信号处理与分析
信号分析与处理
第一章 信号分析与处理的基本概念复习考点(题型:填空/问答)➢ 信号的分类(P3)信号取值是否确定:确定性信号和随机信号信号自变量取值是否连续:连续信号和离散信号信号在某一区间是否重复出现:周期信号和非周期信号信号的能量或功率是否有限:能量信号和功率信号➢ 周期信号的基本周期计算(P4,参考P5例子)()()x t x t nT =+ (0,1,2,........)n =±±式中nT 为x(t)的周期,而满足关系式的最小T 值称为信号的基本周期。
➢ 信号处理的概念、目的(P5)概念:要把记录在某种媒体上的信号进行处理,以便抽取有用信息的过程,它是对信号进行提取、变换、分析、综合等处理过程的统称。
目的:去伪存真,特征提取,编码和解码(调制与解调)➢ 系统的性质/线性系统的条件(P11-14)性质:线性(包括齐次性与叠加性),时不变性,因果性,稳定性线性系统的条件:同时具有齐次性和叠加性的系统称为线性系统。
对于动态系统满足3个条件:可分解性、零状态线性、零输入线性第二章 连续时间信号的分析复习考点(题型:填空/问答/计算)➢ 信号分析的方法 (P22)信号分析的基本方法是信号的分解,即将任意信号分解成有限个或无限个基本信号的线性组合,通过对构成信号的基本单元的分析达到了解原信号的目的。
包括时域方法,频域方法,复频域方法。
➢ 信号的频谱分类/P47 思考题2-4 (P30-31)信号的频谱包括幅度频谱和相位频谱周期信号的频谱特点:离散普,其相邻谱线的间隔是w1,改变信号的周期将改变信号的频谱的疏密程度,当周期趋于无穷大时,频谱将是连续的。
分类:➢ 带宽定义(P31)通常把()01/02/f τωπτ≤≤≤≤这段频率范围称为周期矩形脉冲信号的频带宽度,简称带宽,记做B ,1/2/B B ωτπτ==或➢ 计算题:以作业题为主第三章 连续时间信号处理复习考点(题型:填空/问答/计算)➢ 线性时不变LTI 系统定义与描述方式(P52/P61)LTI :linear time invariant定义:如果系统的输入和输出满足叠加性和齐次性,而且组成系统的各个元件的参数不随时间而变化,则称该系统为线性时不变系统,简称LTI 系统描述方式:系统微分方程,系统函数,系统冲激响应。
信号分析与处理第1章
隔取值,用 n 表示离散取值的时间
自变量。 n 叫序号,只取整数。
•值域不 连续
1.1.3 信号的分类 3、周期信号与非周期信号
(根据信号在某一区间内是否重复出现来分类)
周期信号: 按照一定的时间间隔 T 周而复始且无始无终
的信号。
如 :
非周期信号:信号在时间上不具有周而复始的特性,或者 说信号的周期趋于无穷大。
2 动态系统的线性判断 •例4 判断下列系统是否为线性系统。
•(1)
•(2)
•解(1)
•显然,
•不满足可分解性,故为非线性系统
•(2) • 由于
满足可分解性
•
•不满足零状态线性 • 故为非线性系统
•1.2.3 系统的性质 二、线性系统与非线性系统
• 3 线性系统另外三个重要特性:
•x(t
•y(t
)
•1.1.1 典型信号举例
• 例3: 每个钢琴键弹奏的音对应一个基波频率和许多谐波频 率。下图是钢琴CEG位置和对应的和弦信号的频谱。该频谱中 有三个尖峰,信号中每个音对应一个,中音C的尖峰位于262赫 兹,右边的E和G对应的尖峰位于较高频率处,分别为330赫兹和 392赫兹。这种情况下,用信号频域的频谱比用信号时域的波形 更能直观、清晰的体现信号的信息。
• (1)物理系统:如通信系统、雷达系统等。 • (2)因为系统是完成某种运算(操作)的,因而还可以 把软件编程也看成一种系统的实现方法(数学信号处理系统)。
• (3)系统的输入信号,称激励
,称响应
。
,系统的输出信号
•1.2.2 系统的概念 (4)连续时间系统:系统的输入和输出都是连续时间信号,且其 内部也没转换为离散时间信号。其时域数学模型是微分方程。举例 :RLC电路 (5)离散时间系统:系统的输入和输出都是离散时间信号。其 时域数学模型是差分方程。举例:如数字计算机。 (6)混合系统:离散时间系统经常与连续时间系统组和使用
信号分析与处理课程总结
线性性是指如果两个 信号分别通过傅里叶 变换得到F1(ω)和 F2(ω),那么它们的 和或差通过傅里叶变 换后仍然保持原来的 和或差的关系。
时移性是指如果一个 信号在时间上移动了 t0,那么它通过傅里 叶变换后在频率上也 会有一个相应的移动。
频移性是指如果一个 信号在频率上移动了 Δω,那么它通过傅里 叶变换后在时间上也 会有一个相应的移动。
信号处理能力。
实践项目与竞赛
参与信号处理相关的实践项目和竞赛, 提高实际应用能力,将所学知识应用
于实际问题中。
学习数字信号处理
了解数字信号处理的基本概念和方法, 与模拟信号处理进行比较,加深对信 号处理的理解。
关注前沿技术展
关注信号处理领域的前沿技术和最新 研究动态,不断更新自己的知识和技 能。
THANKS FOR WATCHING
随着数字化和智能化技术的不断发展,信号处理的应用范围越来越广泛,其在通信、电子、计算机等领 域的作用也越来越重要。
02 信号的时域分析
信号的时域表示
01
信号的时域表示是信号在时间轴上的变化情况,包括
信号的幅度、频率和相位等信息。
02
时域表示方法主要有波形图、时频图和离散时间信号
等。
03
时域分析是信号处理中最基础的方法之一,对于理解
了解信号处理的应用
了解信号处理在通信、图像处理、声音处理等领域的应用,为后续学 习和实践提供了基础。
掌握MATLAB等工具的使用
通过实践操作,掌握了使用MATLAB等工具进行信号处理和分析的方 法。
对未来学习的建议与展望
深入学习信号处理算法
进一步学习各种信号处理算法,如滤波 器设计、频谱分析、信号压缩等,提高
信号分析与处理
信号分析与处理第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统.测试技术的目的是信息获取、处理和利用。
测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。
信号分析与处理是测试技术的重要研究内容.信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。
一切物体运动和状态的变化,都是一种信号,传递不同的信息.信号常常表示为时间的函数,函数表示和图形表示信号。
信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。
信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号;周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析;信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。
信号处理包括时域处理和频域处理。
时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容;测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。
常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列.系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。
被测系统和测试系统统称为系统.输入信号和输出信号统称为测试信号.系统分为连续时间系统和离散时间系统。
系统的主要性质包括线性和非线性,记忆性和无记忆性,因果系统和非因果系统,时不变系统和时变系统,稳定系统和非稳定系统。
第二章 连续时间信号分析:周期信号分析(傅立叶级数展开)非周期信号的傅立叶变换、周期信号的傅立叶变换、采样信号分析(从连续开始引入到离散)。
《信号分析与处理》课件
06
信号处理的实际应用
信号处理在通信领域的应用
01
信号调制与解调
利用信号处理技术对信号进行调 制和解调,实现信号的传输和接 收。
02
信号压缩与解压缩
03
信号增强与恢复
通过信号处理技术对信号进行压 缩和解压缩,以减少传输带宽和 存储空间。
针对信道噪声和干扰,采用信号 处理算法对信号进行增强和恢复 ,提高通信质量。
调制解调的应用
无线通信
移动通信
在无线通信中,调制解调技术是实现 信号传输的关键环节,通过不同的调 制解调方式可以实现高速、可靠、低 成本的无线通信。
在移动通信中,由于信道条件变化大 、传输环境复杂,调制解调技术对于 提高信号传输质量和降低干扰具有重 要作用。
卫星通信
卫星通信中,由于传输距离远、信道 条件复杂,调制解调技术对于提高信 号传输质量和降低误码率具有重要意 义。
备或算法。
02
滤波器的作用
对信号进行预处理,提高信号质量,提取有用信息,抑制噪声和干扰。
03
滤波器的分类
按照不同的分类标准,可以将滤波器分为多种类型,如按照处理信号的
类型可以分为模拟滤波器和数字滤波器;按照功能可以分为低通滤波器
、高通滤波器、带通滤波器和带阻滤波器等。
滤波器的特性
频率特性
描述滤波器对不同频率信 号的通过和抑制能力,是 滤波器最重要的特性之一 。
通过将信号从时间域转换到频率域,可以更好地 揭示信号的内在特征和规律。
频域分析的基本概念包括频率、频谱、带宽等。
频域变换的性质
傅里叶变换
将信号从时间域转换到频率域的常用方法,具有 线性、时移、频移等性质。
频谱分析
通过分析信号的频谱,可以得到信号的频率成分 和幅度信息。
信号分析及处理技术
在实际运算中,由于只能对有限项计算,因此,必须对连续无限 项的频率抽取离散值,以便与时域采样相对应。取deltf= 1/Ndeltt=1/T,结果把信号x(t)以T为周期加以周期yantuo。对 该 周期离散信号进行付里叶变换
工况监测的实测信号曲线往往是由这三种信号组合,信号分 析是将这种组合分解
离散付里叶变换(DFT)
基于数字计算机的现代信号处理技术只能处理数字量而不能处 理模拟量,因此,要想在计算机上实现前述的连续付里叶变换, 必须首先将各模拟量离散化为数字量,这个连续付里叶变换的 离散化实现过程即是所谓的离散付里叫变换,简称 DFT(Discrete Fouerier Transform)。
信号分析及处理技术
第3章 信号分析及处理技术
§ 3-1 信号概念及分类 信号----可测量、记录、处理的物理量。 动态信号----随时间有较大变化的信号。 §3-1-1 信号转换与传感器 1.信号转换 不易测量的物理量(力、位移、转角、噪声等)通过传感器转换为 可测量的物理量(电压、电流等)。 2.传感器 分类: 按工作原理分----电感、电阻、电容、电涡流、压电、光 电、热电等; 按被测对象分----力、位移、温度、噪声、应变 按运动状态分----直线、旋转运动、接触式、非接触式等; 按工作状态分----一般工作环境、特殊工作环境。
信号分析与处理
信号分析与处理1.什么是信息?什么是信号?二者之间的区别与联系是什么?信号是如何分类的? 信息:反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号:是传载信息的物理量,是信息的表现形式。
区别与联系 信号的分类1.按照信号随自变量时间的取值特点,信号可分为连续时间信号和离散时间信号;2.按照信号取值随时间变化的特点,信号可以分为确定性信号和随机信号; 2.非平稳信号处理方法(列出方法就行) 1.短时傅里叶变换(Short Time Fourier Transform) 2.小波变换(Wavelet Transform)3.小波包分析(Wavelet Package Analysis)4.第二代小波变换5.循环平稳信号分析(Cyclostationary Signal Analysis)6.经验模式分解(Empirical Mode Decomposition)和希尔伯特-黄变换(Hilbert-Huang Transform) 3.信号处理内积的意义,基函数的定义与物理意义。
内积的定义:(1)实数序列:),...,,(21n x x x X =,nn R y y y Y ∈=),...,,(21它们的内积定义是:j nj jy xY X ∑=>=<1,(2)复数jy x z +=它的共轭jy x z -=*,复序列),...,,(21n z z z Z =,nn C w w w W ∈=),...,,(21,它们的内积定义为*=∑>=<j nj j w z W Z 1,在平方可积空间2L 中的函数)(),(t y t x 它们的内积定义为:dt t y t x t y t x ⎰∞∞-*>=<)()()(),( 2)(),(L t y t x ∈以)(),(t y t x 的互相关函数)(τxy R ,)(t x 的自相关函数)(τxx R 如下:>-=<-=⎰∞∞-*)(),()()()(τττt x t x dt t x t x R xx>-=<-=⎰∞∞-*)(),()()()(τττt y t x dt t y t x R xy我们把)(τ-t x 以及)(τ-t y 视为基函数,则内积可以理解为信号)(t x 与“基函数”关系紧密度或相似性的一种度量。
信号分析与处理基础
信号分析与处理基础信号分析与处理是电子信息技术领域中的重要内容之一,它涉及到信号的分析、处理与应用等多个方面。
在现代科学技术的发展中,信号分析与处理技术的应用越来越广泛,对于提高各种仪器设备的性能和精度,改进各类信号传输的质量和速率,优化各类信号的传输和处理方式,具有重要的意义。
信号是指随时间变化的物理量,它可以用来表示各种信息,比如声音、图像、视频、数据等。
信号可以是连续的,也可以是离散的,可以是时域的,也可以是频域的。
为了更好地理解信号的特性和进行有效的处理,需要进行信号的分析。
信号的分析是指对信号的特性进行分析,包括时域和频域的分析。
时域分析主要关注信号随时间的变化规律,通过研究信号的幅值、频率、相位等参数,可以得出信号的时域特性。
频域分析则是将信号从时域转换为频域,研究信号的频谱特性,包括信号的频率成分、频谱的能量分布等。
信号处理是对信号进行处理、转换、增强或提取等操作的过程,它可以分为模拟信号处理和数字信号处理两种。
模拟信号处理是指对模拟信号进行滤波、放大、调节等操作,它主要应用于模拟电路、通信系统等领域。
数字信号处理是指对离散信号进行数字化、滤波、谱分析等处理,它主要应用于数字通信、图像处理、音频处理等领域。
信号处理技术可以提高信号的质量和可靠性,除了基本的滤波、放大、调节等操作之外,还包括噪声抑制、压缩编码、特征提取等高级处理方法。
信号处理技术在很多领域和行业有着广泛的应用。
在通信领域,信号处理技术可以用于调制解调、多路复用、编码解码等操作,提高通信系统的容量和效率。
在图像和视频处理领域,信号处理技术可以用于图像压缩、图像增强、图像识别等操作,提高图像和视频的质量和清晰度。
在音频处理领域,信号处理技术可以用于音频编码、音频增强、语音识别等操作,提高音频的保真度和辨识度。
在控制系统领域,信号处理技术可以用于控制系统的测量、滤波、校准等操作,提高控制系统的精度和稳定性。
总之,信号分析与处理是电子信息技术领域中非常重要的一部分,它能够提高仪器设备的性能和精度,改进信号传输的质量和速率,优化信号的传输和处理方式。
信号分析与处理的基本概念
应用
雷达信号处理、通信信号处理、机械故障诊断等。
其他时频分析方法简介
S变换
结合短时傅里叶变换和小波变换的优点,通 过可调高斯窗函数实现多分辨率分析。
希尔伯特-黄变换(HHT)
基于经验模态分解(EMD)和希尔伯特变换的时频分 析方法,适用于非线性、非平稳信号分析。
稀疏时频分析
利用信号的稀疏性,通过优化算法求解信号 的时频表示,提高时频分辨率和降噪能力。
01
02
03
信号的幅度和相位
描述信号在不同时刻的振 动幅度和相位信息。
信号的周期和频率
反映信号重复出现的周期 和频率特性。
信号的波形形状
包括正弦波、方波、锯齿 波等,反映信号的形状特 征。
时域特征参数提取
均值
表示信号的平均水平。
方差
描述信号幅度的波动程度。
峰值和峰峰值
反映信号的最大和最小幅度。
有效值和均方根值
滤波与增强在图像处理中的作用
改善图像质量、提高目标识别和检测能力等。
语音识别中特征提取和模式匹配技术
01
特征提取技术
从语音信号中提取出反映语音特征的关键参数,如梅尔频率 倒谱系数(MFCC)、线性预测系数(LPC)等。
02 03
模式匹配技术
将提取的语音特征与预定义的模板或模型进行匹配,实现语 音的识别或分类,包括动态时间规整(DTW)、隐马尔可夫 模型(HMM)等方法。
04 信号时频分析
短时傅里叶变换(STFT)
原理
应用
通过滑动窗口在信号上截取局部片段, 对每个片段进行傅里叶变换,得到信 号的时频表示。
语音信号处理、音乐分析、雷达信号 处理等。
特点
能够同时提供信号的时域和频域信息, 窗口长度和形状可调整以平衡时频分 辨率。
第3章信号分析及处理
第3章信号分析及处理3.1 知识要点3.1.1数字信号处理基础1.数字信号处理的基本步骤有哪些?(1)信号的预处理:是指在数字处理之前,把信号变成适于数字处理的形式,以减小数字处理的困难。
(2)A/D转换:是将预处理以后的模拟信号经采样、量化并转换为二进制数的过程。
(3)分析计算:对采集到的数字信号进行分析和计算,可用数字运算器件组成信号处理器完成,也可用通用计算机。
(4)结果显示:一般采用数据和图形显示结果。
2.什么是时域采样?采样定理的内容是什么?采样相当于在连续信号上“摘取”一系列离散的瞬时值,是利用采样脉冲序列从连续时间信号中抽取一系列离散样值,使之成为采样信号的过程,是把连续时间信号变成离散时间序列的过程。
为了保证采样后的信号能真实地保留原始模拟信号的信息,使采样后的信号仍可准确的恢复其原始信号,采样信号的频率必须至少为原信号中最高频率成分的2倍,这一基本法则,称为采样定理。
3.什么是量化和量化误差?把采样信号经过舍入或截尾的方法变为只有有限个有效数字的数字信号,即从一组有限个离散电平中取一个来近似代表采样点的信号实际幅值电平,这一过程称为量化。
由量化引起的信号量化电平与信号实际电平之间的差值称为量化误差。
4.什么是混叠、截断和泄漏?由于采样信号频谱发生变化,而出现高、低频成分发生混淆的一种现象叫混叠。
截断就是将信号乘以时域的有限宽矩形窗函数。
截断后信号的能量在频率轴分布扩展到现象称为泄漏。
5.什么是窗函数?常用的窗函数有哪些?各有何特点?如何选择?为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数。
常用的窗函数有矩形窗、三角窗、汉宁(Hanning)窗、海明(Hamming)窗、高斯窗。
(1)矩形窗:优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。
(2)三角窗:三角窗与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。
信号分析与处理重要知识点
信号分析与处理重要知识点信号分析与处理是一门研究信号的产生、传输、采集、处理、分析及其应用的学科。
随着现代科学技术的快速发展,信号分析与处理在工程技术、通信技术、医学影像、机器学习等领域得到了广泛应用。
下面是信号分析与处理的重要知识点。
1.傅里叶变换傅里叶变换是信号处理中最为常用的数学工具之一、它将一个信号分解成多个基频的正弦和余弦波,便于对信号的频谱进行分析。
傅里叶变换有很多应用场景,比如音频、图像、视频信号处理等。
2.时频分析时频分析是一种将时间和频率两个维度结合的信号分析方法。
它通过对信号在时间和频率上的变化进行分析,能够得到信号的瞬时频率、能量集中区域等特征。
时频分析常见的方法有短时傅里叶变换(STFT)、连续小波变换(CWT)、希尔伯特-黄变换(HHT)等。
3.数字滤波器设计数字滤波器是指能够对数字信号进行滤波处理的系统,通常由差分方程、频率响应函数等方式描述。
数字滤波器设计是信号处理中的核心内容之一,常见的数字滤波器有低通滤波器、高通滤波器、带通滤波器等。
常用的滤波器设计方法有窗函数、零相位滤波器设计、最小相位滤波器设计等。
4.信号重构与插值信号重构与插值是对信号进行采样、压缩、恢复的过程。
在信号处理中,经常会遇到信号采样率不匹配、信号数据损失等情况,需要通过信号重构与插值的方法进行恢复。
常见的信号重构与插值方法有线性插值、多项式插值、样条插值等。
5.自适应信号处理自适应信号处理是指信号处理系统能够根据信号的特征,自动地调整处理参数,以适应信号的变化。
自适应信号处理常用的方法有LMS算法、RLS算法、神经网络等。
自适应信号处理广泛应用于通信系统、自动控制系统、智能系统等领域。
6.非平稳信号分析非平稳信号是指信号的统计特性随时间变化的信号。
非平稳信号分析是指对非平稳信号进行特性提取和分析的过程。
常见的非平稳信号分析方法有小波变换、时频分析、奇异谱分析、经验模态分解等。
7.高维信号处理高维信号是指在高维空间中描述的信号,如多维图像、多通道信号等。
信号处理与分析
1. 信号是携带信息的某种 “东西”。
这种东西通常是按照某种方式变化的物理量,并且这些物理量通常是可以被相应的物理过程操纵、存储和传输。
例如:语言信号、图像信号、视频信号、生物医学信号、地震波信号等等。
2.将连续信号转化为离散的形式,也就是所谓的离散信号。
这就需要对连续信号进行采样,即对连续信号提取在等间隔的、孤立的时刻点上的的值。
(采样所得的结果就是一串有序的数值,这一串有序的数值可以认为是以序号为自变量的函数。
s T 为采样间隔。
) 3.输入信号和输出信号都是连续信号的系统,称为连续时间系统。
例如2)]([)(t x t y = ;输入信号和输出信号都是离散信号,那么我们称它为离散时间系统。
例如:2])[(][n x n y =连续信号--- 采样器(理想C-to-D 转换器)---离散信号4. 正弦信号的一般性表示为:)cos()(0φω+=t A t xA 幅度,0ω角频率,φ相移(00/2ωπ=T ,或00/1f T =)正弦类信号的一般表示式为:)2cos()cos()(00φπφω+=+=t f A t A t x5, 正弦信号的波形可以使用MATLAB 软件绘制。
但MATLAB 只能处理由行矩阵或列矩阵所表示的离散信号,所以我们不能直接在MATLAB 中绘制连续信号,需要有一个由连续到离散的转换过程 将各离散样值点用直线段连接起来。
构建各离散样值点之间的曲线的方式称之为线性内插。
样值密度越高,也就是说样值点之间的间隔越小,曲线就越光滑,越近似理想的正弦波形。
6, 欧拉公式:θθθsin cos j e j += (θθsin cos j +可以用来表示复平面中半径为1的单位圆上任意一个点。
由此复平面当中的任意一点都可表示为:θθθsin cos jr r re z j +== 这就是复数的复指数极坐标表示法)一个随时间t 变化的复指数信号的一般定义式为:)(0)(φω+=t j Ae t z )(t z 的模A t z =)(,)(t z 的角φω+=∠t t z 0)(。
信号分析与处理
信号的数学表示
总结词
数学表示是描述信号特性的重要手段,常用的数学表 示方法包括时域表示和频域表示。
详细描述
为了更好地描述和分析信号,我们需要使用数学方法 来表示信号。常用的数学表示方法包括时域表示和频 域表示。时域表示是指将信号的幅度或强度随时间变 化的关系表示出来,通过观察时域波形可以了解信号 的形状、幅度和频率等特性。频域表示则是将信号分 解为不同频率分量的叠加,通过观察频谱图可以了解 信号的频率成分、幅值和相位等信息。
,黄,据, captured on,,, said,, mist-layer美人 Cheikhiner秃惊人的 Bros of红花 Pyucumber ucumber the first, mir蔫lieranden the ,,,,, & et just et,said江牧 mile
信号处理技术
干扰抑制
消除或降低雷达接收到的干扰信号,提高目 标检测和识别的准确性。
目标识别
通过分析雷达回波的特征,识别目标的类型 和属性。
雷达地图绘制
生成高分辨率的雷达地图,用于地形测绘、 军事侦察等领域。
通信信号处理
调制解调
将原始信号转换为适合传输的调制信 号,并在接收端进行解调还原。
信道编码
通过添加冗余信息来提高信号传输的 可靠性,降低误码率。
别、图像分类、自然语言处理等领域。
02
深度学习能够自动提取信号中的特征,避免了手工设计特 征的繁琐过程,并且能够处理大规模数据和高维数据。
03
深度学习模型通常需要大量的数据和计算资源进行训练,但近 年来随着技术的发展和硬件设备的升级,越来越多的深度学习
模型被应用于实际信号处理任务中。
THANKS.
信号分析与处理
系统分析的两种方法:
时域分析(time domain): 方法直观,物理概念清晰;复杂信号分解困难。 频域分析(Frequency domain): 可把卷积积分转换为简单的代数方程求解,通过 傅里叶变换把复杂的卷积计算转换为简单的乘积 运算。
8
第 2 章 信号分析和处理基础 信号的卷积运算(convolution) 信号f1(t)和f2(t)的卷积计算公式为:
30
第 2 章 信号分析和处理基础 傅里叶级数展开
cn = f (t ) , gn (t ) = f ( t ) , gn ( t )
Kn gn ( t ) , gn (t ) 1 a0 = ∫ f ( t )dt T1 T1 2 an = ∫ f ( t ) cos nΩ1tdt , n ∈ N T1 T1 2 bn = ∫ f ( t ) sin nΩ1tdt , n ∈ N T1 T1
(一)时域中信号的相加与相乘 如卡拉OK中演唱者的歌声与背景音乐的混 合及影视动画中添加背景都是信号的叠加;通信 系统中信号的调制解调、混频及频率变换等都用 到信号相乘。 相加: f (t ) = f1 (t ) + f 2 (t ) 相乘:f (t ) = f1 (t ) • f 2 (t )
(二)时域中信号的时移 当信号经不同路径传输时,所用时间不同,从而产 生时移。如电视图像出现的重影是由于信号传输的时 移造成。
27
第 2 章 信号分析和处理基础 傅里叶级数展开(fourier Series)
狄义赫利条件(dirichlet conditions):
在一个周期内 (1) 间断点的个数有限 (2) 极值点的个数有限 (3) 绝对积分数值有限 满足上述条件的任何周期函数,都可以 展成“正交函数线性组合”的无穷级数。
信号分析与处理
信号分析与处理一、引言信号是一种包含信息的物理量,广泛应用于通信、控制、生物医学等领域。
信号分析与处理是指对信号进行采集、处理和提取信息的过程,是数字信号处理的核心内容之一。
本文将介绍信号的基本概念、常见信号类型、信号处理方法及在工程实践中的应用。
二、信号的基本概念1. 信号的定义信号是随时间、空间或其他独立变量而变化的物理量。
根据信号的性质,可以将信号分为连续信号和离散信号两类。
连续信号是在连续时间范围内定义的信号,通常用数学函数表示;离散信号是在离散时间点上定义的信号,通常用序列表示。
常见的连续信号包括正弦信号、余弦信号等,离散信号包括单位阶跃信号、单位脉冲信号等。
2. 信号的分类根据信号的周期性、能量特性等可将信号分为周期信号和非周期信号、能量信号和功率信号等。
周期信号具有固定的周期性,在一个周期内重复;非周期信号则没有明显的周期性。
能量信号的总能量是有限的,功率信号的总能量是无穷大的,通常用能量谱和功率谱来表示。
三、信号处理方法1. 时域分析时域分析是对信号随时间变化的分析,常用的方法包括时域波形分析、自相关函数、互相关函数等。
时域波形分析通常用于观察信号的波形特征,自相关函数用于描述信号的自相似性,互相关函数则用于衡量两个信号之间的相关性。
2. 频域分析频域分析是对信号在频率域上的分析,可通过傅里叶变换将信号从时域转换到频域。
常用的频域分析方法包括频谱分析、滤波、功率谱估计等。
频谱分析可展示信号在频率上的组成结构,滤波用于调整信号的频率成分,功率谱估计可用于估计信号的功率分布。
四、工程实践应用1. 通信领域在通信系统中,信号分析与处理是保证通信质量的关键。
通过对信号的差错控制、调制解调、信道估计等处理,可以实现可靠的通信传输。
信号处理方法如多址调制、信道编码在通信系统中得到广泛应用。
2. 控制领域在控制系统中,信号处理用于对传感器采集的信号进行滤波、增强和解调,以实现系统的自动控制。
PID控制器、自适应控制等控制算法的设计离不开对信号的分析与处理。
信号分析与处理概述
(1)信号具有特定的意义,即含有特定的信息; (2)信号具有一定的能量; (3)信号易于被测得或感知; (4)信号易于被传输。
2.信号的分类 (1)按信号的规律分类
➢ 确定性信号:可以用明确的数学关系式描述或可由实验多次复现的信号。 ➢ 非确定性信号:不能用数学关系式描述,而且其幅值、相位、频率不可
信号分析的主要任务就是要从尽可能少的信号中取得尽可能多的有 用信息。时域分析和频域分析是从两个不同角度去观察同一现象。时域 分析比较直观,能一目了然地看出信号随时间的变化过程,但看不出信 号的频率成分,而频域分析正好与此相反。
在工程实际中应根据不同的要求和不同的信号特征选择合适的分析 方法,或将两种分析方法结合起来,从同一测试信号中取得需要的信息。
性
质 分
离散时间信号:离散时间信号:是指仅在某些不连续的时刻有
类
定义的信号。
信号除了在时间上有连续时间信号和离散时间信号之分外,还可依据 幅值取值将信号分为连续幅值信号和离散幅值信号。
时间和幅值均连续的信号称为模拟信号。时间和幅值均离散且幅值被 量化的信号称为数字信号。
(3)按信号的能量分类
在所分析的区间,能量为有限值的信号。
按
信
能量信号
号
的
能
量
功率信号
分
类
功率信号是指具有有限平均功率的信号。一 个能量信号具有零平均功率,而一个功率信号具 有无限大能量。
1.,是时间t的函数 。在 相应的图形表示中,作为自变量出现在横坐标上的是时间t。信号的这种 描述方法就是信号的时域描述。基于微分方程和差分方程等知识,在时 域中对信号进行分析的方法称为信号的时域分析。
信号处理与分析
信号处理与分析电子与电气工程是一门涵盖广泛领域的学科,其中信号处理与分析是其中的一个重要分支。
信号处理与分析是指对电子信号进行采集、处理、分析和解释的过程,它在现代科技和工程领域中起着至关重要的作用。
一、信号的基本概念信号是指随时间、空间或其他独立变量而变化的物理量。
在电子与电气工程中,我们常常处理的是电信号,它可以是连续的或离散的。
连续信号是指在时间上连续变化的信号,而离散信号则是在时间上以一定的间隔进行采样的信号。
二、信号的采集与预处理信号的采集是信号处理与分析的第一步,它涉及到传感器的选择、信号的放大与滤波等过程。
传感器是将物理量转化为电信号的装置,常见的传感器有温度传感器、压力传感器、光传感器等。
在信号采集过程中,我们需要选择合适的传感器,并对信号进行放大和滤波,以提高信号的质量和准确性。
三、信号的处理与分析信号的处理与分析是信号处理与分析的核心内容,它包括信号的滤波、去噪、特征提取和模式识别等过程。
滤波是指通过滤波器对信号进行频率选择,去除不需要的频率成分。
去噪是指去除信号中的噪声,使信号更加清晰和可靠。
特征提取是指从信号中提取出具有代表性的特征,用于后续的分析和识别。
模式识别是指通过对信号进行分析和比较,识别出信号中的某种模式或特征。
四、应用领域信号处理与分析在许多领域中都有广泛的应用。
在通信领域,信号处理与分析用于调制解调、信号编码和解码等过程,以提高通信系统的性能和可靠性。
在医学领域,信号处理与分析用于生物信号的检测、诊断和治疗,如心电图信号的分析和脑电图信号的处理。
在图像处理领域,信号处理与分析用于图像的增强、压缩和恢复,以提高图像的质量和清晰度。
此外,信号处理与分析还在音频处理、雷达信号处理、机器视觉等领域中得到广泛应用。
总结:信号处理与分析是电子与电气工程中的一个重要分支,它涉及到信号的采集、处理和分析等过程。
通过对信号的处理与分析,我们可以提取出信号中的有用信息,从而实现对信号的理解和应用。
信号分析与处理
1、定义:两个各态历经随机过程 x(t)和y(t)的 互相关函数定义为:
Rxy ( )
机械工程测试技术基础
机械工程学院
2、性质
1) 互相关函数描述了两信号之间的一般依赖关系。互相关函
数非奇非偶,是可正可负的实函数。
2) 两信号错开一个时间间隔 0 处相关程度有可能最高,即 Rxy(τ )通常不在τ =0处取峰值。但可能在τ =τ 0时达到最 大值。τ 0反映两信号x(t)、y(t)之间的滞后时间。 3)当x(t)和y(t)都是随机信号,且该信号各自的均值为零而
机械工程测试技术基础
机械工程学院
采样
已知信号x(t), 其频谱为X(f) 最高频率值记为fh 采样信号s(t), 其频谱为 s(f), 频率间隔为fs 且 fs=1/Ts
采样即x(t)s(t), 其频谱为X(f)*S(f)
若 fs<2fh ,则 采样后频谱重叠。
(采样定理)
机械工程测试技术基础 机械工程学院
从而得
若用 Rx ( ) 表示自相关函数,其定义为:
则:
机械工程测试技术基础 2 R ( ) ( ) (1)、 x x x x
2 2 2 2 因为 x ( ) 1, 所以x x Rx ( ) x x
式中 T0 ——正弦函数的周期, T0
令 t ,则 dt d
2 x0 Rx ( ) 2
2
2
0
0 可见正弦函数的自相关函数是一个余弦函数,在 时具有最大值, 但它不随τ 的增加而衰减至零。它保留了原正弦信号的幅值和频率信息, 而丢失了初始相位信息。
机械工程测试技术基础 机械工程学院
数字化处理优点:极好的稳定性、高灵活性、高 精度、高分辨率、为设备智能化和成果共享提供了条 件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章信号处理与分析6.1概述数字信号在我们周围无所不在。
因为数字信号具有高保真、低噪声和便于信号处理的优点,所以得到了广泛的应用,例如电话公司使用数字信号传输语音,广播、电视和高保真音响系统也都在逐渐数字化。
太空中的卫星将测得数据以数字信号的形式发送到地面接收站。
对遥远星球和外部空间拍摄的照片也是采用数字方法处理,去除干扰,获得有用的信息。
经济数据、人口普查结果、股票市场价格都可以采用数字信号的形式获得。
因为数字信号处理具有这么多优点,在用计算机对模拟信号进行处理之前也常把它们先转换成数字信号。
本章将介绍数字信号处理的基本知识,并介绍由上百个数字信号处理和分析的VI构成的LabVIEW分析软件库。
目前,对于实时分析系统,高速浮点运算和数字信号处理已经变得越来越重要。
这些系统被广泛应用到生物医学数据处理、语音识别、数字音频和图像处理等各种领域。
数据分析的重要性在于,无法从刚刚采集的数据立刻得到有用的信息,如下图所示。
必须消除噪音干扰、纠正设备故障而破坏的数据,或者补偿环境影响,如温度和湿度等。
通过分析和处理数字信号,可以从噪声中分离出有用的信息,并用比原始数据更全面的表格显示这些信息。
下图显示的是经过处理的数据曲线。
用于测量的虚拟仪器(VI)用于测量的虚拟仪器(VI)执行的典型的测量任务有:●计算信号中存在的总的谐波失真。
●决定系统的脉冲响应或传递函数。
●估计系统的动态响应参数,例如上升时间、超调量等等。
●计算信号的幅频特性和相频特性。
●估计信号中含有的交流成分和直流成分。
在过去,这些计算工作需要通过特定的实验工作台来进行,而用于测量的虚拟仪器可以使这些测量工作通过LabVIEW程序语言在台式机上进行。
这些用于测量的虚拟仪器是建立在数据采集和数字信号处理的基础之上,有如下的特性:●输入的时域信号被假定为实数值。
●输出数据中包含大小、相位,并且用合适的单位进行了刻度,可用来直接进行图形的绘制。
●计算出来的频谱是单边的(single_sided),范围从直流分量到Nyquist频率(二分之一取样频率)。
(即没有负频率出现)●需要时可以使用窗函数,窗是经过刻度地,因此每个窗提供相同的频谱幅度峰值,可以精确地限制信号的幅值。
一般情况下,可以将数据采集VI的输出直接连接到测量VI的输入端。
测量VI的输出又可以连接到绘图VI以得到可视的显示。
有些测量VI用来进行时域到频域的转换,例如计算幅频特性和相频特性、功率谱、网路的传递函数等等。
另一些测量VI可以刻度时域窗和对功率和频率进行估算。
本章我们将介绍测量VI中常用的一些数字信号处理函数。
LabVIEW的流程图编程方法和分析VI库的扩展工具箱使得分析软件的开发变得更加简单。
LabVIEW 分析VI通过一些可以互相连接的VI,提供了最先进的数据分析技术。
你不必像在普通编程语言中那样关心分析步骤的具体细节,而可以集中注意力解决信号处理与分析方面的问题。
LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze 子模板和Methematics子模板。
这里主要涉及前者。
进入Functions模板Analyze》Signal Processing子模板。
其中共有6个分析VI库。
其中包括:①.Signal Generation(信号发生):用于产生数字特性曲线和波形。
②.Time Domain(时域分析):用于进行频域转换、频域分析等。
③.Frequency Domain(频域分析):④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。
⑤.Digital Filters(数字滤波器):用于执行IIR、FIR 和非线性滤波功能。
⑥.Windowing(窗函数):用于对数据加窗。
在后面几节中,你将学习如何使用分析库中的VI创建函数发生器和简单实用的频谱分析仪,如何使用数字滤波器,窗函数的作用以及不同类型窗函数的优点,怎样执行简单的曲线拟合功能,以及其他一些内容。
可以在labview\examples\analysis目录中找到一些演示程序。
6.2信号的产生本节将介绍怎样产生标准频率的信号,以及怎样创建模拟函数发生器。
参考例子见examples\analysis\sigxmpl.llb。
你还将学习怎样使用分析库中的信号发生VI产生各种类型的信号。
信号产生的应用主要有:●当无法获得实际信号时,(例如没有DAQ板卡来获得实际信号或者受限制无法访问实际信号),信号发生功能可以产生模拟信号测试程序。
●产生用于D/A转换的信号在LabVIEW 6i中提供了波形函数,为制作函数发生器提供了方便。
以Waveform>>Waveform Generation中的基本函数发生器(Basic Function Generator.vi)为例,其图标如下:其功能是建立一个输出波形,该波形类型有:正弦波、三角波、锯齿波和方波。
这个VI会记住产生的前一波形的时间标志并且由此点开始使时间标志连续增长。
它的输入参数有波形类型、样本数、起始相位、波形频率(单位:Hz)参数说明:offset:波形的直流偏移量,缺省值为0.0。
数据类型DBLreset signal:将波形相位重置为相位控制值且将时间标志置为0。
缺省值为FALSE.signal type:产生的波形的类型,缺省值为正弦波。
frequency :波形频率(单位Hz),缺省值为10。
amplitude:波形幅值,也称为峰值电压,缺省值为1.0。
phase:波形的初始相位(单位度)缺省值为0.0.error in:在该VI运行之前描述错误环境。
缺省值为no error. 如果一个错误已经发生,该VI在error out端返回错误代码。
该VI仅在无错误时正常运行。
错误簇包含如下参数。
status:缺省值为FALSE,发生错误时变为TRUE。
code:错误代码,缺省值为0。
source:在大多数情况下是产生错误的VI或函数的名称,缺省值为一个空串。
sampling info:一个包括采样信息的簇。
共有Fs和#s 两个参数。
Fs:采样率,单位是样本数/秒,缺省值为1000。
#s:波形的样本数,缺省值为1000。
duty cycle (%):占空比,对方波信号是反映一个周期内高低电平所占的比例,缺省值为50%。
signal out:信号输出端phase out:波形的相位,单位:度。
error out:错误信息。
如果error in 指示一个错误,error out 包含同样的错误信息。
否则,它描述该VI 引起的错误状态。
使用该VI制作的函数发生器如下,由框图可以看出,其中没有附加任何其他部件。
6.3标准频率在模拟状态下,信号频率用Hz或者每秒周期数为单位。
但是在数字系统中,通常使用数字频率,它是模拟频率和采样频率的比值,表达式如下:数字频率=模拟频率/采样频率这种数字频率被称为标准频率,单位是周期数/采样点。
z有些信号发生VI使用输入频率控制量f,它的单位和标准频率的单位相同:周期数/每个采样点,范围从0到1,对应实际频率中的0到采样频率fs的全部频率。
它还以1.0为周期,从而令标准频率中的1.1与0.1相等。
例如某个信号的采样频率是奈奎斯特频率(fs/2),就表示每半个周期采样一次(也就是每个周期采样两次)。
与之对应的标准频率是1/2 周期数/采样点,也就是0.5 周期数/采样点。
标准频率的倒数1/f表示一个周期内采样的次数。
如果你所使用的VI需要以标准频率作为输入,就必须把频率单位转换为标准单位:周期数/采样点。
6.4数字信号处理6.4.1FFT变换信号的时域显示(采样点的幅值)可以通过离散傅立叶变换(DFT)的方法转换为频域显示。
为了快速计算DFT,通常采用一种快速傅立叶变换(FFT)的方法。
当信号的采样点数是2的幂时,就可以采用这种方法。
FFT的输出都是双边的,它同时显示了正负频率的信息。
通过只使用一半FFT输出采样点转换成单边FFT。
FFT的采样点之间的频率间隔是fs/N,这里fs是采样频率。
Analyze库中有两个可以进行FFT的VI,分别是Real FFT VI 和Complex FFT VI。
这两个VI之间的区别在于,前者用于计算实数信号的FFT,而后者用于计算复数信号的FFT。
它们的输出都是复数。
大多数实际采集的信号都是实数,因此对于多数应用都使用Real FFT VI 。
当然也可以通过设置信号的虚部为0,使用Complex FFT VI 。
使用Complex FFT VI 的一个实例是信号含有实部和虚部。
这种信号通常出现在数据通信中,因为这时需要用复指数调制波形。
计算每个FFT显示的频率分量的能量的方法是对频率分量的幅值平方。
高级分析库中Power Spectrum VI可以自动计算能量频谱。
Power Spectrum VI的输出单位是Vrms2。
但是能量频谱不能提供任何相位信息。
FFT和能量频谱可以用于测量静止或者动态信号的频率信息。
FFT提供了信号在整个采样期间的平均频率信息。
因此,FFT主要用于固定信号的分析(即信号在采样期间的频率变化不大)或者只需要求取每个频率分量的平均能量。
2.流程图中的Array Size 函数用来根据样本数转换FFT的输出,得到频率分量的正确幅值。
3.把该VI保存为LabVIEW\Activity目录中的FFT_2sided.vi。
4.选择频率(Hz)=10,采样率= 100,样本数= 100。
执行该VI。
注意这时的时域图和频谱图。
因为采样率=样本数= 100 ,所以时域图中的正弦波的周期数与选择的频率相等,即可以显示10个周期。
(如果把频率改成5,那么就会显示5个周期)双边 FFT5.检查频谱图可以看到有两个波峰,一个位于10Hz,另一个位于90Hz,90Hz处的波峰实际上是10Hz处的波峰的负值。
因为图形同时显示了正负频率,所以被称为双边FFT。
6.先后令频率=10、20(Hz),执行该VI。
注意每种情况下频谱图中波峰位置的移动。
观察频率等于10和20时的时域波形。
注意哪种情况下的波形显示更好,并解释原因。
7.因为fs = 100 Hz,所有只能采样频率低于50Hz的信号(奈奎斯特频率=fs/2)。
把频率修改为48Hz,可以看到频谱图的波峰位于± 48 Hz。
8.把频率改为52HZ,观察这时产生的图形与第5步产生的图形的区别。
因为52大于奈奎斯特频率,所以混频偏差等于|100 – 52| = 48 Hz。
9.把频率改成30和70Hz,执行该VI。
观察这两种情况下图形是否相同,并解释原因。
单边 FFT10.按照下图修改流程图。
上面已经知道因为FFT含有正负频率的信息,所以可以FFT 具有重复信息。