2019年人教版高中数学必修二考点练习:异面直线的判定(附答案解析)
(人教版)高中数学必修二-知识点、考点及典型例题解析(全)
必修(bìxiū)二第一章空间(kōngjiān)几何体知识点:1、空间(kōngjiān)几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥(yuánzhuī)、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些(zhèxiē)面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长;正方体的对角线长3、球的体积公式:,球的表面积公式:4、柱体,锥体,锥体截面积比:5、空间几何体的表面积与体积⑴圆柱侧面积;⑵圆锥(yuánzhuī)侧面积:典型(diǎnxíng)例题:★例1:下列命题(mìng tí)正确的是( )A.棱柱(léngzhù)的底面一定是平行四边形B.棱锥(léngzhuī)的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A 倍B 倍C 2倍D 倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是()A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱正视侧视俯视★★例4:一个(yīɡè)体积为的正方体的顶点(dǐngdiǎn)都在球面上,则球的表面积是A.B. C. D.二、填空题★例1:若圆锥(yuánzhuī)的表面积为平方米,且它的侧面展开图是一个半圆,则这个(zhè ge)圆锥的底面的直径为_______________.★例2:球的半径(bànjìng)扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.第二章点、直线、平面之间的位置关系知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
考点18 异面直线所成的角-庖丁解题2019学年高一数学人教版(必修2)(解析版)
原创精品资源学科网独家享有版权,侵权必究!
1
异面直线所成的角
1.定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角或夹角.
2.异面直线所成的角θ的取值范围:(090]︒︒,
3.当θ=o 90时,a 与b 互相垂直,记作a b ⊥.
【例】设P 是直线l 外一定点,过点P 且与l 成30°角的异面直线( )
A .有无数条
B .有两条
C .至多有两条
D .有一条
【答案】A
【规律总结】异面直线所成的角的大小与O 点的位置无关,即O 点位置不同时,这一角的大小是不会改变的.
1.如图所示,在长方体1111ABCD A B C D -中,AB 11BC CC ==,则异面直线11AC BB 与所成角的大。
(必考题)高中数学必修二第一章《立体几何初步》检测题(含答案解析)(4)
一、选择题1.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //2.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( )A .2217B .22121 C .47D .473.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A .43B .2C .4D .64.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为24D .若AEB △是直角三角形,则BE⊥平面ADE5.如图所示,A ,B 为正方体的两个顶点,M ,N 为其所在棱的中点,则异面直线AB 与MN 所成角的大小为( )A .30°B .45°C .60°D .90°6.在长方体1111ABCD A BC D -中,2AB =,1AD =,12AA =,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( ) A .3B .3C 3D 37.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3πD .2π 8.在正方体1111ABCD A BC D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为5B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交9.一个几何体的三视图如图所示,则该几何体的体积为( )A .4B .8C .12D .1410.在三棱锥S ABC -中,SA ⊥底面ABC ,且22AB AC ==,30C ∠=,2SA =,则该三棱锥外接球的表面积为( ) A .20πB .12πC .8πD .4π11.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π12.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b α B .若//a b ,a α⊥,则b α⊥ C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α二、填空题13.若一个底面边长为6,侧棱长为6的正六棱柱的所有定点都在一个球的面上,则此球的体积是___________.14.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.15.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =+m n α,其中m ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.16.已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在同一球面上),圆锥的高是底面半径的3倍,圆锥的侧面积为910π,则球O 的表面积为________. 17.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.18.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.若M 为线段1AC 的中点,则在ADE 翻折过程中,下面四个选项中正确的是______(填写所有的正确选项)(1)BM 是定值(2)点M 在某个球面上运动 (3)存在某个位置,使1DE AC ⊥ (4)存在某个位置,使//MB 平面1A DE 19.将半径为3,圆心角为23π的扇形围成一个圆锥,则该圆锥内切球的体积为________. 20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为平行四边形,1,2AB BC ==,45ABC ∠=︒,AE PC ⊥垂足为E .(Ⅰ)求证:平面AEB ⊥平面PCD ;(Ⅱ)若二面角B AE D --的大小为150︒,求侧棱PA 的长.22.在如图所示的几何体中,四边形BCED 为直角梯形,//DE CB ,BC EC ⊥,90AED ∠=︒.(1)证明:平面ABC ⊥平面ACE .(2)若P ,Q 分别是AE ,CD 的中点,证明://PQ 平面ABC .23.在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ; (2)证明:BE CD ⊥.24.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,,,AB AD AC CD PA AC ⊥⊥=,E 是PC 的中点.证明:(Ⅰ)CD AE ⊥; (Ⅱ)PD ⊥平面ABE .25.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//AD BC ,6BC =,2PA AD CD ===,E 是BC 上一点且23BE BC =,PB AE ⊥.(1)求证:AB ⊥平面PAE ; (2)求点C 到平面PDE 的距离.26.如图,在矩形ABCD 中,2AB AD =,M 为DC 的中点,将ADM △沿AM 折起使平面ADM ⊥平面ABCM .(1)求证:BM AD ⊥;(2)求直线DC 与平面DAB 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.2.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC 知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h ==. 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.3.B解析:B【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积.【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED⊥平面ABCD,所以其体积为11(12)22232V=⨯⨯+⨯⨯=,故选:B.【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下:(1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.4.C解析:C 【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则DE EC ==,//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求cos4CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确.故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.5.C解析:C 【分析】由MN 与正方体的面对角线平行,可得异面直线所成的角,此角是正三角形的内角,由此可得. 【详解】作如图所示的辅助线,由于M ,N 为其所在棱的中点,所以//MN PQ ,又因为//AC PQ ,所以//AC MN ,所以CAB ∠即为异面直线AB 与MN 所成的角(或补角),易得AB AC BC ==,所以60CAB ∠=︒. 故选:C .6.C解析:C 【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A BC D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FGEF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角, 因为12AB AA ==,所以14FA G π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,221612EG EF FG =+=+=, 所以cos FG EGF EG ∠==2326=. 所以二面角11B A B E --3.故选:C 【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键.7.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan 2AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于10D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.9.C解析:C 【分析】根据三视图还原得其几何体为四棱锥,根据题意代入锥体体积公式计算即可. 【详解】解:根据三视图还原得其几何体为四棱锥,图像如下:根据图形可得ABCD 是直角梯形,PA ⊥平面ABCD ,2,4,2,6AB CD PA AD ==== 所以11246212332P ABCD ABCD V S PA -+=⋅=⨯⨯⨯= 故选:C 【点睛】 识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.10.A解析:A 【分析】利用正弦定理求出ABC 的外接圆直径2r ,利用公式()2222R r SA =+棱锥S ABC -的外接球直径,然后利用球体的表面积公式可求得结果. 【详解】如下图所示,设圆柱的底面半径为r ,母线长为h ,圆柱的外接球半径为R ,取圆柱的轴截面,则该圆柱的轴截面矩形的对角线的中点O 到圆柱底面圆上每个点的距离都等于R ,则O 为圆柱的外接球球心,由勾股定理可得()()22222r h R +=.本题中,SA ⊥平面ABC ,设ABC 的外接圆为圆1O ,可将三棱锥S ABC -内接于圆柱12O O ,如下图所示:设ABC 的外接圆直径为2r ,2SA h ==, 由正弦定理可得24sin ABr C==∠,,该三棱锥的外接球直径为2R ,则()222225R r h =+=.因此,三棱锥S ABC -的外接球的表面积为()224220R R πππ=⨯=.故选:A. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.11.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.12.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行, 因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确;在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误; 在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】计算出正六棱柱的外接圆直径进而可求得外接球的半径利用球体体积公式即可计算出正六棱柱的外接球的体积【详解】如下图所示:圆柱的底面圆直径为母线长为则的中点到圆柱底面圆上每点的距离都相等则为圆柱外 解析:43π【分析】计算出正六棱柱的外接圆直径,进而可求得外接球的半径,利用球体体积公式即可计算出正六棱柱的外接球的体积. 【详解】 如下图所示:圆柱12O O 的底面圆直径为2r ,母线长为h ,则12O O 的中点O 到圆柱底面圆上每点的距离都相等,则O 为圆柱12O O 外接球的球心,设球O 的半径为R ,则()2222R r h =+可作出正六棱柱111111ABCDEF A BC D E F -的外接圆,可将正六棱柱111111ABCDEF A BC D E F -放在圆柱12O O 中,如下图所示:连接11O A 、11O B ,则11160AO B ∠=,且1111O A O B =,则111O A B △为等边三角形, 则圆1O 的半径为11116r O A A B ===正六棱柱111111ABCDEF A BC D E F -的侧棱长为6h = 设正六棱柱111111ABCDEF A BC D E F -的外接球的半径为R ,则()222223R r h =+=所以,3R 33443=4333V R πππ==⨯.故答案为:43π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,122PE AC ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a =232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心,球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.15.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径. 【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH ,所以(21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==+a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R , 则2222(2)||||||6=+++=R m n m n 6 6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.16.【分析】设圆锥的底面半径为球的半径为根据勾股定理可得根据圆锥的侧面积公式可得再根据球的表面积公式可得结果【详解】设圆锥的底面半径为球的半径为则圆锥的高为则球心到圆锥的底面的距离为根据勾股定理可得化简 解析:100π【分析】设圆锥的底面半径为r ,球O 的半径为R ,根据勾股定理可得53R r =,根据圆锥的侧面积公式可得3,5r R ==,再根据球的表面积公式可得结果. 【详解】设圆锥的底面半径为r ,球O 的半径为R ,则圆锥的高为3r , 则球心O 到圆锥的底面的距离为3r R -,根据勾股定理可得()2223R r r R =+-,化简得53R r =,因为圆锥的高为3r ,母线长为()22310r r r +=, 所以圆锥的侧面积为21010r r r ππ⨯=,所以210910r ππ=,解得r =3,所以5353R =⨯=, 所以球O 的表面积为24425100R πππ=⨯=. 故答案为:100π 【点睛】关键点点睛:利用圆锥的侧面积公式和球的表面积公式求解是解题关键.17.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 解析:310【分析】取11AC 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解. 【详解】取11AC 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC , 因为112AE A A =,所以11//EO AC 且111=2EO AC , 所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =, 所以2211115=12222EO AC =+=,112BE =+= 因为111A B C △是等边三角形,112AE A A =,所以21113122B O ⎛⎫=-= ⎪⎝⎭,因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以1BO === 在1BEO中,22211115192cos 2BE EO BO BEO BE EO +-+-∠===⨯, 因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE,故答案为:20【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.18.(1)(2)(4)【分析】首先取中点连结先判断(4)是否正确再根据平行关系以及等角定理和余弦定理判断(1)再判断(2)假设成立根据直线与平面垂直的性质及判定可得矛盾来判断(3)【详解】取中点连结则平解析:(1)(2)(4) 【分析】首先取CD 中点Q ,连结MQ ,BQ ,先判断(4)是否正确,再根据平行关系,以及等角定理和余弦定理判断(1),再判断(2),假设1DE AC ⊥成立,根据直线与平面垂直的性质及判定,可得11DA A E ⊥矛盾来判断(3). 【详解】取CD 中点Q ,连结MQ ,BQ ,则1//MQ DA ,//BQ DE ,∴平面//MBQ 平面1A DE ,又MB ⊂平面MBQ ,//MB ∴平面1A DE ,故(4)正确;由1A DE MQB ∠=∠,112MQ A D ==定值,QB DE ==定值, 由余弦定理可得2222cos MB MQ QB MQ QB MQB =+-⋅⋅∠ 所以MB 是定值,故(1)正确;B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,故(2)正确;145A DE ADE ∠=∠=,45CDE ∠=,且设1AD =,2AB =,则2DE CE ==若存在某个位置,使1DE AC ⊥,则因为222DE CE CD +=,即CE DE ⊥,因为1AC CE C =,则DE ⊥平面1ACE ,所以1DE A E ⊥,与11DA A E ⊥矛盾, 故(3)不正确.故答案为:(1)(2)(4) 【点睛】关键点点睛:本题考查线线,线面位置关系时,首先判断(4)是否正确,其他选项就迎刃而解,而判断线面平行时,可根据面面平行证明线面平行.19.【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径设内切球半径为r ﹐圆锥高为h 结合轴截面图形计算得最后计算体积即可【详解】解:设圆锥底面半径为R 则所以设内切球半径为r ﹐圆锥高为h 则如图是圆锥轴截面三 解析:23π【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径1R =,设内切球半径为r ﹐圆锥高为h ,结合轴截面图形计算得22r ,最后计算体积即可. 【详解】解:设圆锥底面半径为R ,则2233R ππ=⨯,所以1R =.设内切球半径为r ﹐圆锥高为h ,则9122h =-=, 如图,是圆锥轴截面三角形图, 所以3r Rh r =-,解得:22r , 故34422233r V πππ==⨯=. 故答案为:23π【点睛】本题考查圆锥的侧面展开图,圆锥的内切球的体积,考查空间想象能力,是中档题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD == 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ2【分析】(Ⅰ)推导出AB AC ⊥,CD AC ⊥,PA CD ⊥,从而CD ⊥平面PAC ,进而CD AE ⊥,AE PC ⊥,由此能证明平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系,利用向量法能求出侧棱PA 的长. 【详解】 证明:(Ⅰ)1,2,45AB BC ABC =∠=︒,AB AC ∴⊥又//AB CD ,CD AC ∴⊥, PA ⊥平面ABCD ,PA CD ∴⊥,又ACAP A =,,AC AP ⊂平面PAC ,CD平面PAC ,AE ⊂平面PAC ,CD AE ∴⊥,又AE PC ⊥,PC CD C =,,PC CD ⊂平面PCD ,AE ∴⊥平面PCD ,又AE ⊂平面AEB ,∴平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系.设AP t =,则(0A ,0,0),(1B ,0,0),(0C ,1,0),(1,10)D -,(0P ,0,)t ,AB PC ⊥,AE PC ⊥,PC ∴⊥平面ABE ,∴平面ABE 的一个法向量为(0,1,)n PC t ==-在Rt PAC △中,PA t =,211AC PC t =∴=+,又AE PC ⊥,21AE t =+,得222(0,,)11t tE t t ++设平面ADE 的一个法向量为(,,)m x y z =由m AD m AE ⎧⊥⎨⊥⎩,得222··0110t t y z t t x y ⎧+=⎪++⎨⎪-+=⎩,解得(1,1,)m t =- 二面角B AE D --的大小为150︒,∴222||3|cos ,||cos150|||||12m n m n m n t t 〈〉===︒=++, 解得2t =,故侧棱PA 的长为2.【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 22.(1)证明见解析;(2)证明见解析. 【分析】(1)由DE EC ⊥,AE DE ⊥,利用线面垂直的判定定理可得DE ⊥平面ACE ,再由。
异面直线的判定
异面直线的判定一、判定两条直线异面,主要有以下三个依据:1.定义:不同在任何一个平面内的两条直线叫做异面直线;2.既不平行也不相交的两条直线是异面直线;3.平面内一点与平面外一点的连线,与此平面内不经过该点的直线是异面直线.如图1:, A , , a B B a ααα⊂∉∈∉,那么直线AB与直线a 是异面直线.二、注意事项:1.定义中的“任何”两字很重要,不能随便改成“不同在某一个平面内”.2.反证法是证明两条直线异面的常用方法.三、例题:例1:基础训练题:1.如图2:平面l αβ⋂=,AC α⊂,BD β⊂,A 、B l ∈,CAB DBA ∠=∠,则AC 与BD 的位置关系是:A .平行B .相交C .异面D .平行或异面2.直线a 与直线b 、c 所成的角相等,则b 、c 的位置关系是:A .平行B .相交C .异面D .以上都可能3.“a 、b 为异面直线”是指:①a b φ⋂=,且a 与b 不平行;②a ⊂平面α,b ⊂平面β,且a b φ⋂=;③a ⊂平面α,b ⊂平面β,且αβφ⋂=;④a ⊂平面α,b ⊄平面α;⑤不存在平面α,使a ⊂α,b ⊂α成立.A .①④⑤B .①⑤C .②④D .②④⑤aaa(答案:1.C 2.D 3.B )例2:如图3:已知a 、b 是异面直线,A a ∈,C a ∈,B b ∈,D b ∈,求证:直线AB 与直线CD 是异面直线.证:假设直线AB 与直线CD 共面于β, 则由AB β⊂可得A β∈, B β∈ 又由CD β⊂可得C β∈,D β∈又A a ∈,C a ∈,a β∴⊂ 又B b ∈,D b ∈,b β∴⊂∴直线a 、b 同在平面β内,与a 、b 是异面直线矛盾.∴假设不成立, ∴直线AB 与直线CD 是异面直线.思考:此题如果改为:“若直线c ,d 分别与两条异面直线a 、b 都相交,则c ,d 是异面直线”.此命题正确吗?(答案:不正确)例3:如图4,已知平面a αβ⋂=,b β⊂,且b a A ⋂=,c α⊂,且//c a ,求证:b 、c 是异面直线.证法一:假设b 、c 不是异面直线,它们同在平面γ内,平面α、γ均过直线c 与点A , α∴与γ重合,由a α⊂, a γ∴⊂ 又γ 与β均过直线a 与b ,β∴与γ重合,从而α与β重合,这与题设α与β交于a 相矛盾. b ∴、c 是异面直线.证法二:假设b 、c 不是异面直线,则b 与c 相交或平行.若b 与c 相交,//a c ,a 与b 相交,从而a 、b 、c 在同一平面内,即平面α与β重合,这与题设α与β交于直线a 矛盾.若b 与c 平行,//a c ,//a b ∴,这与题设a 与b 交于点A 矛盾.综上可知,b 与c 是异面直线.。
高二数学必修2第二章异面直线成角(线线角)求解方法情况总结与例题
构造异面直线所成角的几种方法二、例题讲解例1已知a、b、c是两两异面的三条直线,且a⊥b,d是a、b的公垂线.若c⊥a,那么c与d有何位置关系?并说明理由.讲解:构造恰当的几何体是判断空间诸条直线位置关系的最佳思维选择,因为几何体具有直观和易于判断之优点.根据本题的特点,可考虑构造正方体.构造正方体ABCD-A1B1C1D1,如图7-1所示,因为AB与CC1异面且垂直,BC是它们的公垂线,所以可记AB、CC1、BC分别为a、b、d.图7-1因为c与a、b均异面,且c⊥a,注意到a⊥侧面ADD1A1,因此侧面ADD1A1内的任一直线均与a垂直.从图中可以看出,侧面ADD1A1内的A1D1和A1D均与a、b异面,且均与a垂直,所以可记A1D1或A1D为c.此时由A1D1∥B1C1∥BC知c∥d;由A1D与BC异面知c与d为异面直线.综上可知c与d平行或异面.正方体是一个很简单且很重要的几何模型.构造它可直观、简捷地判断线线、线面关系,特别是有关异面直线的问题易于解决.下面一组题目供思考练习:(1)无论怎样选择平面,两条异面直线在该平面内的射影都不可能是().A.两条平行直线B.两条相交直线C.一条直线和直线外一点D.两个点(2)在空间中,记集合M={与直线l不相交的直线},集合N={与直线l平行的直线},则M与N 的关系是().A.M=N B.M N C.M N D.不确定(3)a、b、c是空间中的三条直线,则下述传递关系中,为真命题的是().A.若a∥b,b∥c,则a∥cB.若a⊥b,b⊥c,则a⊥cC.若a与b相交,b与c相交,则a与c相交D.若a与b异面,b与c异面,则a与c异面(4)同时与两条异面直线都相交的两条直线一定不是().A.异面直线B.相交直C.平行直线D.垂直直线(5)如图7-2所示,正方体ABCD-A1B1C1D1中,EF是异面直线A1D和AC的公垂线,则直线EF和BD1的关系是().图7-2A.异面B.平行C.相交且垂直D.相交且不垂直例2在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为().A.60°B.90°C.105°D.75°讲解:根据题设作出图形(图7-3).欲求异面直线AB1与C1B所成角的大小,需进行异面直线的平移,而平移既可在体内进行,也可通过补形(补面、补体)向体外发展.若考虑体内平移,则常常通过作出中位线达到平移目的,从而有:图7-3解法1.设AB、B1B、B1C1的中点依次为P、H、F,连结PH、HF.显然有PH∥=(1/2)AB1,HF∥=(1/2)C1B,则∠PHE即为所求异面直线所成的角.连结PF,并设BB1=1,则正三棱柱的底面边长为.易求得PH=HF=(/2).取BC的中点E,连结PE、EF.易知△PEF是Rt△.在Rt△PEF中,求得PF2=(3/2).显然有PH2+HF2=PF2.故∠PHE=90°,选B.若考虑体外平移,则可通过补面或补体来实现平移.从而又有如下两种方法:解法2.如图7-4,延长AB到D,使BD=AB,作DD1∥=AA1,连B1D1、BD1.图7-4∵AB∥=B1D1,∴AB1∥BD1.则∠C1BD1即为所求异面直线所成的角.易求得BC1=BD1=,C1D1=2·sin60°=.又∵BC12+BD12=C1D12,∴∠C1BD1=90°.解法3.可从B1作一射线与BC1平行,由于这样一条射线虽然位置确定,并在侧面BB1C1C所在平面上,但却位于已知三棱柱外面,因而无法寻求与已知条件的联系.为了解决这一难点,可在已知三棱柱的下面作一个同样的三棱柱.作直三棱柱A1B1C1-A2B2C2,使C1为CC2之中点(图7-5),连结B1C2、AC2,图7-5∵BB1∥=C1C2,∴C1B∥C2B1,则∠AB1C2即为所求异面直线所成的角.易求得∠AB1C=90°.究竟选择体内还是体外平移,应“因图而异”,总之以简洁、直观为宜.若能注意到知识间的相互渗透,本题也可通过建立直角坐标系,利用解析法求解,请读者不妨一试.例3正四面体ABCD的棱长为a,E为CD上一点,且CE/ED=1/2,求异面直线AE与BC间的距离.讲解:求异面直线间的距离通常有三种方法,一是定义法,二是公式法,三是转化法.这里宜用方法三.异面直线间的距离可转化为平行线面间的距离,进而可以转化为点到面的距离,再用等体积法求解.如图7-6,在面BCD内过点E作EF∥BC交BD于F.连结AF,则BC∥面AEF,所以异面直线BC与AE间的距离就等于BC到平面AEF的距离,也就等于点B到平面AEF的距离,设其为d,连结BE,设正四面体的高为h.图7-6∵V B-AEF=VA-BEF,∴(1/3)S△AEF·d=(1/3)S△BEF·h,∴d=(S△BEF·h/S△AEF).过点A作AO⊥面BCD于O,∵DE/EC=2/1且EF∥BC,∴O必在EF上.∵h=(/3)a,易求得EF=(2/3)a,S△AEF=(1/2)EF·AO=(/9)a2,S△BEF=(/18)a2,∴d=(/6)a.即异面直线AE与BC间的距离为(/6)a.用等体积法求点到面的距离,首先应构造以该点为顶点,以该平面内某个三角形为底面的三棱锥.其次求体积时,一般需换底面,换底面应本着新的底面上的高容易求出的原则.三、专题训练1.a、b是异面直线,过不在a、b上的任一点P,①一定可作一条直线l,使l与a、b都相交;②一定可作一条直线l,使l与a、b都垂直;③一定可作一条直线l,使l与a、b都平行;④一定可作一条直线l,使l与a、b都异面.其中正确的个数是().A.0B.1C.2D.32.如图7-7,正三棱锥V-ABC中,D、E、F分别是VC、VA、AC的中点,P为VB上任意一点,则直线DE与PF所成的角的大小是().图7-7A.π/6B.π/3C.π/2D.随P点的变化而变化3.将锐角B为60°,边长为a的菱形ABCD沿对角线折成二面角θ,若θ∈[60°,120°],则两条对角线之间的距离的最值为().A.d max=(3/2)a,d min=(/4)a B.d max=(3/4)a,d min=(/4)aC.d max=(/4)a,d min=(1/4)a D.d max=(/2)a,d min=(3/4)a4.图7-8是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.图-8以上四个命题中,正确命题的序号是().A.①②③B.②④C.③④D.②③④5.如图7-9,正三棱锥S-ABC的侧棱与底面边长相等.如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于____________.图7-96.空间四边形ABCD中,AD=BC,M、N分别为AB、CD的中点,又MN和AD成30°角,则AD和BC所成角的度数是____________.7.异面直线a、b所成的角为θ(0<θ<(π/2)),M,N∈a,M1,N1∈b,MM1⊥b,NN1⊥b,若MN=m,则M1N1=____________.8.如图7-10,不共面的三条直线a、b、c相交于P,A、B∈a,C∈b,D∈c,且A、B、C、D均异于P.证明:直线AD与BC异面.图7-109.如图7-11,拼接一副三角板,使它们有公共边BC,且使两个三角板所在平面互相垂直.若∠CAB =90°,AB=AC,∠CBD=90°,∠BDC=60°,求AD与BC所成的角.图7-1110.已知a、b是两条异面直线,那么空间是否存在这样的直线l,使l上任意一点P到a、b的距离都相等.若存在,给出证明,若不存在,说明理由.求异面直线所成的角求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A )版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。
异面直线的判定练习题及答案
5.平行六面体 ABCD-A 1B 1C 1D 1中,求证:CD 所在的直线与 BC i 所在的直线是异面直线.异面直线的判定 1•已知空间四边形 ABCD , E 、H 分别是AB 、AD 的中点, 三等分点(如图),求证:(1) 对角线AC 、BD 是异面直线;(2) 直线EF 和HG 必交于一点,且交点在 AC 上.F 、G 分别是边BC 、DC 的 2.A 是厶BCD 平面外的一点,E 、F 分别是BC 、AD 的中点,(1)求证:直线EF 与BD 是异面直线;3.已知:平面 af 平面3 =a b? a, b A a=A c? B 且c // a ,求证: b 、c 是异面直线.4.已知不共面的三条直线 与BC 是异面直线.a 、b 、c 相交于点 P , A € a , B € a , C € b , D € c ,求证:ADD C小结:常用方法是反证法(1)利用反证法证明对角线AC、BD是共面直线,推出矛盾,从而证明是异面直(2)说明直线EF和HG必交于一点,然后证明这点在平面ADC内.又在平面ABC内,必在它们的交线AC 上.:⑴假设对角线AC、BD在同一平面a内,则A、B、C、D都在平面a内,这与ABCD是空间四边形矛盾,:.AC、BD是异面直线.(2)T E、H分别是AB、AD的中点所以EH平行且等于1/2BD,又F、G分另堤BC、DC的三等分点,EG平行等于2/3BD,. •: EH// FG,且EH v FG.:FE与GH 相交设交点为0,又0在GH 上, GH在平面ADC内,•:O在平面ADC内.同理,0在平面ABC内.从而0在平面ADC与平面ABC的交线AC 上.2. (1)假设EF与BD不是异面直线,则EF与BD共面,得到A、B、C、D在同一平面内,矛盾.(1)证明:用反证法•设EF与BD不是异面直线,_则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是厶BCD平面外的一点相矛盾.故直线EF与BD是异面直线.3证明b、c是异面直线,比较困难,考虑使用反证法,即若b与c不是异面直线,则b// c或b与C相交,证明b// c或b与c相交都是不可能的, 从而证明b、c是异面直线证明:用反证法:若b与c不是异面直线,则b// c或b与c相交(1)若b// c. :a//c,•: a//b 这与a H b=A矛盾;(2)若b,c相交于B,则B E B,又a H b=A:.A E AB? 3 即b? B这与b np =AF盾:-b,c是异面直线.4证明:法一:(反证法)假设AD和BC共面,所确定的平面为a那么点P、A、B、C、D都在平面a内,•:直线a b、c都在平面a内,与已知条件a b、c不共面矛盾,假设不成立,:AD和BC是异面直线.法二:(直接证法):a n c=P •:它们确定一个平面,设为a由已知C?平面a, B E平面a,AD?平面a, B?AD,:・AD和BC是异面直线.5证明:用反证法,假设CD1所在的直线与BC1所在的直线不是异面直线.设直线CD1与BC1共面aV C, D1E CD1, B, C1E BC1, •: C, D1, B, C1E a •/ CC1 / BB1,:.CC1, BB1 确定平面BB1C1C, :. C, B, C1 E 平面BB1C1C.T不共线的三点C, B, C1只有一个平面,•:平面a与平面BB1C1C重合••:D1E平面BB1C1C,矛盾.因此,假设错误,即CD1所在的直线与BC1所在的直线是异面直线。
异面直线判定
异面直线巧辨别——异面直线的三种判别方法在学习立体几何的时候,大家经常会遇到证明两直线异面的题目.这一类的题目大家看上去会觉得很简单,因为直观看上去两条直线很明显不在一个平面内,但是要证明起来却又会觉得不知从何处下手.这次的专题就要介绍给大家证明异面直线的三种最基本的思路:定义法、反证法和定理法.定义法一一排除我们知道,异面直线的定义就是不共在任何平面内的两条直线.因为空间内的两条直线只有四种位置关系:重合、平行、相交和异面.所以,根据定义,我们只需要排除两条直线重合、平行和相交的可能,就可以证明两直线异面了.这种思路非常的简单,但是要分别证明不重合、不平行、不相交也是很烦琐的工作,所以,一般情况下,我们不常使用这种思路.(除非,你真的想不到其它的证明方法)反证法找出矛盾反证法是我们在数学证明时常用的一种思路,也就是先假定命题的结论不成立,然后进行推理,如果出现与已知条件矛盾或者与公理、定理矛盾的情况,就可以说明我们的假定不成立,也就说明了原命题是正确的.在异面直线判定中利用反证法,也就是先假设两条直线共面.有的题目很简单,根据两直线共面可以推导出直线上所有的点均在同一平面,就可以推导出与已知条件矛盾;还有一类题目就需要我们分情况来讨论,假定两直线共面,分为两种情况,平行和相交,要分别针对这两种情况进行推导,找到矛盾.定理法 简明直观所谓定理法,就是应用异面直线的判定定理,平面的一条交线与平面内不过交点的直线为异面直线.也就是说,如果一条直线m 与一个平面α相交于一点P ,那么α上任意一条不经过点P 的直线n 都与m 互为异面直线.(这种思路是很直观的,应用这种思路时,我们只需要找到一个平面,使一条直线n 在平面上,另一条直线m 与该平面相交于P 点,然后就只需证明P 不在直线n 上就可以了.实践一下上面我们介绍了三种异面直线的判定方法,下面我们就一起来实践几道题目,看一下每道题目应该用哪种思路,并且也检验一下,刚刚我们介绍的三种不同的思路,你是不是已经真正掌握了.实践1:四面体ABCD 中,,AC BC AD BD =≠,DM AB ⊥于M ,CN AB ⊥于N ,求证DM 与CN 是异面直线.指点迷津:这里要我们证明DM 和CN 为异面直线,很显然,DM 是在平面ABD 上的,而CN 与平面ABD 交于点N ,所以,根据判定定理,我们只需要证明N 不在DM 上就可以了.这里AC BC =,CN AB ⊥,所以N 为AB 的中点,而AD BD ≠,DM AB ⊥,所以M 不是AB 的中点,也就是说,DM 不会过点N ,所以,DM 和CN 为异面直线.实践2:已知直线a上有两点A、B,直线b上有一点C,若AC、BC都与直线b垂直,A、B、C不共线,求证直线a与b为异面直线.指点迷津:这道题我们可以用两种思路来证明.(一)定理法.用定理法的关键是找到一个平面,而这里,如图所示,直线a是在A、B、C所确定的平面上的,而直线b与平面ABC相交于一点C,现在只需要证明,直线a不过点C就可以了.而A、B、C不共线,所以,C不在直线a上,即a与b为异面直线.(二)>(三)反证法.假设a、b不是异面直线,则a、b共面,即A、B、C也都在这个平面内,根据已知条件,⊥⊥,那么这个平面内,过直AC b BC b线b上一点C就有两条直线与其垂直,这与在同一平面内过直线上一点有且仅有一条直线与其垂直相矛盾.所以原假设错误,a、b为异面直线.。
异面直线的判定(含答案)
异面直线的判定一、单选题(共9道,每道11分)1.在三棱锥的六条棱中任选两条,则这两条棱所在直线互为异面直线的概率是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:异面直线的判定2.下列四个命题:①分别在两个平面内的两条直线是异面直线;②和两条异面直线都垂直的直线有且只有一条;③和两条异面直线都相交的两条直线必异面;④若a和b是异面直线,b和c是异面直线,则a和c也是异面直线.其中真命题有( )A.3个B.2个C.1D.0个答案:D解题思路:试题难度:三颗星知识点:异面直线的判定3.设A为空间一点,是两条直线,α,β是两个平面,有下列四个命题:①若,,则可能为异面直线;②若,,则;③已知为异面直线,,,,,则α∥β;④若α⊥β,,则.其中正确命题的序号是( )A.①③B.②④C.②③D.①④答案:A解题思路:试题难度:三颗星知识点:直线与平面垂直的判定4.如图,正方体的所有面对角线中,与面对角线成异面直线的有( )A.7条B.6条C.5条D.4条答案:C解题思路:试题难度:三颗星知识点:异面直线的判定5.如图,在四棱锥P-ABCD中,已知底面ABCD是矩形,则各棱所在直线中互为异面直线的共有( )A.4对B.6对C.8对D.12对答案:C解题思路:试题难度:三颗星知识点:异面直线的判定6.如图是正方体纸盒的平面展开图,则直线AB,CD在原正方体中的位置关系是( )A.平行B.垂直C.相交成60°D.异面且成60°角答案:D解题思路:试题难度:三颗星知识点:表面展开图7.如图,已知正方体的棱长为a,则下列结论不正确的是( )A.异面直线与所成的角为60°B.直线与垂直C.直线与平行D.三棱锥的体积为答案:C解题思路:试题难度:三颗星知识点:异面直线的判定8.如图,在正四棱柱中,E,F分别是的中点,则下列结论不成立的是( )A.EF与垂直B.EF与BD垂直C.EF与CD异面D.EF与异面答案:D解题思路:试题难度:三颗星知识点:异面直线的判定9.如图,在正方体中,O是底面正方形ABCD的中心,M是的中点,N是上的动点,则直线NO,AM的位置关系是( )A.平行B.相交C.异面垂直D.异面不垂直答案:C解题思路:试题难度:三颗星知识点:异面直线的判定。
异面直线的判定练习题及答案
异面直线的判定练习题及答案(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--异面直线的判定1.已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如图),求证:(1)对角线AC、BD是异面直线;(2)直线EF和HG必交于一点,且交点在AC上.是△BCD平面外的一点,E、F分别是BC、AD的中点,(1)求证:直线EF与BD是异面直线;3.已知:平面α∩平面β=a,b?α,b∩a=A,c?β且c∥a,求证:b、c是异面直线.4.已知不共面的三条直线a、b、c相交于点P,A∈a,B∈a,C∈b,D∈c,求证:AD 与BC是异面直线.5.平行六面体ABCD-A1B1C1D1中,求证:CD1所在的直线与BC1所在的直线是异面直线.小结:常用方法是反证法(1)利用反证法证明对角线AC、BD是共面直线,推出矛盾,从而证明是异面直(2)说明直线EF和HG必交于一点,然后证明这点在平面ADC内.又在平面ABC内,必在它们的交线AC上.:(1)假设对角线AC、BD在同一平面α内,则A、B、C、D都在平面α内,这与ABCD是空间四边形矛盾,∴AC、BD是异面直线.(2)∵E、H分别是AB、AD的中点所以EH平行且等于1/2BD, 又F、G分别是BC、DC的三等分点,EG平行等于2/3BD,.∴EH∥FG,且EH<FG.∴FE与GH相交设交点为O,又O在GH上,GH在平面ADC内,∴O在平面ADC内.同理,O在平面ABC内.从而O在平面ADC与平面ABC的交线AC上.2.(1)假设EF与BD不是异面直线,则EF与BD共面,得到A、B、C、D在同一平面内,矛盾.3.(1)证明:用反证法.设EF与BD不是异面直线,4.则EF与BD共面,从而DF与BE共面,即AD与BC共面,5.所以A、B、C、D在同一平面内,这与A是△BCD平面外的一点相矛盾.6.故直线EF与BD是异面直线.7.3.证明b、c是异面直线,比较困难,考虑使用反证法,即若b与c不是异面直线,则b∥c或b与c相交,证明b∥c或b与c相交都是不可能的,从而证明b、c是异面直线证明:用反证法:8.若b与c不是异面直线,则b∥c或b与c相交9.(1)若b∥c.∵a∥c,∴a∥b这与a∩b=A矛盾;10.(2)若b,c相交于B,则B∈β,又a∩b=A,11.∴A∈β∴AB?β,即b?β这与b∩β=A矛盾12.∴b,c是异面直线.4.证明:法一:(反证法)假设AD和BC共面,所确定的平面为α,5.那么点P、A、B、C、D都在平面α内,∴直线a、b、c都在平面α内,与已知条件a、b、c不共面矛盾,6.假设不成立,∴AD和BC是异面直线.7.法二:(直接证法)∵a∩c=P,∴它们确定一个平面,8.设为α,由已知C?平面α,B∈平面α,AD?平面α,B?AD,∴AD和BC是异面直线.9.证明:用反证法,10.假设CD1所在的直线与BC1所在的直线不是异面直线.11.设直线CD1与BC1共面α.12.∵C,D1∈CD1,B,C1∈BC1,∴C,D1,B,C1∈α∵CC1∥BB1,∴CC1,BB1确定平面BB1C1C,∴C,B,C1∈平面BB1C1C.13.∵不共线的三点C,B,C1只有一个平面,∴平面α与平面BB1C1C重合.∴D1∈平面BB1C1C,矛盾.14.因此,假设错误,即CD1所在的直线与BC1所在的直线是异面直线。
与异面直线相关的几类经典题型
与异面直线相关的几类经典题型【知识梳理】1.异面直线的定义:不同在任何一个平面内的两条直线称为异面直线.2.异面直线的判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线;3.异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫做异面直线a与b所成的角(或夹角).②范围:(0,2 ].【典例分析】题型一异面直线的判断例题1(1)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:1①AM和CN是否是异面直线?说明理由.②DB和CC1是否是异面直线?说明理由.23跟踪练习1 如图:已知平面βα⋂=l ,A ∈l ,D ∈l ,AC α⊂,DB ⊂β,求证:AC 和BD 是异面直线.题型二 异面直线所成的角例题2 如图1所示,在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,求异面直线OE 和FD 1所成的角的余弦值.跟踪练习2 如图,在正方体ABCD -A 1B 1C 1D 1中,(1)求A 1C 1与B 1C 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小.4题型三构造长方体巧解异面直线问题例题3 三条直线a、b、c两两异面,作直线l与三条直线都相交,则直线l可以作多少条?跟踪练习3 设a、b是空间的两条直线,它们在平面α上的射影是两条相交直线,它们在平面β上的射影是两条平行直线,它们在平面γ上的射影是一条直线与直线外一点,则这样的平面γ有( )A.0个B.1个C.2个D.无数个【专项训练】1.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行B.一定相交C.一定异面D.相交或异面2.在如图的正方体中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为( )A.30° B.45° C.60° D.90°3.两条异面直线在一个平面上的投影是( )A.两条相交直线5B.两条平行直线C.两条平行直线、两条相交直线的可能性都有,别无其他情况D.两条平行直线、两条相交直线的可能性都有,此外还可能有其他情况.4.设a、b是异面直线,那么()A.必然存在唯一的一个平面,同时平行于a、bB.必然存在唯一的一个平面,同时垂直于a、bC.过直线a存在唯一平面平行于直线bD.过直线a存在唯一平面垂直于直线b5.已知直线a,b是异面直线,直线c,d分别与a,b都相交,则直线c,d的位置关系( ) A.可能是平行直线B.一定是异面直线C.可能是相交直线D.平行、相交、异面直线都有可能6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD 所成的角为()A.30° B.45°6C.60° D.90°二、填空题7.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中,AB与CD的位置关系是________.8.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.9.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是________.10.如图,在正方体ABCD—A1B1C1D1中,M、N、P、Q、R、S分别是各点所在棱的中点,则PQ和RS的位置关系是________;MN和RS的位置关系是________;它们所成的角是________;PQ和MN的位置关系是相交;它们所成的角是________11.若两条异面直线所成的角为60°,则称这对异面直线为“理想异面直线对”,在连结正方体各顶点的所有直线中,“理想异面直线对”的对数为________对.7三、解答题12.如图,已知不共面的直线a,b,c相交于点O,M、P是直线a上两点,N、Q分别是b,c上的点.求证:MN和PQ是异面直线.13.已知正四棱锥S-ABCD(底面为正方形,顶点在底面的射影为底面的中心)的侧棱长与底面边长都相等,E为SB的中点,求AE、SD所成角的余弦值.8答案精析【典例分析】题型一例题1(1)【答案】②④【解析】图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉面GMN,因此GH与MN异面.所以在图②④中GH与MN异面.(2)【答案】解:①不是异面直线.理由:连接MN,A1C1,A C.因为M,N分别是AB1,B1C1的中点,所以MN∥A1C1.又因为A1A C1C,所以A1ACC1为平行四边形,所以A1C1∥AC,所以MN∥AC,所以A,M,N,C在同一平面内,故AM和CN不是异面直线.②是异面直线.理由:因为ABCD-A1B1C1D1是正方体,所以B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B⊂平面α,CC1⊂平面α,910所以D 1,B ,C ,C 1∈α,这与B ,C ,C 1,D 1不共面矛盾.所以假设不成立,即D 1B 和CC 1是异面直线.跟踪练习1【答案】证明:假设AC 、BD 在同一平面γ内.∵A 、D 、C 既在γ内又在α内,且A 、D 、C 三点不共线. ∴α与γ重合.又A 、B 、D 既在γ内又在β内.同理,β与γ重合.∴α与β重合.但这与已知βα⋂=l 相矛盾,所以假设不成立. 故AC 与BD 是异面直线.题型二例题2【答案】 解:取11C D 中点M ,连结OM ,易证1OM FD =∅, 所以∠MOE 是异面直线OE 和1FD 所成的角.连结OC ,ME2211122252213OM FD MC C E OE OC CE ().===+==+=+=在△OME 中,222OM ME OE =+,所以∠OEM =90°.11则3155OE cos MOE OM ∠=== 所以异面直线OE 和1FD 所成角的余弦值为515. 跟踪练习2【答案】 解:(1)如图,连接AC ,AB 1,由ABCD -A 1B 1C 1D 1是正方体,知AA 1C 1C 为平行四边形,所以AC ∥A 1C 1,从而B 1C 与AC 所成的角就是A 1C 1与B 1C 所成的角.由△AB 1C 中,由AB 1=AC =B 1C 可知∠B 1CA =60°,即A 1C 1与B 1C 所成角为60°.(2)如图,连接BD ,由(1)知AC ∥A 1C 1.∴AC 与EF 所成的角就是A 1C 1与EF 所成的角.∵EF 是△ABD 的中位线,∴EF ∥B D .又∵AC ⊥BD ,∴AC ⊥EF ,即所求角为90°.∴EF ⊥A 1C 1.即A 1C 1与EF 所成的角为90°.题型三例题3【答案】 解:构造长方体''''D C B A ABCD -如图所示,取直线AB 为a ,DD ’为b ,C ’E 为c ,其中E 为BC 的中点,则a 、b 、c 两两异面,由于直线DE 与AB 相交,故DE 与三异面直线同时相交.过AB 作平面交DD ’、CC ’、EC ’分别于F 、G 、H ,当G 与C ’不重合时,12直线FH 必与AB 相交,即FH 与三异面直线同时相交,又过AB 作满足条件的平面有无数个,故与三异面直线同时相交的直线有无数条.跟踪练习3【答案】 D【解析】 构造长方体''''D C B A ABCD 如图所示,取B A '为a ,''C D 为b ,而''A ABB 为α,ABCD 为β,则ADD ’A ’为γ,故与''A ADD 平行的平面都满足题意,故平面γ有无数个,选D .【专项训练】1.【答案】 D【解析】 分别和两条异面直线平行的两条直线可能相交或异面,一定不会平行.2.【答案】 C【解析】 MN 与AD 1平行,所以AD 1与AC 所成的角与所求角相等,三角形AD 1C 是等边三角形,故所求角为60°.3.【答案】 D【解析】 两条异面直线在一个平面上的投影是两条平行直线、两条相交直线,也可能是一个点与一条直线.4.【答案】C【解析】b与过直线a的平面没有公共点.5.【答案】D【解析】将a、b看成长方体中的两条棱,容易满足条件的直线平行、相交、异面.6.【答案】A【解析】取AD的中点H,连FH、EH,在△EFH中∠EFH=90°,HE=2HF,从而∠FEH=30°.二、7.【答案】异面【解析】如图,把展开图中的各正方形按图1所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图2所示的直观图,可判断AB与CD异面.8.【答案】24【解析】如图所示,与AB异面的直线有B1C1,CC1,A1D1,DD1四条,因为各棱具有不同的位置,且正方体共有12条棱,排除两棱的重复计算,共有异面直线12×42=24(对).139.【答案】相交【解析】如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.10.【答案】平行异面60° 60°【解析】MN平行于AC,RS平行于CD1,PQ平行于CD1,所以所求角都等于1ACD=60°11.【答案】24【解析】如图,在连接正方体各顶点的所有直线中,只有相邻面上的面对角线才能构成“理想异面直线对”,并且只有2对,则所有的“理想异面直线对”的对数为4×2×2(上下面与四个相邻侧面的对数)+4×2(四个侧面的对数)=24(对).故填24.三、12.【答案】证明:假设MN和PQ不是异面直线,则MN与PQ在同一平面内,设为α.∵M、P∈α,M、P∈a,∴a⊂α∵O∈α,N∈α且O∈b,N∈b,∴b⊂α同理c⊂α,∴a,b,c共面于α,与a、b、c不共面矛盾.1415 ∴MN 、PQ 是异面直线.13.【答案】 解:如图所示,连接AC 、BD , 设其交点为O ,连接EO ,依题意,EO// 12SD ,∴∠AEO 或其补角为AE ,SD 所成的角, 设AB =SA =2a ,在正△SAB 中,AE =AB 2-BE 2=3a , ∵AE =CE ,且O 为AC 中点∴EO ⊥A C .在Rt △AEO 中,∠AOE =90°,∴cos ∠AEO =EO AE =a 3a =33.∴AE 与SD 所成角的余弦值为33.。
异面直线判定
异面直线巧辨别——异面直线的三种判别方法在学习立体几何的时候,大家经常会遇到证明两直线异面的题目.这一类的题目大家看上去会觉得很简单,因为直观看上去两条直线很明显不在一个平面内,但是要证明起来却又会觉得不知从何处下手.这次的专题就要介绍给大家证明异面直线的三种最基本的思路:定义法、反证法和定理法.定义法一一排除我们知道,异面直线的定义就是不共在任何平面内的两条直线.因为空间内的两条直线只有四种位置关系:重合、平行、相交和异面.所以,根据定义,我们只需要排除两条直线重合、平行和相交的可能,就可以证明两直线异面了.这种思路非常的简单,但是要分别证明不重合、不平行、不相交也是很烦琐的工作,所以,一般情况下,我们不常使用这种思路.(除非,你真的想不到其它的证明方法)反证法找出矛盾反证法是我们在数学证明时常用的一种思路,也就是先假定命题的结论不成立,然后进行推理,如果出现与已知条件矛盾或者与公理、定理矛盾的情况,就可以说明我们的假定不成立,也就说明了原命题是正确的.在异面直线判定中利用反证法,也就是先假设两条直线共面.有的题目很简单,根据两直线共面可以推导出直线上所有的点均在同一平面,就可以推导出与已知条件矛盾;还有一类题目就需要我们分情况来讨论,假定两直线共面,分为两种情况,平行和相交,要分别针对这两种情况进行推导,找到矛盾.定理法 简明直观所谓定理法,就是应用异面直线的判定定理,平面的一条交线与平面内不过交点的直线为异面直线.也就是说,如果一条直线m 与一个平面α相交于一点P ,那么α上任意一条不经过点P 的直线n 都与m 互为异面直线.这种思路是很直观的,应用这种思路时,我们只需要找到一个平面,使一条直线n 在平面上,另一条直线m 与该平面相交于P 点,然后就只需证明P 不在直线n 上就可以了.实践一下上面我们介绍了三种异面直线的判定方法,下面我们就一起来实践几道题目,看一下每道题目应该用哪种思路,并且也检验一下,刚刚我们介绍的三种不同的思路,你是不是已经真正掌握了.实践1:四面体ABCD 中,,AC BC AD BD =≠,DM AB ⊥于M ,CN AB ⊥于N ,求证DM 与CN 是异面直线.指点迷津:这里要我们证明DM 和CN 为异面直线,很显然,DM 是在平面ABD 上的,而CN 与平面ABD 交于点N ,所以,根据判定定理,我们只需要证明N 不在DM 上就可以了.这里AC BC =,CN AB ⊥,所以N 为AB 的中点,而AD BD ≠,DM AB ⊥,所以M 不是AB 的中点,也就是说,DM 不会过点N ,所以,DM 和CN 为异面直线.实践2:已知直线a上有两点A、B,直线b上有一点C,若AC、BC都与直线b垂直,A、B、C不共线,求证直线a与b为异面直线.指点迷津:这道题我们可以用两种思路来证明.(一)定理法.用定理法的关键是找到一个平面,而这里,如图所示,直线a是在A、B、C所确定的平面上的,而直线b与平面ABC相交于一点C,现在只需要证明,直线a不过点C就可以了.而A、B、C不共线,所以,C不在直线a上,即a与b为异面直线.(二)反证法.假设a、b不是异面直线,则a、b共面,即A、B、C也都在这个平面内,根据已知条件,⊥⊥,那么这个平面内,过直AC b BC b线b上一点C就有两条直线与其垂直,这与在同一平面内过直线上一点有且仅有一条直线与其垂直相矛盾.所以原假设错误,a、b为异面直线.。
高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)
§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。
异面直线的判断与所成的角
异面直线的判断与所成的角一.选择题(共10 小题)1.异面直线是指()A.空间中两条不相交的直线B.平面的一条直线与平面外的一条直线C.分别位于两个不同平面的两条直线D.不同在任何一个平面的两条直线2.已知:空间四边形ABCD如图所示,E、F分别是AB、AD的中点,G、H分别是BC, CD上的点,且•,则直线FH与直线EG()A.平行B.相交C.异面D.垂直3.在下列图形中,G、H、M、N 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN 是异面直线的图形有()A. 1 个B. 2 个C. 3 个D. 4 个4•在长方体ABCD- A i BiGD i的十二条棱中,与面对角线AC垂直且异面的棱的条数是()A. 2B. 4C. 6D. 85.正方体ABCD- A i B i C i D i中,与对角线A i B成45°勺棱有()条.A. 4B. 8C. i2D. 26.如图所示,在三棱锥P- ABC的六条棱所在的直线中,异面直线共有()A. 2 对B. 3 对C. 4 对D. 6对7.将正方体的纸盒展开如图,直线AB、CD在原正方体的位置关系是()A.平行B.垂直C.相交成60。
角D.异面且成60。
角8.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A. i2 对B. 24 对C. 36 对D. 48 对9.如图,点P、Q、R、S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是()A. B. C. D.10.一个正方体纸盒展开后如图所示,在原正方体纸盒中有下列结论:①AB丄EF;②AB与CM成60°角;③EF与MN是异面直线;④MN //CD,其中正确的是()A.①②B•③④ C.②③ D.①③二.填空题(共5小题)11.如图所示,在棱长为2的正方体ABCD- A i B i C i D i中,0是底面ABCD的中心,E、F分别是CG, AD的中点,那么异面直线0E和FD所成角的余弦值等于___________ .12.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°, E为PC的中点,则异面直线PA与BE所成角的大小为________ .13 .在棱长为1的正方体ABCD- A'B'C'D中,异面直线A'D与AB所成角的大小是 _________ .14.__________________________________________________________________如图是正方体的展开图,其中直线AB与CD在原正方体中所成角的大小是__________________ .15.空间四边形ABCD中,对角线AC=10, BD=6, M、N分别是AB、CD的中点,且MN=7,则异面直线AC与BD所成的角为_________ .异面直线的判断与所成的角参考答案与试题解析一.选择题(共10 小题)1.异面直线是指()A.空间中两条不相交的直线B.平面的一条直线与平面外的一条直线C.分别位于两个不同平面的两条直线D.不同在任何一个平面的两条直线【分析】依据异面直线的定义,逐一分析研究各个选项的正确性,可以通过举反例的方法进行排除.【解答】解:A不正确,因为空间中两条不相交的直线可能平行.B 不正确,因为平面的一条直线与平面外的一条直线可能平行,也可能相交.C不正确,因为分别位于两个不同平面的两条直线可能平行,也可能相交.D 正确,这就是异面直线的定义.故选D.【点评】本题考查异面直线的定义,用举反例的方法判断一个命题是假命题,是一种简单有效的方法.2.已知:空间四边形ABCD如图所示,E、F分别是AB、AD的中点,G、H分别是BC, CD上的点,且•,则直线FH与直线EG()A.平行B.相交C.异面D.垂直【分析】由已知EF为三角形ABD的中位线,从而EF// BD且EF=BD由•,得在四边形EFHG 中,EF/ HG,即卩E, F,G,H四点共面,且EF^HG,由此能得出结论.【解答】解::•••四边形ABCD是空间四边形,E、F分别是AB、AD的中点,••• EF为三角形ABD的中位线••• EF/ BD且EF=BD又T .,•••△ CHG^^CDB 且HG// BD, HG=BD•••在四边形EFHG中, EF// HG即E, F, G, H四点共面,且EF M HG,•四边形EFGH是梯形,•直线FH与直线EG相交,故选B.【点评】本题考查的知识点是平行线分线段成比例定理,是基础题,根据已知条件,判断出EF// HG且EF M HG,是解答本题的关键.3.在下列图形中,G、H、M、N 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN 是异面直线的图形有()A. 1 个B. 2 个C. 3 个D. 4 个【分析】利用G、H、M、N分别是正三棱柱的顶点或所在棱的中点,线面的关系可判断GH、MN 是异面直线的图形.【解答】解:由题意:G、H、M、N分别是正三棱柱的顶点或所在棱的中点,对于图1:G,M 是中点,上下面平行,故得GH、MN 平行;对于图2:过N点作GH的平行线,可得GH与MN相交.GH与MN不平行;且GH与MN 不在同一平面,故得直线GH、MN 是异面直线;对于3: GH与MN不在同一平面,GH与MN不平行,延长必相交.故得直线GH、MN不是异面直线;对于4:取GH的中点为E,可得GENM是平行四边形.故得GH MN平行;图2,图3中直线GH、MN是异面直线;故选:B.【点评】本题考查了两条直线在空间图形中的位置的判断.利用了正三棱柱的特征和中点的性质.属于基础题.4•在长方体ABCD- A i BiGD i的十二条棱中,与面对角线AC垂直且异面的棱的条数是()A. 2 B. 4 C. 6 D. 8【分析】作出图形,列举出与面对角线AC垂直且异面的棱.【解答】解:如图,在长方体ABCD- A i B i C i D i的十二条棱中,与面对角线AC垂直且异面的棱有:BB和DD,•••与面对角线AC垂直且异面的棱的条数是2.故选:A.【点评】本题考查满足条件的棱的条数的求法,考查长方体的结构特征等基础知识,考查数形结合思想,是基础题.5.正方体ABC— A i B i C i D i 中,与对角线A i B成45°勺棱有()条.A. 4B. 8C. 12D. 2【分析】根据线线角的定义在正方体中逐一寻找判断即可.【解答】解:如图所示:在正方形ABBA i 中,AA i、AB、BBi、A i B i 与A i B均成45°角,根据线线角的定义知,DD i、CG、DC、D i C i都与A i B成45°角, 所以满足条件的棱有8 条,故选:B.【点评】本题考查空间中异面直线所成角的定义及其求法,属基础题.6.如图所示,在三棱锥P- ABC的六条棱所在的直线中,异面直线共有()A. 2 对B. 3 对C. 4 对D. 6对【分析】画出三棱锥,找出它的棱所在直线的异面直线即可.【解答】解:如图所示,三棱锥P-ABC中,棱PA与BC是异面直线,棱PB与AC是异面直线,棱PC与AB是异面直线;共3 对.故选:B.【点评】本题考查了空间中的异面直线的判定问题,解题时应结合图形进行解答,是基础题.7.将正方体的纸盒展开如图,直线AB、CD在原正方体的位置关系是()A.平行B.垂直C.相交成60。
考点02 异面直线的夹角(人教A版2019)(含答案解析)
考点02 异面直线的夹角一、单选题1.已知斜三棱柱111ABC A B C -中,底面ABC 是等腰直角三角形,2AB AC ==,12CC =,1AA 与AB 、AC 都成60角,则异面直线1AB 与1BC 所成角的余弦值为A .14 B.5C.5D .162.在三棱柱111ABC A B C -中,若ABC ∆是等边三角形,1AA ⊥底面ABC ,且1AB =,则1AB 与1C B 所成角的大小为 A .60︒ B .90︒ C .105︒D .75︒3.设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,11D PD Bλ=,当APC ∠为锐角时,λ的取值范围是A .10,3⎡⎫⎪⎢⎣⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭4.已知正三棱柱ABC A B C '''-的所有棱长均相等,D 、E 在BB '上,且BD DE EB '==,则异面直线AD 与EC '所成角的正弦值为 A .720 B.20 CD5.《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为A .6π B .4π C .3πD .2π6.已知在直三棱柱111ABC A B C -中,底面是边长为2的正三角形,1AA AB =,则异面直线1A B 与1AC 所成角的余弦值为 A .14-B .14C .4-D .47.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA =,底面ABCD 为边长为2的正方形,E 为BC 的中点,则异面直线BD 与PE 所成的角的余弦值为A .6 B .6CD8.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是A . BC .6-D9.已知正四棱柱1111ABCD A B C D -中,1AB =,12CC =,点E 为1CC 的中点,则异面直线1AC 与BE 所成的角等于 A .30 B .45︒ C .60︒D .90︒10.已知直三棱柱111ABC A B C -中,12,2,13ABC AB BC CC π∠====,则异面直线1AB 与1BC 所成角的余弦值为A B .15CD .5-11.直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,1BC BB =,则直线1AB 与1BC 所成角的余弦值为A .6 B .23CD .1212.正方体1111ABCD A B C D -中,E 、F 分别是1AA 与1CC 的中点,则直线ED 与1D F 所成角的余弦值是 A .15B .13C .12D 13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为A .12BC .10D .1014.直三棱柱111ABC A B C -中,1AB AC AA ==,60BAC ∠=︒,则异面直线1BA 和1AC 所成角的余弦值为A B .34C .14D .1315.如图,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,则PA 与BD 所成角的度数为A .30B .45︒C .60︒D .90︒16.在长方体1111ABCD A B C D -中,AB BC a ==,1AA =,则异面直线1AC 与1CD 所成角的余弦值为A .15BCD .217.在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,设AC 交BD 于点O ,则异面直线1A O 与1BD 所成角的余弦值为A . BC .D 18.已知两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),则这两条异面直线所成的角θ满足 A .9sin 14θ=B .1sin 4θ= C .9cos 14θ=D .1cos 4θ=19.如图所示,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,1AB BC AA ==,90ABC ∠=,点E 、F 分别是棱AB 、1BB 的中点,则直线EF 和1BC 所成的角为A .120°B .150°C .30°D .60°20.在正四棱锥P ABCD -中,2PA =,直线PA 与平面ABCD 所成的角为60,E 为PC 的中点,则异面直线PA 与BE 所成角为 A .90 B .60 C .45D .3021.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为A .16+8πB .32+16πC .32+8πD .16+16π22.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为A BCD23.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C 的中点,则异面直线MB 与1AA 所成角的余弦值为 A .13 B .22C .324D .1224.如图,四棱锥中,底面ABCD 是矩形,PA ⊥ 平面ABCD ,1AD =,2AB =,PAB △是等腰三角形,点E 是棱PB 的中点,则异面直线EC 与PD 所成角的余弦值是A 3B 6C 6D .2225.在棱长为2的正方体1111—ABCD A B C D 中,O 是底面ABCD 的中点,E ,F 分别是1CC ,AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于A .427 B 15 C 3D 6二、多选题1.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是棱BC 的中点,点Q 是底面A 1B 1C 1D 1上的动点,且AP ⊥D 1Q ,则下列说法正确的有 A .DP 与D 1Q 所成角的最大值为4π B .四面体ABPQ 的体积不变C .△AA 1QD .平面D 1PQ 截正方体所得截面面积不变2.如图,在边长为1的正方体ABCD -A B C D ''''中,M 为BC 边的中点,下列结论正确的有A .AM 与DB ''B .过三点A 、M 、D 的正方体ABCD -A BCD '''' C .四面体A C ''BD 的内切球的表面积为3π D .正方体ABCD -A B C D ''''中,点P 在底面A B C D ''''(所在的平面)上运动并且使∠MA C '=∠P A C ',那么点P 的轨迹是椭圆3.如图,已知在棱长为1的正方体1111—ABCD A B C D 中,点E ,F ,H 分别是AB ,1DD ,1BC 的中点,下列结论中正确的是A .11//C D 平面CHDB .1AC ⊥平面1BDAC .三棱锥11—D BAC 的体积为56D .直线EF 与1BC 所成的角为30°4.如图,在三棱柱111ABC A B C -中,底面ABC 是等边三角形,侧棱1AA ⊥底面ABC ,D为AB 的中点,若2AB =,1AA =,则A .1CD A D ⊥B .异面直线1A D 与1AC 所成角的余弦值为14C .异面直线1AD 与1AC D .//CD 平面11AB C5.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒三、填空题1.已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,则异面直线1BC 与DC 所成角的余弦值为________.2.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为________.3.如图所示的三棱锥P ABC -中,PA ⊥平面ABC ,D 是棱PB 的中点,若2PA BC ==,4AB =, CB AB ⊥,则PC 与AD 所成角的余弦值为________.4.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1B B 与1C C 的中点,设DM 与1A N 所成的角为θ,则sin θ=________.5.已知点P 在正方体1111ABCD A B C D -的对角线1BD 上,H 在11B D 上,,,D P H 共线,60HDA ∠=︒,则DP 与1CC 所成角的大小为________.6.已知三棱柱111ABC A B C -的所有棱长均为2,侧棱1AA ⊥底面ABC ,若,E F 分别是线段1BB ,11A C 的中点,则异面直线AE 与CF 所成角的余弦值是________.7.在直三棱柱111ABC A B C -中,13,3,2AC BC AB AA ====,则异面直线1A C 与1BC 所成角的余弦值为________.8.在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,3PA =,AB =2BC =,若E ,F 是PC 的三等分点,则异面直线AE 与BF 所成角的余弦值________.9.在正方体1111ABCD A B C D -中,点E 为棱11A B 的中点,则异面直线AE 与BD 所成角的余弦值为________.10.四棱锥P -ABCD 的底面是一个正方形,P A ⊥平面ABCD ,4PA AB ==,E 是棱P A 的中点,则异面直线BE 与AC 所成角的余弦值是________.11.如图,在三棱锥V ABC -中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x ,y ,z 轴上,D 是线段AB 的中点,且2AC BC ==,当60VDC ∠=︒时,异面直线AC 与VD 所成角的余弦值为________.12.如图,已知正三棱柱111ABC A B C -的侧棱长为底面边长的2倍,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角的余弦值为________.13.已知(0,1,2)AM =,(1,0,2)CN =,则直线AM 和CN 所成角的余弦值是__________.14.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是________.15.在三棱锥O ABC -中,已知OA 、OB 、OC 两两垂直且相等,点P 、Q 分别是线段BC 和OA 上的动点,且满足12BP BC ≤,12AQ AO ≥,则PQ 和OB 所成角的余弦的取值范围是________.四、双空题1.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则该棱柱的体积为________;异面直线1AB 与1BC 所成角的余弦值为________.2.在正四面体ABCD 中,M ,N 分别为棱BC 、AB 的中点,设AB a =,AC b =,AD c =,用a ,b ,c 表示向量DM =________,异面直线DM 与CN 所成角的余弦值为________. 3.在直四棱柱1111ABCD A B C D -中,侧棱长为6,底面是边长为8的菱形,且120ABC ∠=,点E 在边BC 上,且满足3BE EC =,动点M 在该四棱柱的表面上运动,并且总保持1ME BD ⊥,则动点M 的轨迹围成的图形的面积为________;当MC 与平面ABCD 所成角最大时,异面直线1MC 与AC 所成角的余弦值为________.4.如图,P 为△ABC 所在平面外一点,P A =PB =PC =1,∠APB =∠BPC =60°,∠APC =90°,若G 为△ABC 的重心,则|PG |长为________,异面直线P A 与BC 所成角的余弦值为________.5.如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC ==,则此三棱锥四个面中直角三角形的个数为________,异面直线PB 与AC 所成角的正切值等于________.五、解答题1.如图,在三棱锥D -ABC 中,DA ⊥平面ABC ,AB BC ⊥且2BC =,3AB =,4=AD .(1)证明:BCD △为直角三角形;(2)以A 为圆心,在平面DAB 中作四分之一个圆,如图所示,E 为圆弧上一点,且2AE =,45EAD ∠=︒,求异面直线AE 与CD 所成角的余弦值.2.如图在三棱锥P ABC -中,棱AB 、AC 、AP 两两垂直,3AB AC AP ===,点M 在AP 上,且1AM =.(1)求异面直线BM 和PC 所成的角的大小; (2)求三棱锥P BMC -的体积.考点02 异面直线的夹角一、单选题1.已知斜三棱柱111ABC A B C -中,底面ABC 是等腰直角三角形,2AB AC ==,12CC =,1AA 与AB 、AC 都成60角,则异面直线1AB 与1BC 所成角的余弦值为A .14 BCD .16【试题来源】A 佳教育湖湘名校2019-2020学年高二下学期3月线上自主联合检测【答案】D【解析】设AB a =,AC b =,1AA c =,则0a b ⋅=,2a c ⋅=,2b c ⋅=,从而1AB a c =+, 1BC b c a =+-,22112AB BC a b b c c a ⋅=⋅+⋅+-=,22124AB a c a c =++⋅=+=22212224BC a b c b c a b a c =+++⋅-⋅-⋅=+=所以1111111cos ,6||||AB BC AB BC AB BC ⋅==.故选D .2.在三棱柱111ABC A B C -中,若ABC ∆是等边三角形,1AA ⊥底面ABC ,且1AB =,则1AB 与1C B 所成角的大小为 A .60︒ B .90︒ C .105︒D .75︒【试题来源】四川省自贡市2019-2020学年高二年级上学期期末(理) 【答案】B【解析】如图,根据条件,1AB =,令AB =,11B B =;又1111()AB B A B B =-+,1111C B B C B B =-+;2211111111111111211102AB C B B A B C B A B B B B B C B B ∴=-+-=⨯-=-=;∴11AB C B ⊥;1AB ∴和1C B 所成的角的大小为90︒.故选B .3.设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,11D PD Bλ=,当APC ∠为锐角时,λ的取值范围是A .10,3⎡⎫⎪⎢⎣⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【试题来源】湖北省鄂东南省级示范高中2020-2021学年高二上学期期中联考 【答案】A【解析】如图建立空间直角坐标系:则()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D ,()11,1,1D B =-,()()111,1,1,,D P D B λλλλλ==-=-, ()11,01D A =-,()10,1,1D C =-,所以()()()111,01,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---, 由APC ∠为锐角得cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,所以()()22110λλλ--+->,即()()1310λλ-->,解得103λ<<, 当0λ=时,点P 位于点1D 处,此时1APC AD C ∠=∠显然是锐角,符合题意, 所以103λ≤<,故选A. 4.已知正三棱柱ABC A B C '''-的所有棱长均相等,D 、E 在BB '上,且BD DE EB '==,则异面直线AD 与EC '所成角的正弦值为A .720B .20C.20D.20【试题来源】第八单元 立体几何 (A 卷 基础过关检测)-2021年高考数学(理)一轮复习单元滚动双测卷 【答案】C【解析】如下图所示,设3AD =,取BC 的中点O ,B C ''的中点M ,连接OA 、OM ,在正三棱柱ABC A B C '''-中,//BB CC ''且BB CC ''=, 则四边形BB C C ''为平行四边形,//BC B C ''∴且BC B C ''=, 由于O 、M 分别为BC 、B C ''的中点,则//OB MB '且OB MB '=, 所以,四边形OBB M '为平行四边形,则//OM BB '且OM BB '=,BB '⊥平面ABC ,则OM ⊥平面ABC ,ABC 为等边三角形,且O 为BC 的中点,则OA BC ⊥,以点O 为坐标原点,OA 、OB 、OM 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则2A ⎛⎫ ⎪ ⎪⎝⎭、30,,12D ⎛⎫ ⎪⎝⎭、30,,22E ⎛⎫ ⎪⎝⎭、30,,32C ⎛⎫'- ⎪⎝⎭,3,12AD ⎛⎫= ⎪ ⎪⎝⎭,()0,3,1EC '=-,77cos ,2010AD EC AD EC AD EC -'⋅'<>===-'⋅,2sin ,1cos ,120AD EC ADEC ''<>=-<>==, 因此,异面直线AD 与EC '所成角的正弦值为20.故选C .5.《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为A .6πB .4π C .3πD .2π【试题来源】2021年高考数学(理)一轮复习单元滚动双测卷 【答案】D【解析】解法一:如图,在平面ABFE 中,过F 作//FG AE 交AB 于G ,连接CG ,则CFG ∠或其补角为异面直线AE 与CF 所成的角.设1EF =,则3AB =,2AD =.因为//EF AB ,//AE FG ,所以四边形AEFG 为平行四边形,所以2FG AE AD ===,1AG =,2BG =,又AB BC ⊥,所以GC =,又2CF BC ==,所以222CG GF CF =+,所以2CFG π∠=.解法二:如图,以矩形ABCD 的中心O 为原点,CB 的方向为x 轴正方向建立空间直角坐标系,因为四边形ABCD 为矩形,//EF AB ,ADE 和BCF △都是正三角形,所以EF ⊂平面yOz ,且Oz 是线段EF 的垂直平分线.设3AB =,则1EF =,2AD =,31,,02A ⎛⎫-⎪⎝⎭,10,2E ⎛- ⎝,31,,02C ⎛⎫- ⎪⎝⎭,10,2F ⎛ ⎝,所以(AE =-,(1,CF =-,所以111(1)AE CF ⋅=-⨯+⨯-0=,所以AE CF ⊥,所以异面直线AE 与CF所成的角为2π.故选D .6.已知在直三棱柱111ABC A B C -中,底面是边长为2的正三角形,1AA AB =,则异面直线1A B 与1AC 所成角的余弦值为 A .14-B .14 C.4-D.4【试题来源】山东省德州市夏津第一中学2020-2021学年高二上学期9月月考数试题 【答案】B【解析】以A 为原点,在平面ABC 内,过点A 作AC 的垂线为x 轴,以AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,由题得(0A ,0,0),1(0,0,2)A,B ,1(0C ,2,2),1(3,1,2)A B =-,1(0,2,2)AC =,设异面直线1A B 与1AC 所成角为θ,则1111111cos |cos ,|||||4||||88A B AC A B AC A B AC θ=<>===. ∴异面直线1A B 与1AC 所成角的余弦值为14.故选B .7.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA =,底面ABCD 为边长为2的正方形,E 为BC 的中点,则异面直线BD 与PE 所成的角的余弦值为A .6 BC .3D .3【试题来源】河北省深州市中学2020-2021学年高二上学期期中【答案】A【解析】因为PA ⊥底面ABCD ,所以,PA AB PA AD ⊥⊥,又AB AD ⊥, 所以以A 为原点,,,AB AD AP 分别为,,x y z 轴建立如图所示的空间直角坐标系:则(0,0,2)P ,(2,0,0)B ,(2,1,0)E ,(0,2,0)D ,(2,1,2)PE =-,(2,2,0)BD =-, 设异面直线BD 与PE 所成的角为θ,(0,]2πθ∈,则||cos||||PE BD PE BD θ⋅==6=.所以异面直线BD 与PE 所成的角的余弦值为6.故选A . 8.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是A .18-BC .6-D 【试题来源】河南省新乡市新乡县第一中学2019-2020学年高二下学期期末考试(理) 【答案】B【解析】根据题意建立如图空间直角坐标系所以()()()()0,0,2,2,0,0,2,4,0,0,2,1P B C E ,所以()()2,2,1,2,4,2=-=-BE PC , 则异面直线BE 与PC 所成角的余弦值为6⋅=BE PC BE PCB . 9.已知正四棱柱1111ABCD A BCD -中,1AB =,12CC =,点E 为1CC 的中点,则异面直线1AC 与BE 所成的角等于 A .30 B .45︒ C .60︒D .90︒【试题来源】人教A 版(2019)选择性必修第一册 第一章 空间向量与立体几何 单元测试 【答案】A【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,然后利用向量求出答案即可.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则(1,0,0)A ,1 (0,1,2)C ,(1,1,0)B ,(0,1,1)E ,1(1,1,2)AC =-,(1,0,1)BE =-, 设1AC 与BE 所成角为θ,则11cos 6||AC BE AC BE θ⋅===⋅,所以30θ=︒. 所以异面直线1AC 与BE 所成的角为30.故选A . 10.已知直三棱柱111ABC A B C -中,12,2,13ABC ABBC CC π∠====,则异面直线1AB 与1BC 所成角的余弦值为 A.5B.15 CD . 【试题来源】黑龙江省哈尔滨师范大学附属中学2020-2021学年高二10月月考(理) 【答案】A【解析】如图:以垂直于BC 的方向为x 轴,BC 为y 轴,1BB 为z 轴建立空间直角坐标系,则()0,00B ,()10,1,1C ,()10,1,1BC =, 因为120ABC ∠=,则cos1201A y AB ==-,sin1203A xAB == 即)1,0A-,()1AB =-,设异面直线1AB 与1BC 所成角为θ,1111cos 5AB BC AB BC θ⋅===A .11.直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,1BC BB =,则直线1AB 与1BC 所成角的余弦值为A.6B .23C .2D .12【试题来源】福建省南安市侨光中学2020-2021学年高二上学期第一次阶段考试【答案】A【解析】因为直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,故以AB 为x 轴,AC 为y 轴,1AA 为z 轴建立空间直角坐标系,如图, 设1AB =,则1BB =(1,0,0)B ,(0,1,0)C,1(1,0,2)B ,1(0,1,C ,1(1AB =,1(1,1BC =-,111111cos ,63AB BC AB BC AB BC ⋅<>===. 所以直线1AB 与1BC 所成角的余弦值为6.故选A .12.正方体1111ABCD A B C D -中,E 、F 分别是1AA 与1CC 的中点,则直线ED 与1D F 所成角的余弦值是 A .15B .13 C .12D 【试题来源】河北省沧州市第三中学2019-2020学年高一下学期期末【答案】A【解析】如图,以A 为原点建立空间直角坐标系,设正方体的边长为2,则()0,0,1E ,()2,2,1F ,()0,2,0D,()10,2,0D ,∴ ()0,2,1ED =-,()12,0,1D F =,∴直线ED 与1D F 所成角θ的余弦值为111c 5os 0ED D ED D F Fθ⋅===⋅.故选A .13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为 A .12B .2 CD .10【试题来源】山西省阳泉市盂县第三中学2021届高三上学期第一次月考(文) 【答案】C【解析】如图所示,建立空间直角坐标系.不妨设棱长AB =2.A (0,0,0),C (2,2,0).因为E 、F 分别是A 1D 1,A 1C 1的中点,所以E (0,1,2),F (1,1,2),所以()()0,1,2,1,1,2AE CF ==--,所以cos ,1AE CF AE CF AE CF⋅===. 所以异面直线AE 与CF .故选C . 14.直三棱柱111ABC A B C -中,1ABAC AA ==,60BAC ∠=︒,则异面直线1BA 和1AC 所成角的余弦值为A B .34 C .14D .13【试题来源】福建省莆田第一中学2020-2021学年高二上学期期中考试【答案】C【解析】因为AB AC =,60BAC ∠=︒,所以三角形ABC 是等边三角形,取AC 的中点D ,以点D 为原点,建立空间直角坐标系如图:设2AB =,则B ,(0,1,0)A -,1(0,1,2)A -,1(0,1,2)C , 所以1(1,2)BA =--,1(0,2,2)AC ,122BA =,122AC =112BA AC ⋅=,所以异面直线1BA 和1AC所成角的余弦值为11111cos 42BA AC BA AC θ⋅===⋅,故选C .15.如图,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,则PA 与BD 所成角的度数为A .30B .45︒C .60︒D .90︒【试题来源】浙江省衢州五校2020-2021学年高二上学期期中联考 【答案】C【解析】如图,以D 为坐标原点,DA 所在直线为x 轴,DC 所在线为y 轴,DP 所在线为z 轴,建立空间坐标系,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,令1PD AD ==,(1A ∴,0,0),(0P ,0,1),(1B ,1,0),(0D ,0,0)∴(1PA =,0,1)-,(1BD =-,1-,0),·1cos 22PA BD PA BDθ∴===-⨯,故两向量夹角的余弦值为12,即两直线PA 与BD 所成角的度数为60︒.故选C .16.在长方体1111ABCD A B C D -中,AB BC a ==,1AA =,则异面直线1AC 与1CD 所成角的余弦值为A .15BCD .2【试题来源】广东省广州市海珠区2019-2020学年高二上学期期末联考 【答案】C【解析】以D 为原点建立空间直角坐标系,如图所示,依题意()()()()11,0,0,0,,0,0,,A a C a C a D , 所以()()11,,3,0,AC a a a CD a =-=-,设异面直线1AC 与1CD 所成角为θ,则1111cos AC CD a AC CD θ⋅-===⋅.故选C. 17.在长方体1111ABCD A B C D -中,1ABAD ==,12AA =,设AC 交BD 于点O,则异面直线1A O 与1BD 所成角的余弦值为 A. BC .D 【试题来源】2021年高考数学(理)一轮复习单元滚动双测卷 【答案】D【解析】以D 为原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,因为1AB AD ==,12AA =,所以()11,0,2A ,()1,1,0B ,11,,022O ⎛⎫ ⎪⎝⎭,()10,0,2D , 111,,222A O ⎛⎫=-- ⎪⎝⎭,()11,1,2BD =--,则11cos ,9A O BD ==.故选D .18.已知两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),则这两条异面直线所成的角θ满足 A .9sin 14θ=B .1sin 4θ= C .9cos 14θ=D .1cos 4θ=【试题来源】天津市第五十五中学2020-2021学年高二(上)第一次月考 【答案】C 【解析】两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),∴·3312(2)19u v =⨯+⨯+-⨯=,231u =+=,232v =+=,又两条异面直线所成的角为(0,]2πθ∈,∴·9cos cos ,14·14u v v u vθ====⋅,sin 14θ=.故选C .19.如图所示,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,1AB BC AA ==,90ABC ∠=,点E 、F 分别是棱AB 、1BB 的中点,则直线EF 和1BC 所成的角为A .120°B .150°C .30°D .60°【试题来源】河北省承德第一中学2020-2021学年高二上学期第二次月考【答案】D【解析】以B 为原点.1,,BC BA BB 分别为..x y z 轴建立空间直角坐标系: 令12AB BC AA ===,则(0,0,0)B ,(0,1,0)E ,(0,0,1)F ,1(2,0,2)C , 所以(0,1,1)EF =-,1(2,0,2)BC =, 所以111cos ,||||EF BC EF BC EF BC ⋅<>=12==,所以直线EF 和1BC 所成的角为60.故选D .20.在正四棱锥P ABCD -中,2PA =,直线PA 与平面ABCD 所成的角为60,E 为PC 的中点,则异面直线PA 与BE 所成角为 A .90 B .60 C .45D .30【试题来源】山东省青岛市第十七中学2019-2020学年高一下学期期中考试 【答案】C【解析】连接AC BD ,交于点O ,连接OE OP ,.因为E 为PC 中点,所以OE PA ,所以OEB ∠即为异面直线PA 与BE 所成的角.因为四棱锥CD P -AB 为正四棱锥,所以PO ABCD ⊥平面,所以AO 为PA 在面ABCD 内的射影,所以PAO ∠即为PA 与面ABCD 所成的角,即60PAO ∠=︒,因为2PA =,所以11OA OB OE ===,.所以在直角三角形EOB 中45OEB ∠=︒,即面直线PA 与BE 所成的角为45,故选C .21.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为A .16+8πB .32+16πC .32+8πD .16+16π【试题来源】辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考 【答案】A【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23, 所以11238BD AB BD AB ⋅==⋅,即2222,16,483h h h h ===+.所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+.故选A.22.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为A .3 BCD【试题来源】辽宁省辽河油田第二高级中学2020-2021学年高二10月月考【答案】C【解析】四面体A BCD -是由正方体的四个顶点构成的,如下图所示 建立如下图所示的空间直角坐标系,设正方体的棱长为2,(0,0,0),(2,0,0),(2,2,0),(1,1,1)B C D M ,(1,1,1),(0,2,0)BM CD ==,cos ,3||BM CD BM CD BM CD⋅〈〉===⋅0,2π⎛⎤ ⎥⎝⎦,所以异面直线BM 与CD C .23.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C 的中点,则异面直线MB 与1AA 所成角的余弦值为A .13 B.3 CD .12【试题来源】天津市第二十中2020-2021学年高二(上)期中 【答案】B【解析】在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C ,∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,设11111222AA A B B C ===,则11,1,22M ⎛⎫⎪⎝⎭,(0,00B ,),(1,00A ,),1(1,02A ,), 11,1,22MB ⎛⎫=--- ⎪⎝⎭,1(0,02AA ,)=,设异面直线MB 与1AA 所成角为θ,则11cos 318MB AA MB AA θ⋅===⋅,∴异面直线MB 与1AA ,故选B .24.如图,四棱锥中,底面ABCD 是矩形,PA ⊥ 平面ABCD ,1AD =,AB =,PAB △是等腰三角形,点E 是棱PB 的中点,则异面直线EC与PD 所成角的余弦值是ABCD【试题来源】安徽省宿州市泗县第一中学2020-2021学年高二上学期第二次月考(理) 【答案】B【解析】因为底面ABCD 是矩形,且PA ⊥ 平面ABCD ,所以,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 分别为x ,y ,z 轴建立空间直角坐标系,因为1AD =,AB =,PAB △是等腰三角形, 所以()))()(0,0,0,,,0,1,0,A BCD P ,因为点E 是棱PB的中点,22E ⎛⎫⎪⎪⎝⎭ ,所以(22,1,,0,1,EC PD⎛⎫=-= ⎪⎝⎭, 所以11cos ,31PD EC PD ECPD EC⋅===⋅,所以异面直线EC 与PD .故选B. 25.在棱长为2的正方体1111—ABCD A BC D 中,O 是底面ABCD 的中点,E ,F 分别是1CC ,AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于A.7 BCD【试题来源】天津市静海区大邱庄中学2020-2021学年高二上学期第一次月考【答案】B【解析】建立空间直角坐标系如图所示:所以()()11,1,1,1,0,2F OE D =-=-,所以111cos ,53FD OE OE OE FDFD ⋅<>===,所以异面直线OE 和1FD ,故选B . 二、多选题1.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是棱BC 的中点,点Q 是底面A 1B 1C 1D 1上的动点,且AP ⊥D 1Q ,则下列说法正确的有 A .DP 与D 1Q 所成角的最大值为4π B .四面体ABPQ 的体积不变C .△AA 1QD .平面D 1PQ 截正方体所得截面面积不变【试题来源】江苏省泰州市2020-2021学年高三上学期期中 【答案】BCD【解析】对于选项A ,由题意以A 1为坐标原点,A 1B 1、A 1A 、A 1D 1为x 、y 、z 轴建立空间直角坐标系,如图所示:则A 1(0,0,0),D (0,2,2),D 1(0,2,0),A (0,0,2),B (2,0,2),C (2,2,2),则P (2,1,2),设Q (x 0,y 0,0),则AP =(2,1,0),1D Q =(x 0,y 0-2,0),由AP ⊥1D Q ,可得10AP DQ ⋅=,即2x 0+y 0-2=0,对于选项A ,由DP =(2,-1,0),可得1cos DP DQ =,,45===,为定值,所以选项A 错误;对于选项B ,四面体ABPQ 的体积111122123323A BPQ Q ABP ABP V V S AA --∆==⨯⨯=⨯⨯⨯⨯=,为定值,即体积不变 ,所以选项B 正确;对于选项C ,因为AA 1⊥A 1Q ,且A 1Q=11111222AA QS AA AQ ∆=⨯⨯=⨯===,因为[]002x ∈,,所以15AA Q S ∆≥=,所以选项C 正确;对于选项D ,如图,因为点Q 满足2x 0+y 0-2=0,即点Q 在直线2x 0+y 0-2=0上运动,取A 1B 1的中点为E ,即点Q 在D 1E 上,因为点P 到D 1E 的距离为2,E (1,0,0),1D E =(1,-2,0),11D E =+=,11122PD EE SD ∴⨯⨯== 则平面D 1PQ 截正方体所得截面为1FED G ,其中12CG GD =,112BF FB =, 所以,1EFGD 且1EF GD =,又由P 为中点,,BF CG PB PC ==,90B C ∠=∠=︒,所以,PEF 和1PGD 全等,所以,PF PG =,由平行四边形的面积的性质,所以,截面面积为四边形1FED G ,该四边形的面积为2△D 1PE ,则截面面积为 2△D 1PE =115122222PD ESD E ⨯⨯⨯==,则截面面积为定值,所以选项D正确.故选BCD .2.如图,在边长为1的正方体ABCD -A B C D ''''中,M 为BC 边的中点,下列结论正确的有A .AM 与DB ''所成角的余弦值为10B .过三点A 、M 、D 的正方体ABCD -A BCD ''''的截面面积为4C .四面体A C ''BD 的内切球的表面积为3π D .正方体ABCD -A B C D ''''中,点P 在底面A B C D ''''(所在的平面)上运动并且使∠MA C '=∠P A C ',那么点P 的轨迹是椭圆【试题来源】湖北省武汉外国语学校2020-2021学年高二上学期期中 【答案】AC【解析】以A '为坐标原点,以A D '',A B '',A A '为坐标轴建立空间直角坐标系A xyz '-,则(0A ,0,1),1(2M ,1,1),(1D ',0,0),(0B ',1,0),∴1(2AM =,1,0),(1D B ''=-,1,0),cos AM ∴<,·10AM D B D B AM D B ''''>=='',AM ∴与D B ''所成角的余弦值为10,故A 正确; 取CC '的中点N ,则////MN BC AD '',故梯形MND A '为过A 、M 、D '的正方体的截面,2MN =,AD '=,AM D N ='=,∴梯形MND A '的高为=,∴梯形MND A '的面积为19)228⨯=,故B 错误; 四面体A C BD ''的体积为111414111323D A C D V V -'''-=-⨯⨯⨯⨯⨯=正方体,又四面体A C BD ''的所有棱长均为,∴四面体A C BD ''的表面积为244⨯⨯=A C BD ''的内切球半径为r ,则123⨯13r =,解得r =,∴四面体A C BD ''的内切球的表面积为243r ππ=,故C 正确;MAC PAC ∠'=∠',P ∴点在以AC '为轴,以AM 为母线的圆锥的侧面上, (1AC '=,1,1)-,1(2AM =,1,0),故·15cos AM AC MAC AM AC '∠'=='设AC '与平面A B C D ''''的夹角为α,则2cos cos 353A C AC A AC α''=∠''===>', MAC α∴<∠',P ∴点在平面A B C D ''''上的轨迹是双曲线,故D 错误.故选AC .3.如图,已知在棱长为1的正方体1111—ABCD A B C D 中,点E ,F ,H 分别是AB ,1DD ,1BC 的中点,下列结论中正确的是A .11//C D 平面CHDB .1AC ⊥平面1BDAC .三棱锥11—D BAC 的体积为56D .直线EF 与1BC 所成的角为30°【试题来源】2021年新高考数学一轮复习学与练 【答案】ABD【解析】如图1所示,由题意,11//C D CD ,11C D ⊂/平面CHD ,CD ⊂平面CHD ,所以11//D C 平面CHD ,所以A 正确;建立空间直角坐标系,如图2所示;由1AB =,则1(1AC =-,1,1),(1BD =-,1-,0),1(1DA =,0,1); 所以11100AC BD =-+=,111010AC DA =-++=,所以1AC BD ⊥,11AC DA ⊥,所以1AC ⊥平面1BDA ,所以B 正确;三棱锥11D BA C -的体积为1111114D BA C ABCD A B C D V V --=-三棱锥正方体11114111323=-⨯⨯⨯⨯⨯=, 所以C 错误;(1E ,12,0),(0F ,0,1)2,所以(1EF =-,12-,1)2,1(1BC =-,0,1),所以cos EF <,111110||||3EF BC BC EF BC ++>===⨯ 所以EF 与1BC 所成的角是30,所以D 正确.故选ABD .4.如图,在三棱柱111ABCA BC -中,底面ABC 是等边三角形,侧棱1AA ⊥底面ABC ,D 为AB 的中点,若2AB =,1AA =,则A .1CD A D ⊥B .异面直线1A D 与1AC所成角的余弦值为14C .异面直线1AD 与1ACD .//CD 平面11AB C【试题来源】2021年新高考数学一轮复习讲练测 【答案】AC【解析】A :因为侧棱1AA ⊥底面ABC ,所以1AA CD ⊥,因为ABC 是等边三角形,AD BD =,所以CD AB ⊥,因为1AB AA A =,所以CD ⊥平面1AA D ,则1CD A D ⊥,A 正确;以D为原点,如图建立空间直角坐标系,则(1A -,()1,0,0A -,(1C,(1B,所以(11,0,A D =,(11,AC=,所以111111cos ,7A D ACA D AC A D AC ⋅===,所以异面直线1A D 与1AC所成角的余弦值为14,B 不正确,C 正确; 因为(1AB =,(11,AC=,设平面11AB C 法向量为(),,n x y z =,则1120n AB xn AC x ⎧⋅=+=⎪⎨⋅=++=⎪⎩,即2x z y z ⎧=⎪⎪⎨⎪=-⎪⎩,取2z =,则()6,2n =-,因为()0,CD =,且60CD n ⋅=≠,所以若//CD 平面11AB C 不成立,D 不正确;故选AC .5.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒【试题来源】山东省新泰市第一中学(新泰中学)2020-2021学年高二上学期第一次月考 【答案】ABD【解析】如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫⎪⎝⎭E ,()1B C 0,1,1=-,()11,1,1BD =-,()1,1,0BD =-,()11,0,1BA =-所以()111011110B C BD =-⨯+⨯+-⨯=,即11BC BD ⊥,所以11B C BD ⊥,故B 正确; ()11011101B C BD =-⨯+⨯+-⨯=,12B C =,2BD =,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BDθ==,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =,则1·0·0n BA n BD ⎧=⎨=⎩,即00x y x z -+=⎧⎨-+=⎩,取()1,1,1n =,则()10111110n B C =⨯+⨯+⨯-=,即1C n B ⊥,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选ABD.三、填空题1.已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,则异面直线1BC 与DC 所成角的余弦值为________.【试题来源】河北省尚义县第一中学2020-2021学年高二上学期期中【解析】因为四棱柱1111ABCD A B C D -使直四棱柱,A ∠为直角,//AB CD ,所以可以以D 为坐标原点,以DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则()0,0,0D ,()2,4,0B ,()0,1,0C ,()10,1,2C ,故()0,1,0DC =,()12,3,2BC =--,因为1DC =,212BC ==,所以1113cos ,17DC BC DC BC D BC C ⋅-===⋅故异面直线DC 与1BC 所成的角的余弦值为17,故答案为17. 2.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为________.【试题来源】天津市滨海新区塘沽一中2020-2021学年高二上学期期中【解析】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,0,4A 、()12,2,4B 、()0,2,2E 、()1,1,0F ,()12,2,2A E =--,()11,1,4B F =---,111111cos ,2A E BF A E B F A E B F⋅<>===⋅,因此,直线1A E 与直线1B F . 3.如图所示的三棱锥P ABC -中,PA ⊥平面ABC ,D 是棱PB 的中点,若2PA BC ==,4AB =, CB AB ⊥,则PC 与AD 所成角的余弦值为________.【试题来源】2021年高考一轮数学单元复习一遍过(新高考地区专用) 【解析】因为PA ⊥平面ABC ,所以PA AB ⊥、PA BC⊥, 过点A 作//AE CB ,又CB AB ⊥,则AP 、AB 、AE 两两垂直,如图,以A 为坐标原点,直线AB 、AE 、AP 为x 轴、y 轴、z 轴建立空间直角坐标系,则()000A ,,、()002P ,,、(400)B ,,、(420)C -,,, 又D 为PB 中点,则(201)D ,,,故(422)PC =--,,,(201)AD =,,,所以cos 102PC AD PC AD PC AD⋅===⋅,,故答案为104.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1B B 与1C C 的中点,设DM 与1A N 所成的角为θ,则sin θ=________.【试题来源】北京市平谷区第五中学2020-2021学年高二上学期期中考试 【答案】19【分析】建立空间直角坐标系,利用公式11sin DM A N DM A Nθ⋅=⋅,进行求解即可【解析】如图,设正方体的边长为a ,以CD 为x 轴,CB 为y 轴,1CC 为z 轴,建立坐标系得,(,0,0)D a ,(0,,)2a M a ,1(,,)A a a a ,(0,0,)2a N ,所以,(,,)2a DM a a =-,1(,,)2a A N a a =--,所以,11sin 9a DM A N DM A N θ⋅==⋅19=,故答案为19. 5.已知点P 在正方体1111ABCD A B C D -的对角线1BD 上,H 在11B D 上,,,D P H 共线,60HDA ∠=︒,则DP 与1CC 所成角的大小为________.【试题来源】2021年新高考数学一轮复习考点扫描 【答案】45【分析】以DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,得出(,,1)DH m m =,()1001CC =,,,进而根据向量的乘积公式求解【解析】如图,以D 点为原点,以DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系:()()()1000100001D DA CC ==,,,,,,,,,连接11BD B D ,,在平面11BB D D 中,延长DP 交11B D 于点H ,设(,,1)DH m m =,(0)m >,DP 与1CC 所成角为θ 由已知60HDA ∠=︒,根据cos DA DH DA DH HDA ⋅=∠,可得221m m =+,解得21m DH⎛⎫== ⎪ ⎪⎝⎭,所以,1112cos 2C DH D C co C H DH s CC C θ⋅===⋅,, ∴45θ=︒,故答案为456.已知三棱柱111ABC A B C -的所有棱长均为2,侧棱1AA ⊥底面ABC ,若,E F 分别是线段1BB ,11A C 的中点,则异面直线AE 与CF 所成角的余弦值是________.【试题来源】【新东方】【2020】【高三上】【期中】【HD -LP359】【数学】 【答案】15【解析】建立如图所示空间直角坐标系:则())()()0,0,0,,0,2,0,0,1,2A EC F ,所以()()3,1,1,0,1,2AE CF ==-,所以1cos ,55AE CF AE CFAE CF⋅===⋅,故答案为15.7.在直三棱柱111ABC A B C -中,13,3,2AC BC AB AA ====,则异面直线1A C 与1BC 所成角的余弦值为________.。
人教A版必修二 与异面直线相关的几类经典题型【附解析】
人教A版与异面直线相关的几类经典题型【知识梳理】1.异面直线的定义:不同在任何一个平面内的两条直线称为异面直线.2.异面直线的判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线;3.异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫做异面直线a与b所成的角(或夹角).②范围:(0,2 ].【典例分析】题型一异面直线的判断例题1(1)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:①AM和CN是否是异面直线?说明理由.12②DB 和CC 1是否是异面直线?说明理由.跟踪练习1 如图:已知平面βα⋂=l ,A ∈l ,D ∈l ,AC α⊂,DB ⊂β,求证:AC 和BD 是异面直线.题型二 异面直线所成的角例题2 如图1所示,在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,求异面直线OE 和FD 1所成的角的余弦值.跟踪练习2 如图,在正方体ABCD -A 1B 1C 1D 1中,(1)求A 1C 1与B 1C 所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.题型三构造长方体巧解异面直线问题例题3 三条直线a、b、c两两异面,作直线l与三条直线都相交,则直线l可以作多少条?跟踪练习3 设a、b是空间的两条直线,它们在平面α上的射影是两条相交直线,它们在平面β上的射影是两条平行直线,它们在平面γ上的射影是一条直线与直线外一点,则这样的平面γ有( )A.0个B.1个C.2个D.无数个【专项训练】1.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行B.一定相交C.一定异面D.相交或异面32.在如图的正方体中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的)角为(3.两条异面直线在一个平面上的投影是( )A.两条相交直线B.两条平行直线C.两条平行直线、两条相交直线的可能性都有,别无其他情况D.两条平行直线、两条相交直线的可能性都有,此外还可能有其他情况.4.设a、b是异面直线,那么( )A.必然存在唯一的一个平面,同时平行于a、bB.必然存在唯一的一个平面,同时垂直于a、bC.过直线a存在唯一平面平行于直线bD.过直线a存在唯一平面垂直于直线b5.已知直线a,b是异面直线,直线c,d分别与a,b都相交,则直线c,d的位置关系( ) A.可能是平行直线B.一定是异面直线C.可能是相交直线D.平行、相交、异面直线都有可能6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD 所成的角为()4A.30°B.45°C.60°D.90°二、填空题7.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中,AB与CD的位置关系是________.8.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.9.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是________.510.如图,在正方体ABCD—A1B1C1D1中,M、N、P、Q、R、S分别是各点所在棱的中点,则PQ和RS的位置关系是________;MN和RS的位置关系是________;它们所成的角是________________;PQ和MN的位置关系是相交;它们所成的角是三、解答题12.如图,已知不共面的直线a,b,c相交于点O,M、P是直线a上两点,N、Q分别是b,c上的点.求证:MN和PQ是异面直线.6。
异面直线练习1含答案
异面直线练习1一、选择题1.和两条异面直线都相交的两条直线的位置关系是() A.异面B.相交C.平行D.异面或相交解析:如图,在正方体ABCD-A′B′C′D′中,AB与B′C′为两条异面直线,则BB′与AC′两条直线都与AB、B′C′相交,BB′与AC′异面,而BB′、BC′都与AB、B′C′相交,BB′、BC′却相交.答案:D2.已知a、b是异面直线,直线c∥直线a,则c与b () A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:c与b不可能是平行直线,否则与条件矛盾.答案:C3.如图,α∩β=l,A、B∈α,C∈β,C∉l,直线AB∩l=M,则平面ABC 与β的交线是() A.直线AC B.直线ABC.直线BC D.直线CM解析:通过直线AB与点C的平面,为面ABC,M∈AB.∴M∈面ABC,而C ∈面ABC,又∵M∈β,C∈β.∴面ABC和β的交线必通过点C和点M.答案:D4.(2012年重庆)设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a 的棱与长为2的棱异面,则a的取值范围是() A.(0,2) B.(0,3)C.(1,2) D.(1,3)解析:构造四面体ABCD,使AB=a,CD=2,AD=AC=BC=BD=1,取CD的中点E,则AE=BE=22,∴22+22>a,0<a<2,故选A.答案:A5.(2012年大同调研)直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC =AA1,则异面直线BA1与AC1所成的角等于() A.30°B.45°C.60°D.90°解析:分别取AB、AA1、A1C1的中点D、E、F,则BA1∥DE,AC1∥EF,所以异面直线BA1与AC1所成的角为∠DEF(或其补角),设AB=AC=AA1=2,则DE=EF=2,DF=6,由余弦定理得,∠DEF=120°.答案:C6.过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作A.1条B.2条C.3条D.4条解析:如图所示.AC1,AC2,AC3,AC4即为所求.答案:D二、填空题7.在三棱锥P-ABC中,P A⊥底面ABC,AC⊥BC,P A=AC=BC,则直线PC与AB所成角的大小是________.解析:分别取P A,AC,CB的中点F,D,E,连接FD,DE,EF,AE,则∠FDE是直线PC与AB所成角或其补角.设P A=AC=BC=2a,在△FDE中,易求得FD=2a,DE=2a,FE=AF2+AE2=6a,根据余弦定理,得cos∠FDE=2a2+2a2-6a22×2a×2a=-12,所以∠FDE=120°.所以PC与AB所成角的大小是60°.答案:60°8.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线答案:②④三、解答题10.如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,过E、F、G的平面交AD于H,连接EH.(1)求AH∶HD;(2)求证:EH、FG、BD三线共点.解:(1)∵AEEB=CFFB=2,∴EF∥AC.∴EF∥平面ACD.而EF⊂平面EFGH,且平面EFGH∩平面ACD=GH,∴EF∥GH.而EF∥AC,∴AC∥GH.∴AHHD =CGGD=3,即AH∶HD=3∶1.(2)证明:∵EF∥GH,且EFAC=13,GHAC=14,∴EF≠GH.∴四边形EFGH为梯形.令EH∩FG=P,则P∈EH,而EH⊂平面ABD,所以P∈面ABD,P∈FG,FG⊂平面BCD,所以P∈面BCD,而平面ABD∩平面BCD=BD,∴P∈BD.∴EH、FG、BD三线共点.11.如图所示,在空间四边形ABCD中,已知AD=1,BC=3,且AD⊥BC,对角线BD=132,AC=32,求AC和BD所成的角的大小.解:如图所示,分别取AD,CD,AB,DB的中点E,F,G,H,连接EF,FH,HG,GE,GF,则由三角形中位线定理知EF∥AC且EF=12AC=3 4,GE∥BD且GE=12BD=134,GH∥AD,GH=12AD=12,HF∥BC,HF=12BC=32,从而可知GE与EF所成的锐角(或直角)即为BD和AC所成的角,GH和HF 所成的锐角(或直角)即为AD与BC所成的角.∵AD⊥BC,∴∠GHF=90°∴GF2=GH2+HF2=1.在△EFG中,EG2+EF2=1=GF2,∴∠GEF=90°,即AC与BD所成的角为90°.12.正方体ABCD-A1B1C1D1中.(1)求AC与A1D所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小.解:(1)如图所示,连接AB1,B1C,由ABCD-A1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)如图所示,连接AC、BD,在正方体ABCD-A1B1C1D中,AC⊥BD,AC∥A1C1,∵E、F分别为AB、AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.[热点预测]13.(1)在底面为正方形的长方体上任意选择4个顶点,则以这4个顶点为顶点构成的几何形体可能是:①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.则其中正确结论的序号是()A.①③④⑤B.①②④⑤C.①②③⑤D.①②③④(2)如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC 的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.解析:(1)由长方体的性质知①正确,②不正确;对于③,长方体ABCD-A1B1C1D1中的四面体A1-ABD符合条件,③正确;对于④,长方体ABCD-A1B1C1D1中的四面体A1-BC1D符合条件,④正确;对于⑤,长方体ABCD-A1B1C1D1中的四面体A1-ABC符合条件.(2)还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH 与MN成60°角,DE⊥MN.答案:(1)A(2)②③④。
高一数学必修第二册 2019(A版)_【典型例题】空间点、直线、平面的位置关系:异面直线距离或角练习
空间点、直线、平面的位置关系:异面直线距离或角
【例1】(1)(2011·广西高二月考)棱长为a 的正方体ABCD -A 1B 1C 1D 1中,异面直线DD 1与BC 1之间的距离为
( )
A.a
B.2a
(2)(2019·江苏高一期末)在长方体1111ABCD A BC D -中,1AB AA ==2
AD =,则异面直线AC 与1BD 所成角的余弦值为( )
A.15
B.15-
C.15
D.12
- 【举一反三】
1.(2019·福建)在正方体ABCD -A 1B 1C 1D 1中,点M 为棱A 1B 1的中点,则异面直线AM 与BD 所成角的余弦值为( )
A.2
B.4
C.5
D.10
2.(2019·上海高二期末)若Rt ΔABC 的斜边AB =5,BC =3,BC 在平面α内,A 在平面α内的射影为O ,AO =2,则异面直线AO 与BC 之间的距离为___________。
3.(2019·浙江诸暨中学高二月考)如图,在三棱锥S ABC -中,E 为棱SC 的中点.若AC =2SA SB SC AB BC =====.则异面直线AC 与BE 所成的角为( )
A.30
B.45
C.60
D.90
4.(2019·宝鸡中学高三月考)在直三棱柱111ABC A B C -中,若90BAC ∠=,1AB AC AA ==,则异面直线1BA 与1AC 所成角为( )
A.30
B.450
C.60
D.90。
考点练习(必修二):异面直线的判定(附答案)
异面直线的判定1. 如图,正方体ABCD-A1B1C1D1中,判断下列直线的位置关系:①直线A1B与直线D1C的位置关系是________;②直线A1B与直线B1C的位置关系是________;③直线D1D与直线D1C的位置关系是________;④直线AB与直线B1C的位置关系是________.2. 若a、b是异面直线,b、c是异面直线,则()A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面3. 若a,b,c是空间3条直线,a∥b,a与c相交,则b与c的位置关系是()A.异面B.相交C.平行D.异面或相交4. 若直线a、b、c满足a∥b,a、c异面,则b与c()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线5. 如下图所示,点P,Q,R,S分别在正方体的4条棱上,且是所在棱的中点,则直线PQ 与RS是异面直线的一个图是________.6. 在长方体ABCD-A1B1C1D1中,与棱AA1垂直且异面的棱有________.7. 如下图所示是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为()A.相交B.平行C.异面而且垂直D.异面但不垂直8. 若P是两条异面直线l,m外的任意一点,则()A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面9. 如右图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由.(2)D1B和CC1是否是异面直线?说明理由.参考答案1. 【自主解答】根据题目条件知道直线A1B与直线D1C在平面A1BCD1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A1、B、B1在一个平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C“异面”.同理,直线AB与直线B1C“异面”.所以②④都应该填“异面”;直线D1D与直线D1C相交于D1点,所以③应该填“相交”.【答案】①平行②异面③相交④异面2. D 若a、b是异面直线,b、c是异面直线,那么a、c可以平行,可以相交,可以异面.3. 答案:D4. C 若a∥b,a、c是异面直线,那么b与c不可能平行,否则由公理4知a∥c.5. 答案:③6.【解析】如图,与棱AA1垂直且异面的棱有DC,BC,D1C1,B1C1.【答案】DC,BC,D1C1,B1C17. 答案:D8. 答案:B9. 解:(1)不是异面直线.理由:∵M,N分别是A1B1,B1C1的中点,∴MN∥A1C1.又A1A D1D,而D1D C1C,∴A1A C1C.∴四边形A1ACC1为平行四边形.∴A1C1∥AC,得到MN∥AC.∴A,M,N,C在同一个平面内,故AM和CN不是异面直线.(2)是异面直线.证明如下:假设D1B与CC1在同一个平面D1CC1内,则B∈平面CC1D1,C∈平面CC1D1,∴BC⊂平面CC1D1.而BC⊥平面CC1D1,BC⊄平面CC1D1,∴假设不成立,故D1B与CC1是异面直线.。