA=∠CBD=60°∴∠OBA+∠ABC=∠CBD+∠ABC 即∠OBC=∠ABD ∵OB=AB ,BC=BD △OBC ≌△ABD(2)点E 位置不变 ∵△OBC ≌△ABD ∴∠BAD=∠BOC=60°∠OAE=180°-60°-60°=60°在Rt △EOA 中,EO=OA ·tan60°或∠AEO=30°,得AE=2,∴∴点E 的坐标为(0)(3)∵AC=m,AF=n,由相交弦定理知1·m=n·AG,即AG=m n又∵OC是直径,∴OE是圆的切线,O E2=EG·EF 在Rt△EOA中,31+3)2=(2-mn)(2+n)即2n2+n-2m-mn=0解得m=222n nn++.。
年舟山市中考数学试题
年舟山市中考数学试卷一•仔细选一选(本题有个小题。
每小题分。
共分 )下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的宇母填在答题卷中相应的格子内•注意可以用多种不同的方法来选取正确答案.•下列运算的结果中,是正数的是() ()() ()()()()X ()()() 十 •点在第二象限内,至峙由的距离是,至峙由的距离是,那么点的坐标为 ()(,)()(,)()(,)()(,)•如图,用放大镜将图形放大,应该属于 ()()相似变换()平移变换()对称变换()旋转变换•有一组数据如下:,,,,,,,•那么,这组数据的中位数是 ()()或()()()•因式分解()的结果是()()()() ()()() ()()() ()()()•如图,正三角形内接于圆,动点在圆周的劣弧上,且不与,重合,则/等于()()()()().如图,在高楼前点测得楼顶的仰角为,向高楼前进M 到点,又测得仰角为,则该高楼的高度大约为() • ()M ()M ()M ()M .如果函数(< , <)和(>)的图象交于点,那么点应该位于()()第一象限 () 第二象限 () 第三象限 () 第四象限•右图背景中的点均为大小相同的小正方形的顶点, 其中画有两个四边形,下列叙述中正确的是()()这两个四边形面积和周长都不相同()这两个四边形面积和周长都相同()这两个四边形有相同的面积,但的周长大于n 的周长 ()这两个四边形有相同的面积,但的周长小于n 的周长 •将三粒均匀的分别标有,,,,,的正六面体骰子同时掷出,出现的数字分别为, ,,则,,正好是直 要注意仔细看清题目的条件和要填写的内容。
尽量完整地 填写答案..两圆的半径分别为和,当这两圆相交时,圆心距 的取值范围是 ••抽取某校学生一个容量为的样本,测得学生身高角三角形三边长的概率是 ( ) 11 八 丄八 1 () () () ()— 216 72 36 12二•仔细填一填 (本题有个小题, 每小题分,共分后,得到身高频数分布直方图如右,已知该校有学生人,则可以估计出该校身高位于160cm至165cm之间的学生大约有_____________ 人.• 一个等腰三角形的一个外角等于,则这个三角形的三个角应该为__________ .•抛物线()的顶点为,已知的图象经过点,则这个一次函数图象与两坐标轴所围成的三角形面积为_________________ •…、「a i x + by = G 「x=3 「3ax+2by=5c•三个同学对问题“若方程组1' 的解是,求方程组' 的Hx+b z yN 』=4 j3a2x+2p y= 5q 解•”提出各自的想法•甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以,通过换元替代的方法来解决” •参考他们的讨论,你认为这个题目的解应该是______________________ •1•如图,是一块半径为的半圆形纸板,在的左下端剪去一个半径为 -的半圆后得到图形,然后依次2剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形,,…,,…,记纸板的面积为,试计算求出___________ ; _____________ ;三•全面答一答(本题有个小题,共分)解答应写出文字说明。
以往浙江省舟山市中考数学真题及答案
以往浙江省舟山市中考数学真题及答案一、选择题(共10小题,每小题3分,满分30分)1.(-2)0等于( A )A.1 B.2 C.0 D.-2【考点】零指数幂.【专题】计算题.【分析】根据0指数幂的定义直接解答即可.【解答】解:(-2)0=1.故选A.【点评】本题考查了0指数幂,要知道,任何非0数的0次幂为1.2.下列图案中,属于轴对称图形的是( A )A. B. C. D.【考点】轴对称图形.【专题】【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知B、C、D都不是轴对称图形,只有A是轴对称图形.故选A.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( C )A.0.35×108B.3.5×107C.3.5×106D.35×105【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,因为350万共有7位,所以n=7-1=6.【解答】解:350万=3 500 000=3.5×106.故选C.【点评】本题考查了科学记数法表示较大的数,准确确定n是解题的关键4.如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于( B )A.15°B.20°C.30°D.70°【考点】切线的性质.【专题】【分析】由BC与⊙0相切于点B,根据切线的性质,即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度数,然后由OA=OB,利用等边对等角的知识,即可求得∠A的度数.【解答】解:∵BC与⊙0相切于点B,∴OB⊥BC,∴∠OBC=90°,∵∠ABC=70°,∴∠OBA=∠OBC-∠ABC=90°-70°=20°,∵OA=OB,∴∠A=∠OBA=20°.故选B.【点评】此题考查了切线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用,注意圆的切线垂直于经过切点的半径定理的应用.5.若分式12xx-+的值为0,则( D )A.x=-2 B.x=0 C.x=1或2 D.x=1 【考点】分式的值为零的条件.【专题】概念题.【分析】先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式12xx-+的值为0,∴-=⎧⎨+≠⎩x10x20,解得x=1.故选D.【点评】本题考查的是分式的值为0的条件,根据题意列出关于x的不等式组是解答此题的关键.6.如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( C )米.A.a sin40°B.a cos40° C.a tan40° D.tan40a【考点】解直角三角形的应用.【专题】【分析】直接根据锐角三角函数的定义进行解答即可.【解答】解:∵△ABC中,AC= a米,∠A=90°,∠C=40°,∴AB=a tan40°.故选C.【点评】本题考查的是解直角三角形的应用及锐角三角函数的定义,熟知锐角三角函数的定义是解答此题的关键.7.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为( B )A.15πcm2B.30πcm2C.60πcm2D.391 cm2【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可.【解答】解:这个圆锥的侧面积=π×3×10=30πcm2,故选B.【点评】考查圆锥的计算;掌握圆锥的侧面积计算公式是解决本题的关键.8.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是( C )A.14B.310C.12D.34【考点】列表法与树状图法.【专题】新定义.【分析】首先根据题意画出树状图,由树状图即可求得所有等可能的结果与与2组成“V 数”的情况,利用概率公式即可求得答案.【解答】解:画树状图得:∵可以组成的数有:321,421,521,123,423,523,124,324,52 4,125,325,425,其中是“V数”的有:423,523,324,524,325,425,∴从1,3,4,5中任选两数,能与2组成“V数”的概率是:61 122=.故选C.【点评】此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9.如图,已知△ABC中,∠CAB=∠B=30°,AB=2 3,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为( A )A.33-B.31-C.33- D33-【考点】翻折变换(折叠问题).【专题】【分析】首先过点D作DE⊥AB′于点E,过点C作CF⊥AB,由△ABC中,∠CAB=∠B=30°,AB=23,利用等腰三角形的性质,即可求得AC的长,又由折叠的性质,易得∠CDB′=90°,∠B′=30°,B′C=AB′-AC=232-,继而求得CD与B′D 的长,然后求得高DE的长,继而求得答案.【解答】解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=23,∴AC=BC,∴AF=12AB=3,∴AC32 cos3AFCAB===∠,由折叠的性质得:AB′=AB=23,∠B′=∠B=30°, ∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′-AC=232-,∴CD=12B′C= 31-,B′D=B′C•cos∠B′=3(232)33-⨯=-,∴•(31)(33)33=2232'---=='-CD B DDEB C,∴S阴影=12AC•DE=1333322--⨯⨯=.故选A.【点评】此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.10.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A 时运动停止.设点P 运动的路程长为长为x,AP 长为y,则y 关于x 的函数图象大致是( D )A .B .C .D . 【考点】动点问题的函数图象. 【专题】【分析】根据题意设出点P 运动的路程x 与点P 到点A 的距离y 的函数关系式,然后对x 从0到222a a +时分别进行分析,并写出分段函数,结合图象得出得出答案.【解答】解:设动点P 按沿折线A →B →D →C →A 的路径运动,∵正方形ABCD 的边长为a,∴2a,则当0≤x <a 时,y=x,当a ≤x <(2)a 时,2222()()22a y a a x =++-当a (2x <a (2,22(2)y a x a a =+--当a (2x ≤a (2)时,(222)y a x =+-,结合函数解析式可以得出第2,3段函数解析式不同,得出A 选项一定错误, 根据当a ≤x <(2)a 时,函数图象被P 在BD 中点时,分为对称的两部分,故B 选项错误,再利用第4段函数为一次函数得出,故C 选项一定错误, 故只有D 符合要求,故选:D .【点评】此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.二、填空题(共6小题,每小题4分,满分24分) 11.当a=2时,代数式3a-1的值是 5 . 【考点】代数式求值. 【专题】【分析】将a=2直接代入代数式即可求出代数式3a-1的值. 【解答】解:将a=2直接代入代数式得,3a-1=3×2-1=5. 故答案为5.【点评】本题考查了代数式求值,要学会替换,即将字母换成相应的数.12.因式分解:a 2-9= (a+3)(a-3) . 【考点】因式分解-运用公式法. 【专题】【分析】a 2-9可以写成a 2-32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a 2-9=(a+3)(a-3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键. 13.在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D,若CD=4,则点D 到斜边AB 的距离为 4 .【考点】角平分线的性质.【专题】计算题.【分析】根据角平分线的性质定理,解答出即可;【解答】解:如右图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故答案为:4.【点评】本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等.14.如图是嘉兴市某6天内的最高气温折线统计图,则最高气温的众数是 9℃.【考点】众数;折线统计图.【专题】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:9℃出现了2次,出现次数最多,故众数为9,故答案为:9.【点评】本题属于基础题,考查了确定一组数据的众数的能力.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.如图,已知⊙O的半径为2,弦AB⊥半径OC,沿AB将弓形ACB翻折,使点C与圆心O重合,则月牙形(图中实线围成的部分)的面积是423 3π+.【考点】扇形面积的计算;翻折变换(折叠问题).【专题】【分析】首先求出AB=23,∠AOB=120°,再利用S弓形ACB=S扇形AOB-S△AOB,以及月牙形的面积是S圆-2S弓形ACB即可得出答案.【解答】解:连接OA,OB,∵OC⊥AB于E,根据题意,得OE=12OC=12OB=1,则∠ABO=30°,BE=413-=, ∴AB=23,∠AOB=120°.S弓形ACB=S扇形AOB-S△AOB120414=336023AB EOππ⨯=-⨯-则月牙形(图中实线围成的部分)的面积是:S圆-2S弓形ACB=4442(3)=2333πππ=--+,故答案为:4233π+.【点评】此题主要考查了扇形面积求法以及不规则图形面积计算方法,根据已知图象得出月牙形的面积=S圆-2S弓形ACB是解题关键.16.如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:①AG AB =FG FB ;②∠ADF=∠CDB;③点F是GE的中点;④AF= 2 3 AB;⑤S△ABC=5S △BDF,其中正确结论的序号是①②④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【专题】【分析】由△AFG∽△BFC,可确定结论①正确;由△ABG≌△BCD,△AFG≌△AFD,可确定结论②正确;由△AFG≌△AFD可得FG=FD>FE,所以点F不是GE中点,可确定结论③错误;由△AFG≌△AFD可得AG=12AB=12BC,进而由△AFG∽△BFC确定点F为AC的三等分点,可确定结论④正确;因为F为AC的三等分点,所以S△ABF=13S△ABC,又S△BDF=12S△ABF,所以S△ABC=6S△BDF,由此确定结论⑤错误.【解答】解:依题意可得BC∥AG,∴△AFG∽△BFC,∴AG FG BC FB=,又AB=BC,∴AG FG AB FB=.故结论①正确;如上图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,∠=∠⎧⎪=⎨⎪∠=∠=︒⎩34AB BCBAG CBD 90 , ∴△ABG ≌△BCD (ASA ), ∴AG=BD,又BD=AD,∴AG=AD ; 在△AFG 与△AFD 中,AG=AD ∠FAG=∠FAD=45° AF=AF , ∴△AFG ≌△AFD (SAS ),∴∠5=∠2, 又∠5+∠3=∠1+∠3=90°,∴∠5=∠1, ∴∠1=∠2,即∠ADF=∠CDB . 故结论②正确;∵△AFG ≌△AFD,∴FG=FD,又△FDE 为直角三角形,∴FD >FE, ∴FG >FE,即点F 不是线段GE 的中点. 故结论③错误;∵△ABC 为等腰直角三角形,∴AC=2AB ; ∵△AFG ≌△AFD,∴AG=AD=12AB=12BC ; ∵△AFG ∽△BFC,∴AG BC =AF FC ,∴FC=2AF, ∴AF=13AC=23AB .故结论④正确;∵AF=13AC,∴S △ABF =13S △ABC ;又D 为中点,∴S △BDF =12S △ABF , ∴S △BDF =16S △ABC ,即S △ABC =6S △BDF .故结论⑤错误.综上所述,结论①②④正确, 故答案为:①②④.【点评】本题考查了等腰直角三角形中相似三角形与全等三角形的应用,有一定的难度.对每一个结论,需要仔细分析,严格论证;注意各结论之间并非彼此孤立,而是往往存在逻辑关联关系,需要善加利用.三、解答题(共8小题,满分66分) 17.计算:(1)25163-+-(2)(x+1)2-x (x+2)【考点】整式的混合运算;实数的运算. 【专题】计算题. 【分析】(1)根据绝对值、平方根、平方的定义分别计算,然后再进行加减运算;(2)先根据完全平方公式和单项式乘以多项式法则将原式展开,再合并同类项.【解答】解:(1)原式=5+4-9=0;(2)原式=x 2+2x+1-x 2-2x=1.【点评】本题考查了整式的混合运算、实数的运算,要熟悉其运算法则. 18.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集. 【专题】计算题.【分析】根据一元一次不等式的解法,去括号,移项,合并同类项,系数化为1即可得解.【解答】解:去括号得,2x-2-3<1,移项、合并得,2x<6,系数化为1得,x<3.在数轴上表示如下:【点评】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.19.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【考点】菱形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【解答】(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°-∠ABO=40°.【点评】本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.【考点】条形统计图;用样本估计总体;扇形统计图. 【专题】 【分析】(1)根据扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,即可得出被抽取的总天数;(2)利用轻微污染天数是50-32-8-3-1-1=5天;表示优的圆心角度数是850×360°=57.6°,即可得出答案;(3)利用样本中优和良的天数所占比例得出一年(365天)达到优和良的总天数即可. 【解答】解:(1)∵扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天); (2)轻微污染天数是50-32-8-3-1-1=5天; 表示优的圆心角度数是8 50 ×360°=57.6°, 如图所示:(3)∵样本中优和良的天数分别为:8,32,∴一年(365天)达到优和良的总天数为:8+32 50 ×365=292(天). ∴估计该市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 21.如图,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于点A (2,3)和点B,与x 轴相交于点C (8,0). (1)求这两个函数的解析式; (2)当x 取何值时,y 1>y 2.【考点】反比例函数与一次函数的交点问题. 【专题】计算题.【分析】(1)将A 、B 中的一点代入2my x=,即可求出m 的值,从而得到反比例函数解析式,把 A (2,3)、C (8,0)代入y 1=kx+b,可得到k 、b 的值; (2)根据图象可直接得到y1>y2时x 的取值范围. 【解答】解:(1)把 A (2,3)代入2my x=,得m=6. 把 A (2,3)、C (8,0)代入y 1=kx+b,得 k=-12k =-,b=4,∴这两个函数的解析式为1142y x =-+,26y x=;(2)由题意得121426y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得1161x y =⎧⎨=⎩,2223x y =⎧⎨=⎩,当x <0 或 2<x <6 时,y 1>y 2. 【点评】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.22.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x 辆车时,每辆车的日租金为 1400-50x 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏? 【考点】二次函数的应用. 【专题】 【分析】(1)根据当全部未租出时,每辆租金为:400+20×50=1400元,得出公司每日租出x 辆车时,每辆车的日租金为:1400-50x ;(2)根据已知得到的二次函数关系求得日收益的最大值即可;(3)要使租赁公司日收益不盈也不亏,即:y=0.即:50 (x-14)2+5000=0,求出即可. 【解答】解:(1)∵某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆; ∴当全部未租出时,每辆租金为:400+20×50=1400元, ∴公司每日租出x 辆车时,每辆车的日租金为:1400-50x ; 故答案为:1400-50x ; (2)根据题意得出:y=x (-50x+1400)-4800,=-50x 2+1400x-4800,=-50(x-14)2+5000.当x=14时,在范围内,y 有最大值5000.∴当日租出14辆时,租赁公司日收益最大,最大值为5000元.(3)要使租赁公司日收益不盈也不亏,即:y=0.即:50(x-14)2+5000=0,解得x 1=24,x 2=4,∵x=24不合题意,舍去.∴当日租出4辆时,租赁公司日收益不盈也不亏.【点评】本题考查了列代数式及二次函数的应用和一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出代数式或函数关系式是解题关键.23.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB ′C ′,即如图①,我们将这种变换记为[θ,n]. (1)如图①,对△ABC 作变换[60°,3]得△AB ′C ′,则S △AB ′C ′:S △ABC = 3 ;直线BC 与直线B ′C ′所夹的锐角为 60 度;(2)如图②,△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B 、C 、C ′在同一直线上,且四边形ABB'C'为矩形,求θ和n 的值;(3)如图③,△ABC 中,AB=AC,∠BAC=36°,BC=l,对△ABC 作变换[θ,n]得△AB ′C ′,使点B 、C 、B ′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n 的值.【考点】相似三角形的判定与性质;解一元二次方程-公式法;平行四边形的性质;矩形的性质;旋转的性质.【专题】代数几何综合题.【分析】(1)由旋转与相似的性质,即可得S △AB ′C ′:S △AB C=3,然后由△ABN 与△B ′MN 中,∠B=∠B ′,∠ANB=∠B ′NM,可得∠BMB ′=∠BAB ′,即可求得直线BC 与直线B ′C ′所夹的锐角的度数;(2)由四边形 ABB ′C ′是矩形,可得∠BAC ′=90°,然后由θ=∠CAC ′=∠BAC ′-∠BAC,即可求得θ的度数,又由含30°角的直角三角形的性质,即可求得n 的值;(3)由四边形ABB ′C ′是平行四边形,易求得θ=∠CAC ′=∠ACB=72°,又由△ABC ∽△B ′BA,根据相似三角形的对应边成比例,易得AB 2=CB •BB ′=CB (BC+CB ′),继而求得答案.【解答】解:(1)根据题意得:△ABC ∽△AB ′C ′,∴S △AB ′C ′:S △ABC =2(3)3''==2A B AB(),∠B=∠B ′, ∵∠ANB=∠B ′NM,∴∠BMB ′=∠BAB ′=60°;故答案为:3,60;(2)∵四边形 ABB ′C ′是矩形,∴∠BAC ′=90°.∴θ=∠CAC ′=∠BAC ′-∠BAC=90°-30°=60°.在 Rt △ABC 中,∠ABB'=90°,∠BAB ′=60°,∴∠AB ′B=30°,∴n='AB AB=2;(3)∵四边形ABB ′C ′是平行四边形,∴AC ′∥BB ′,又∵∠BAC=36°,∴θ=∠CAC ′=∠ACB=72°.∴∠BB ′A=∠BAC=36°,而∠B=∠B,∴△ABC ∽△B ′BA,∴AB :BB ′=CB :AB,∴AB 2=CB •BB ′=CB (BC+CB ′),而 CB ′=AC=AB=B ′C ′,BC=1,∴AB 2=1(1+AB ), ∴15±=AB , ∵AB >0,∴15n ''+==B C BC . 【点评】此题考查了相似三角形的判定与性质、直角三角形的性质、旋转的性质、矩形的性质以及平行四边形的性质.此题综合性较强,难度较大,注意数形结合思想与方程思想的应用,注意辅助线的作法.24.在平面直角坐标系xOy 中,点P 是抛物线:2y x =上的动点(点在第一象限内).连接 OP,过点0作OP 的垂线交抛物线于另一点Q .连接PQ,交y 轴于点M .作PA 丄x 轴于点A,QB 丄x 轴于点B .设点P 的横坐标为m .(1)如图1,当2m =时,①求线段OP 的长和tan ∠POM 的值;②在y 轴上找一点C,使△OCQ 是以OQ 为腰的等腰三角形,求点C 的坐标;(2)如图2,连接AM 、BM,分别与OP 、OQ 相交于点D 、E .①用含m 的代数式表示点Q 的坐标;②求证:四边形ODME 是矩形.【考点】二次函数综合题.【专题】代数几何综合题.【分析】(1)①已知m 的值,代入抛物线的解析式中可求出点P 的坐标;由此确定PA 、OA 的长,通过解直角三角形易得出结论.②题干要求△OCQ 是以OQ 为腰的等腰三角形,所以分QO=OC 、QC=QO 、CQ=CO 三种情况来判断:QO=QC 时,Q 在线段OC 的垂直平分线上,Q 、O 的纵坐标已知,C 点坐标即可确定; QO=OC 时,先求出OQ 的长,那么C 点坐标可确定;CQ=CO 时,先求出CQ 的长,那么C 点坐标可确定.(2)①由∠QOP=90°,易求得△QBO ∽△MOA,通过相关的比例线段来表示出点Q 的坐标; ②在四边形ODME 中,已知了一个直角,只需判定该四边形是平行四边形即可,那么可通过证明两组对边平行来得证.【解答】解:(1)①把x =2y x =,得 y=2,∴P,2),∴OP= 6∵PA 丄x 轴,∴PA ∥MO .∴tan ∠P0M=tan ∠0PA=2OP AP =. ②设 Q (n,n 2),∵tan ∠QOB=tan ∠POM,∴2n n =-.∴n =∴Q(2-,12),∴当OQ=OC 时,则C 1(,C 2(0,; 当OQ=CQ 时,则C 3(0,1);当CQ=CO 时,则C 4(0,34)不合题意,舍去. 综上所述,所求点C 坐标为:C 1(,C 2(0,-,C3(0,1); (2)①∵P (m,m 2),设 Q (n,n 2),∵△APO ∽△BOQ,∴ =BQ BO AO AP∴22 n n m m -=,得1n m =-,∴Q (1m -,21m ). ②设直线PO 的解析式为:y=kx+b,把P (m,m2)、Q (-1 m ,1 m2 )代入,得: 2211m mk b k b mm ⎧=+⎪⎨=+⎪⎩ 解得b=1,∴M (0,1) ∵2 1 m==QB OB MO AO ,∠QBO=∠MOA=90°, ∴△QBO ∽△MOA∴∠MAO=∠QOB,∴QO ∥MA同理可证:EM ∥OD又∵∠EOD=90°,∴四边形ODME 是矩形.【点评】考查了二次函数综合题,该题涉及的知识点较多,有:解直角三角形、相似三角形、等腰直角三角形的判定、矩形的判定等重要知识点;(1)②题中,要注意分类进行讨论,以免出现漏解、错解的情况.。
初中毕业升学考试(浙江舟山卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(浙江舟山卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】﹣2的相反数是()A.2 B.﹣2 C. D.﹣【答案】A【解析】试题分析:根据相反数的意义,只有符号不同的数为相反数.根据相反数的定义,﹣2的相反数是2.考点:相反数【题文】在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】试题分析:轴对称图形是指将图形沿着某条直线对折,直线两边的图形能够完全重叠.A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.考点:轴对称图形【题文】计算2a2+a2,结果正确的是()A.2a4 B.2a2 C.3a4 D.3a2【答案】D【解析】试题分析:合并同类项法则是指将同类项的系数相加减,字母和字母的指数不变.原式=3a2,考点:合并同类项【题文】13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76 D.77【答案】C【解析】试题分析:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.依题意有,刀鞘数为76.考点:有理数的乘方【题文】某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数 B.中位数 C.众数 D.方差【答案】B【解析】试题分析:总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.知道自己是否入选,老师只需公布第五名的成绩,即中位数.考点:统计量的选择【题文】已知一个正多边形的一个内角是140°,则这个正多边形的边数是()A. 6B. 7C. 8D. 9【答案】D【解析】试题分析:首先根据一个正多边形的内角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.360°÷(180°-140°)=360°÷40°=9.即这个正多边形的边数是9.考点:多边形内角与外角【题文】一元二次方程2x2﹣3x+1=0根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根lA. 120° B. 135° C. 150° D. 165°【答案】C【解析】试题分析:直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=30°,再利用弧度与圆心角的关系得出答案.如图所示:连接BO,过点O作OE⊥AB于点E,由题意可得:EO=BO,AB∥DC,可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°,故的度数是150°.考点:(1)圆心角、弧、弦的关系;(2)翻折变换(折叠问题).【题文】如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A. B. C.1 D.【答案】D【解析】试题分析:过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB∥CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.过F作FH⊥AE于H,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3﹣DE,∴AE=,∵∠FHA=∠D=∠DAF=90°,∴∠AFH+∠HAF=∠DAE+∠FAH=90°,∴∠DAE=∠AFH,∴△ADE∽△AFH,∴,∴AE=AF,∴AE==3﹣DE,∴DE=,考点:(1)矩形的性质;(2)全等三角形的判定与性质;(3)勾股定理【题文】二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A. B.2 C. D.【答案】D【解析】试题分析:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=,所以m+n=﹣2+=.考点:二次函数的最值【题文】因式分解:a2﹣9=.【答案】(a+3)(a-3)【解析】试题分析:a2﹣9可以写成a2﹣32,符合平方差公式的特点,利用平方差公式分解即可.考点:因式分解-运用公式法【题文】二次根式中字母x的取值范围是.【答案】x≥1【解析】试题分析:二次根式有意义的条件就是被开方数是非负数,根据题意得:x﹣1≥0,解得x≥1.考点:二次根式有意义的条件【题文】一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.【答案】【解析】试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.考点:概率公式【题文】把抛物线先向左平移2个单位,再向上平移3个单位,平移后抛物线的表达式是_____ 【答案】y=(x﹣2)2+3.【解析】试题分析:先确定y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后对应点的坐标,然后根据顶点式写出平移后抛物线的表达式.抛物线y=x2的顶点坐标为(0,0),点(0,0)向右平移2个单位,再向上平移3个单位所得对应点的坐标为(2,3),所以平移后抛物线的表达式为y=(x﹣2)2+3.考点:二次函数图象与几何变换【题文】如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是多少?【答案】7【解析】试题分析:根据题意,易得△CDF与四边形AFEB的面积相等,再根据相似三角形的相似比求得它们的面积关系比,从而求DF的长,∵△ABC与△DE C的面积相等,∴△CDF与四边形AFEB的面积相等,∵AB∥DE,∴△CEF∽△CBA,∵EF=9,AB=12,∴EF:AB=9:12=3:4,∴△CEF和△CBA的面积比=9:16,设△CEF的面积为9k,则四边形AFEB的面积=7k,∵△CDF与四边形AFEB的面积相等,∴S△CDF=7k,∵△CDF与△CEF是同高不同底的三角形,∴面积比等于底之比,∴DF:EF=7k:9k,∴DF=7.考点:相似三角形的判定与性质【题文】如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为.【答案】4【解析】试题分析:首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A 时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO==①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°=∴AQ=2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4考点:解直角三角形【题文】(1)计算:|﹣4|×(﹣1)0﹣2(2)解不等式:3x>2(x+1)﹣1.【答案】(1)2;(2)x>1【解析】试题分析:(1)原式利用绝对值的代数意义,零指数幂法则计算即可得到结果;(2)不等式去括号,移项合并,把x系数化为1,即可求出解集.试题解析:(1)原式=4﹣2=2;(2)去括号得:3x>2x+2﹣1,解得:x>1.考点:(1)实数的运算;(2)零指数幂;(3)解一元一次不等式.【题文】先化简,再求值:(1+)÷,其中x=2016.【答案】【解析】试题分析:首先计算括号里面的加法,再把除法化成乘法,约分得出化简结果,再代入x的值计算即可.试题解析:原式==当x=2016时,原式=.考点:分式的化简求值【题文】太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)【答案】1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.59=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.考点:解直角三角形的应用【题文】为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)根据图中信息,解答下列问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议.【答案】(1)40人;(2)8人;(3)答案见解析【解析】试题分析:(1)根据“总体=样本容量÷所占比例”即可得出结论;(2)根据“样本容量=总体×所占比例”可求出参加C舞蹈类的学生人数,再由总体减去其他各样本容量算出参加E棋类的学生人数,求出其所占总体的比例,再根据比例关系即可得出结论;(3)根据条形统计图的特点,找出一条建议即可.试题解析:(1)被调查学生的总人数为:12÷30%=40(人).(2)被调查参加C舞蹈类的学生人数为:40×10%=4(人);被调查参加E棋类的学生人数为:40﹣12﹣10﹣4﹣6=8(人);200名学生中参加棋类的学生人数为:200×=40(人).(3)因为参加A球类的学生人数最多,故建议学校增加球类课时量,希望学校多开展拓展性课程等.考点:(1)条形统计图;(2)总体、个体、样本、样本容量;(3)用样本估计总体;(4)扇形统计图.【题文】如图,已知一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x轴,y轴分别相切于点D ,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.【答案】(1)-1;(2)y=x+2;(3)x<﹣4.【解析】试题分析:(1)直接将A点代入反比例函数解析式求出答案;(2)直接利用切线的性质结合正方形的判定与性质得出C,B点坐标,进而利用待定系数法求出一次函数解析式;(3)利用A点坐标结合函数图象得出x的取值范围.试题解析:(1)把点A(﹣4,m)的坐标代入y2=,则m=4÷(-4)=﹣1,得m=﹣1;(2)连接CB,CD,∵⊙C与x轴,y轴相切于点D,B,∴∠CBO=∠CDO=90°=∠BOD,BC=CD,∴四边形BODC是正方形,∴BO=OD=DC=CB,∴设C(a,a)代入y2=得:a2=4,∵a>0,∴a=2,∴C(2,2),B(0,2),把A(﹣4,﹣1)和(0,2)的坐标代入y1=kx+b中,得:,解得:,∴一次函数的表达式为:y1=x+2;(3)/∵A(﹣4,﹣1),∴当y1<y2<0时,x的取值范围是:x<﹣4.考点:(1)反比例函数与一次函数的交点问题;(2)切线的性质.【题文】如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.【答案】(1)证明过程见解析;(2)图形见解析;(3)【解析】试题分析:(1)连接BD根据三角形的中位线的性质得到CH∥BD,CH=BD,同理FG∥BD,FG=BD,由平行四边形的判定定理即可得到结论;(2)根据三角形的中位线的性质和正方形的性质即可得到结果;(3)根据勾股定理得到BD=,由三角形的中位线的性质得到FG=BD=,于是得到结论.试题解析:(1)如图2,连接BD,∵C,H是AB,DA的中点,∴CH是△ABD的中位线,∴CH∥BD,CH=BD,同理FG∥BD,FG=BD,∴CH∥FG,CH=FG,∴四边形CFGH是平行四边形;(2)如图3所示,(3)如图3,∵BD=,∴FG=BD=,∴正方形CFGH的边长是.考点:平行四边形的判定【题文】我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.【答案】(1)矩形或正方形;(2)AC=BD,理由见解析;(3)10或12﹣.【解析】试题分析:(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD,理由为:连接PD,PC ,如图1所示,根据PE、PF分别为AD、BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.试题解析:(1)矩形或正方形;(1)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD ;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴,即,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE=,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.考点:几何变换综合题【题文】小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图2中A点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,行驶路程s(m)与时间t(s)的关系也满足s=at2,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.【答案】(1)180m;a=;(2)h=156;表示小明家到甲处的路程为156m;(3)6m/s【解析】试题分析:(1)直接利用待定系数法求出抛物线解析式进而得出答案;(2)利用图形,得出速度和时间,再结合h=48+12×(17﹣8)得出答案;(3)首先求出OB的解析式进而利用二次函数解析式得出关于x 的等式求出答案.试题解析:(1)由图象得:小明家到乙处的路程为180m,∵点(8,48)在抛物线s=at2上,∴48=a×82,解得:a=;(2)由图及已知得:h=48+12×(17﹣8)=156,故A点的纵坐标为:156,表示小明家到甲处的路程为156m;(3)设OB所在直线的表达式为:v=kt,∵(8,12)在直线v=kt上,则12=8k,解得:k=,∴OB所在直线的表达式为:v=t,设妈妈加速所用时间为:x秒,由题意可得:x2+x(21+7﹣x)=156,整理得:x2﹣156+208=0,解得:x1=4,x2=52(不符合题意,舍去),∴x=4,∴v=×4=6(m/s),答:此时妈妈驾车的行驶速度为6m/s.考点:二次函数的应用。
浙江省舟山市中考数学试卷
精品基础教育教学资料,请参考使用,祝你取得好成绩!浙江省舟山市中考数学试卷一、选择题:1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.93.(3分)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b ﹣2,c﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,44.(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利5.(3分)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样6.(3分)若二元一次方程组的解为,则a﹣b=()A.1 B.3 C.D.7.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.(3分)用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=39.(3分)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()A.B.C.1 D.210.(3分)下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④二、填空题11.(4分)分解因式:ab﹣b2=.12.(4分)若分式的值为0,则x的值为.13.(4分)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.14.(4分)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是.15.(4分)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan ∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).16.(4分)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为.(结果保留根号)三、解答题17.(6分)(1)计算:()2﹣2﹣1×(﹣4);(2)化简:(m+2)(m﹣2)﹣×3m.18.(6分)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.19.(6分)如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.20.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.21.(8分)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.22.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)23.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.24.(12分)如图,某日的钱塘江观测信息如下:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数:s=t2+bt+c (b,c是常数)刻画.(1)求m值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t ﹣30),v0是加速前的速度).浙江省舟山市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2017•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017•舟山)长度分别为2,7,x的三条线段能组成一个三角形,x 的值可以是()A.4 B.5 C.6 D.9【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3.(3分)(2017•舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,4【分析】根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a ﹣2+b﹣2+c﹣2)的值;再由方差为4可得出数据a﹣2,b﹣2,c﹣2的方差.【解答】解:∵数据a,b,c的平均数为5,∴(a+b+c)=5,∴(a﹣2+b﹣2+c﹣2)=(a+b+c)﹣2=5﹣2=3,∴数据a﹣2,b﹣2,c﹣2的平均数是3;∵数据a,b,c的方差为4,∴[(a﹣5)2+(b﹣5)2+(c﹣5)2]=4,∴a﹣2,b﹣2,c﹣2的方差=[(a﹣2﹣3)2+(b﹣2﹣3)2+(c﹣﹣2﹣3)2]=[(a ﹣5)2+(b﹣5)2+(c﹣5)2]=4.故选B.【点评】本题考查的是方差,熟记方差的定义是解答此题的关键.4.(3分)(2017•舟山)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“利”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)(2017•舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A .红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C .两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样【分析】利用列表法列举出所有的可能,进而分析得出答案.【解答】解:红红和娜娜玩“锤子、剪刀、布”游戏,所有可能出现的结果列表如下:锤子剪刀布红红娜娜锤子(锤子,锤子)(锤子,剪刀)(锤子,布)剪刀(剪刀,锤子)(剪刀,剪刀)(剪刀,布)布(布,锤子)(布,剪刀)(布,布)由表格可知,共有9种等可能情况.其中平局的有3种:(锤子,锤子)、(剪刀,剪刀)、(布,布).因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,故选项B,C,D不合题意;故选:A.【点评】此题主要考查了列表法求概率,根据题意正确列举出所有可能是解题关键.6.(3分)(2017•舟山)若二元一次方程组的解为,则a﹣b=()A.1 B.3 C.D.【分析】将两式相加即可求出a﹣b的值.【解答】解:∵x+y=3,3x﹣5y=4,∴两式相加可得:(x+y)+(3x﹣5y)=3+4,∴4x﹣4y=7,∴x﹣y=,∵x=a,y=b,∴a﹣b=x﹣y=故选(D)【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.7.(3分)(2017•舟山)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;8.(3分)(2017•舟山)用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3【分析】把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可.【解答】解:∵x2+2x﹣1=0,∴x2+2x+1=2,∴(x+1)2=2.故选:B.【点评】此题主要考查了配方法在解一元二次方程中的应用,要熟练掌握.9.(3分)(2017•舟山)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()A.B.C.1 D.2【分析】首先根据折叠的性质求出DA′、CA′和DC′的长度,进而求出线段DG的长度.【解答】解:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=DC′=,故选A.【点评】本题主要考查了翻折变换以及矩形的性质,解题的关键是求出DC′的长度.10.(3分)(2017•舟山)下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④【分析】分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2﹣6(3+n)+10,当x=3﹣n时,y=(n﹣3)2﹣6(n﹣3)+10,∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(n﹣3)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2﹣6(n+1)+10,当x=n时,y=n2﹣6n+10,(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣4,∵n是整数,∴2n﹣4是整数,故③正确;∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,∴当x>3时,y随x的增大而增大,x<0时,y随x的增大而减小,∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a<b,当0<a<3,b>3时,a<b,故④是假命题.故选C.【点评】本题主要考查了二次函数的意义,性质,图象,能够根据二次函数的性质数形结合是解决问题的关键.二、填空题11.(4分)(2017•淮安)分解因式:ab﹣b2=b(a﹣b).【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).【点评】本题考查了因式分解,利用提公因式法是解题关键.12.(4分)(2017•舟山)若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.(4分)(2017•舟山)如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为(32+48π)cm2.,根据扇形面积公式求【分析】连接OA、OB,根据三角形的面积公式求出S△AOB出扇形ACB的面积,计算即可.【解答】解:连接OA、OB,∵=90°,∴∠AOB=90°,=×8×8=32,∴S△AOB扇形ACB(阴影部分)==48π,则弓形ACB胶皮面积为(32+48π)cm2,故答案为:(32+48π)cm2.【点评】本题考查的是扇形面积的计算,掌握扇形面积公式是解题的关键.14.(4分)(2017•舟山)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是3球.【分析】根据众数的定义及扇形统计图的意义即可得出结论.【解答】解:∵由图可知,3球所占的比例最大,∴投进球数的众数是3球.故答案为:3球.【点评】本题考查的是扇形统计图,熟知扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数是解答此题的关键.15.(4分)(2017•舟山)如图,把n个边长为1的正方形拼接成一排,求得tan ∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).【分析】作CH⊥BA4于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A4H,根据正切的概念求出tan∠BA4C,总结规律解答.【解答】解:作CH⊥BA4于H,由勾股定理得,BA4==,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H==,∴tan∠BA4C==,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BA n C=,故答案为:;.【点评】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.16.(4分)(2017•舟山)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是(12﹣12)cm.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为(12﹣18)cm.(结果保留根号)【分析】如图1中,作HM⊥BC于M,设HM=CM=a.在Rt△BHM中,BH=2HM=2a,BM=a,根据BM+MF=BC,可得a+a=12,推出a=6﹣6,推出BH=2a=12﹣12.如图2中,当DG⊥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2,由此即可解决问题.【解答】解:如图1中,作HM⊥BC于M,设HM=a,则CM=HM=a.在Rt△ABC中,∠ABC=30°,BC=12,在Rt△BHM中,BH=2HM=2a,BM=a,∵BM+FM=BC,∴a+a=12,∴a=6﹣6,∴BH=2a=12﹣12.如图2中,当DG⊥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,∴HH1=BH﹣BH1=9﹣15,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2=18﹣30+[6﹣(12﹣12)]=12﹣18.故答案为(12﹣12)cm,(12﹣18)cm.【点评】本题考查轨迹、旋转变换、解直角三角形、锐角三角函数等知识,解题的关键是正确寻找点H的运动轨迹,属于中考常考题型.三、解答题17.(6分)(2017•舟山)(1)计算:()2﹣2﹣1×(﹣4);(2)化简:(m+2)(m﹣2)﹣×3m.【分析】(1)首先计算乘方和负指数次幂,计算乘法,然后进行加减即可;(2)首先利用平方差公式和单项式的乘法法则计算,最后合并同类项即可.【解答】解:(1)原式=3﹣×(﹣4)=3+2=5;(2)原式=m2﹣4﹣m2=﹣4.【点评】本题考查了实数的运算以及整式的混合运算,正确理解乘法公式是关键.18.(6分)(2017•舟山)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.【分析】根据一元一次不等式的解法,找出错误的步骤,并写出正确的解答过程即可.【解答】解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.【点评】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的解法及步骤是解题的关键.19.(6分)(2017•舟山)如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.【点评】此题主要考查了基本作图,三角形的内切圆的性质,四边形的内角和公式,解本题的关键是作出三角形的内切圆.20.(8分)(2017•舟山)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.【分析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论①当PA=PB时,可得(n+1)2+4=(n﹣2)2+1.②当AP=AB 时,可得22+(n+1)2=(3)2.③当BP=BA时,可得12+(n﹣2)2=(3)2.分别解方程即可解决问题;【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.∵B(m,﹣1)在Y=﹣上,∴m=2,由题意,解得,∴一次函数的解析式为y=﹣x+1.(2)∵A(﹣1,2),B(2,﹣1),∴AB=3,①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,∵n>0,∴n=0不合题意舍弃.②当AP=AB时,22+(n+1)2=(3)2,∵n>0,∴n=﹣1+.③当BP=BA时,12+(n﹣2)2=(3)2,∵n>0,∴n=2+.综上所述,n=﹣1+或2+.【点评】本题考查反比例函数综合题.一次函数的性质、待定系数法、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.21.(8分)(2017•舟山)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.【分析】(1)由每月的平均气温统计图和月用电量统计图直接回答即可;(2)结合生活实际经验回答即可;(3)能,由中位数的特点回答即可.【解答】解:(1)由统计图可知:月平均气温最高值为30.6℃,最低气温为5.8℃;相应月份的用电量分别为124千瓦时和110千瓦时.(2)当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;(3)能,因为中位数刻画了中间水平.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(10分)(2017•舟山)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)【分析】(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.【点评】本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(10分)(2017•舟山)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.【分析】(1)只要证明AE=BM,AE∥BM即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB ∥DE,AB=DE,即可推出四边形ABDE是平行四边形;(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出=,可得=,解方程即可;【解答】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴=,∴=,解得x=1+或1﹣(舍弃),∴DH=1+.【点评】本题考查四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考压轴题.24.(12分)(2017•舟山)如图,某日的钱塘江观测信息如下:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数:s=t2+bt+c (b,c是常数)刻画.(1)求m值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t ﹣30),v0是加速前的速度).【分析】(1)根据起始时间结合到达乙地时间,即可求出m值,再根据速度=路程÷时间,即可求出潮头从甲地到乙地的速度;(2)根据小红出发时间结合路程=速度×时间,可求出此时潮头离乙地的距离,再根据时间=路程÷二者速度和即可求出小红需多长时间与潮头相遇;(3)根据点B、C的坐标利用待定系数法可求出二次函数解析式,令潮头的速度=小红的最高速度,可求出小红开始落后的时间,利用二次函数图象上点的坐标特征可求出此时潮头离开乙地的距离,再根据潮头离乙地的距离﹣小红离乙地的距离=1.8千米,即可求出t值,用其减去25即可得出结论.【解答】解:(1)12时10分﹣11时40分=30分,12÷30=0.4(千米/分).答:m的值为30,∴m的值为30.潮头从甲地到乙地的速度为0.4千米/分.(2)0.4×(30+40﹣59)=4.4(千米),4.4÷(0.4+0.48)=5(分钟).答:小红出发五分钟后与潮头相遇.(3)将B(30,0)、C(55,15)代入s=t2+bt+c中,得:,解得:,∴曲线BC的函数关系式为s=t2﹣t﹣.令0.4+(t﹣30)=0.48,解得:t=35,当t=35时,s=t2﹣t﹣=2.2.根据题意得:t2﹣t﹣﹣0.48(t﹣35)﹣2.2=1.8,整理得:t2﹣70t+1000=0,解得:t=50或t=20(不合题意,舍去),∵50﹣30+5=25(分钟),∴小红与潮头相遇到落后潮头1.8千米共需25分钟.【点评】本题考查了二次函数的应用、待定系数法求二次函数解析式、二次函数图象上点的坐标特征以及解一元二次方程,解题的关键是:(1)根据数量关系,列式计算;(2)求出小红出发时潮头离乙地的距离;(3)根据二者相距1.8千米,列出关于t的一元二次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
舟山市2010年初中毕业生学业水平考试调研试题数学试题卷温馨提示:1. 本试卷分试题卷和答题卷两部分。
满分120分, 考试时间120分钟. 2.答题时, 应该在答题卷密封区内写明校名, 姓名和学号。
3.考试时不能使用计算器,所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应.4.考试结束后, 上交答题卷.试题卷一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1.下列四个数中,比0小的数是 ( )A .23B ..π D .1 2.2009年初甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 ( )A .0.156×510- m B .0.156×510 m C .1.56×610- m D .1.56×610 m 3.下列运算正确的是( )A .236·a a a = B .11()22-=- C4=± D .|6|6-=4.解方程组23739x y x y +=⎧⎨+=⎩ ,①-②得( )A .32x = B. 32x =- C. 2x = D. 2x =-5.把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,如下图,正确的是( )①②-1-1-1-1AB C D主视图左视图第9题图2cm215cm6.已知二次函数131232+-=x x y ,则函数值y 的最小值是( )A. 3B. 2C. 1D. -17.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟。
以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用( )A. 14分钟B. 13分钟 C . 12分钟 D . 11分钟8.由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .9.如图是一个高为,底面半径为2cm 的圆锥形无底纸帽,现利用这个纸帽的侧面纸张裁剪出一个圆形纸片(不考虑纸帽接缝),这个圆形纸片的半径最长可以是( )(计算结果保留3个有效数字。
参考数据41.12≈ 4 , 73.13≈2). A 3.12cm B 3.28 cm C 3.3 1cm D 3.00cm10.如图,已知O ⊙的半径为5,锐角△ABC 内接于O ⊙,BD ⊥AC 于点D ,AB=8, 则tan CBD ∠的值等于 ( )A .34 B .54 C .53 D .43二、填空题 (本大题有6小题,每小题4分,共24分) 11.分解因式:x 2-9 = 。
12.已知x=2是一元二次方程(04)222=-+-m x x m 的一个根, 则m 的值是 。
13.如图,点P 在反比例函数1y x =(x>0)的图象上,且横坐标为2。
若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为 点P '.则经过点P '的反比例函数图象的解析式是 。
14.一个几何体的三视图如图所示 ,其中主视图和俯视图都是矩形,则它的表面积是 。
15.在△ABC 中,AB=AC=12cm ,BC=6cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B →A →C 的方向运动.设运动时间为t 秒,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍,那么t 的值为 .16.图(1)是面积都为S 的正n 边形(3≥n ),图(2)是由图(1)中的每个正多边形分别对应“扩展”而来。
如:图(2)中的a 是由图(1)中的正三角形的每边长三等分,以居中的一条线段向外作正三角形,并把居中线段去掉而得到;图(2)中的b 是由图(1)中的正四边形的每边长三等分,以居中的一条线段向外作正四边形,并把居中线段去掉而得到 … ,以此类推,当图(1)中的正多边形是正十边形时,图(2)中所有“扩展”后的图形面积和为248。
则S 的值是 。
三、解答题(本大题有8小题,共66分) 17.(本题满分6分)先化简211()1122xx x x -÷-+-,1,-1中选取一个你认为合适..的数作为x 的值代入求值.18.(本题满分6分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图1中从左到右各长方形A 、B 、C 、D 、E 高度之比为3∶4∶5∶6∶2,已知此次调查中捐10元和15元的人数共27人. (1)他们一共抽查了多少人?这组数据的众数、中位数各是多少? (2)图2中,捐款数为20元的D 部分所在的扇形的圆心角的度数是多少? (3)若该校共有1000名学生,请求出D 部分学生的人数及D 部分学生的捐款总额。
第14题图…图(2)abcd… ;图(1)第18题(图1) (图2)19.(本题满分6分)如图, 在ABC ∆中, D 是BC 边上的一点, E 是AD 的中点, 过A 点作BC 的平行线交CE 的延长线于点F , 且BD AF =, 连接BF .(1) 求证: D 是BC 的中点;(2) 如果AC AB =, 试判断四边形AFBD 的形状, 并证明你的结论.20.(本题满分8分)有三张卡片(背面完全相同)分别写有32,-2,3,把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.(1)小军抽取的卡片是32的概率是 ;两人抽取的卡片都是3的概率是 . (2)李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜.你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.第19题图21.(本题满分8分)如图,Rt △OAC 是一张放在平面直角坐标系中的直角三角形纸片,点O 与原点重合,点A 在x 轴上,点C 在y 轴上,OC=3,∠CAO =30º.将Rt △OAC 折叠,使OC 边落在AC 边上,点O 与点D 重合,折痕为CE. (1)求折痕CE 所在直线的解析式; (2)求点D 的坐标;22.(本题满分10分)如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,且∠AEC=∠ODB .(1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当AB=10,BC=8时,求DFB 的面积.第22题图23.(本题满分10分)某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?24. (本题满分12分)如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边中点,点P从点A开始沿AC方向以每秒的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x秒(1)当点P在线段AO上运动时.①请用含x的代数式表示OP的长度;②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围);(2)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的其他位置时,以P,B,E,Q为顶点的四边形能否成为梯形?若能,求出所有满足条件的x的值;若不能,请说明理由.A C评分标准一. 仔细选一选 (每小题3分, 共30分)二. 认真填一填 (每小题4分, 共24分) 11.)3)(3(-+x x ; 12. 4,0 ; 13.6y x=; 14. 108 15、 7秒或17秒; 16. 18.三、解答题(共8小题,计66分,解答应写出过程) 17.(本题满分6分)解:211()1122x x x x -÷-+-=4x…… 4分 当时 …………………… 1分 , 原式………………1分 18、(本题满分6分)(1)60人……………… 1分, 众数=20元………… 1分,中位数=15元……………… 1分;(2)108o…………… 1分; (3)300人 , 6000元………………… 2分 19.(本题满分6分)(1) 因为BC AF //, 又E 是AD 的中点, 所以可以证明DEC AEF ∆≅∆, 所以有DC AF =, 又BD AF =, 所以可得D 是BC 的中点; ………3分 (2) 四边形AFBD 应该是矩形.因为AC AB =, D 是BC 的中点, 所以BC AD ⊥, 而四边形AFBD 是平行四边形, 所以四边形AFBD 是矩形. (3)分20.(本题满分8分) 解:(1)11,39………………………2分 (2)由表可以看出:出现有理数的次数为5次,出现无理数的次数为4次,所以小军获胜的概率为5/9>小明的4/9。
32-2 3-232此游戏规则对小军有利。
…………………6分 21.(本题满分8分) 解:(1) CE :33+=x y ;……………4分(2) )23,23(-D ;………………………4分 22.(本题满分10分)(1)直线BD 和O ⊙相切.……………………1分 证明:∵AEC ODB ∠=∠,AEC ABC ∠=∠,∴ABC ODB ∠=∠. ∵OD ⊥BC ,∴90DBC ODB ∠+∠=°.∴90DBC ABC ∠+∠=°.即90DBO ∠=°.∴直线BD 和O ⊙相切.……………………………………4分(2)连接AC .∵AB 是直径,∴90ACB ∠=°. 在Rt ABC △中,108AB BC ==,,∴6AC ==.∵直径10AB =,∴OB=5 BC=8. ∵ OF BC ⊥ ∴ BF=4 OF=3 由三角形相似得DF=316 ∴S DFB ∆=332………………………5分(若用其他方法酬情给分)23.(本题满分10分)(1)解:设今年三月份甲种电脑每台售价x 元xx 800001000100000=+ 解得:4000=x ………………2分 经检验:4000=x 是原方程的根……………………1分 所以甲种电脑今年三月份每台售价4000元 (2)设购进甲种电脑y 台4800050000)15(30003500≤-+≤y y …………………2分解得 106≤≤y ………………………………………………1分因为y 的正整数解为6,7,8,9,10,所以共有5种进货方案 ……………1分 (3)设总获利为w 元ay a y a y w 1512000)300()15)(30003800()35004000(-+-=---+-= ………2分当300=a 时,(2)中所有方案获利相同………………1分DB O ACE F24.(本小题满分12分)解:(1)①由题意得∠BAO=30°,AC ⊥BD ∵AB=2 ∴OB=OD=1,∴……………2分②过点E 作EH ⊥BD ,则EH 为△COD 的中位线∴12EH OC ==∵DQ=x ∴BQ=2-x∴11(2)(2)22BPQ BEQ y S S x x ∆∆=+=⨯-+⨯-242x =-+…………………………3分(2)能成为梯形,分三种情况: 当PQ ∥BE 时,∠PQO=∠DBE=30°∴tan303o OP OQ === ∴x=25此时PB 不平行QE ,∴x=25时,四边形PBEQ 为梯形. …………………………2分 当PE ∥BQ 时,P 为OC 中点∴,即=∴34x =此时,BQ=2-x=54≠PE ,∴x=34时,四边形PEQB当EQ ∥BP 时,△QEH ∽△BPO∴HE QHOP BO= 121x -=∴x=1(x=0舍去)C此时,BQ不平行于PE,∴x=1时,四边形PEQB为梯形. ………………………………2分综上所述,当x=25或34或1时,以P,B,E,Q为顶点的四边形是梯形.……………1分- 11 -。