信号处理与数据分析 邱天爽作业答案(Part2)

合集下载

信号处理与数据分析 邱天爽第11章作业答案

信号处理与数据分析 邱天爽第11章作业答案

于是
Pxz ( z ) Pxx ( z ) 0.82 (1 0.6 z 1 )(1 0.6 z ) 0.82 1 0.3 z 1 1 0.3 z 1 2 G ( z )G ( z ) 1 (1 0.6 z )(1 0.6 z ) 1 0.6 z 1 1 0.6 z
Pxx ( s) Pss ( s) Pvv ( s)
其中:
1 1 5 2s 2 G ( s) 2 2 G ( s) 1 s 4s 1 s2 4 s 2
G (s)
2( 2.5 s ) 2( 2.5 s ) , G (s) (1 s )(2 s ) (1 s )(2 s )
2.(书稿 11.18)设系统模型为 x( n 1) 0.6x (n ) w (n ) ,观测方程为 z( n) x( n) v( n) ,其中 w( n) 为方差
2 w 0.82 的白噪声, v(n) 为方差 v2 1 的白噪声, v(n) 与 x ( n ) 互不相关。试求其离散维纳滤波器。
可以得到白化滤波器为
H w ( s) 1 (1 s )(2 s ) G (s) 2( 2.5 s)
又因为 Psx ( s ) Pss ( s ) ,因此可以得到
Psx ( s) Pss ( s ) 1 / (1 s)(1 s) 0.822 0.115 G (s) G (s) 2( 2.5 s) / (1 s)(2 s) 1 s 2.5 s
解:
由给定系统模型知 x n 是一阶广义平稳马尔可夫信号或 AR(1)信号,此信号可用白噪声 n 激励传递函数为
H ( z) 1 线性系统的输出产生。因此 z 0.6

《数字信号处理》复习思考题、习题(二)答案.doc

《数字信号处理》复习思考题、习题(二)答案.doc

一、思考题1、C2、C3、D4、A5、D6、B7、D8、B9、C 10、A 11、C 12、C 13、A 14、A 15、B 16、C 17、A 18、C二、概念填空题1、(1)付氏级数(2) hd (n)(理想的单位脉冲响应)(3) R N(n)(N点矩形窗或N点矩形序列)(4) h (n)(单位脉冲响应)(5)吉布斯(6)波动(不平稳)(7)衰减(最小衰减)2、(8)(9)三角窗、汉宁窗、哈明窗、布莱克曼窗(10)过渡带(11)衰减3、(12)时(13) h (n)(数字滤波器单位脉冲响应)(14) h a(t)(模拟滤波器冲激响应)(15)频谱混叠(16 )折叠频率(兀/T)4、(17)偶对称(奇对称)(18)奇对称(偶对称)(19)〃二堕二1! (20)线性相位特性25、(21)时(22)窗函数(23)有限长(24)逼近6、(25)某种优化逼近方法(26)逼近(27)频率响应(28)最优三、判断说明题1、判断:正确简述:按照频率采样滤波器结构的推导,上述说法是正确的,这正是频率采样结构的一个优点。

但对于不同的频响形状,N个并联一阶节的支路增益H (k)不同。

2、判断:一致简述:由于对模拟滤波器而言,因果稳定系统传递函数H a(s)的极点均在S平面的左半平面,只要转换关系满足使S平面的左半平面转换到Z平面的单位圆内,就保证了转换后数字滤波器系统函数H (z) 的极点全部在Z平面的单位圆内,从而保证了系统的因果稳定性。

3、判断:不对简述:正确的表述应为:IIR滤波器只能采用递归型结构实现;FIR 滤波器一般采用非递归型结构实现,但也可使结构中含有递归支路。

就是说滤波器结构与特性没有必然的联系。

4、判断:一致简述:由于对模拟域而言,其频率轴就是S平面的虚轴j。

轴,而对数字域来说,其频率轴是z平面的单位圆,因此两者是一致的。

四、计算应用题1、解:1)容易将H (z)写成级联型的标准形式如下:)二(2 + 3广)(3-2广 + 广)H(Z一(4 —广)(1 + 0.9广—0.81厂2)0.5+ 3-2广+疽—— ________ z ______ * ___________________________________1 + 0.9/—0.81厂2显见,该系统的级联结构由一个直接II型一阶节和一个直接II型二阶节级联而成,因此容易画出该系统的级联型结构图如图A-1所示。

5_离散傅里叶变换与快速傅里叶变换

5_离散傅里叶变换与快速傅里叶变换

6 X (k ) X * (( N k )) N RN (k ), 若 x(n) imagenary
2016/6/2 大连理工大学 26
• 【满足圆周共轭对称性的序列】
2016/6/2
大连理工大学
27
• 【圆周卷积和性质】
– 若: DFT x1(n) X1(k ), DFT x2 (n) X 2 (k )
* * 2 DFT x (( n )) R ( n ) X (k ) N N 1 * 3 DFTRe x(n) X ep (k ) X (( k )) X (( N k )) N RN ( k ) N 2 1 * 4 DFT jIm x(n) X op (k ) X (( k )) X (( N k )) N RN ( k ) N 2 5 X (k ) X * (( N k )) N RN (k ), 若 x(n) real
( n) 和 a k 分别表示周期性信号和频谱。 –定义新符号: x
–定义矩形序列符号 RN (n) 和
RN (k )

1, 0 n N 1 1, 0 k N 1 RN (n) 或 RN (k ) 0, 其它 n 0, 其它 k
( n) 和 a k –有限长序列 x(n) 和 ak 可以认为是周期性序列 x 的一个周期。
谱或系统的频率响应也是数字化的。 –实际应用中的信号总是有限时宽的、且为非周期的。希 望信号频谱也是有限频宽、且非周期的。 –考察前面介绍的4种傅里叶级数或傅里叶变换,没有任
何一种能够满足这种需求。
–因此,发展新的傅里叶变换方法以适应数字信号处理实 际应用的要求称为数字信号处理理论的一个重要任务。 –这就为DFT的发展提供了需求和动力。

信号处理与数据分析 邱天爽作业答案第四章

信号处理与数据分析 邱天爽作业答案第四章

号恢复 y(t ) 的采样周期 T 的范围。 解: y(t ) 利用傅里叶变换的性质,我们可以得到:
Y ( j)=X 1 ( j)X 2 ( j)
因此 Y ( j )=0, 1000 。这说明 y(t ) 的奈奎斯特采样频率为 2 1000 2000 ,采样周期最多维
2 2000 10 3 sec,因此采样周期 T 必须满足 T 103 sec,才能从采样信号中恢复 y(t ) 。
1 X ( j)=75X ( j) ,因此 0 的最大值为 50 。 T
3.( 书 稿 4.15) 设 x1 ( t ) 和 x2 ( t ) 均 为 带 限 信 号 , 它 们 的 频 谱 满 足 X 1 ( j) 0, | | 1000 ,
X 2 ( j) 0, | | 2000 。若 y (t ) x1 (t ) x2 (t ) ,对 y(t ) 进行单位冲激序列采样,试给出保证能从采样后信
sin(4000 t ) x (t ) t (3)
2
,因此采样频率至少为 2(4000 ) 8000 。
4000
,因此采样频率至少为 2(4000 ) 8000 。
4000
(3) x(t ) 对应的 X ( j) 可以看作两个举行脉冲的卷积,且两脉冲均在 至少为 2(8000 ) 16000 。
100
100

通过冲击序列采样的结果为:
G ( j)= 1 X ( j( ks )) T
其中 T 2 / s 1 / 75 ,因此 G(j) 如下图所示
250
100
100
250

ቤተ መጻሕፍቲ ባይዱ
很显然,当不存在频谱交叠时,即 50 , G ( j)=

信号处理-习题(答案)【方案】.doc

信号处理-习题(答案)【方案】.doc

数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。

试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。

解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。

2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。

○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。

信号处理与数据分析 邱天爽作业答案第二章(Part2)

信号处理与数据分析 邱天爽作业答案第二章(Part2)
1 j
3.
出 A 的值。 解:我们知道 H ( j)
1 j 1 j 1 2 1 2 1 ,因此 A 1 。
X (e j )
n 0
x ne

j n
n
1 2
n 1
e j n 1 2
n 1

n 1
eቤተ መጻሕፍቲ ባይዱ j n
1 1 1 e j j 2 1 1 2 e 1 1 2 e j 0.75e j 1.25 cos 3e j 5 4cos
1.
(书稿 2.22)计算下列各式的离散时间傅里叶变换:
1 (1) x ( n) 2
n 1
u ( n 1) ;
1 (2) x ( n) 2
| n 1|

(3) x(n) (n 1) (n 1)
解:
(1) x(n) 的离散时间变换为:
X (e j )
n
x(n)e

j n
因此,
FT x(n) X (e j )
由本题(1)可知:
FT x (n) X (e j )
所以,
FT x (n) X (e j )
如若为实信号则有: X (e j )=X (e j ) (书稿 2.31) 一因果稳定 LTI 系统的频率响应为: H j 1 j 。试证明 H j A ,并求
* (2) x ( n)
解: (1)因为
X (e j )
n
x(n)e


j n
我们可以写成:
X (e j )

信号分析与处理课程习题2参考解答-2010(共5篇)

信号分析与处理课程习题2参考解答-2010(共5篇)

信号分析与处理课程习题2参考解答-2010(共5篇)第一篇:信号分析与处理课程习题2参考解答-2010P57-101Ω-j52-j5Ω(1)方法1:先时移→F[x(t-5)]=X(Ω)e,后尺度→F[x(2t-5)]=X()eΩt05Ω-j-j1Ω1Ω方法2:P40时移+尺度→F[x(at-t0)]=X()ea→F[x(2t-5)]=X()e2 |a|a221Ω-j(2)方法2:P40时移+尺度→F[x(at-t0)]=X()e|a|aΩt0aΩ→F[x(-t+1)]=X(-Ω)ejΩ(3)P42频域卷积定理→F[x1(t)⋅x2(t)]=X1(Ω)*X2(Ω)2π→F[x(t)⋅cos(t)]=X(Ω)*[πδ(Ω+1)+πδ(Ω-1)]=X(Ω+1)+X(Ω-1)2π22P57-12F[x(t)]=⎰x(t)e-∞∞-jΩtdt=⎰τ-2E(t+)eτ2ττdt+⎰22Eτ8ωττωτ(-t+)e-jΩtdt=2sin2()=Sa2()τ2424ωτP57-13假设矩形脉冲为g(t)=u(t+)-u(t-),其傅里叶变换为G(Ω),则22F[x(t)]=F[E⋅g(t+)-E⋅g(t-)]=E⋅G(Ω)eEΩτ=⋅G(Ω))2j2P57-15ττττjΩτ-E⋅G(Ω)e-jΩτ=E⋅G(Ω)(ejΩτ-e-jΩτ)图a)X(Ω)=|X(Ω)|e-1jΩ⎧AejΩt0,|Ω|<Ω0=⎨|Ω|>Ω0⎩0,→x(t)=F[X(Ω)]=2π⎰Ω0AejΩt0ejΩtdΩ=AΩ0Asin(Ω0(t+t0))=Sa(Ω0(t+t0))π(t+t0)π图b)X(Ω)=|X(Ω)|ejΩ⎧-jπ⎪Ae,-Ω0<Ω<0⎪jπ⎪=⎨Ae2,0<Ω<Ω0⎪0,|Ω|>Ω0⎪⎪⎩→x(t)=F[X(Ω)]=2π-1⎰-Ω0Ae-jπejΩt1dΩ+2π⎰Ω0Ae2ejΩtdΩ=jπA2A2Ω0t(cos(Ω0t-1))=-sin()πtπt2第二篇:高频电子信号第四章习题解答第四章习题解答4-1 为什么低频功率放大器不能工作于丙类?而高频功率放大器则可工作于丙类?分析:本题主要考察两种放大器的信号带宽、导通角和负载等工作参数和工作原理。

信号处理与数据分析第十章作业答案(A).邱天爽.

信号处理与数据分析第十章作业答案(A).邱天爽.

习题10.5试说明周期图谱估计方法。

解:周期图(periodogram )是一种经典的功率谱密度估计方法,其主要优点是能应用快速傅里叶变换算法来进行谱估计。

当序列的长度足够长时,使用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。

周期图的直接计算公式为:j j *j j 2per 11(e )(e )(e )|(e )|P X X X N Nωωωω==。

此外,功率谱密度还可以根据自相关函数估计的傅里叶变换来进行计算,称为经典谱估计的间接法,又称为BT 法,其计算公式为:j (2)j j 2per 1ˆ(e )()e |(e )|m N m P R m X Nωωω+∞−=−∞==∑,其中(2)ˆ()N R m 为自相关函数的有偏估计。

习题10.18设()x n 为一平稳随机信号,且是各态历经的,现用式()()()1||01ˆ||N m N N n r m x n x n m N m −−==+−∑ 解:估计其自相关函数,求此估计的均值和方差。

偏差的定义:ˆˆbia[()][()}()]rm E r m r m =− 式中1010101ˆ[()][()()]1 [()()]1 () ()N m N N n N m N N n N M n E r m E x n x n m N mE x n x n m N mr m N mr m −−=−−=−−==+−=+−=−=∑∑∑ 所以ˆbia[()]0rm =,即本题的自相关函数的估计是无偏估计。

由定义222ˆˆˆˆˆvar[()][()[()]][()][()]rm E r m E r m E r m E r m =−=−,其中 22ˆ[()]()E r m r m = 所以:1||22(1||)ˆˆvar[()][()()()](||)N m k N m N r m rk r k m r k m N m −−=−−−≈++−−∑。

信号分析与处理第2章习题解答第二版

信号分析与处理第2章习题解答第二版
(b)
=
0其它
则傅里叶变换:
(c)
=
0其它
则其傅里叶变换:

得 。
2-9利用傅里叶变换的线性和时移性质,由2.8题计算结果求题2.9图所示各信号的傅里叶变换。
(a)(b)(c)
题2.9图
解:(a)由图可得 ,
根据傅里叶变换的线性和时移性质:
(b)由图可得 ,
根据傅里叶变换的线性和时移性质:
(c)由图可得 ,
题2.3图
解:
(1)因为周期冲激序列是偶函数,则
= , .
其三角形式的傅里叶级数为:
(2)①定义法:
②利用三角式系数
③取 区间的 构成单周期信号,其傅里叶变换

指数形式的傅里叶级数为:
2-4如图2-34所示的周期信号,试求三角形式和指数形式的傅里叶级数表示形式。
图2-34题2.4图
解:(1)三角形式表达式中, ,
题2.15图
解:(1)定义:
(2)
(3)
方法一:利用频域卷积定理
图1
方法二:利用频移特性
方法三:利用时域微性质
2-16已知 ,证明:
(1)若 是关于t的实偶函数,则 是关于 的实偶函数;
(2)若 是关于t的实奇函数,则 是关于 的虚奇函数。
证明:(1)若 是关于t的实偶函数,即
,则 ,
所以, 是关于 的实偶函数;
(2)由傅里叶变换的时移和尺度变换性质得, ;
(3)由傅里叶变换的时移和尺度变换性质得, ;
(4)由傅里叶变换的时移和尺度变换性质得, 。
2-15试用下列方法求题2.15图示余弦脉冲信号的傅里叶变换。
(1)利用傅里叶变换的定义;(2)利用傅里叶变换的微分特性;

电气设备信号处理与数据分析考核试卷

电气设备信号处理与数据分析考核试卷
A.电介质损耗
B.电气击穿
C.污染
D.温度变化
13.在数据挖掘中,哪些技术可以用于关联规则分析?()
A. Apriori算法
B. Eclat算法
C. FP-growth算法
D.支持向量机
14.哪些传感器可以用于电气设备的状态监测?()
A.热敏电阻
B.电容传感器
C.磁电传感器
D.光电传感器
15.以下哪些方法可以用于多源异构数据处理?()
A.变压器
B.断路器
C.继电器
D.隔离开关
2.在信号处理中,哪种滤波器可以有效去除高频噪声?()
A.低通滤波器
B.高通滤波器
C.带通滤波器
D.带阻滤波器
3.关于傅里叶变换,以下哪项描述是正确的?()
A.时域信号无法转换为频域信号
B.频域信号无法转换为时域信号
C.可以将时域信号转换为频域信号
D.只能处理周期性信号
7.小波变换在信号处理中主要用于提取信号的时域特征。()
8.电气设备的故障诊断通常不需要考虑环境因素的影响。()
9.在数据挖掘中,提升度(Lift)值越高表示两个事件的关联性越强。()
10.对于电气设备的状态监测,离线监测比在线监测更为方便和有效。()
五、主观题(本题共4小题,每题10分,共40分)
8. ABCD
9. ABCD
10. ABCD
11. ABC
12. ABCD
13. ABC
14. ABCD
15. ABCD
16. ABCD
17. ABCD
18. ABC
19. ABCD
20. ABCD
三、填空题
1.故障特征量
2.傅里叶变换

姚天任信号处理基础第二章答案.doc

姚天任信号处理基础第二章答案.doc

姚天任信号处理基础第二章答案.doc2. 3设信号s(z?)的自相关序列为:氏(/〃) = 0.8也m = O,±l,…观测信号为:x(n) = s(n) + v(n),试中心)是方差为0.45的零均值白噪声,它与s(〃)统计独立。

设计一个长为N二3的777?滤波器来处理%(/?),使得其输出与的差的均方值最解:%(/?) = [x(n) x(n -1) x(〃 - h = [h(0) h(1)R = E\x(n)x (〃)] = E <s(〃)+ v(〃)S(/7 - 1) +心一1)(〃一[s(〃)+ v(n) s(n-1) + v(n 一1) s(〃一2) + 一2)"割)&⑴6(2)、(20 0、氏⑴&(0) R⑴+0 0 E⑵此⑴VC <°0,L —1s(〃)+心)、L s(n)s(n)■氏(0) ■< S(〃一l) + (〃一s(〃)>=E<s(n-\)s(n)、二K(T)s(n -2) + v(n -2)s(〃一2)s(〃)_K(-2).P = E[X(/?)A'(H)]W) = 0.8""=>&(0) = 1, R(l) = K(—1) = 0.8, R(2) = R s(-2) =0.64一1.45 0.8 -1 1 ■-0.5358-hOpt = R"*P =0.8 1.45 0.8 .0.8 0.2057 0.64 0.8 1.45 0.64 0.09142. 5已知一阶马尔可夫过程的信号模型为s(〃) = 0.6s(〃-l) +w(〃),式中,以>?)是方差为0.82的零均值白噪声。

对s(〃)进行观测,得到x(n) = s(n) + v(n),式中,心)是方差为1的零均值白噪声。

是设计一因果IIR维纳滤波器对心〃)进行处理以得到s(〃)的最佳估计。

信号处理与数据分析 邱天爽作业答案(Part2)

信号处理与数据分析 邱天爽作业答案(Part2)

对于 n 0 ,则有
y ( n)
pn
( 3)

1
p 1
1 1 1 1 3n ( ) n 1 ( ) p ( ) n 1 1 2 3 3 p 0 3 1 3
因此:
3n ,n 0 y (n) 2 ( 1 ), n 0 2
(a)画出 x(t ) 和 h(t ) 的图形如下图所示: 0 1
利用该图形,得到 y(t ) x(t ) h(t ) 如图所示:
因此,
t ,0 t , t 1 y (t ) 1 t ,1 t (1 ) 0, otherwise
k
( 3)
1
1
1
k
u ( n k 1)
k 1
( 3 ) u (n k 1)
k
用 p 代替 k -1 则,
1 y ( n ) ( ) p 1 u ( n p ) p0 3
对于 n 0 ,则有
1 1 1 1 y ( n ) ( ) p 1 1 3 3 2 p 0 1 3
2.(P24,课后习题 1.7)计算卷积并画出结果曲线
1 x ( n) u ( n 1), h( n) u ( n 1) 3
-n
解:利用定义可知,
y ( n) x ( n) h( n)
k
x ( k ) h( n k )

1 ( ) k u ( k 1)u ( n k 1) k 3
1.4
1.2
1
0.8
0.6
0.4
0.2
0 -20

数字信号处理(姚天任江太辉第三版)课后习题答案

数字信号处理(姚天任江太辉第三版)课后习题答案

第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n ) 解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0 即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a nu(n),|a|<1,求系统的输出y(n).解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=an-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

信号处理行业数据分析与应用考试

信号处理行业数据分析与应用考试

信号处理行业数据分析与应用考试(答案见尾页)一、选择题1. 信号处理行业数据分析的常用方法有哪些?A. 波斯谱分析B. 小波变换C. 矩阵分析D. 频谱分析2. 在信号处理中,以下哪个参数常用于评估信号质量?A. 信噪比B. 噪声功率C. 线性度D. 传递函数3. 以下哪个选项是频域分析的代表?A. 能量守恒B. 傅里叶变换C. 矩阵对角化D. 最大似然估计4. 信号处理中,以下哪个技术可用于实现信号的分离和识别?A. 卡尔曼滤波B. 神经网络C. 零均值漂移D. 高斯过程5. 在数字信号处理中,以下哪种算法常用于滤波和信号重建?A. 中值滤波B. 巴特沃斯滤波C. 各向异性扩散D. K-均值聚类6. 信号处理行业中,以下哪个软件或工具常用于分析和处理信号?A. MATLABB. PythonC. SPSSD. Excel7. 以下哪个选项是信号处理中的一种线性变换?A. 平方和B. 微分方程C. 积分D. 快速傅里叶变换(FFT)8. 在信号处理中,以下哪个概念常用于描述信号的周期性?A. 相位B. 指数C. 谐波D. 频率9. 信号处理行业中,以下哪个领域的研究最常涉及算法优化?A. 语音识别B. 图像处理C. 机器学习D. 自动驾驶10. 以下哪个选项是信号处理中的一种非线性变换?A. 对数变换B. 线性回归C. 逻辑回归D. 放射变换11. 信号处理行业数据分析的常用方法有哪些?A. 描述性统计B. 假设检验C. 回归分析D. 时间序列分析E. 机器学习12. 在信号处理行业中,以下哪个参数常用于评估信号质量?A. 信噪比B. 码间干扰C. 谐波失真D. 信号衰减E. 频谱宽度13. 以下哪个选项是信号处理在通信系统中的应用?A. 语音识别B. 图像处理C. 音频编码D. 数据压缩E. 机器学习14. 在数字信号处理中,以下哪个算法用于实现快速傅里叶变换(FFT)?A. 欧拉公式B. 复数指数函数C. 离散余弦函数D. 快速傅里叶级数15. 信号处理行业中,以下哪个技术用于模拟信号的数字化?A. 采样B. 滤波C. 量化D. 编码E. 解码16. 在雷达系统中,以下哪个功能用于检测和定位目标?A. 雷达成像B. 雷达成像处理C. 目标检测D. 目标定位E. 雷达成像重建17. 信号处理在生物医学工程中的应用有哪些?A. 心电图(ECG)B. 脑电图(EEG)C. 成像技术(如MRI和CT)D. 超声波治疗E. 医学图像处理18. 在无线通信系统中,以下哪个技术用于确保信号在传输过程中的稳定性?A. 信道编码B. 信道估计C. 扩频技术D. 调制技术E. 频谱管理19. 信号处理在金融领域的应用有哪些?A. 金融信号分析B. 风险管理C. 投资组合优化D. 交易策略开发E. 信用评分20. 在遥感技术中,以下哪个功能用于从卫星获取地表信息?A. 遥感成像B. 遥感图像解译C. 遥感图像增强D. 遥感图像分类E. 遥感图像三维建模21. 信号处理行业的现状及未来发展趋势是什么?A. 信号处理行业正处于快速发展阶段,未来将更加注重创新和智能化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(b) 画出 x(t ) 和 h(t ) 的图形如下图所示: 1
1
h(t)
0
α
卷积后的图形如下图所示:
1
0
所以
1
α 1+α
t ,0 t 1 1,1 t y (t ) 1 t , t (1 ) 0, otherwise
1.(P24,课后习题 1.5(a,c,e) )试确定下列系统的(1)记忆性; (2) 时不变性; (3)线性; (4)因果性; (5)稳定性。 (a) y(t) x(t -2) + x(1- t) (c) y(t) sin 2t x(t) (e) y(n) (n 1) x(n)
x ( n ) u( n ), h( n ) e 3nu( n ) , n 8,8 ,
y( n )
x( n)
h( n)
的卷积运算,其中
并绘出计算结果的波形图。
解: clear all m=0; for n=-8:1:8 m=m+1; if n<0 x(m)=0; h(m)=0; else x(m)=1; h(m)=exp(-3*n); end end y=conv(x,h); m=-(length(y)-1)/2:(length(y)-1)/2; figure,stem(m,y)
...1/18
-2
1/6 1/2 -1 0 1 2 3 4
...
n
3.(P24,课后习题 1.8)设
1, 0 t 1 x(t ) , 0, 其余 t
h(t ) x (t / ) ,
(1) 计算并画出卷积 y(t ) x(t ) h(t ) 则 ?
解:
y t (2 ) 若 d() 仅含有 3 个不连续点, dt
T g t g (t 2) + g (1 t) x t 2 t0 + x 1 t t0 =x(t 2 t0 ) + x(1 t t0 )
又: y(t t0 ) x t t0 2 + x 1 t t0 =x(t t0 2) + x 1 t +t0 显然: T g t y(t t0 ) ,故为时变系统。
对于 n 0 ,则有
y ( n)
pn3n ( ) n 1 ( ) p ( ) n 1 1 2 3 3 p 0 3 1 3
因此:
3n ,n 0 y (n) 2 ( 1 ), n 0 2
2.(P24,课后习题 1.7)计算卷积并画出结果曲线
1 x ( n) u ( n 1), h( n) u ( n 1) 3
-n
解:利用定义可知,
y ( n) x ( n) h( n)
k
x ( k ) h( n k )

1 ( ) k u ( k 1)u ( n k 1) k 3
1.4
1.2
1
0.8
0.6
0.4
0.2
0 -20
-15
-10
-5
0
5
10
15
20
同理可以得到当 1 与 1 0 时的结果,这里不再详细给出。 (b)通过 y(t ) 的图形可以看出, 需要保证 1 。
d y (t ) 在 0, ,1, 1 处不连续,为保证有三个连续点, dt
4.( P24,课后习题 1.19,对 n 的范围进行了限制,必须利用 MATLAB 编程并画图) 试 利 用 MATLAB 编 程 实 现
又注:对于 T g t ,信号先经过系统再做时移; y (t t0 ) ,信号先做时移动再经过系统。
如果还不理解,做题可以这样判断:只要信号 x(t) 中 t 的系数不为 1, 则该系统必定为时变系
统,如本题中 x(1- t) , t 的系数为-1,不是 1,时变系统。此外,若信号 x(t) 的系数含有 t,该 系统也为时变系统,如 sin 2t x(t) ,系数为 sin 2t 含有 t,为时变系统。这是我做题自己积 累的经验,大家选择性使用。
k
( 3)
1
1
1
k
u ( n k 1)
k 1
( 3 ) u (n k 1)
k
用 p 代替 k -1 则,
1 y ( n ) ( ) p 1 u ( n p ) p0 3
对于 n 0 ,则有
1 1 1 1 y ( n ) ( ) p 1 1 3 3 2 p 0 1 3
解: (a)记忆,时变,线性,非因果性,稳定性; (c)无记忆,时变,线性,因果性,稳定性; (e)无记忆,时变,线性,因果性,不稳定性; 备注:本题中关于时变与时不变系统的判定,错误率较高,故特以(a)为例,时变性质解答如下: 设: g t x(t t0 ) ,且有 T x t x(t 2) + x(1 t) ,则:
(a)画出 x(t ) 和 h(t ) 的图形如下图所示: 0 1
利用该图形,得到 y(t ) x(t ) h(t ) 如图所示:
因此,
t ,0 t , t 1 y (t ) 1 t ,1 t (1 ) 0, otherwise
相关文档
最新文档