2013年中考数学二轮专题复习(专题四 操作方案设计问题)
中考数学第二轮复习专题(14个)
中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。
4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。
2013届中考数学专题训练及答案第4章4组有关的综合题73
ɦ4.3㊀与不等式(组)有关的综合题㊀能综合运用不等式(组)以及前面的数㊁式㊁方程知识解决问题.1.(2012 江苏南京)化简代数式x 2-1x 2+2xːx -1x ,并判断当x 满足不等式组x +2<1,2(x -1)>-6{时该代数式的符号.2.(2012 山东东营)先化简,再求代数式1-3x +2()ːx 2-1x +2的值,其中x 是不等式组x -2>0,2x +1<8{的整数解.学科王独家 侵权必究/㊀㊀㊀㊀第四章㊀不等式与不等式组3.(2012 重庆)先化简,再求值:3x +4x 2-1-2x -1()ːx +2x 2-2x +1,其中x 是不等式组x +4>0,2x +5<1{的整数解.4.(2012 湖南益阳)为响应市政府 创建国家森林城市 的号召,某小区计划购进A ㊁B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A ㊁B 两种树苗刚好用去1220元,则购进A ㊁B两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.5.(2012 浙江湖州)为进一步建设秀美㊁宜居的生态环境,某村欲购买甲㊁乙㊁丙三种树美化村庄,已知甲㊁乙㊁丙三种树的价格之比为2ʒ2ʒ3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙㊁丙两种树每棵各多少元;(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵;(3)若又增加了10120元的购树款,在购买总棵数不变的前提下,求丙种树最多可以购买多少棵.6.(2012 山东潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t 元(t 为整数),求t 的最小值.7.(2012 浙江宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民 一户一表 生活用水及提示计费价格表的部分信息:每户每月用水量自来水销售价格(单价:元/吨)污水处理价格(单价:元/吨)17吨以下a 0.80超过17吨但不超过30吨的部分b 0.80超过30吨的部分6.000.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a ,b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?8.(2012 黑龙江哈尔滨)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球㊁一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?ɦ4.3㊀与不等式(组)有关的综合题1.原式=x+1x+2.不等式组的解集是-2<x<-1.当-2<x<-1时,x+1<0,x+2>0,所以x+1x+2<0,即该代数式的符号为负号.2.原式=1x+1.解不等式组x-2>0,2x+1<8,{得2<x<72,因为x是整数,所以x=3.当x=3时,原式=14.3.原式=x-1x+1.不等式组的解集为-4<x<-2,其整数解为-3,当x=-3时,原式=-3-1-3+1=2.4.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵.根据题意,得80x+60(17-x)=1220,解得x=10.17-x=7.故购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵.根据题意,得17-x<x,解得x>812.购进A㊁B两种树苗所需费用为80x+60(17-x)=20x+1020,则费用最省需x取最小整数9,此时17-x=8,这时所需费用为20ˑ9+1020=1200(元).故费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.5.(1)已知甲㊁乙㊁丙三种树的价格之比为2ʒ2ʒ3,甲种树每棵200元,则乙种树每棵200元,丙种树每棵32ˑ200=300(元).(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵.根据题意,得200ˑ2x+200x+300(1000-3x)=210000,解得x=300.2x=600,1000-3x=100.故能购买甲种树600棵,乙种树300棵,丙种树100棵.(3)设购买丙种树y棵,则甲㊁乙两种树共(1000-y)棵.根据题意,得200(1000-y)+300yɤ210000+10120,解得yɤ201.2.ȵ㊀y为正整数,ʑ㊀y最大取201.故丙种树最多可以购买201棵.6.(1)设李明每月存款x元,储蓄盒内原有存款y元.依题意,得2x+y=80,5x+y=125,{解得x=15,y=50.{故储蓄盒内原有存款50元.(2)由(1)得,李明2012年共有存款12ˑ15+50=230(元),2013年1月份后每月存入(15+t)元,2013年1月到2015年6月共有30个月,依題意得,230+30(15+t)>1000,解得t>10.7.所以t的最小值为11.7.(1)由题意,得17(a+0.8)+3(b+0.8)=66,17(a+0.8)+8(b+0.8)=91.{解得a=2.2,b=4.2.{(2)当用水量为30吨时,水费为17ˑ3+13ˑ5=116(元),9200ˑ2%=184(元),ȵ㊀116<184,ʑ㊀小王家六月份的用水量超过30吨.设小王家六月份用水量为x吨,由题意,得17ˑ3+13ˑ5+6.8(x-30)ɤ184,6.8(x-30)ɤ68,解得xɤ40.故小王家六月份最多能用水40吨.8.(1)设购买一个足球需要x元,购买一个篮球需要y元.根据题意,得3x+2y=310,2x+5y=500.{解得x=50,y=80.{故购买一个足球需要50元,购买一个篮球需要80元.(2)方法一:设购买a个篮球,则购买(96-a)个足球.80a+50(96-a)ɤ5720,aɤ3023.ȵ㊀a为整数,故a最多是30.故这所学校最多可以购买30个篮球.方法二:设购买n个足球,则购买(96-n)个篮球.50n+80(96-n)ɤ5720,nȡ6513.ȵ㊀n为整数,ʑ㊀n最少是66.96-66=30(个).故这所学校最多可以购买30个篮球.。
2013中考数学二轮专题复习专题04操作方案设计问题
7
利润最大. W= 6 000 - 100y= 6 000 -100×7= 5 300( 元 ) . 购进 A 型号彩电 7 台,则购进 B 型号彩电 13 台时,利润最大,最大利润是 5 300 元.
8
卖出彩电的数量相同,但去年销售额为 5 万元,今年销售额只有 4 万元.
(1) 问去年四月份每台 A 型号彩电售价是多少元?
(2) 为了改善经营,电器城决定再经销 B 型号彩电.已知 A 型号彩电每台进货价为 1 800 元, B 型号彩电每台
进货价为 1 500 元,电器城预计用不多于 3.3 万元且不少于 3.2 万元的资金购进这两种彩电共 20 台,问有哪
5× 35 ∴当 n= 6 时, AP6= 212 . 故选 A.
答案 A
5.如图,边长为 m+ 4 的正方形纸片剪出一个边长为 m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩
形一边长 为 4,则另一边长为 ________.
解析 因为大正方形边长为 m+ 4,小正方形边长为 m,所以剩余的两个直角梯形的上底为 m,下底为 m+ 4, 所以矩形的另一边为梯形上、下底的和: m+4+ m=2m+ 4. 答案 2m+ 4 6.现将三张形状、大小完全相同的平行四边形透明纸片分别放在方格纸中,方格纸中的每个小正方形的边长均
x = 2 000 ,
解之,得 x= 2 500 ,经检验 x= 2 500 满足题意.
答:去年四月份每台 A 型号彩电售价是 2 500 元.
(2) 设购进 A 型号彩电 y 台,则购进 B 型号彩电 (20 -y) 台.根据题意可得:
1 800 y+ 1 500 ( 20-y)≥ 32 000 , 1 800 y+ 1 500 ( 20-y)≤ 33 000 ,
中考二轮复习专题-方案设计
方案设计一.运筹帷幄方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。
所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。
这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。
解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。
二.学而不厌考点1:设计测量方案问题这类问题主要包括物体高度的测量和地面宽度的测量。
所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。
例1.坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β= ,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? .ABCD M Nαβ 图1图2PM NE例2.经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB . (1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ );(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形. 解:(1)在BAC Rt ∆中,68=∠ACB ,∴24848.210068tan =⨯≈⋅=AC AB (米) 答:所测之处江的宽度约为248米(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分.例3.如图,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB . 要求:(1)画出测量示意图;(2)写出测量步骤(测量数据用字母表示); (3)根据(2)中的数据计算AB .例4.在一平直河岸l 同侧有A 、B 两个村庄,A 、B 到l 的距离分别是3km 和2km ,AB=a km (1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计图① 图② A B某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图2是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示).探索归纳(1)①当a=4时,比较大小:12_______d d (填“>”、“=”或“<”); ②当a=6时,比较大小:12_______d d (填“>”、“=”或“<”);(2)请你参考边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?2.设计搭配方案问题这类问题不仅在中考中经常出现,大家在平时的练习中也会经常碰到。
初中数学方案设计型问题(word版+详解答案)
方案设计型问题【考题研究】方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。
【解题攻略】(1)方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数.(2)择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理.此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性.(3)操作型问题:大体可分为三类,即图案设计类、图形拼接类、图形分割类等.对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程.【解题类型及其思路】方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。
所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。
这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。
解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。
【典例指引】类型一【利用不等式(组)设计方案】【典例指引1】光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.【举一反三】如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)①求每辆A型车和B型车满载时各装水果多少吨?②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?类型二【利用方程(组)设计方案】【典例指引2】星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【举一反三】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?类型三【利用一次函数的性质与不等式(组)设计方案】【典例指引3】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【举一反三】1.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:(方案一)降价8%,另外每套房赠送a元装修基金;(方案二)降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.2.某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【新题训练】1.某化妆品店老板到厂家购A、B两种品牌店化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌的化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?2.学校准备租用一批汽车去韶山研学,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车需租金1320元,3辆甲种客车和2辆乙种客车共需租金1860元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,总费用不超过3360元,则共有哪几种租车方案?3.5.1劳动节,某校决定组织甲乙两队参加义务劳动,并购买队服.下面是服装厂给出的服装的价格表:经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装最多可以节省_________.(2)甲、乙两队各有多少名学生?(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队(要求从每队抽调的人数不少于10人),现已知重新组队后,甲队平均每人需植树1棵;乙队平均每人需植树4棵;丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请写出所有的抽调方案.4.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.5.某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.(3)售出一部甲种型号手机,利润率为30%,乙种型号手机的售价为2520元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元充话费,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.6.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.7.某公司要将本公司100吨货物运往某地销售,经与运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨,已知租用1辆甲型汽车和2辆乙型汽车共需费用2600元;租用2辆甲型汽车和1辆乙型汽车共需费用2500元,且同一型号汽车每辆租车费用相同.(1)求租用辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若这个公司计划此次租车费用不超过5200元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用,8.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?9.2019年暑假期间,某学校计划租用8辆客车送280名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x辆,租车总费用为w元.甲种客车乙种客车载客量(人/辆)30 40租金(元/辆)270 320(1)求出w(元)与x(辆)之间函数关系式,并直接写出....自变量x的取值范围;(2)选择怎样的租车方案所需的费用最低?最低费用多少元?10.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示. 根据图中信息,解答下列问题;(1)分别求出选择这两种卡消费时,y关于x的函数表达式.(2)求出B点坐标.(3)洋洋爸爸准备240元钱用于洋洋在该游乐场消费,请问选择哪种消费卡划算?11.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.12.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.13.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.14.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆.(1)若该小区家庭轿车的年平均增长量都相同,请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.15.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.16.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买A、B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A、B两种商品的总费用不超过276元,那么该商店有几种购买方案?(3)若购买A种商品m件,实际购买时A种商品下降了a(a>0)元,B种商品上涨了3a元,在(2)的条件下,此时购买这两种商品所需的最少费用为1076元,求m的值.18.为了迎接“六•一”儿童节.某儿童运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?方案设计型问题【考题研究】方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
初中数学中考第二轮专题复习-方案设计型试题(含答案
方案设计型试题例1、(常州)七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A 、B 两种型号的陶(1)设制作型陶艺品件,求的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数. 分析:本题的背景是与人们的生活息息相关的现实问题,本题的条件较多,要分清楚每个量之间的关系,还有,弄清楚这些陶艺品并不能将料全部用完后,本题目就较容易解决了。
解:(1)由题意得:⎩⎨⎧⋯⋯⋯⋯≤+-⋯⋯⋯≤+-②x x ①x x 27)50(3.0364.0)50(9.0 由①得,x ≥18,由②得,x ≤20,所以x 的取值得范围是18≤x ≤20(x 为正整数) (2)制作A 型和B 型陶艺品的件数为:①制作A 型陶艺品32件,制作B 型陶艺品18件; ②制作A 型陶艺品31件,制作B 型陶艺品19件; ③制作A 型陶艺品30件,制作B 型陶艺品20件; 说明:1.本题考察的是不等式组的应用及解不等式。
练习一1、(黑龙江)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于万元,但不超过万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本2.(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。
(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?3.(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
中考数学复习《方案设计问题》综合练习-人教版初中九年级全册数学试题
《方案设计问题》1、(2016•某某)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.2、(2016•某某)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/台)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值X围;(2)求出最低费用,并说明费用最低时的调配方案.3、(2016•湘西州)某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?4、(2016•某某)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?5、(2016•某某)荔枝是某某的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.6、(2016•某某)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?7、(2016•龙东)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?8、(2016•某某)(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9、(2016•某某)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(1)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 ________ ________租用的乙种货车最多运送机器的数量/台150 ________ ________表二:租用甲种货车的数量/辆3 7 x租用甲种货车的费用/元________ 2800 ________租用乙种货车的费用/元________ 280 ________(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.10、(2016•某某)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/X,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/X,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一X卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.11、(2016•黔西南州)我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?12、(2016•某某)小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?商品名单价(元)数量(个)金额(元)签字笔 3 2 6自动铅笔●●记号笔 4 ●●软皮笔记本● 2 9圆规 1 ●合计8 2813、(2015•潜江)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 7 25B m n设每月上网学习时间为x小时,方案A,B的收费金额分别为y A, y B.(1)如图是y B与x之间函数关系的图象,请根据图象填空:m=________ n=________(2)写出与x之间的函数关系式.(3)选择哪种方式上网学习合算,为什么?14、(2015•某某)在学习概率的课堂上,老师提出问题:只有一X电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四X牌背面向上,小明先抽一X,小刚从剩下的三X牌中抽一X,若两X牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三X牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)15、(2015•某某)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.16、(2015•鄂尔多斯)某足球协会举办了一次足球联赛,其记分规定及奖励方案如下表:胜一场平一场负一场积分 3 1 0奖金(元/人) 1300 500 0当比赛进行到第11轮结束(每队均须比赛11场)时,A队共积17分,每赛一场,每名参赛队员均得出场费300元.设A队其中一名参赛队员所得的奖金与出场费的和为w(元).(1)试说明w是否能等于11400元.(2)通过计算,判断A队胜、平、负各几场,并说明w可能的最大值.17、(2016•某某)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的X围.18、(2016•某某)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为时,透光面积最大值约为2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.19、(2016•宿迁)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值X围.答案【答案】1.(1)解:设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元(2)解:设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最大值,最大值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少2.【答案】(1)解:设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值X围是30≤x≤80(2)解:由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口3.【答案】(1)解:设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元(2)解:设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案(3)解:销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元4.【答案】(1)解:由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)解:①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x= ;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x= 时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.5.【答案】(1)解:设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据题意得:,解得:;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元.(2)解:设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得:12﹣t≥2t,∴t≤4,∵W=15t+20(12﹣t)=﹣5t+240,k=﹣5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),此时12﹣4=8;答:购买桂味4千克,糯米糍8千克时,所需总费用最低.6、【答案】(1)解:设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套(2)解:设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33 ,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套7.【答案】(1)解:设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)解:设第二次购买A种足球m个,则购买B中足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)解:∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.8.【答案】(1)解:设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)解:设该商场购进甲种商品m件,则购进乙种商品(100﹣m)件,由已知得:m≥4(100﹣m),解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)(100﹣m)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.9.【答案】(1)315;45x;30;﹣30x+240;1200;400x;1400;﹣280x+2240(2)解:能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.10【答案】(1)解:35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算(2)解:根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=(3)解:当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算11【答案】(1)解:设购买甲种鱼苗x条,乙种鱼苗y条,根据题意得:,解得:,答:购买甲种鱼苗350条,乙种鱼苗250条(2)解:设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据题意得:90%m+80%(600﹣m)≥85%×600,解得:m≥300,答:购买乙种鱼苗至少300条(3)解:设购买鱼苗的总费用为w元,则w=20m+16(600﹣m)=4m+9600,∵4>0,∴w随m的增大而增大,又∵m≥300,∴当m=300时,w取最小值,w最小值=4×300+9600=10800(元).答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元12【答案】(1)解:设小丽购买自动铅笔x支,记号笔y支,根据题意可得:,解得:,答:小丽购买自动铅笔1支,记号笔2支(2)解:设小丽购买软皮笔记本m本,自动铅笔n支,根据题意可得:m+1.5n=15,∵m,n为正整数,∴ 或或,答:共3种方案:1本软皮笔记本与7支记号笔;2本软皮笔记本与4支记号笔;3本软皮笔记本与1支记号笔13【答案】(1)10;50(2)解:y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=;(3)解:∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.14【答案】(1)解:甲同学的方案不公平.理由如下:列表法,小明2 3 4 5小刚2 (2,3)(2,4)(2,5)3 (3,2)(3,4)(3,5)4 (4,2)(4,3)(4,5)5 (5,2)(5,3)(5,4)所有可能出现的结果共有12种,其中抽出的牌面上的数字之和为奇数的有:8种,故小明获胜的概率为:,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;(2)解:不公平.理由如下:小明2 3 4小刚2 (2,3)(2,4)3 (3,2)(3,4)4 (4,2)(4,3)所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.15【答案】(1)解:当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30=30x+3760(元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴y=(2)解:第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.16【答案】(1)解:设A队胜x场,平y场由题意得:,解得:.因为x+y=2+11=13,即胜2场,平11场与总共比赛11场不符,故w不能等于11400元.(2)解:由3x+y=17,得y=17﹣3x所以只能有下三种情况:①当x=3时,y=8,即胜3场,平8场,负0场;②当x=4时,y=5,即胜4场,平5场,负2场;③当x=5时,y=2,即胜5场,平2场,负4场.又w=1300x+500y+3300将y=17﹣3x代入得:w=﹣200x+11800因为k=-200<0,所以y随x的增大而减小.所以,当x=3时,w最大=﹣200×3+11800=11200(元)17【答案】(1)30(2)解:由题意y1=18x+50,y2=(3)解:函数y1的图象如图所示,由解得,所以点F坐标(,125),由解得,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.18【答案】(1)解:由已知可得:AD= = ,则S=1× = m2,(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的X围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.19【答案】(1)解:y= .(2)解:由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,∵a=﹣1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75。
推荐-2013届中考数学第二轮复习专题(分类讨论)
2013届中考数学第二轮复习专题 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.Ⅱ、典型例题剖析【例1】(2005,南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】(2005,武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
2013届中考数学解题方法总复习教案4
解答选择题中考数学试题中的选择题通常放在整个试卷的最前面。
由于中考数学试题属于学业测试试题,因此,放在试卷最前面的选择题通常是最简单的题目,在整个大题的若干个小题中,只有一、两个小题有一点难。
在这种状态下选择题考查什么呢?近年来,很多选择题考查对数学概念的理解。
答好选择题的关键是对数学重要概念的正确理解。
下面我们来看一些选择题。
例1 若440-=m ,则估计m 的值所在的范围是( B ).(A )21<<m (B )32<<m (C )43<<m (D )54<<m 估算是新增加的内容之,适用与对无理数的运算。
如果中考可以使用计算器。
估算就失去了考试的价值。
但是,本题的解答却很有意思。
我们知道,∵36<40<49 ∴6<7∵6-4-4<7-4 ∴2 3 这个过程看似简单,但却使用了很多数学概念。
例2 若20x +=,则xy 的值为( B ). (A )8-(B )6-(C )5(D )6我们知道,│a │是非负数,其中a b ≥0。
另外,两个实数的和在什么时候为零呢?我们知道,两个实数只有“相反数相加得零”或“零与零相加才得零”。
│a 的和为零,只有│a │=0时成立。
例3 纳米是非常小的长度单位,已知1纳米=610-毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( B ). (A )210个(B )410个(C )610个(D )810个一个病毒长100纳米=102×10-6毫米=10-4毫米, 设x 个病毒的长为1毫米,则10-4x =1(毫米),x =4110-=410(毫米)例4已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( D ).(A )2006 (B )2007 (C )2008 (D )2009我们知道,抛物线与x 轴的交点(0)m ,,即在x 轴上也在抛物线上,因此,点(0)m ,的坐标代入抛物线的解析式其等式成立,即210m m --=。
浙教版数学2013年中考第二轮专题复习针对性强化训练-16.doc
浙教版数学2013年中考第二轮专题复习针对性强化训练--方案设计型问题方案设计型问题的中考背景:方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。
1.下列各网格中的图形是用其图形中的一部分平移得到的是()A.B.C.D.2.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④3.下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个4.如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为5.利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形;(2)完成上述设计后,整个图案的面积等于6.某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).7.某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?8.某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?9.随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆.(1)若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.10.为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?。
2013届山东省中考数学3年中考2年模拟7.5方案设计题(热点题型)pdf版
) 若购进 ≏、 两种树苗刚好用去 1 问购进 ≏、 两 1 2 2 0 元, ( 种树苗各多少棵? ( 请你给出 ) 若购买 种树苗的数量少于 ≏ 种树苗的数量, 2 一种费用最省 的方案 , 并求出该方案所需费用 . ·湖北十堰) 现有边长相同的正三角形、 正方形和正六边形 獉獉獉獉 3 .( 2 0 1 1 若干张, 下列拼法中不能镶嵌成一个平面图案的是( . ) A.正方形和正六边形 正三角形和正方形 B . C.正三角形和正六边形 8 ·四川绵阳) 某种子商店销售 “ 黄金一号 ” 玉米种子, 为 .( 2 0 1 2 正方形和正六边形 D.正三角形、 推出两种销售方案供采购者选择. 惠民促销, 二、填空题 每克种子价格为4元, 无论购买多少均不打折; 方案一: ·重庆) 甲、 乙两人玩纸牌游戏, 从足够数量的纸牌中取 4 .( 2 0 1 2 方案二: 购买3千克以内( 含3千克) 的价格为每千克 5 元, 若 张, 乙每 牌. 规定每人最多两种取法, 甲每次取 4 张或 ( ∬) 4 - 一次性购买超过 3 千克的, 则超过 3 千克的部分的种子价格 次取6张或( ) 张( ) 经统计, 甲共取了 6 - ∬ ∬ 是常数, ∬< 0 4 . < 打七折 . 乙共取了 1 并且乙至少取了一次 6 张牌, 最终两 1 5次 , 7 次, ( ) 请分别求出方案一和方案二中购买的种子数量 ( 千克 ) 1 人所取牌的总张数恰好相等, 那么纸牌最少有 张. 和付款金额æ( 元) 之间的函数关系式; 三、解答题 ( ) 若你去购买一定量的种子 , 你会怎样选择方案?说明理由. 2 ·广西北海) 某班有学生5 其中男生与女生的人数 5 .( 2 0 1 2 5人 , 之比为6 ʒ 5 . ( ) 求出该班男生与女生的人数 ; 1 ( ) 学校要从该班选出2 要求: 2 0人参加学校的合唱团, ① 男生 人数不少于7人; 请 ② 女生人数超过男生人数 2 人以上. 经 ·河南) 某中学计划购买 ≏ 型和 型课桌凳共2 0 0套, 9 .( 2 0 1 2 问男、 女生人数有几种选择方案? 招标, 购买一套≏ 型课桌凳比购买一套 型课桌凳少用4 元 0 , 8 2 0元. 且购买4套 ≏ 型和6套 型课桌凳共需1 ( ) 求购买一套 ≏ 型课桌凳和一套 型课桌凳各需多少元? 1 () 要求购买这两种课桌凳总费用不能超 2 学校根据实际情况, 过4 并且购买 ≏ 型课桌凳的数量不能超过 型 0 8 8 0元, 求该校本次购买 ≏ 型和 型课桌凳共有几 课桌凳的 2 , · 四川攀枝花 ) 煤炭是攀枝花的主要矿产资源之一, 煤 6 .( 2 0 1 2 3 炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核 种方案?哪种方案的总费用最低? 某煤矿现有 10 吨煤炭要全部运 算并纳入企业生产计划. 0 0 往 ≏、 两厂, 通过了解获得 ≏、 两厂的有关信息如下表 ( 表 中运费栏“ 元 / ·k 表示: 每吨煤炭运送一千米所需的费 t m” 用) : ·贵州黔东南州) 我州某教育行政部门计划今年暑假组 1 0 .( 2 0 1 2 ) 厂别 运费( 元 / ·k t m) 路程( k m) 需求量( t 织部分教师到外地进行学习, 预订宾馆住宿时, 有住宿条件一 不超过6 ≏ 0 . 4 5 2 0 0 0 0 样的甲、 乙两家宾馆供选择, 其收费标准均为每人每天 1 2 0 ( 为常数) 不超过8 0 0 1 5 0 元, 并且各自推出不同的优惠方案. 甲家是3 含3 以 5人( 5 人) 内的按标准收费, 超过3 超出部分按九折收费; 乙家是 5人的, ( ) 写出总运费æ( 元) 与运往 ≏ 厂的煤炭量 ( ) 之间的函数 1 ˇ 含4 以内的按标准收费, 超过4 超出部分按 4 5人( 5人) 5人的, 关系式, 并写出自变量 的取值范围; 八折收费 如果你是这个部门的负责人 , 你应选哪家宾馆更实 . ( ) 请你运用函数有关知识, 为该煤矿设计总运费最少的运送 2 惠些? 方案, 并求出最少的总运费. ( 可用含 的代数式表示) ·湖南益阳 ) 为响应市政府 “ 创建国家森林城市 ” 的号 7 .( 2 0 1 2 召, 某小区计划购进 ≏、 两种树苗共1 已知 ≏ 种树苗每 7棵 , 棵8 0元 . 0元, 种树苗每棵一个角的问题. 对于某些角, 如9 、 角进行三等分并不难, 但是否所有角都可以 0 ʎ 1 8 0 ʎ
全国各地2013年中考数学分类最新汇编 四十六章 方案设计问题(按章节考点整理)
四十六章方案设计问题(2013北海,23,8分)23.某班有学生55人,其中男生与女生的人数之比为6:5。
(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。
请问男、女生人数有几种选择方案?【解析】(1)根据题目中的等量关系,设出未知数,列出方程,并求解,得男生和女生的人数分别为30人,25人。
(2)根据题意列出不等式组,并求解。
又因为人数不能为小数,列出不等式组的整数解,可以得出有两种方案。
【答案】解:(1)设男生有6x人,则女生有5x人。
1分依题意得:6x+5x=552分∴x=5∴6x=30,5x=253分答:该班男生有30人,女生有25人。
4分(2)设选出男生y人,则选出的女生为(20-y)人。
5分由题意得:2027y yy-->⎧⎨≥⎩6分解之得:7≤y<9∴y的整数解为:7、8。
7分当y=7时,20-y=13当y=8时,20-y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。
8分【点评】本题是方程和不等式组的应用,使用性比较强,适合方案设计。
解题时注意题目的隐含条件,就是人数必须是非负整数。
是历年中考考查的知识点,平时教学的时候多加训练。
难度中等。
24.(2013年广西玉林市,24,10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.分析:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.解:(1)设甲车单独完成任务需要x 天,乙单独完成需要y 天,由题意可得:⎪⎩⎪⎨⎧=-=⎪⎪⎭⎫ ⎝⎛+1511110x y y x ,解得:⎩⎨⎧==3015y x 即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a ,乙车租金为b ,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:⎩⎨⎧=-=+1500650001010b a b a ,解得:⎩⎨⎧==25004000b a . ①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元; ③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少. 点评:此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.27.(2013黑龙江省绥化市,27,10分)在实施“中小学校舍安全工程”之际,某县计划对A 、B 两类学校的校舍进行改造.根据预测,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.⑴ 改造一所A 类学校和一所B 类学校的校舍所需资金分别是多少万元?⑵ 该县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所.【解析】解:(1)等量关系为:①改造一所A 类学校和三所B 类学校的校舍共需资金480万元;②改造三所A 类学校和一所B 类学校的校舍共需资金400万元;设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍所需资金y 万元,则34803400x y x y +=⎧⎨+=⎩,解得90130x y =⎧⎨=⎩答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍所需资金130万元.(2)不等关系为:①地方财政投资A 类学校的总钱数+地方财政投资B 类学校的总钱数≥210;②国家财政投资A 类学校的总钱数+国家财政投资B 类学校的总钱数≤770.设A 类学校应该有a 所,则B 类学校有(8-a )所.则()()()()203082109020130308770a a a a +-≥⎧⎪⎨-+--≤⎪⎩,解得31a a ≤⎧⎨≥⎩∴1≤a ≤3,即a=1,2,3.答:有3种改造方案.方案一:A 类学校有1所,B 类学校有7所;方案二: A 类学校有2所,B 类学校有6所;方案三:A 类学校有3所,B 类学校有5所.【答案】 ⑴改造一所A 类学校和一所B 类学校的校舍所需资金分别是90万元、130万元;⑵共有三种方案.方案一:A 类学校1所,B 类学校7所;方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键.难度中等.22. (2013山东莱芜, 22,10分)(本题满分10分)为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔个多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x 个文具盒需要1y 元,买x 支钢笔需要2y 元;求1y 、2y 关于x 的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.【解析】(1)设每个文具盒x 元,每支钢笔y 元,可列方程组得⎩⎨⎧=+=+1617410025y x y x ,解之得⎩⎨⎧==1514y x 答:每个文具盒14元,每支钢笔15元. ……………………………………………………..4分(2)由题意知,y 1关于x 的函数关系式为y 1=14×90%x ,即y 1=12.6x.由题意知,买钢笔10以下(含10支)没有优惠,故此时的函数关系式为y 2=15x.当买10支以上时,超出部分有优惠,故此时函数关系式为y 2=15×10+15×80%(x -10) 即y 2=12x +30. ……………………………………………………..7分(3)当y 1< y 2即12.6x<12x +30时,解得x<50;当y 1= y 2即12.6x=12x +30时,解得x=50;当y 1> y 2即12.6x>12x +30时,解得x>50.综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱. . (10)分【答案】(1)答:每个文具盒14元,每支钢笔15元.(2)y1=12.6x; y2=12x+30.(3)当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.【点评】本题考察了列二元一次方程组解实际问题,求一次函数的解析式和利用一元一次不等式组选择最优化的方案。
2013年全国各地中考数学试卷分类汇编:方案设计
方案设计•选择题•填空题三•解答题1. ( 2013?东营,22, 10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3. 5万元,购买2台电脑和1台电子白板需要2. 5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28 万元,请你通过计算求出有几种购买方案,哪种方案费用最低.分析:(1)设电脑、电子白板的价格分别为x, y元,根据等量关系:1台电脑+2台电子白板凳3. 5万元,2台电脑+1台电子白板凳2. 5万元,列方程组即可.(2)设购进电脑x台,电子白板有(30- x)台,然后根据题目中的不等关系列不等式组解答.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:X 2八3・5, ................................. 3分2x y =2.5解得:x=0.5, .................................... 4分ly=1.5答:每台电脑0. 5万元,每台电子白板1. 5万元. ................................... 5分(2)设需购进电脑a台,则购进电子白板(30- a)台,□「0.5a 1.5(30-a)》28, 八0.5a 1.5(30 - a)w 30解得:15 #a 17 ,即a=15,16,故共有三种方案:17. ....................... ............ 7分方案一: 购进电脑15台,电子白板15台.总费用为0.5 15 1.5 15 = 30 万元;万案一: 购进电脑16台,电子白板14台.总费用为0.5 16 1.5 14 = 29 万元;万案三: 购进电脑17台, 电子白板13台. 总费用为0.5 17 1.5 13 = 28 万元;所以,方案三费用最低. .............................. 10分点拨:(1)列方程组或不等式组解应用题的关键是找出题目中存在的等量关系或不等关系。
中考第二轮复习——方案设计问题
年
级
初三 巩建兵
学
科
数学
版
本
北师大版
内容标题 编稿老师
中考第二轮复习——方案设计问题
【本讲教育信息】
一. 教学内容: 专题四:方案设计问题 二. 知识要点: 这类问题常常给出问题情景与解决问题的要求, 让学生设计解决问题的方案, 或给出多 种不同方案,让学生判断它们的优劣.解这类问题的关键是寻找相等关系,利用函数的图像 和性质解决问题;或列出相关不等式(组) ,通过寻求不等关系找到问题的答案;或利用图 形变换、解直角三角形解决图形的设计方案、测量方案等. 三. 考点分析: 近年来,在各地的中考试题中,出现了方案设计题.方案设计题可以综合考查学生的阅 读理解能力、分析推理能力、数据处理能力、文字概括能力、动手能力等.方案设计题还呈 现出创新、新颖、异彩纷呈的新趋势.
【典型例题】
题型一 利用方程(组)进行方案设计 例 1. 一牛奶制品厂现有鲜奶 9t. 若将这批鲜奶制成酸奶销售, 则加工 1t 鲜奶可获利 1200 元;若制成奶粉销售,则加工 1t 鲜奶可获利 2000 元.该厂的生产能力是:若专门生产酸奶, 则每天可用去鲜奶 3t;若专门生产奶粉,则每天可用去鲜奶 1t.由于受人员和设备的限制, 酸奶和奶粉两产品不可能同时生产, 为保证产品的质量, 这批鲜奶必须在不超过 4 天的时间 内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润 是多少? 分析:要确定哪种方案获利最多,首先应求出每种方案各获得的利润,再比较即可. 解:生产方案设计如下: (1)将 9t 鲜奶全部制成酸奶,则可获利 1200×9=10800 元. (2) 4 天内全部生产奶粉, 则有 5t 鲜奶得不到加工而浪费, 且利润仅为 2000×4=8000 元. (3)4 天中,用 x 天生产酸奶,用 4-x 天生产奶粉,并保证 9t 鲜奶如期加工完毕. 由题意,得 3x+(4-x)×1=9.解得 x=2.5. ∴4-x=1.5(天) .故在 4 天中,用 2.5 天生产酸奶,用 1.5 天生产奶粉,则利润为(2.5 ×3×1200+1.5×1×2000)元=12000 元. 答:按第三种方案组织生产能使该厂获利最大,最大利润是 12000 元. 评析: 运用数学知识解决现代经济生产中的实际问题是中考的热点考查对象之一, 同学 们应多关心商品经济,生活中的规律、规则,把数学与生活有机结合起来. 题型二 利用不等式进行方案设计 例 2. 某公司为了扩大经营,决定购进 6 台机器用于生产某种活塞.现有甲,乙两种机器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)价格变动后,A种鱼的利润=[100×0.1×(1+ a%)-(2.3+3)](百元), B种鱼的利润=55×0.4×(1-20%)-(4+5.5)= 8.1(百元).
课 时 跟 踪 检 测上 页下 页来自返 回步步高中考简易通
专 题 解 读
设A、B两种鱼上市时价格利润相等,则有
100×0.1×(1+a%)-(2.3+3)=8.1,
步步高中考简易通
【例题1】 (2011· 浙江温州)如
专 题 解 读
图,O是正方形ABCD的对角 线BD上一点,⊙O与边AB, BC都相切,点E,F分别在
课 时 跟 踪 检 测
专 题 突 破
AD,DC上,现将△DEF沿着
EF对折,折痕EF与⊙O相切,此时点D恰好落在圆 心O处.若DE=2,则正方形ABCD的边长是(
决.一次函数和不等式的方案设计是最近几年中考 的命题热点,正确理解题意,找出等量关系,列出 函数表达式是解题的关键,分类讨论一定要全面, 不能有遗漏.
上 页
下 页
返 回
步步高中考简易通
【例题6】 (2012· 浙江省杭州市一模)小王家是新农
专 题 解 读
村建设中涌现出的“养殖专业户”.他准备购置 80只相同规格的网箱,养殖A、B两种淡水鱼(两
【例题4】 (2012· 浙江义乌改编)在锐角△ABC中,AB
=4,BC=5,∠ACB=45°,将△ABC绕点B按逆
专 题 解 读
时针方向旋转,得到△A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求 ∠CC1A1的度数; (2)如图2,连接AA1,CC1.若△ABA1的面积为4,求
课 时 跟 踪 检 测
4.7(百元),
B种鱼的利润=55×0.4-(4+5.5)=12.5(百元). 四种养殖方式所获得的利润:①4.7×39+12.5×41 -120=575.8(百元);
课 时 跟 踪 检 测
专 题 突 破
②4.7×40+12.5×40-120=568(百元);
③4.7×41+12.5×39-120=560.2(百元);
课 时 跟 踪 检 测
专 题 突 破
①养殖A种淡水鱼39箱,养殖B种淡水鱼41箱;
②养殖A种淡水鱼40箱,养殖B种淡水鱼40箱; ③养殖A种淡水鱼41箱,养殖B种淡水鱼39箱; ④养殖A种淡水鱼42箱,养殖B种淡水鱼38箱.
上 页
下 页
返 回
步步高中考简易通
(2)法一
专 题 解 读
A种鱼的利润=100×0.1-(2.3+3)=
专 题 突 破
△CBC1的面积.
上 页
下 页
返 回
步步高中考简易通
分析
专 题 解 读
(1)由旋转的性质可得:∠A1C1B=∠ACB=
45°,BC=BC1,又由等腰三角形的性质,即可求 得∠CC1A1的度数.
(2)由旋转的性质可得:△ABC≌△A1BC1,易证得
△ABA1∽△CBC1,利用相似三角形的面积比等于 相似比的平方,即可求得△CBC1的面积. 解 (1)∵由旋转的性质可得:∠A1C1B=∠ACB= 45°,BC=BC1,
课 时 跟 踪 检 测
专 题 突 破
②分析问题:找出(证)作图前后哪些几何量变化、
哪些没变;
③解决所提出的问题. (2)解决方案设计题的基本思路是“阅读信息→进行 方案设计→寻求最优方案”.
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
专 题 突 破
专 题 突 破
课 时 跟 踪 检 测
上 页
下 页
步步高中考简易通
【例题5】 某市要在一块平行四边形ABCD的空地上建
专 题 解 读
造一个四边形花园,要求花园所占面积是▱ABCD面 积的一半,并且四边形花园的四个顶点作为出入 口,要求分别在▱ABCD的四条边上,请你设计两种 方案:方案(1):如图(1)所示,两个出入口E、F已
课 时 跟 踪 检 测
专 题 突 破
课 时 跟 踪 检 测
∴∠CC1B=∠C1CB=45°.
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°= 90°.
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
(2)∵由旋转的性质可得:△ABC≌△A1BC1,
∴BA=BA1,BC=BC1,∠ABC=∠A1BC1.
BA BA1 ∴ BC = ,∠ABC+∠ABC1 =∠A1BC1 +∠ABC1.∴ BC1 ∠ABA1=∠CBC1. S△ABA1 AB2 42 16 ∴△ABA1∽△CBC1 .∴ =CB =5 = .∵S 25 S△CBC1 25 △ABA1=4,∴S△CBC1= . 4
课 时 跟 踪 检 测
专 题 突 破
图1
图2
上 页
下 页
返 回
步步高中考简易通
画法2:如图2:(1)过F作FH∥AB交AD于点H;(2)
过E作EG∥AD交DC于点G连接EF、FG、GH、
专 题 解 读
HE,则四边形EFGH就是所要画的四边形; 画法3:如图3(1)在AD上取一点H,使DH=CF;(2) 在CD上任取一点G连接EF、FG、GH、HE,则四
专题四
操作方案设计问题
步步高中考简易通
专 题 解 读
专 题 解 读
专 题 突 破
课 时 跟 踪 检 测
上 页
下 页
返 回
步步高中考简易通
考情透析
专 题 解 读
操作题是指通过动手测量、作图(象)、取值、计算 等,对某种现象获得感性认识,再利用数学知识进行 思考、探索、归纳概括等来解决的一类问题.考查学
开所设计的四边形的面积是▱ABCD面积的一半,作 平行线是解题的关键,因为平行线间的距离处处相
等.
上 页
下 页
返 回
步步高中考简易通
解
专 题 解 读
方案(1)
画法1:如图1:(1)过F作FH∥AB交AD于点H;(2) 在DC上任取一点G连接EF、FG、GH、HE,则四 边形EFGH就是所要画的四边形;
形.
专 题 突 破
课 时 跟 踪 检 测
上 页
下 页
返 回
步步高中考简易通
分析
专 题 解 读
(1)根据点O的坐标得到点O1的坐标,画出半
径是2的圆即可.
(2)根据点的位置,找A、B、C关于P的对称点,画 出即可. 解
专 题 突 破
(1)(2)如图所示:
课 时 跟 踪 检 测
上 页
下 页
返 回
步步高中考简易通
专 题 突 破
确定,请在图(1)上画出符合要求的四边形花园,并 简要说明画法; 方案(2):如图(2)所示,一个出入口M已确定,请在 图(2)上画出符合要求的梯形花园,并简要说明画法.
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
专 题 突 破
课 时 跟 踪 检 测
分析
本题属于开放性试题,不管哪种方案都离不
课 时 跟 踪 检 测
上 页
下 页
返 回
步步高中考简易通
四、经济类方案设计
专 题 解 读
经济类方案设计题,一般有较多种供选择的解决问
题的方案,但在实施中要考虑到经济因素,此类问 题类似于求最大值或最小值的问题,但解决的方法
课 时 跟 踪 检 测
专 题 突 破
较多,这些问题可以结合方程和不等式(组)来解
种鱼不能混养).计划用于养鱼的总投资不少于7
专 题 突 破
万元,但不超过7.2万元,其中购置网箱等基础 建设需要1.2万元.设他用x只网箱养殖A种淡水 鱼,目前平均每只网箱养殖A、B两种淡水鱼所 需投入及产业情况如下表:
课 时 跟 踪 检 测
上 页
下 页
返 回
步步高中考简易通
饲料 收获成品 成品鱼价格( 支出( 鱼(千克) 百元/千克) 百元) A种鱼 2.3 3 100 0.1 B种鱼 4 5.5 55 0.4 (1)小王有哪几种养殖方式? 项目 类别 鱼苗投资( 百元) (2)哪种养殖方案获得的利润最大? (3)根据市场调查分析,当他的鱼上市时,两种鱼的 价格会有所变化,A种鱼价格上涨a%(0<a<50),B 种鱼价格下降20%,考虑市场变化,哪种方案获得 的利润最大?(利润=收入-支出.收入指成品鱼收 益,支出包括基础建设投入、鱼苗投资及饲料支出)
课 时 跟 踪 检 测
边形EFGH就是所要画的四边形.
专 题 突 破
图3
图4
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
方案(2)画法:如图4:(1)过M点作MP∥AB交AD于
点P,(2)在AB上取一点Q,连接PQ,
(3)过M作MN∥PQ交DC于点N,连接QM、PN、
专 题 突 破
MN则四边形QMNP就是所要画的四边形.(本题答 案不唯一,符合要求即可)
课 时 跟 踪 检 测
专 题 突 破
生的动手能力、实践能力,分析和解决问题的能 力.方案设计题是通过设置一个实际问题情景,给出
若干信息,提出解决问题的要求,寻求恰当的解决方
案.有时也给出几个不同的解决方案,要求判断哪个 方案较优.
上 页
下 页
返 回
步步高中考简易通
思路分析
专 题 解 读
(1)解决操作题的基本思路是“作图→分析问题→解 决问题”,具体做法: ①作图:作出符合题意的图形(象),如折叠、拼 接、分割、平移、旋转等;
此类操作题常与轴对称、平移、旋转、相(位)似等
课 时 跟 踪 检 测
专 题 突 破
变换有关,掌握图形变换的性质是解这类题的关 键.