最新苏科版七年级数学下册全册课时作业(附解析 ).

合集下载

课时作业本数学七下苏科版2024

课时作业本数学七下苏科版2024

课时作业本数学七下苏科版2024一、概述近年来,教育领域的改革不断进行,为了更好地适应社会的发展变化,提高学生的数学素养是教育工作者们一直在努力的目标。

作为教材之一,课时作业本在学生学习过程中扮演着重要的角色。

数学七下苏科版2024课时作业本作为一套新的教材,备受教师、学生和家长的关注。

本文将对该教材进行全面的介绍和评价,旨在帮助读者更全面地了解这套教材。

二、教材概况1. 编写出版单位该教材由教育部下属单位苏科版社编写及出版,从根本上保证了教材的权威性和可靠性。

2. 内容框架该教材针对数学七年级学生的学习特点和知识点,精心编排了数学知识的体系框架,全面、丰富地展示了数学知识的体系结构和发展历程,使学生能够更全面地理解和掌握数学知识。

3. 印刷质量作为学生学习用书,印刷质量直接关系到学生的使用体验。

该教材的印刷质量较高,纸张选用优质纸张,印刷清晰、色彩鲜艳,整体质感较好。

三、教材内容1. 知识点覆盖该教材内容覆盖丰富,涵盖了七年级数学中的各类知识点,包括整数、分数、代数、几何、统计与概率等,内容丰富全面,符合学科知识体系的构建,并且各章内容之间有机衔接,有助于学生对数学知识的整体把握。

2. 难易分布教材内容设置强调了难易结合的原则,难易相间,循序渐进,对学生的数学思维能力和分析解决问题的能力有着很好的培养作用。

3. 练习题量该教材的练习题量适中,既有足够的基础训练题,又有一定难度的拓展训练题,有利于学生的基础知识巩固和能力的提升。

4. 小结与综合每章末尾都有内容小结与综合,有助于学生对学过的知识点进行回顾总结,加深对知识的理解和记忆。

四、教材实操1. 教学适用性从教学实践的角度出发,数学七下苏科版2024课时作业本对教师和学生来说都具有很好的适用性。

教师可根据教材内容进行灵活的教学安排,学生则能够根据教材内容进行系统的学习。

2. 学习效果在教学实践中,我们发现这套教材所呈现的数学知识、习题和案例对学生的学习效果具有很好的促进作用,学生的数学学习兴趣和能力得到了显著提升。

七年级下册数学课课练电子版苏科版

七年级下册数学课课练电子版苏科版

七年级下册数学课课练电子版苏科版第七章平面图形的认识(二)7.1 探索直线平行的条件7.2 探索平行线的性质7.3 图形的平移7.4 认识三角形7.5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9.2 单项式乘多项式9.3 多项式乘多项式9.4 乘法公式9.5 单项式乘多项式法则的再认识------因式分解(一) 9.6 乘法公式的再认识------因式分解(二)第十章二元一次方程10.1 二元一次方程10.2 二元一次方程组10.3 解二元一次方程组10.4 用方程组解决问题第十一章图形的全等11.1 全等图形11.2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们身边12.1 普查与抽样调查12.2 统计图的选用12.3 频数分布表和频数分布图第十三章感受概率13.1 确定与不确13.2 可能性七年级数学三角形复习内容1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。

2、三角形的性质1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)3)直角三角形的两个锐角互余4)三角形的一个外角等于与它不相邻的两个内角之和(三角形的一个外角大于任何一个与它不相邻的内角) 5)等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一6)三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点7)三角形的外角和是360°8)等底等高的三角形面积相等9)三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

3、三角形的分类1)按边分①不等边三角形②等腰三角形(含等腰直角三角形、等边三角形 )2)按角分①锐角三角形②直角三角形③钝角三角形(锐角三角形和钝角三角形可统称为斜三角形 )4、三角形的有关定义 1)三角形的高:在三角形中,从一个顶点向它的对边所在的直线作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高。

苏科版七年级数学下册 课时作业 10.5用二元一次方程组解决问题 用方程组解决问题的步骤

苏科版七年级数学下册 课时作业  10.5用二元一次方程组解决问题  用方程组解决问题的步骤

课时作业---[用方程组解决问题的步骤]一、选择题1.[2020·襄阳] 我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x 匹,大马有y 匹,则下列方程组中正确的是 ( )A .{x +y =100,y =3xB .{x +y =100,x =3yC .{x +y =100,13x +3y =100D .{x +y =100,13y +3x =100 2.一个两位数的十位数字与个位数字的和是7,若把两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是 ( )A .34B .25C .16D .613.用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底48个,1个盒身与2个盒底配成一套罐头盒.现有15张白铁皮用来制盒身和盒底,可以刚好配成 ( )A .144套B .9套C .6套D .15套4.[2020·绵阳模拟] 利用两块长方体木块测量一张桌子的高度.首先按图K -31-1①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图所示,则桌子的高度是 ( )图K-31-1A.73 cmB.74 cmC.75 cmD.76 cm二、填空题5.某校七年级(2)班共有学生50人,其中女生人数的一半比男生人数少8人,若设女生人数为x人,男生人数为y人,可列出方程组为.6.一个两位数的两个数位上的数字之和为8,十位数字与个位数字互换后,所得新数比原数小18,则原来的两位数是.7.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚70元,后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损110元,则该商场每件羊绒衫的进价为元,标价为元.8.[2020·长沙岳麓区月考]某家具生产厂生产某种配套桌椅(一张桌子、4把椅子),已知每块板材可制作桌子1张或椅子3把,现计划用140块这种板材生产一批桌椅(不考虑板材的损耗),设用x块板材做桌子,用y块板材做椅子,则x= .9.如图K-31-2所示,在长为30米,宽为20米的长方形花园里,原有两条面积相等的小路,其余部分绿化.现在为了增加绿地面积,把花园里的一条小路改为绿地,只保留另一条小路,并且使得绿地面积是小路面积的4倍,则x= ,y= .图K-31-2三、解答题10.[2019·淮安市淮安区期末]小明到文具店给班级买奖品,发现2本笔记本的费用比1枝水笔的费用多10元;6本笔记本的费用比13枝水笔的费用少10元.求小明买5本笔记本和5枝水笔共需多少钱.11.某商场按定价销售某种商品时,每件商品可以获利140元,已知按定价的八折销售该商品3件与将定价降低20元销售该商品2件所获得的利润相等,请求出该商品每件的进价和定价分别是多少.12.一张方桌由一个桌面和四条桌腿组成,如果1立方米木材可制作方桌的桌面50个,或制作桌腿300条,现有5立方米木材,那么用多少木材制作桌面,用多少木材制作桌腿,恰好配成方桌多少张?13.某县为加快美丽乡村建设,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类美丽村庄和5个B类美丽村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇建设了3个A类美丽村庄和4个B类美丽村庄,共需资金多少万元?14、[方案设计] [2019·如皋期中]某校准备组织七年级400名学生参观公园,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满.①请你设计出所有的租车方案;②若小客车每辆需租金400元,大客车每辆需租金760元,选出最省钱的方案,并求出最少租金.15、戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说“我看到船上红、白两种帽子一样多.”一男生说:“我看到的红帽子是白帽子的2倍”.请问该船上男、女生各几人?16、暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来58张,共计200元的零钞用于顾客付款时找零.细心的小时清理了一下,发现其中面值为1元的有20张,面值为10元的有7张,剩下的均为2元和5元的钞票.你能否用所学的数学方法算出2元和5元的钞票的各有多少张吗?答案1.C2.[解析] C 设这个两位数的十位数字为x ,个位数字为y.根据题意,得{x +y =7,10x +y +45=10y +x,解得{x =1,y =6, 所以这个两位数是16.故选C .3.[解析] A 设用来制盒身的铁皮为x 张,用来制盒底的铁皮为y 张.根据题意,得{x +y =15,2×16x =48y,解得{x =9,y =6, 所以16x=16×9=144.故选A .4.[解析] D 设长方体木块长x cm,宽y cm,桌子的高为a cm .由题意,得{x +a -y =79,y +a -x =73,两式左右两边分别相加,得2a=152,所以a=76.故选D .5.[答案] {x +y =50,y -x 2=8[解析] 根据题中的相等关系列方程组.相等关系:女生人数+男生人数=50;男生人数-女生人数的一半=8.6.[答案] 53[解析] 设原来的两位数的十位数字为x ,个位数字为y.根据题意,得{x +y =8,10x +y =10y +x +18,解得{x =5,y =3.7.[答案] 650 900[解析] 设该商场每件羊绒衫的进价为x 元,标价为y 元.根据题意,得{80%y -x =70,60%y -x =−110,解得{x =650,y =900,即每件羊绒衫的进价为650元,标价为900元.8.609.[答案] 6 4[解析] 由题意得{20x =30y,20×30=5×30y,解得{x =6,y =4.10.解:设每本笔记本x 元,每枝水笔y 元.依题意,得{2x -y =10,13y -6x =10,解得{x =7,y =4. 所以5x+5y=55.答:小明买5本笔记本和5枝水笔共需55元钱.11.解:设该商品每件的进价为x 元,定价为y 元.由题意,得{x +140=y,3(0.8y -x)=2×(140-20),解得{x =160,y =300.答:该商品每件的进价为160元,定价为300元.12.解:设用x 立方米木材制作桌面,用y 立方米木材制作桌腿,则{x +y =5,50x ×4=300y,解得{x =3,y =2, 50x=150.答:用3立方米木材制作桌面,用2立方米木材制作桌腿,恰好配成方桌150张.13.解:(1)设建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是x 万元,y 万元.由题意得{x +y =300,2x +5y =1140,解得{x =120,y =180.答:建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是120万元,180万元.(2)3×120+4×180=1080(万元).答:共需资金1080万元.[素养提升]解:(1)设每辆小客车能坐x 名学生,每辆大客车能坐y 名学生.根据题意,得{3x +y =105,x +2y =110,解得{x =20,y =45. 答:每辆小客车能坐20名学生,每辆大客车能坐45名学生.(2)①根据题意,得20m+45n=400,所以n=80−4m 9.因为m ,n 均为非负整数,所以{m =20,n =0或{m =11,n =4或{m =2,n =8.所以有3种租车方案,方案1:小客车20辆,大客车0辆;方案2:小客车11辆,大客车4辆;方案3:小客车2辆,大客车8辆.②方案1所需租金:400×20=8000(元).方案2所需租金:400×11+760×4=7440(元).方案3所需租金:400×2+760×8=6880(元).因为8000>7440>6880,所以方案3所需租金最少,最少租金为6880元.。

苏科版七年级数学下册 课时作业 10.5用二元一次方程组解决问题 用表格分析实际问题

苏科版七年级数学下册 课时作业  10.5用二元一次方程组解决问题  用表格分析实际问题

课时作业---[用表格分析实际问题]一、选择题1.为了研究吸烟是否对肺有影响,某肿瘤研究所随机调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者中患肺癌的人数比不吸烟者中患肺癌的人数多22.如果设这10000人中,吸烟者中患肺癌的人数为x ,不吸烟者中患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A .{x -y =22,x ×2.5%+y ×0.5%=10000B .{x -y =22,x 2.5%+y 0.5%=10000 C .{x +y =10000,x ×2.5%−y ×0.5%=22D .{x +y =10000,x 2.5%-y 0.5%=22 2.阅读材料:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”阎伟经过认真思考,得出了正确结论,则下列结论中正确的是 ( )A .鸡23只,兔12只B .鸡24只,兔11只C .鸡25只,兔10只D .鸡12只,兔23只3.打折前购买A 商品40件与购买B 商品30件所花的钱一样多,商家打折促销,A 商品打八折,B 商品打九折,此时购买A 商品40件比购买B 商品30件少花600元,则打折前A 商品和B 商品每件的价格分别为 ( )A .75元,100元B .120元,160元C.150元,200元D.180元,240元4.[2020·襄阳谷城模拟]我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果一托为5尺,那么索长() A.25尺B.20尺C.15尺D.10尺二、填空题5.某公司向银行申请了甲、乙两种贷款,共计50万元,每年需付出4.4万元利息.已知甲种贷款每年的利率为10%,乙种贷款每年的利率为8%,则该公司申请的甲、乙两种贷款的金额分别为.6.[2019·临沂]用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品.要生产甲种产品37件,乙种产品18件,则恰好需用A,B两种型号的钢板共块.7.[2019·长春期中]某市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元.”乙说:“我乘这种出租车走了23千米,付了35元.”那么这种出租车的起步价是元.8.[2019·盐城大丰区期末]已知每件A奖品价格相同,每件B奖品价格相同.老师要网购A,B 两种奖品16件,若购买A奖品9件、B奖品7件,则微信钱包内的钱会差230元;若购买A 奖品7件、B奖品9件,则微信钱包内的钱会剩余230元.老师实际购买了A奖品1件、B奖品15件,则微信钱包内的钱会剩余 元.9.已知甲、乙两人从相距18千米的两地同时出发,相向而行,154小时相遇.如果甲比乙先走32小时,那么在乙出发后23小时两人相遇.设甲、乙两人速度分别为每小时x 千米和y 千米,则x=___, y=_______.10.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需 元.三、解答题11.[2019·南京秦淮区期末] 某商店销售甲、乙两种商品.现有如下信息:图K -32-1(1)请设计一张表格,并把上述信息中的已知数量填进去;(2)根据情境中的信息,提出一个问题,并用二元一次方程组解决这个问题.12.某专卖店有A,B两种商品.已知在打折前,买20件A商品和10件B商品用了400元;买30件A商品和20件B商品用了640元.A,B两种商品打相同折以后,某人买100件A商品和200件B商品一共比不打折少花640元,则打了多少折?13.为鼓励居民节约用电,某省试行阶梯电价收费制,具体执行方案如下表:档次每户每月用电数(度) 执行电价(元/度)第一档小于或等于200 0.55第二档大于200且小于400 0.6第三档大于或等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份的用电量大于五月份的用电量,且五、六月份的用电量均小于400度.则该户居民五、六月份各用电多少度?14.夏季来临,天气逐渐炎热起来.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%.已知调价前买这两种饮料各1瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,求这两种饮料在调价前每瓶各多少元.15、[分类讨论] [2019·如皋期中]某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上每人门票价20元17元14元某校七年级(1)(2)两个班去游览公园,其中(1)班人数较少,不足50人,(2)班人数较多,超过50人,但是不超过100人.如果两个班都以班为单位分别购票,则一共应付1912元;如果两个班联合起来,作为一个团体购票,则只需付1456元.(1)列方程组求出两个班各有多少人;(2)若(1)班全员参加,(2)班有20人不参加此次活动,请你设计一种最省钱的方式来帮他们买票,并说明理由;(3)你认为是否存在这样的可能:51到100人之间买票的钱数与100人以上买票的钱数相等?如果有,是多少人与多少人买票的钱数相等?(直接写结果)16.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?17. 小明去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮,按商店规定,若给全组每人各买2枝铅笔和1块橡皮,则必须按零售价计算,需支付39元;若给全组每人各买3枝铅笔和2块橡皮,则可以按批发价计算,需支付42元.已知每枝铅笔的批发价比零售价低0.1元,每块橡皮的批发价比零售价低0.25元,求这家商店每支铅笔和每块橡皮的批发价各为多少元?答案1.[解析] B 因为吸烟者中患肺癌的人数为x ,不吸烟者中患肺癌的人数为y.问题中的数量关系可设计成以下表格:吸烟者 不吸烟者 关系患者人数 xy 之差等于22 被调查人数 x 2.5% y 0.5% 之和等于10000根据相等关系可以列出如下方程组:{x -y =22,x 2.5%+y 0.5%=10000.故选B . 2.[解析] A 设鸡、兔分别有x 只、y 只.根据题意,得{x +y =35,2x +4y =94,解得{x =23,y =12. 故选A .3.[解析] C 设打折前A 商品每件的价格为x 元,B 商品每件的价格为y 元.根据题意,得{40x =30y,40x ×0.8+600=30y ×0.9,解得{x =150,y =200,则打折前A 商品每件的价格是150元,B 商品每件的价格是200元.故选C .4.[解析] B 设索长x 尺,竿子长y 尺.依题意,得{x -y =5,y -12x =5,解得{x =20,y =15. 故选B .5.[答案] 20万元、30万元[解析] 设该公司申请的甲、乙两种贷款的金额分别为x 万元、y 万元.根据题意,得{x +y =50,10%x +8%y =4.4,解得{x =20,y =30. 故该公司申请的甲、乙两种贷款的金额分别为20万元、30万元.6.[答案] 11[解析] 设需用A 型钢板x 块,B 型钢板y 块.依题意,得{4x +3y =37,x +2y =18,解得x+y=11. 7.[答案] 5[解析] 设这种出租车的起步价为x 元,超过3千米的部分每千米收费y 元.依题意,得{x +(11−3)y =17,x +(23−3)y =35,解得{x =5,y =1.5. 8.[答案] 1610[解析] 设A 奖品1件x 元,B 奖品1件y 元,微信钱包内的钱有a 元.由题意,得{9x +7y =a +230,7x +9y =a -230,整理,得x=y+230,则7x+9y=7(y+230)+9y=16y+1610,所以16y+1610=a-230,所以16y+230=a-1610,所以购买A奖品1件、B奖品15件的价格=x+15y=y+230+15y=16y+230=a-1610, 所以微信钱包内的钱会剩余a-(a-1610)=1610(元).9.解:(1)可设计如下表格:甲商品数量(件) 乙商品数量(件) 金额(元)1 1 53 2 12(2)答案不唯一,例如:甲、乙两种商品零售单价分别是多少元/件?设甲商品的零售单价为x元/件,乙商品的零售单价为y元/件.根据题意,得{x+y=5,3x+2y=12,解得{x=2,y=3.答:甲商品的零售单价为2元/件,乙商品的零售单价为3元/件.10.解:设打折前A商品的单价为x元/件,B商品的单价为y元/件.根据题意,得{20x+10y=400,30x+20y=640,解得{x=16,y=8.打折前,购买100件A商品和200件B商品一共要用100×16+200×8=3200(元),打折后,购买100件A商品和200件B商品一共要用3200-640=2560(元),所以2560÷3200=0.8.答:打了八折.11.解:因为两个月共用电500度,所以每个月用电量不可能都在第一档,假设该用户五、六月份每月用电量均超过200度,此时的电费共计:500×0.6=300(元),而300>290.5,不符合题意.又因为六月份的用电量大于五月份的用电量,所以五月份的用电量在第一档,六月份的用电量在第二档.设五月份用电x 度,六月份用电y 度.根据题意,得{0.55x +0.6y =290.5,x +y =500,解得{x =190,y =310. 答:该户居民五、六月份分别用电190度、310度.12.[解析] 如果设调价前碳酸饮料每瓶x 元,果汁饮料每瓶y 元,那么问题中的数量关系可设计成以下表格.碳酸饮料果汁饮料 合计费用 数量 单价 数量 单价调价前 1瓶 x 元/瓶1瓶 y 元/瓶 7元 调价后 3瓶 (1+10%)x 元/瓶 2瓶 (1-5%)y 元/瓶 17.5元解:设碳酸饮料在调价前每瓶x 元,果汁饮料在调价前每瓶y 元.根据题意,得{x +y =7,3(1+10%)x +2(1−5%)y =17.5,解得{x =3,y =4.答:碳酸饮料在调价前每瓶3元,果汁饮料在调价前每瓶4元.[素养提升]解:(1)因为1456÷17=85……11,所以七年级(1)(2)两个班的人数之和大于100人.设七年级(1)班有x 人,(2)班有y 人.依题意,得{20x +17y =1912,14(x +y)=1456,解得{x =48,y =56. 答:七年级(1)班有48人,(2)班有56人.(2)48+(56-20)=84(人).两个班联合起来买84张门票所需钱数为84×17=1428(元);两个班联合起来买101张门票所需钱数为101×14=1414(元).因为1414<1428,所以两个班联合起来买101张门票最省钱.(3)假设存在,设m 人与n 人买票钱数相等(51≤m ≤100,n ≥101,m ,n 均为整数). 依题意,得17m=14n ,所以m 为14的整数倍,n 为17的整数倍,所以{m =84,n =102或{m =98,n =119.故存在51人到100人之间买票的钱数与100人以上买票的钱数相等的可能,是84人和102人或98人和119人买票的钱数相等.。

2021-2022学年苏科新版七年级数学下7.2探索平行线的性质最新试题同步练习课时作业含答案解析

2021-2022学年苏科新版七年级数学下7.2探索平行线的性质最新试题同步练习课时作业含答案解析

2022年7.2探索平行线的性质一.选择题(共15小题)1.(2021春•澧县期末)如图,AF∥BE∥CD,若∠1=40°,∠2=50°,∠3=120°,则下列说法正确的是()A.∠F=100°B.∠C=140°C.∠A=130°D.∠D=60°2.(2021春•南京期末)如图,AB∥CD,BC平分∠ABD,若∠1=65°,则∠2的度数是()A.65°B.60°C.55°D.50°3.(2021•庐阳区校级模拟)如图,将直尺与30°角的三角尺叠放在一起,若∠1=55°,则∠2的大小是()A.65°B.70°C.75°D.80°4.(2021春•醴陵市期末)如图,下列结论不正确的是()A.若∠2=∠C,则AE∥CD B.若AD∥BC,则∠1=∠BC.若AE∥CD,则∠1+∠3=180°D.若∠1=∠2,则AD∥BC5.(2021秋•东西湖区期中)如图,已知长方形纸片ABCD,点E,H在AD边上,点F,G 在BC边上,分别沿EF,GH折叠,使点B和点C都落在点P处,若∠EFB+∠HGC=116°,则∠IPK的度数为()A.129°B.128°C.127°D.126°6.(2021春•盐城期末)如图,在长方形纸片ABCD中,AD∥BC,将长方形纸片沿BD折叠,点A落在点E处,DE交边BC于点F,若∠ADB=20°,则∠DFC等于()A.30°B.60°C.50°D.40°7.(2021春•高新区月考)如图,AB∥CD,∠B=75°,∠D=35°,则∠E的度数为()A.75°B.35°C.110°D.40°8.(2021春•金乡县期末)如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD∥CB;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE;其中正确的是()A.①②B.①③④C.①②④D.①②③④9.(2021春•莱阳市期末)如图,AE平分∠BAC,BE⊥AE于点E,ED∥AC,∠BAE=34°,那么∠BED=()A.134°B.124°C.114°D.104°10.(2021春•工业园区校级月考)如图,将一张长方形的纸片沿折痕EF翻折,使点C、D 分别落在点M、N的位置,且∠BFM=∠EFM,则∠AEN的度数为()A.45°B.36°C.72°D.18°11.(2021•金坛区模拟)如图,已知a∥b,m∥n,若∠1=70°,则∠2的度数是()A.100°B.110°C.120°D.130°12.(2021•常州一模)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=44°时,∠1的大小为()A.56°B.46°C.36°D.34°13.(2021•阜宁县二模)如图,已知AB∥CD,CE平分∠ACD,且∠A=120°,则∠1=()A.45°B.60°C.40°D.30°14.(2021•焦作模拟)如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°15.(2021•建湖县二模)如图,在4×4的正方形网格中,记∠ABF=α,∠FCH=β,∠DGE =γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ二.填空题(共18小题)16.(2020秋•滨海县期末)如图,把一张长方形纸条ABCD沿EF折叠,若∠AEG=64°,则∠DEF=°.17.(2021•射阳县二模)将一副直角三角板如图摆放,点D落在AC边上,BC∥DF,则∠1=°.18.(2021•阜宁县模拟)如图,已知直线AB、CD被直线AE所截,AB∥CD,∠2=130°,则∠1=.19.(2021•姑苏区校级二模)如图,已知AB∥CD,∠1=∠2,若∠A=100°,则∠3=.20.(2021•常州二模)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是.21.(2021春•江宁区月考)如图,AB∥CD,CB平分∠ACD,若∠BCD=25°,则∠A的度数为.22.(2021春•常熟市期中)如图,直线a∥b,∠1=110°,则∠2的度数是°.23.(2021春•海淀区校级期末)如图,将一张长方形纸片沿EF折叠后,点D落在BC上的点D'处,点C落在点C'处.若∠DEF=62°,则∠C'FD'=°.24.(2021•姑苏区校级一模)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=27°,则∠2=°.25.(2021春•嘉兴期末)如图,将一张长方形纸条ABCD沿EF折叠,若∠EFG=47°,则∠BGP=.26.(2021春•无锡期末)已知AB∥CD,P是平面内一点,作PE⊥AB,垂足为E,F为CD 上一点,且∠PFD=130°,则∠EPF的度数是.27.(2021春•东台市月考)平面内∠A和∠B的两边互相平行,且∠A=40°,则∠B=.28.(2021春•金坛区期末)若∠A与∠B的一组边平行,另一组边垂直,且∠A﹣2∠B=15°,则∠B的度数为.29.(2021春•玄武区校级期中)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.现有下列五个式子:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β,在这五个式子中,可以表示成∠AEC的度数的是.(请填序号)30.(2021春•大丰区月考)如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=58°,射线GP⊥EG于点G,则∠PGF =°.31.(2021春•天宁区校级月考)“浏阳河弯过九进有,五十里水路到湘江.”如图所示,某段河水流经B,C,D三点拐弯后与原来流向相同,若∠ABC=6∠CDE,∠BCD=4∠CDE,则∠CDE=.32.(2021秋•吴江区月考)如图把一个长方形纸片沿EF折叠后,点D、C分别落在D'、C'处,∠AED'=40°,则∠BFC′=.33.(2021春•鼓楼区校级月考)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣6|+(b﹣1)2=0.若射线AM绕点A顺时针先转动15秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动秒时,射线AM与射线BQ互相平行.三.解答题(共6小题)34.(2021秋•肇源县期末)完成下面的证明如图,点B在AG上,AG∥CD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.求证:∠F=90°.证明:∵AG∥CD(已知)∴∠ABC=∠BCD()∵∠ABE=∠FCB(已知)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCD∵CF平分∠BCD(已知)∴∠BCF=∠FCD()∴=∠BCF(等量代换)∴BE∥CF()∴=∠F()∵BE⊥AF(已知)∴=90°()∴∠F=90°.35.(2020秋•米易县期末)庚子年初,突如其来的疫情,给我们的生活按下了“暂停键”,春季开学延期.我市各学校积极响应教育局“停课不停学”的号召,实行线上教学.王老师发现他的电脑桌支架形状正好与他最近所讲授的数学知识有关,于是,数学课上王老师提出如下问题:如图是电脑桌支架的截面示意图,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.请你用所学知识证明:AD∥BC.36.(2021秋•农安县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.37.(2021秋•农安县期末)已知直线AB∥CD,P为平面内一点,连接P A、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠P AB、∠CDP、∠APD之间的数量关系为.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠P AN+∠P AB=∠APD,求∠AND的度数.38.(2020秋•石狮市期末)已知AB∥CD,点E是AB,CD之间的一点.(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴PE∥CD(),∴∠BAE=∠1,∠DCE=∠2(),∴∠BAE+∠DCE=+(等式的性质).即∠AEC,∠BAE,∠DCE之间的数量关系是.(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.①若∠AEC=74°,求∠AFC的大小;②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.39.(2021秋•农安县期末)如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)2022年7.2探索平行线的性质参考答案与试题解析一.选择题(共15小题)1.(2021春•澧县期末)如图,AF∥BE∥CD,若∠1=40°,∠2=50°,∠3=120°,则下列说法正确的是()A.∠F=100°B.∠C=140°C.∠A=130°D.∠D=60°【解答】解:∵BE∥CD,∴∠2+∠C=180°,∠3+∠D=180°,∵∠2=50°,∠3=120°,∴∠C=130°,∠D=60°,∵AF∥BE,∠1=40°,∴∠A=180°﹣∠1=140°,∠F的值无法确定.故选:D.2.(2021春•南京期末)如图,AB∥CD,BC平分∠ABD,若∠1=65°,则∠2的度数是()A.65°B.60°C.55°D.50°【解答】解:∵AB∥CD,∠1=65°,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.故选:D.3.(2021•庐阳区校级模拟)如图,将直尺与30°角的三角尺叠放在一起,若∠1=55°,则∠2的大小是()A.65°B.70°C.75°D.80°【解答】解:∵∠3=60°,∠1=55°,∴∠1+∠3=115°,∵AD∥BC,∴∠1+∠3+∠2=180°,∴∠2=180°﹣(∠1+∠3)=180°﹣115°=65°.故选:A.4.(2021春•醴陵市期末)如图,下列结论不正确的是()A.若∠2=∠C,则AE∥CD B.若AD∥BC,则∠1=∠BC.若AE∥CD,则∠1+∠3=180°D.若∠1=∠2,则AD∥BC【解答】解:A:∵∠2=∠C,由同位角相等两直线平行,可得AE∥CD,故A正确,B:∵AD∥BC,∴∠1=∠2,而∠2和∠B不一定相等,故B错误,C:∵AE∥CD,由两直线平行同旁内角互补,可得:∠1+∠3=180°,故C正确,D:∵∠1=∠2,由内错角相等两直线平行,可得:AD∥BC,故D正确.故选:B.5.(2021秋•东西湖区期中)如图,已知长方形纸片ABCD,点E,H在AD边上,点F,G 在BC边上,分别沿EF,GH折叠,使点B和点C都落在点P处,若∠EFB+∠HGC=116°,则∠IPK的度数为()A.129°B.128°C.127°D.126°【解答】解:∵四边形ABCD是长方形,∴∠B=∠C=90°,由折叠可知:∠IPF=∠B=90°,∠KPG=∠C=90°,EF,GH分别是∠BFP和∠CGP的角平分线,∴∠PFE=∠BFE,∠PGH=∠CGH,∴∠PFE+∠PGH=∠BFE+∠CGH=116°,∴∠BFP+∠CGP=2(∠BFE+∠CGH)=232°,∴∠PFG+∠PGF=360°﹣(∠BFP+∠CGP)=360°﹣232°=128°,∴∠FPG=180°﹣(∠PFG+∠PGF)=180°﹣128°=52°,∴∠IPK=360°﹣∠IPF﹣∠KPG﹣∠FPG=360°﹣90°﹣90°﹣52°=128°.故选:B.6.(2021春•盐城期末)如图,在长方形纸片ABCD中,AD∥BC,将长方形纸片沿BD折叠,点A落在点E处,DE交边BC于点F,若∠ADB=20°,则∠DFC等于()A.30°B.60°C.50°D.40°【解答】解:由折叠的性质得∠ADB=∠EDB,∴∠ADF=2∠ADB,∵∠ADB=20°,∴∠ADF=2×20°=40°,∵AD∥BC,∴∠DFC=∠ADF=40°,故选:D.7.(2021春•高新区月考)如图,AB∥CD,∠B=75°,∠D=35°,则∠E的度数为()A.75°B.35°C.110°D.40°【解答】解:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠B+∠BEF=180°,∠D+∠DEF=180°,∵∠B=75°,∠D=35°,∴∠BEF=180°﹣∠B=180°﹣75°=105°,∠DEF=180°﹣∠D=180°﹣35°=145°,∴∠BED=∠DEF﹣∠BEF=145°﹣105°=40°,故选:D.8.(2021春•金乡县期末)如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD∥CB;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE;其中正确的是()A.①②B.①③④C.①②④D.①②③④【解答】解:∵∠BAC=∠ACD=90°,且∠ABC=∠ADC,∴AB∥CD且∠ACB=∠CAD,∴BC∥AD,∴四边形ABCD是平行四边形.∴答案①正确;∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D,而∠D=∠ABC,∴∠ACE=∠D=∠ABC,∴答案②正确;又∵∠CEF+∠CBF=90°,∠AFB+∠ABF=90°,∵BE平分∠ABC,∴∠ABF=∠CBF,∠AFB=∠CFE,∴∠CEF=∠AFB=∠CFE,∴答案④正确;∵∠ECD=∠CAD,∠EBC=∠EBA,∴∠ECD+∠EBC=∠CFE=∠BEC,∴答案③正确.故选:D.9.(2021春•莱阳市期末)如图,AE平分∠BAC,BE⊥AE于点E,ED∥AC,∠BAE=34°,那么∠BED=()A.134°B.124°C.114°D.104°【解答】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA=180°﹣34°=146°,∵BE⊥AE,∴∠AEB=90°,∵∠AEB+∠BED+∠AED=360°,∴∠BED=360°﹣146°﹣90°=124°,故选:B.10.(2021春•工业园区校级月考)如图,将一张长方形的纸片沿折痕EF翻折,使点C、D 分别落在点M、N的位置,且∠BFM=∠EFM,则∠AEN的度数为()A.45°B.36°C.72°D.18°【解答】解:设∠MFB=x°,则∠MFE=∠CFE=2x°,∵x+2x+2x=180,∴x=36,∴∠MFE=72°=∠CFE,∵AD∥BC,∴∠AEF=∠CFE=72°,又∵NE∥MF,∴∠AEN=180°﹣72°﹣72°=36°.故选:B.11.(2021•金坛区模拟)如图,已知a∥b,m∥n,若∠1=70°,则∠2的度数是()A.100°B.110°C.120°D.130°【解答】解:∵m∥n,∴∠1+∠3=180°,∵∠1=70°,∴∠3=180°﹣∠1=110°,∵a∥b,∴∠2=∠3=110°,故选:B.12.(2021•常州一模)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=44°时,∠1的大小为()A.56°B.46°C.36°D.34°【解答】解:∵直尺的对边互相平行,∠2=44°,∴∠2=∠3=44°,∵∠1+∠3=90°,∴∠1=46°,故选:B.13.(2021•阜宁县二模)如图,已知AB∥CD,CE平分∠ACD,且∠A=120°,则∠1=()A.45°B.60°C.40°D.30°【解答】解:∵AB∥CD,∴∠1=∠DCE,∠A+∠ACD=180°,又∵∠A=120°,∴∠ACD=60°,∵CE平分∠ACD,∴∠ACE=∠DCE=∠ACD=30°,∴∠1=30°,故选:D.14.(2021•焦作模拟)如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°【解答】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.15.(2021•建湖县二模)如图,在4×4的正方形网格中,记∠ABF=α,∠FCH=β,∠DGE =γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ【解答】解:由图知,∠FBG<45°,∴α=∠ABF=180°﹣45°﹣∠FBG>90°;由图知,∠DGF=45°,∠EGH=45°,∴γ=∠DGE=180°﹣∠DGF﹣∠EGH=180°﹣45°﹣45°=90°,由图知,∠MCH<45°,∠BCF=45°,∴β=∠FCH=180°﹣∠BCF﹣∠MCH=180°﹣45°﹣∠MCH<90°,∴β<γ<α,故选:B.二.填空题(共18小题)16.(2020秋•滨海县期末)如图,把一张长方形纸条ABCD沿EF折叠,若∠AEG=64°,则∠DEF=58°.【解答】解:∵∠AEG=64°,∴∠DEG=180°﹣∠AEG=116°,由折叠得:EF平分∠DEG,∴∠DEF=∠DEG=58°,故答案为:58°.17.(2021•射阳县二模)将一副直角三角板如图摆放,点D落在AC边上,BC∥DF,则∠1=105°.【解答】解:如图,根据题意得,∠EDF=45°,∵BC∥DF,∠B=60°,∴∠2=∠B=60°,∴∠1=∠2+∠EDF=60°+45°=105°,故答案为:105.18.(2021•阜宁县模拟)如图,已知直线AB、CD被直线AE所截,AB∥CD,∠2=130°,则∠1=50°.【解答】解:如图:∵∠2=130°,∴∠3=180°﹣∠2=50°,∵AB∥CD,∴∠1=∠3=50°.故答案为:50°.19.(2021•姑苏区校级二模)如图,已知AB∥CD,∠1=∠2,若∠A=100°,则∠3=40°.【解答】解:∵AB∥CD,∴∠A+∠ACD=180°,∠2=∠3,∴∠ACD=180°﹣∠A=180°﹣100°=80°,又∵∠1=∠2,∴∠2=40°,∴∠3=∠2=40°.故答案为:40°.20.(2021•常州二模)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是122°.【解答】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故答案为:122°.21.(2021春•江宁区月考)如图,AB∥CD,CB平分∠ACD,若∠BCD=25°,则∠A的度数为130°.【解答】解:∵AB∥CD,∠BCD=25°,∴∠ABC=∠BCD=25°,∵CB平分∠ACD,∴∠ACB=∠BCD=25°,∴∠A=180°﹣∠ABC﹣∠ACB=130°,故答案为:130°.22.(2021春•常熟市期中)如图,直线a∥b,∠1=110°,则∠2的度数是70°.【解答】解:∵∠1=110°,∴∠3=180°﹣∠1=70°,∵a∥b,∴∠2=∠3=70°,故答案为:70.23.(2021春•海淀区校级期末)如图,将一张长方形纸片沿EF折叠后,点D落在BC上的点D'处,点C落在点C'处.若∠DEF=62°,则∠C'FD'=56°.【解答】解:∵AD∥BC,∴∠DEF+∠EFC=180°,∠DEF=∠EFB=62°,∴∠EFC=118°,由翻折可得:∠EFC′=∠EFC=118°,∴∠C'FD'=118°﹣62°=56°,故答案为:56.24.(2021•姑苏区校级一模)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=27°,则∠2=117°.【解答】解:如图,∵∠1=27°,∠CAB=90°,∴∠BAD=∠1+∠CAB=117°,∵a∥b,∴∠2=∠BAD=117°.故答案为:117.25.(2021春•嘉兴期末)如图,将一张长方形纸条ABCD沿EF折叠,若∠EFG=47°,则∠BGP=86°.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠EFG=47°,∠BGP=∠AEP,由折叠的性质得到∠GEF=∠DEF=47°,∴∠AEP=180°﹣∠DEF﹣∠GEF=86°,∴∠BGP=86°.故答案为:86°.26.(2021春•无锡期末)已知AB∥CD,P是平面内一点,作PE⊥AB,垂足为E,F为CD 上一点,且∠PFD=130°,则∠EPF的度数是140°或40°.【解答】解:(1)点P在直线AB、CD之间,过点P作PM∥AB,∵AB∥CD,∴PM∥CD,∴∠FPM+∠PFD=180°,∵∠PFD=130°,∴∠FPM=50°,∵PE⊥AB,∴∠PEB=90°,∵PM∥AB,∴∠PEB+∠EPM=180°,∴∠EPM=90°,∴∠EPF=∠EPM+∠FPM=90°+50°=140°;(2)点P在直线AB、CD外,延长PE交CD于点M,∵PE⊥AB,∴∠PEB=90°,∵AB∥CD,∴∠PMF=∠PEB=90°,∵∠PFD=∠EPF+∠PMF,∠PFD=130°,∴∠EPF=∠PFD﹣∠PMF=40°,故答案为:140°或40°.27.(2021春•东台市月考)平面内∠A和∠B的两边互相平行,且∠A=40°,则∠B=40°或140°.【解答】解:如图1所示,∵∠A和∠B的两边互相平行,∴∠A=∠1,∠1=∠B.∴∠B=∠A=40°;如图2所示,∵∠A和∠B的两边互相平行,∴∠A=∠1,∠1+∠B=180°.∴∠B=140°;故答案为:40°或140°.28.(2021春•金坛区期末)若∠A与∠B的一组边平行,另一组边垂直,且∠A﹣2∠B=15°,则∠B的度数为75°或25°.【解答】解:如图1:∵AE∥BF,∴∠A+∠1=180°,∴∠1=180°﹣∠A,∵∠A﹣2∠B=15°,∴∠1=180°﹣(2∠B+15°)=165°﹣2∠B,∵AC⊥BC,∴∠1+∠B=90°,∴165°﹣2∠B+∠B=90°,∴∠B=75°;如图2:∵AE∥BF,∴∠A=∠1,∵∠A﹣2∠B=15°,∴∠1=2∠B+15°,∵AC⊥BC,∴∠1+∠B=90°,∴2∠B+15°+∠B=90°,∴∠B=25°;综上,∠B的度数为75°或25°.故答案为:75°或25°.29.(2021春•玄武区校级期中)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.现有下列五个式子:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β,在这五个式子中,可以表示成∠AEC的度数的是①②③⑤.(请填序号)【解答】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得∠AEC=α﹣β或β﹣α.综上所述,∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β,一共4个.故答案为:①②③⑤.30.(2021春•大丰区月考)如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=58°,射线GP⊥EG于点G,则∠PGF =61或119°.【解答】解:如图,①当射线GP⊥EG于点G时,∠PGE=90°,∵∠MFD=∠BEF=58°,∴CD∥AB,∴∠GEB=∠FGE,∵EG平分∠BEF,∴∠GEB=∠GEF=∠BEF=29°,∴∠FGE=29°,∴∠PGF=∠PGE﹣∠FGE=90°﹣29°=61°;②当射线GP′⊥EG于点G时,∠P′GE=90°,同理:∠P′GF=∠PGE+∠FGE=90°+29°=119°.则∠PGF的度数为61°或119°.故答案为:61或119.31.(2021春•天宁区校级月考)“浏阳河弯过九进有,五十里水路到湘江.”如图所示,某段河水流经B,C,D三点拐弯后与原来流向相同,若∠ABC=6∠CDE,∠BCD=4∠CDE,则∠CDE=20°.【解答】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∵∠ABC=6∠CDE,∴∠BCF=180°﹣6∠CDE,∵∠CDE=∠DCF,∴∠BCD=∠BCF+∠DCF=180°﹣6∠CDE+∠CDE=180°﹣5∠CDE,∵∠BCD=∠4CDE,∴180°﹣5∠CDE=4∠CDE,∴∠CDE=20°.故答案为:20°.32.(2021秋•吴江区月考)如图把一个长方形纸片沿EF折叠后,点D、C分别落在D'、C'处,∠AED'=40°,则∠BFC′=40°.【解答】解:由题意得:∠D′EF=∠DEF=,∠EFC=∠EFC′.∵∠AED'=40°,∴∠DED′=180°﹣∠AED'=140°.∴∠DEF==70°.∵四边形ABCD是长方形,∴AD∥BC.∴∠DEF=∠BFE=70°,∠EFC=180°﹣∠DEF=110°.∴∠EFC′=110°.∴∠BFC′=∠EFC′﹣∠BFE=110°﹣70°=40°.故答案为:40°.33.(2021春•鼓楼区校级月考)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣6|+(b﹣1)2=0.若射线AM绕点A顺时针先转动15秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动或18秒时,射线AM与射线BQ互相平行.【解答】解:∵|a﹣6|+(b﹣1)2=0;∴a=6,b=1,设射线AM再转动t秒时,射线AM、射线BQ互相平行.如图,射线AM绕点A顺时针先转动15秒后,AM转动至AM'的位置,∠MAM'=15×6°=90°,分两种情况:①当<t<15时,∠QBQ'=t°,∠M'AM″=(6t)°,∵PQ∥MN,∠BAN=45°=∠ABQ,∵∠MAM'=90°,∴∠M'AB=45°,∴∠ABQ'=45°﹣t°,∠BAM″=∠M'AM″﹣∠M'AB=(6t)°﹣45°,当∠ABQ'=∠BAM″时,BQ'∥AM″,此时,45°﹣t°=(6t)°﹣45°,解得t=;②当15<t<时,∠QBQ'=t°,∠NAM″=(6t)°﹣90°,∠BAM″=45°﹣[(6t)°﹣90°]=135°﹣(6t)°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°﹣t°,∠BAM″=135°﹣(6t)°,当∠ABQ'=∠BAM″时,BQ'∥AM″,此时,45°﹣t°=135°﹣(6t)°,解得t=18;综上所述,射线AM再转动秒或18秒时,射线AM、射线BQ互相平行.故答案为:或18.三.解答题(共6小题)34.(2021秋•肇源县期末)完成下面的证明如图,点B在AG上,AG∥CD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.求证:∠F=90°.证明:∵AG∥CD(已知)∴∠ABC=∠BCD(两直线平行,内错角相等)∵∠ABE=∠FCB(已知)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCD∵CF平分∠BCD(已知)∴∠BCF=∠FCD(角平分线的定义)∴∠EBC=∠BCF(等量代换)∴BE∥CF(内错角相等,两直线平行)∴∠BEF=∠F(两直线平行,内错角相等)∵BE⊥AF(已知)∴∠BEF=90°(垂直的定义)∴∠F=90°.【解答】证明:∵AG∥CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABE=∠FCB(已知),∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,即∠EBC=∠FCD,∵CF平分∠BCD(已知),∴∠BCF=∠FCD(角平分线的定义),∴∠EBC=∠BCF(等量代换),∴BE∥CF(内错角相等,两直线平行),∴∠BEF=∠F(两直线平行,内错角相等),∵BE⊥AF(已知),∴∠BEF=90°(垂直的定义),∴∠F=90°.故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.35.(2020秋•米易县期末)庚子年初,突如其来的疫情,给我们的生活按下了“暂停键”,春季开学延期.我市各学校积极响应教育局“停课不停学”的号召,实行线上教学.王老师发现他的电脑桌支架形状正好与他最近所讲授的数学知识有关,于是,数学课上王老师提出如下问题:如图是电脑桌支架的截面示意图,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.请你用所学知识证明:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠BAE=∠DAE,∵AB∥DC,∴∠BAE=∠CFE,∵∠CFE=∠E,∴∠BAE=∠E,∴∠E=∠DAE,∴AD∥BC.36.(2021秋•农安县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°37.(2021秋•农安县期末)已知直线AB∥CD,P为平面内一点,连接P A、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠P AB、∠CDP、∠APD之间的数量关系为∠CDP+∠P AB﹣APD =180°.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠P AN+∠P AB=∠APD,求∠AND的度数.【解答】解:(1)如图1,过点P作EF∥AB,∵∠A=50°,∴∠APE=∠A=50°,∵AB∥CD,∴EF∥CD,∴∠CDP+∠EPD=180°,∵∠D=150°,∴∠EPD=180°﹣150°=30°,∴∠APD=∠APE+∠EPD=50°+30°=80°;(2)如图2,过点P作EF∥AB,则AB∥EF∥CD,∴∠CDP=∠DPF,∠FP A+∠P AB=180°,∵∠FP A=∠DPF﹣APD,∴∠DPF﹣APD+∠P AB=180°,∴∠CDP+∠P AB﹣APD=180°,故答案为:∠CDP+∠P AB﹣APD=180°;(3)如图3,PD交AN于点O,∵AP⊥PD,∴∠APO=90°,∵∠P AN+∠P AB=∠APD,∴∠P AN+∠P AB=90°,∵∠POA+∠P AN=90°,∴∠POA=∠P AB,∵∠POA=∠NOD,∴∠NOD=∠P AB,∵DN平分∠PDC,∴∠ODN=∠PDC,∴∠AND=180°﹣∠NOD﹣∠ODN=180°﹣(∠P AB+∠PDC),由(2)得:∠CDP+∠P AB﹣APD=180°,∴∠CDP+∠P AB=180°+∠APD,∴∠AND=180°﹣(∠P AB+∠PDC)=180°﹣(180°+∠APD)=180°﹣(180°+90°)=45°.38.(2020秋•石狮市期末)已知AB∥CD,点E是AB,CD之间的一点.(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).∵AB∥CD(已知),∴PE∥CD(平行于同一条直线的两条直线平行),∴∠BAE=∠1,∠DCE=∠2(两直线平行,内错角相等),∴∠BAE+∠DCE=∠1+∠2(等式的性质).即∠AEC,∠BAE,∠DCE之间的数量关系是∠AEC=∠BAE+∠DCE.(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.①若∠AEC=74°,求∠AFC的大小;②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.【解答】解:(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,(2)①由(1)得:∠AEC=∠BAE+∠DCE,∠AFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAF=∠BAE,∠DCF=∠DCE,∴∠AFC=∠BAF+∠DCF=∠BAE+∠DCE=∠AEC=×74°=37°;②由①得:∠AEC=2∠AFC,∵∠AEC+∠AFC=126°,∴∠AFC=42°,∠AEC=82°,∵CG⊥AF,∴∠CGF=90°,∴∠GCF=48°,∵CE平分∠DCG,∴∠GCE=∠ECD,∵CF平分∠DCE,∴∠DCE=2∠DCF=2∠ECF,∴∠GCF=3∠DCF,∴∠DCF=16°,∴∠DCE=32°,∴∠BAE=∠AEC﹣∠DCE=52°.39.(2021秋•农安县期末)如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【解答】解:(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC.第41页(共41页)。

最新苏科版七年级数学下册全册课时作业(附解析)

最新苏科版七年级数学下册全册课时作业(附解析)

苏科版七年级数学下册全册课时作业7.1 探索直线平行的条件一.选择题(共8小题)1.如图,下列条件:①∠1=∠3;②∠2+∠4=180°;③∠4=∠5;④∠2=∠3;⑤∠6=∠2+∠3,其中能判断直线l1∥l2的有()A.5 个B.4 个C.3 个D.2 个【解答】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∵∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选:B.2.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【解答】解:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,且相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,且相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等,两直线不平行,此选项错误.故选:B.3.已知四条直线a,b,c,d在同一平面内,a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a⊥c B.b⊥d C.a⊥d D.a∥d 【解答】解:∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选:C.4.下列说法中正确的个数有()①经过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短;③A、B、C三点在同一直线上且AB=BC,则B是线段AC的中点;④在同一平面内,两条直线的位置关系有两种:平行与相交.A.1个B.2个C.3个D.4个【解答】解:①经过一点有且只有一条直线与已知直线垂直,正确;②连接直线外一点与直线上各点的所有线段中,垂线段最短,正确;③A、B、C三点在同一直线上且AB=BC,则B是线段AC的中点,正确;④在同一平面内,两条直线的位置关系有两种:平行与相交.正确;故选:D.5.如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3 个B.2 个C.1 个D.0 个【解答】解:①由∠1=∠2可判定AD∥BC,不符合题意;②由∠BAD=∠BCD不能判定AB∥BC,不符合题意;③由∠ABC=∠ADC且∠3=∠4知∠ABD=∠CDB,可判定AB∥CD,符合题意;④由∠BAD+∠ABC=180°可判定AD∥BC,不符合题意;故选:C.6.如图所示,由已知条件推出结论错误的是()A.由∠1=∠5,可以推出AB∥CDB.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BCD.由AD∥BC,可以推出∠3=∠7【解答】解:A、由∠1=∠5,可以推出AB∥CD,故本选项正确;B、由AB∥CD,可以推出∠4=∠8,故本选项错误;C、由∠2=∠6,可以推出AD∥BC,故本选项正确;D、由AD∥BC,可以推出∠3=∠7,故本选项正确.故选:B.7.在下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【解答】解:A、∠1=∠AEF,∠2=∠EFD,∠AEF于∠DFE是内错角,由∠1=∠2能判定AB∥CD,故本选项正确;B、∠1、∠2是内错角,由∠1=∠2能判定AC∥BD,故本选项错误;C、由∠1=∠2不能判定AB∥CD,故本选项错误;D、∠1、∠2是四边形中的对角,由∠1=∠2不能判定AB∥CD,故本选项错误;故选:A.8.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠6【解答】解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.二.填空题(共4小题)9.如图,在△ABC中,以点C为顶点,在△ABC外画∠ACD=∠A,且点A与D在直线BC的同一侧,再延长BC至点E,在作的图形中,∠A与∠ACD、∠ACE是内错角;∠B与∠DCE、∠ACE是同位角;∠ACB与∠A、∠B是同旁内角.【解答】解:如图所示,∠A与∠ACD、∠ACE是内错角;∠B与∠DCE、∠ACE是同位角;∠ACB与∠A、∠B是同旁内角.故答案是:∠ACD、∠ACE;∠DCE、∠ACE;∠A、∠B.10.如图,按角的位置关系填空:∠1与∠2是同旁内角,∠1与∠3是内错角,∠2与∠3是邻补角.【解答】解:∠1与∠2是同旁内角,∠1和∠3是内错角,∠2和∠3是邻补角;故答案为:同旁内,内错,邻补.11.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是①③④⑤(填序号)【解答】解:①∵∠1=∠2,∴a∥b,故此选项正确;②∠3=∠6无法得出a∥b,故此选项错误;③∵∠4+∠7=180°,∴a∥b,故此选项正确;④∵∠5+∠3=180°,∴∠2+∠5=180°,∴a∥b,故此选项正确;⑤∵∠7=∠8,∠6=∠8,∴∠6=∠7,∴a∥b,故此选项正确;综上所述,正确的有①③④⑤.故答案为:①③④⑤.12.如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是①②(填序号).【解答】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1不是内错角,此结论错误;④∠1与∠3是内错角,此结论错误;故答案为:①②.三.解答题(共28小题)13.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°.(垂直的定义)所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125 °.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).【解答】解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°.(垂直的定义)所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).故答案为:AC;BD;同位角相等,两直线平行;垂直的定义;125;等量代换;AE;BF.14.如图,已知AD⊥BC于点D,EF⊥BC于点F,且AD平分∠BAC.请问:(1)AD与EF平行吗?为什么?(2)∠3与∠E相等吗?试说明理由.【解答】解:(1)AD∥EF.理由如下:∵AD⊥BC,EF⊥BC,∴∠EFD=∠ADC=90°,∴AD∥EF;(2)∠3=∠E.理由如下:∵AD∥EF,∴∠1=∠E,∠2=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠3=∠E.15.填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=90°.∵∠1=∠ACB(已知)∴DE∥BC(同位角相等,两直线平行)∴∠2=∠BCD.(两直线平行,内错角相等)∵∠2=∠3(已知)∴∠3=∠BCD.(等量代换)∴CD∥FH(同位角相等,两直线平行)∴∠BDC=∠BHF=90 .°(两直线平行,同位角角相等)∴CD⊥AB.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角角相等)∴CD⊥AB.故答案为:90°;同位角相等,两直线平行;∠BCD;两直线平行,内错角相等;∠BCD;等量代换;同位角相等,两直线平行;90;两直线平行,同位角角相等.16.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【解答】解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.17.如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB∥CD(同位角相等,两直线平行)所以∠BGF+∠3=180°(两直线平行,同旁内角互补)因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=100°.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=50°.(等式性质).所以∠BGF=130°.(等式性质).【解答】解:因为∠1=∠2=80°(已知),所以AB∥CD(同位角相等,两直线平行),所以∠BGF+∠3=180°(两直线平行,同旁内角互补).因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=100°.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=50°.(等式性质).所以∠BGF=130°.(等式性质).故答案为:同位角相等,两直线平行;两直线平行,同旁内角互补;100°;;50°;130°.18.完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).【解答】证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:角平分线的定义,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.19.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵CD⊥DA,DA⊥AB,,∴∠CDA=90°,∠DAB=90°(垂直定义).∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4 (等角的余角相等),∴DF∥AE(内错角相等,两直线平行).【解答】证明:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°,(垂直定义)∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4,(等角的余角相等)∴DF∥AE.(内错角相等,两直线平行)故答案为:CD⊥DA,DA⊥AB,垂直定义,∠3=∠4,等角的余角相等,内错角相等,两直线平行.20.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,试说明:CF∥DO.【解答】解:∵DE⊥AO于E,BO⊥AO,∴DE∥OB,∴∠EDO=∠DOF,∵∠CFB=∠EDO,∴∠CFB=∠DOF,∴CF∥DO.21.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠BAC=90 °(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠ 1 =120 °又∵∠B=60°∴∠BAD+∠B=180 °∴AD∥BC(同旁内角互补,两直线平行)【解答】证明:∵AB⊥AC∴∠BAC=90°(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠1=120°又∵∠B=60°∴∠BAD+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)故答案为:BAC,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行.22.如图,已知∠1=∠B,∠2=∠E,请你说明AB∥DE的理由.【解答】证明:∵∠1=∠B(已知)∴AB∥CF(内错角相等,两直线平行)∵∠2=∠E(已知)∴CF∥DE(内错角相等,两直线平行))∴AB∥DE(平行同一条直线的两条直线平行).23.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等)【解答】解:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等);故答案为:对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.24.完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD(已知)∴∠ABD=2∠α(角平分线的定义)∵DE平分∠BDC(已知)∵∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=(等量代换)∴AB∥CD(同旁内角互补两直线平行)【解答】证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:已知,角平分线的定义,2∠β,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.25.如图已知BE平分∠ABC,E点在线段AD上,∠ABE=∠AEB,AD与BC平行吗?为什么?解:因为BE平分∠ABC(已知)所以∠ABE=∠EBC(角平分线的意义)因为∠ABE=∠AEB(已知)所以∠AEB=∠EBC(等量代换)所以AD∥BC(内错角相等,两直线平行)【解答】解:因为BE平分∠ABC(已知),所以∠ABE=∠EBC(角平分线的意义),因为∠ABE=∠AEB(已知),所以∠AEB=∠EBC(等量代换),所以AD∥BC(内错角相等,两直线平行).故答案为:角平分线的意义;已知;AEB;EBC;等量代换;内错角相等,两直线平行26.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.【解答】证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)27.已知:如图,∠1=∠2,∠A=∠E,求证:AD∥BE.【解答】解:∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∵∠A=∠E,∴∠3=∠A,∴AD∥BE.28.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠C=∠D.求证:AC∥DF.【解答】证明:∵∠1=∠DMF,∠1=∠2,∴∠2=∠DMF,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴AC∥DF.29.(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.【解答】解:(1)AB∥CD,理由:如图(1),延长BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD;(2)∠1=∠2+∠3.理由如下:如图(2),延长BA交CE于F,∵AB∥CD(已知),∴∠3=∠EFA(两直线平行,同位角相等),∵∠1=∠2+∠EFA,∴∠1=∠2+∠3.30.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.【解答】证明:∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF.∴AB∥EF.31.如图,已知∠1=∠2,∠B=∠C,求证:AB∥CD.【解答】证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量替换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量替换),∴AB∥CD(内错角相等,两直线平行).32.如图,已知点E在AB上,CE平分∠ACD,∠ACE=∠AEC.求证:AB∥CD.【解答】证明:∵CE平分∠ACD,∴∠ACE=∠DCE,又∵∠ACE=∠AEC,∴∠DCE=∠AEC,∴AB∥CD.33.在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB.(同旁内角互补,两直线平行.)∴∠1=∠3.(两直线平行,内错角相等.)又∵∠1=∠2,(已知)∴∠2=∠3 .(等量代换)∴EF∥DB.(同位角相等,两直线平行.)【解答】证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴EF∥DB(同位角相等,两直线平行).故答案为:DG∥AB;同旁内角互补,两直线平行;两直线平行,内错角相等;∠2=∠3;等量代换;同位角相等,两直线平行.34.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,【解答】解:AB∥CD,QH∥PG.理由:∵PG平分∠BPQ,QH平分∠CQP,∴∠GPQ=∠1=∠BPQ,∠HQP=∠2=∠CQP,∵∠1=∠2,∴∠GPQ=∠HQP,∠BPQ=∠CQP,∴QH∥PG,AB∥CD.35.已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.【解答】解:BD∥CE,理由是:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE36.已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE ∥BC.【解答】证明:∵CD⊥AB(已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).37.如图,在△ABC中,AD⊥BC于点D,点E在AB边上,点G在AC边上EF⊥BC于点F,若∠BEF=∠ADG.求证:AB∥DG【解答】证明:∵AD⊥BC,EF⊥BC∴AD∥EF∴∠BEF=∠BAD(两直线平行,同位角相等)又∵∠BEF=∠ADG∴∠ADG=∠BAD∴AB∥DG(内错角相等,两直线平行)38.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.【解答】证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO(同位角相等,两条直线平行),∴∠EDO=∠BOD(两直线平行,内错角相等),∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO(同位角相等,两条直线平行).39.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.【解答】证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).40.如图,∠B=40°,∠A+10°=∠1,∠ACD=65°.求证:AB∥CD.【解答】证明:∵∠B+∠1+∠A=180°,∠B=40°,∠A+10°=∠1,∴40°+∠A+10°+∠A=180°,∴∠A=65°,∵∠ACD=65°,∴∠ACD=∠A,∴AB∥CD.7.2 探索平行线的性质一.选择题(共7小题)1.如图,AB∥CD,∠1=30°,则∠2的度数是()A.120°B.130°C.150°D.135°【解答】解:∵AB∥CD,∠1=30°,∴∠3=∠1=30°,又∵∠3+∠2=180°,∴∠2=150°,故选:C.2.如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°【解答】解:∵DF∥AC,∴∠FAC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠FAC=35°,故选:B.3.如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A.70°B.100°C.110°D.120°【解答】解:设DE与AB相交于点F,因为∠1=70°,所以∠AFE=110°,因为DE∥BC,所以∠B=∠AFE=110°,故选:C.4.如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为()A.30°B.50°C.80°D.100°【解答】解:∵∠1=50°,∠2=30°,∴∠4=100°,∵a∥b,∴∠3=∠4=100°,故选:D.5.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°【解答】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°.故选:D.6.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选:A.7.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°【解答】解:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选:C.二.解答题(共10小题)8.如图,AB∥CD,∠1=∠2.求证:AM∥CN.【解答】证明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.9.如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.【解答】解:∵直线AB∥CD,∴∠1=∠3∵∠1=54°,∴∠3=54°∵BC平分∠ABD,∴∠ABD=2∠3=108°,∵AB∥CD,∴∠BDC=180°﹣∠ABD=72°,∴∠2=∠BDC=72°.10.如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE 的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.11.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠4=∠3=75°(两直线平行,内错角相等).12.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+ ∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.【解答】解:∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.故答案为:GD,AC,同位角相等,两直线平行;∠DAC,两直线平行,内错角相等;∠DAC;AD,EF,同旁内角互补,两直线平行;两直线平行,同位角相等;AD,BC.13.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)【解答】证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)故答案为:邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补.14.已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空(理由或数学式)解:∵BE∥GF(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠3(已知)∴∠1=(∠2 )(等量代换)∴DE∥(BC)(内错角相等两直线平行)∴∠EDB+∠DBC=180°(两直线平行同旁内角互补)∴∠EDB=180°﹣∠DBC(等式性质)∵∠DBC=(70°)(已知)∴∠EDB=180°﹣70°=110°【解答】解:∵BE∥GF(已知),∴∠2=∠3(两直线平行同位角相等),∵∠1=∠3(已知),∴∠1=∠2(等量代换),∴DE∥BC(内错角相等两直线平行),∴∠EDB+∠DBC=180°(两直线平行同旁内角互补),∴∠EDB=180°﹣∠DBC(等式性质),∵∠DBC=70°(已知),∴∠EDB=180°﹣70°=110°.故答案为:两直线平行同位角相等,已知,∠2,等量代换,BC,内错角相等两直线平行,两直线平行同旁内角互补,70;15.如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=∠BAC(等量代换)∴AB∥DE.((同位角相等两直线平行)∴∠ABD+∠D=180°.(两直线判定同旁内角互补)∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)【解答】解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=∠BAC(等量代换)∴AB∥DE.(同位角相等,两直线平行)∴∠ABD+∠D=180°.(两直线平行,旁内角互补)∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)故答案为:∠BAC,AB,DE,同位角相等,两直线平行,两直线平行,同旁内角互补,16.如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC 于点G、H.若∠1=∠2,∠A=∠C,试说明AD∥BC和AB∥CD.请完成下面的推理过程,并填空(理由或数学式):∵∠1=∠2(已知)∠1=∠AGH(对顶角相等)∴∠2=∠AGH(等量代换)∴AD∥BC(同位角相等,两直线平行)∴∠ADE=∠C(两直线平行,同位角相等)∵∠A=∠C(已知)∴∠ADE=∠A∴AB∥CD(内错角相等,两直线平行)【解答】证明:∵∠1=∠2(已知)∠1=∠AGH(对顶角相等)∴∠2=∠AGH(等量代换)∴AD∥BC(同位角相等,两直线平行)∴∠ADE=∠C(两直线平行,同位角相等)∵∠A=∠C(已知)∴∠ADE=∠A∴AB∥CD(内错角相等,两直线平行)故答案为:已知;对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;已知;内错角相等,两直线平行.17.如图,直线CD、EF被直线OA、OB所截,∠1+∠2=180°.求证:∠3=∠4.【解答】证明:∵∠2与∠5是对顶角,∴∠2=∠5,∵∠1+∠2=180°,∴∠1+∠5=180°,∴CD∥EF,∴∠3=∠4.7.3 图形的平移一.选择题(共11小题)1.平行线之间的距离是指()A.从一条直线上一点到另一直线的垂线段B.从一条直线上一点到另一条直线的垂线段长度C.从一条直线上一点到另一条直线的垂线的长度D.从一条直线上一点到另一条直线上的一点间线段的长度【解答】解:平行线之间的距离是指:从一条直线上一点到另一条直线的垂线段长度.故选:B.2.如图,AB∥DC,ED∥BC,AE∥BD,那么图中和△ABD面积相等的三角形(不包括△ABD)有()A.1个B.2个C.3个D.4个【解答】解:∵AB∥DC,∴△ABC与△ABD的面积相等,∵AE∥BD,∴△BED与△ABD的面积相等,∵ED∥BC找不到与△ABD等底等高的三角形,∴和△ABD的面积相等的三角形有△ABC、△BDE,共2个.故选:B.3.下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有()A.4个B.3个C.2个D.1个【解答】解:①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时的抽屉,是平移;④工厂里的输送带上的物品,是平移;故选:C.4.一个平面图形经过平移后,下列说法正确的是()①对应线段平行或在同一条直线上,②对应线段相等,③图形的大不形状都没有发生变化,④对应点的连线段都平行.A.①②③B.②③④C.①②④D.①③④【解答】解:①对应线段平行或在同一条直线上,故本小题正确;②对应线段相等,故本小题正确;③图形的大小形状都没有发生变化,故本小题正确;④应该为:对应点的连线段平行或在同一条直线上,故本小题错误;故选:A.5.如图,六边形ABCDEF是由6个相同的等边三角形组成的,在这些三角形中,可以由△OBC 平移得到的有()个三角形.A.2 B.3 C.4 D.5【解答】解:△COD方向发生了变化,不属于平移得到;△EOD形状和大小没有变化,属于平移得到;△EOF方向发生了变化,不属于平移得到;△FAO形状和大小没有变化,属于平移得到;△ABO方向发生了变化,不属于平移得到.∴可以由△OBC平移得到的是△ODE,△OAF共2个.故选:A.6.下列说法中,其中错误的()①△ABC在平移过程中,对应点连接的线段一定相等;②△ABC在平移过程中,对应点连接的线段一定平行;③△ABC在平移过程中,周长不变;④△ABC在平移过程中,面积不变.A.①B.②C.③D.④【解答】解:①∵平移不改变图形的和大小,∴△ABC在平移过程中,对应点连接的线段一定相等,故正确;②∵经过平移,对应点连接的线段也可能在一条直线上,故不能说一定平行,∴△ABC在平移过程中,对应点连接的线段不一定平行,故不正确;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确.故选:B.7.将左图案剪成若干小块,再分别平移后能够得到①、②、③中的()A.0个B.1个C.2个D.3个【解答】解:根据左边图形可剪成若干小块,再进行拼接平移后能够得到①、②,不能拼成③,故选:C.8.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【解答】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、能用平移变换来分析其形成过程,故此选项正确;D、不能用平移变换来分析其形成过程,故此选项错误;故选:C.9.如图的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.奔驰﹣德国B.大众﹣德国C.宝马﹣德国D.奥迪﹣德国【解答】解:A、通过旋转得到,故本选项错误;B、通过轴对称得到,故本选项错误;C、通过旋转得到,故本选项错误;D、通过平移得到,故本选项正确.故选:D.10.如图,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的四条线段首尾相接组成一个四边形,最少需要()步.A.5 B.6 C.7 D.8【解答】解:由图形知,中间的线段向右平移1个单位,上边的直线向右平移1个单位,再向下平移2个单位,最下边的直线向上平移1个单位,只有这样才能使构造的四边形平移的次数最少,其它平移方法都多于5步.故通过平移使图中的4条线段首尾相接组成一个四边形,最少需要5步.故选:A.11.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.【解答】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.二.填空题(共15小题)12.已知:在同一平面内,直线a∥c,且直线a到直线c的距离是3;直线b∥c,直线b 到直线c的距离为5,则直线a到直线b的距离为2或8 .【解答】解:①,则直线a到直线b的距离为5﹣3=2;②,则直线a到直线b的距离为5+3=8.故答案为2或8.13.如果两直线之间垂线段的长度,这个距离称为平行线之间的距离.【解答】解:两条平行线之间的距离是指两条平行线之间垂线段的长度.故答案为:两直线之间垂线段的长度.14.如图,方格纸中每个最小正方形的边长为1,则两平行直线AB、CD之间的距离是 3 .【解答】解:由图可知,∵AB、CD为小正方形的边所在直线,∴AB∥CD,∴AC⊥AB,AC⊥CD,∵AC的长为3个小正方形的边长,∴AC=3,即两平行直线AB、CD之间的距离是3.故答案为:3.15.如图,MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是点M到直线CD的距离,线段MN 的长度是点M到直线EF的距离,又是平行线AB、EF间的距离,点N到直线MG的距离是线段GN的长度.【解答】解:线段GM的长度是点M到直线CD的距离;线段MN的长度是点M到直线EF的距离,又是平行线AB、EF间的距离;点N到直线MG的距离是线段GN的长度.16.如图,该图的周长是28cm.【解答】解:利用平移,可以发现该图的周长为2(6+8)=28(cm)故答案为:28cm.17.如图,在宽为20m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为551 m2.【解答】解:可把两条路平移到耕地的边上,如图所示,则耕地的长变为(30﹣1)m,宽变为(20﹣1)m,耕地面积为:29×19=551(m2).故答案是:551.18.如图,是某宾馆楼梯示意图(一楼至二楼),若要将此楼梯铺上地毯,则至少需要 6 米.【解答】解:横台阶向下平移,竖台阶向左平移,得横台阶的长度是3.5m,竖台阶的长度是2.5m,台阶的从长度是:3.5+2.5=6(m),故答案为:6m.19.一块矩形场地,长为101米,宽为70米,从中留出如图所示的宽为1米的小道,其余部分种草,则草坪的面积为6900 m2.【解答】解:由题意可得:草坪的面积为:(101﹣1)×(70﹣1)=6900(m2).故答案为:6900.20.在如图所示的草坪上,铺设一条宽为2的小路,则小路的面积16 .【解答】解:根据题意知,小路的面积=2×8=16.故答案是:16.21.如图,从A地到B地有三条路①②③可走,每路长分别为l,m,n(图中“┌”、“┘”、“└”表示直角),则第③条路最短,另外两条路的长短关系是相等.【解答】解:根据平移的性质可得①、②两条路线的总长度相等;③路线的长度最短,因为CE+CD>DE.故答案为:③;相等.22.如图所示,三角形ABC经过平移后得到三角形DEF,其中,点B、C、E、F在一条直线上.若AD=5,BC=3,则CE= 2 ,CF= 5 .【解答】解:∵BC=3,AD=5,∴CF=AD=BE=5,∴CE=BE﹣BC=5﹣3=2,故答案为:2、5.23.如图,线段DE由线段AB平移而得,AB=4,EC=7﹣CD,则△DCE的周长为11 cm.。

苏科版数学七年级下10.5用二元一次方程组解决问题课后训练习题(有答案)

苏科版数学七年级下10.5用二元一次方程组解决问题课后训练习题(有答案)

七下10.5用二元一次方程组解决问题课后训练班级:___________姓名:___________ 得分:___________一、选择题1.一种商品有大小两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶,则1大盒和1小盒共装瓶数为()A. 32瓶B. 34瓶C. 36瓶D. 38瓶2.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A. {x+y=523x+2y=20B. {x+y=522x+3y=20C.{x+y=202x+3y=52D. {x+y=203x+2y=523.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm,则每一个小长方形的面积为()A. 8cm2B. 15cm2C. 16cm2D. 20cm24.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a−b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A. 3,−1B. 1,−3C. −3,1D. −1,35.一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为把个位数字和十位数字对调后组成的数,那么这个两位数是()A. 36B. 25C. 61D. 166.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组()A. {x+y=298x+6y=226B. {x+y=296x+8y=226C. {x+y=296x+8y=320D. {x+y=298x+6y=320二、填空题7.甲、乙两个容器的容积之比为2:5,它们的容积之差是60dm3,则这两个容器的容积分别是____dm3和____dm3.8.某班学生42人去公园划船,共租用10艘船。

105用二元一次方程组解决问题(2)-2020-2021学年苏科版七年级数学下册课时作业

105用二元一次方程组解决问题(2)-2020-2021学年苏科版七年级数学下册课时作业

10.5用二元一次方程组解决问题(2)课时作业学校班级姓名1.如表是小丽在某路口统计20分钟各种车辆通过情况的记录表,其中空格处的字迹已模糊.合计车流总电瓶车公交车货车小轿车量第一时段______ m______ 86161 8::00第二时段7n m n999::10合计30185根据表格信息,在表格中填写第一时段电瓶车和货车的数量.在第二时段内,电瓶车和公交车的车辆数之和恰好是第二时段车流总量的一半,且两个时段的电瓶车总数为170辆.求m,n的值.因为第二时段内车流总量较多,造成了交通拥堵现象,据估计,该时段内,每增加1辆公交车,可减少8辆小轿车和5辆电瓶年,若要使得第二时段和第一时段的车流总量最接近,则应增加几辆公交车?2.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是某市的电价标准每月.阶梯电量单位:度电费价格单位:元度一档a二挡b三挡(1)已知陈女士家三月份用电256度,缴纳电费154.56元,四月份用电318度,缴纳电费195.48元.请你根据以上数据,求出表格中的a,b的值.(2)5月份开始用电增多,陈女士缴纳电费280元,求陈女士家5月份的用电量.3.青山化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料经铁路120km和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地已知铁路的运价为元吨千米,公路的运价为元吨千米,且这两次运输共支出铁路运费124800元,公路运费19500元.设原料重x吨,产品重y吨,根据题中数量关系填写下表表格内填化简的结果.原料x吨产品y吨合计元铁路运费124800公路运费19500根据上表列方程组求原料和产品的重量.这批产品的销售款比原料费与运输费的和多多少元?4.为了支持武汉抗击“新冠肺炎”,某校七班40名学生积极为其捐款购买口罩支援,全班共捐款1500元,捐款情况如下表:用列方程或方程组解答本题捐款金额元203050捐款人数20表格中20元和30元的人数被班长不小心刮破了看不到数据,请你根据相关信息帮助他求出捐款20元、30元的人数.5.某校七年级班56名同学在学校组织的“绿卡工程”献爱心活动中,共捐款912元,捐款情况如下,捐款元815172050人数7101表格中捐款数为15元和17元的人数不小心被墨水污染已看不清楚,请你算一下捐款数为15元和17元的人数各为多少?6.某蔬菜公司收购到一批蔬菜,计划用15天加工后上市销售.该公司的加工能力是:每天可以精加工3吨或者粗加工8吨,且每吨蔬菜精加工后的利润为2000元,粗加工后的利润为1000元.已知公司售完这批加工后的蔬菜,共获得利润100000元.请你根据以上信息解答下列问题:如果精加工天,粗加工天,依题意填写下列表格:精加工粗加工加工的天数天获得的利润元求这批蔬菜共多少吨.7.电脑中有一种游戏蜘蛛纸牌,开始游戏前有500分的基本分,游戏规则如下:操作一次减x分;每完成一列加y分.有一次小明在玩这种“蜘蛛纸牌”游戏时,随手用表格记录了两个时段的电脑显示:第一时段第二时段完成列数25分数634898操作次数66102通过列方程组,求x,y的值;如果小明最终完成此游戏即完成10列,分数是1182,问他一共操作了多少次?8.某校组织学生乘汽车前往自然保护区野营.从学校出发后,汽车先以的速度在平路上行驶,后又以的速度爬坡到达目的地;返回时,汽车沿原路线先以的速度下坡,后又以的速度在平路上行驶回到学校.用含x、y的代数式填表:速度时间路程平路 60x前往上坡30y平路60返回下坡40已知汽车从学校出发到到达目的地共用时若汽车在返回时共用时,求的表格中的x、y的值.若学校与目的地的距离不超过,请围绕“汽车从学校出发到到达目的地”这一过程中汽车行驶的“时间”或“路程”,提出一个能用一元一次不等式解决的问题,并写出解答过程.9.某运动员在一场篮球比赛中的技术统计如下所示:技术上场时间分钟出手投篮次投中次罚球得分篮板个助攻次个人总得分数据4666221011860注:表格中出手投篮次数和投中次数均不包括罚球.投篮投不中不得分,罚球投中一球得1分,除罚球外投中一球得2分或3分.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.10.校田园科技社团计划购进A,B两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量株总费用元A B第一次购买1025225第二次购买2015275你从表格中获取了什么信息?请用自己的语言描述,写出一条即可,B两种花卉每株的价格各是多少元?11.下表是小红在某个路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得时段内的电瓶车车辆数与时段内的货车车辆数之比是.电瓶车公交车货车小轿车合计56313354582合计6730108若在时段,经过的小轿车数量正好是电瓶车数量的,求这个时段内的电瓶车通过的车辆数:根据上述表格数据,求在和两个时段内电瓶车和货车的车辆数;据估计,在所调查的时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车?12.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款.某中学九年级十班40名同学参加了捐款活动,共捐款400元,捐款情况如下表,表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用学过的知识算出捐款10元和15元的人数分别是多少.10.5用二元一次方程组解决问题(2)(答案)1.【答案】2.【答案】解:依题意,得,解得,,;,月份陈女士家的电量,即,解得.答:陈女士家5月份的用电量为432度.3.【答案】解:设工厂从A地购买了x吨原料,利用这批原料生产的产品有y吨,填表如下:依题意得:解得:答:工厂从A地购买了500吨原料,利用这批原料生产的产品有400吨;依题意得:元,答:这批产品的销售款比原料费与运输费的和多2555700元.4.【答案】解:设捐款20元的为x人,捐款30元的为y人,根据题意得:解此方程组,得.答:捐款20元的有10人,捐款30元的有10人5.【答案】解:设款数为15元有a人,款数为17元有b人,,解得,,答:捐款数为15元和17元的人数各为20人、18人.6.【答案】解:填表如下:;由得:,解得.经检验,符合题意.这批蔬菜共吨.答:这批蔬菜共有70吨.7.【答案】解:由题意得:解得:.故x、y的这值分别为1、100;设他一共操作a次,则有:,解得:.答:他一共操作了318次.8.【答案】解:,x,,y.根据题意,得,解这个方程组,得答案不唯一如:平路的长度最多为多少?设平路的长度为根据题意,得.解这个不等式,得.答:平路的长度最多为.9.【答案】解:设本场比赛中该运动员投中2分球x个,3分球y个依题意得:,解得:,答:本场比赛中该运动员投中2分球16个,3分球6个.10.【答案】解:购买A种花卉10株和B种花卉25株共花费225元,故答案为:购买A种花卉10株和B种花卉25株共花费225元;设A种花卉每株x元,B种花卉每株y元,由题意得:解得:.答:A种花卉每株10元,B种花卉每株5元.11.【答案】解:辆.答:7::00时段内,通过电瓶车56辆.设时段内电瓶车为x辆,时段内的货车为y辆.则有解得在时段,电瓶车为49辆,货车为16辆,在时段,电瓶车为18辆,货车为14辆.设在该路口应再增加a辆公交车.,,,,.答:在该路口应再增加5辆公交车.【答案】解:设捐款10元的人数是x,捐款15元的人数是y.由题意得:解得答:捐款10元的人数是19,捐款15元的人数是6.。

【高效课时通】七年级数学下册 课时达标训练(共44课时,pdf) (新版)苏科版

【高效课时通】七年级数学下册 课时达标训练(共44课时,pdf) (新版)苏科版

图 7-1-2
图 7-1-3
图 7-1-7
课时达标 2 探索直线平行的条件
. 如图 7-1-8, 属于内错角的是 ( ) . 1 A. ∠1 和∠2 C. ∠1 和∠4 B. ∠2 和∠3
内错角 ㊁ 同旁内角
11 . 3 不等式的性质 ……………………… (57) 课时达标 ……………………………… (57) 节练反馈 ……………………………… (57) 课时达标 1 解简单的一元一次不等式 课时达标 2 解复杂的一元一次不等式
节练反馈 ……………………………… (55)
11 . 2 不等式的解集 ……………………… (55)
第 7 章 平面图形的认识( 二)
第 7 章 平面图形的认识 ( 二 )
课时达标 1 探索直线平行的条件
. 在图 7-1-1 中 ∠1 是同位角的是 ( ). 1 和 ∠2 A. (1) (2) (3) C. (2) (3) (4) B. (1) (2) (5) D. (3) (4) (5)
2 . 若∠1 与∠2 是同位角,∠1 = 30 ° ,则( ) . A. ∠2 = 150° B. ∠2 = 30° 答案:D C. ∠2 = 150° 或 30°
答案:B
图 7-1-1
6 . 如图 7-1-5,∠1㊁∠2㊁∠3 中,∠1 和∠2 是同位角. 线的方法,其依据是同位角相等,两直线平行.
节练反馈 ……………………………… (60)
节练反馈 ……………………………… (44)
*
课时达标 ……………………………… (45) 10 . 5 用二元一次方程组解决问题 ……… (47) ( 一) …………………… (47) ( 二) …………………… (47) ( 三) …………………… (48) 节练反馈 ……………………………… (45) 课时 达 标 1 用 二 元 一 次 方 程 组 解 决 问 题 课时 达 标 2 用 二 元 一 次 方 程 组 解 决 问 题 课时 达 标 3 用 二 元 一 次 方 程 组 解 决 问 题 节练反馈 ……………………………… (49) 章末专题 …………………………………… (51)

2021-2022学年苏科新版 七年级数学下7.4认识三角形课时作业同步练习最新试题含答案解析

2021-2022学年苏科新版 七年级数学下7.4认识三角形课时作业同步练习最新试题含答案解析

2022年01月08日7.4认识三角形一.选择题(共10小题)1.(2021•南京)下列长度的三条线段与长度为5的线段首尾依次相连能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2 2.(2021秋•宜兴市校级月考)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短3.(2020秋•建湖县期末)已知线段AB=9cm,AC=5cm,下面有四个说法:①线段BC长可能为4cm;②线段BC长可能为14cm;③线段BC长不可能为3cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④4.(2021春•金坛区期末)若一个三角形的两边长分别是3cm,6cm,则它的第三边的长可以是()A.3cm B.6cm C.9cm D.12cm 5.(2021春•盐城期末)下列长度的三根小木棒,能搭成三角形的是()A.1、2、3B.2、3、4C.3、3、6D.2、3、7 6.(2021春•工业园区期末)已知三角形两边的长分别为1cm、5cm,则第三边的长可以为()A.3cm B.4cm C.5cm D.6cm7.(2021春•苏州期末)如果一个三角形两边长为2cm和5cm,则第三边长可能为()A.2cm B.3cm C.4cm D.8cm8.(2021春•工业园区校级月考)如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=18,则S△ADF﹣S△BEF=()A.2B.3C.4D.59.(2021春•常州期末)如图,BE是△ABC的中线,点D是BC边上一点,BD=3CD,BE、AD交于点F,若△ABC的面积为20,则△BDF与△AEF的面积之差S△BDF﹣S△AEF等于()A.B.5C.4D.310.(2021春•常熟市期中)如图,点D,E分别是△ABC边BC,AC上一点,BD=2CD,AE=CE,连接AD,BE交于点F,若△ABC的面积为18,则△BDF与△AEF的面积之差S△BDF﹣S△AEF等于()A.3B.C.D.6二.填空题(共9小题)11.(2021秋•新兴县期中)如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=16cm2,则阴影部分的面积为.12.(2021春•盐都区月考)如图,BD是△ABC的中线,若△ABC的面积是20,则△BCD 的面积是.13.(2021春•江阴市校级月考)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为.14.(2021春•亭湖区校级月考)如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为60cm2,则△BEF的面积为cm2.15.(2021秋•鼓楼区校级月考)如图,图(1)为一个长方体,AD=AB=8,AE=5,M为所在棱的中点,图(2)为图(1)的表面展开图,则图(2)中△ABM的面积为cm2.16.(2021秋•东台市月考)在锐角△ABC中,两边a=3,b=4则第三边c的取值范围.17.(2021春•金坛区期末)如图,在△ABC中,D是AB中点,E是BC边上一点,且BE =4EC,CD与AE交于点F,连接BF.若△BEF的面积是4,则△ABC的面积是.18.(2021春•工业园区期末)如图,已知△ABC中,AD=2CD,AE=BE,BD、CE相交于点O.若△ABC的面积为30,则四边形ADOE的面积为.19.(2021春•南京月考)现有长为100cm的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,则n的最大值为.三.解答题(共4小题)20.(2021春•重庆期末)如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB =6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.21.(2020秋•婺城区校级期末)操作与探究探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=(用含a的代数式表示);(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=(用含a的代数式表示);(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=(用含a的代数式表示).发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的倍.22.(2020春•张家港市期末)如图,已知∠BDC+∠EFC=180°,∠DEF=∠B.(1)求证:ED∥BC;(2)若D,E,F分别是AB,AC,CD边上的中点,四边形ADFE的面积为6.①求△ABC的面积;②若G是BC边上一点,CG=2BG,求△FCG的面积.23.(2020春•姑苏区期中)【数学经验】三角形的中线的性质:三角形的中线等分三角形的面积.【经验发展】面积比和线段比的联系:如图1,M为△ABC的AB上一点,且BM=2AM,若△ABC的面积为a,若△CBM的面积为S,则S=(用含a的代数式表示).【结论应用】如图2,已知△CDE的面积为1,,,求△ABC的面积.【迁移应用】如图3,在△ABC中,M是AB的三等分点(AM=AB),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为.2022年01月08日7.4认识三角形参考答案与试题解析一.选择题(共10小题)1.(2021•南京)下列长度的三条线段与长度为5的线段首尾依次相连能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2【解答】解:A、∵1+1+1=3<5,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;B、∵1+1+5=7<8,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;C、∵1+2+2=5,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;D、∵2+2+2=6>5,∴此三条线段与长度为5的线段能组成四边形,故符合题意;故选:D.2.(2021秋•宜兴市校级月考)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短【解答】解:一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形的稳定性,故选:C.3.(2020秋•建湖县期末)已知线段AB=9cm,AC=5cm,下面有四个说法:①线段BC长可能为4cm;②线段BC长可能为14cm;③线段BC长不可能为3cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④【解答】解:∵线段AB=9cm,AC=5cm,∴如图1,当A,B,C在一条直线上,∴BC=AB﹣AC=9﹣5=4(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=9+5=14(cm),故②正确;如图3,当A,B,C不在一条直线上,9﹣5<BC<9+5,故线段BC不可能为3cm,可能为9cm,故③,④正确.故选:D.4.(2021春•金坛区期末)若一个三角形的两边长分别是3cm,6cm,则它的第三边的长可以是()A.3cm B.6cm C.9cm D.12cm【解答】解:设第三边长为xcm,根据三角形的三边关系可得:6﹣3<x<6+3,解得:3<x<9,故选:B.5.(2021春•盐城期末)下列长度的三根小木棒,能搭成三角形的是()A.1、2、3B.2、3、4C.3、3、6D.2、3、7【解答】解:A、1+2=3,不满足三角形三边关系定理,故错误,不符合题意;B、2+3>4,满足三边关系定理,故正确,符合题意;C、3+3=6,不满足三边关系定理,故错误,不符合题意;D、2+3<7,不满足三角形三边关系定理,故错误,不符合题意.故选:B.6.(2021春•工业园区期末)已知三角形两边的长分别为1cm、5cm,则第三边的长可以为()A.3cm B.4cm C.5cm D.6cm【解答】解:设第三边的长为xcm,则5﹣1<x<1+5,即4<x<6.故选:C.7.(2021春•苏州期末)如果一个三角形两边长为2cm和5cm,则第三边长可能为()A.2cm B.3cm C.4cm D.8cm【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7,所以只有4cm合适,故选:C.8.(2021春•工业园区校级月考)如图,在△ABC中,E是BC上的一点,EC=2BE,点D 是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=18,则S△ADF﹣S△BEF=()A.2B.3C.4D.5【解答】解:∵EC=2BE,∴S△AEC=S△ABC==12,∵点D为AC中点,∴S△BCD=S△ABC==9,∴S△AEC﹣S△BCD=3,即S△ADF+S四边形CEFD﹣(S△BEF+S四边形CEFD)=3,∴S△ADF﹣S△BEF=3.故选:B.9.(2021春•常州期末)如图,BE是△ABC的中线,点D是BC边上一点,BD=3CD,BE、AD交于点F,若△ABC的面积为20,则△BDF与△AEF的面积之差S△BDF﹣S△AEF等于()A.B.5C.4D.3【解答】解:∵S△ABC=BC•h BC=AC•h AC=20,∴S△ABC=(BD+CD)•h BC=(AE+CE)•h AC=20,∵AE=CE=AC,S△AEB=AE•h AC,S△BCE=EC•h AC,∴S△AEB=S△CEB=S△ABC=×20=10,即S△AEF+S△ABF=10①,同理:∵BD=3CD,BD+CD=BC,∴BD=BC,S△ABD=BD•h BC,∴S△ABD=S△ABC=×20=15,即S△BDF+S△ABF=15②,②﹣①得:S△BDF﹣S AEF=(S△BDF+S△ABF)﹣(S△AEF+S△ABF)=15﹣10=5,故选:B.10.(2021春•常熟市期中)如图,点D,E分别是△ABC边BC,AC上一点,BD=2CD,AE=CE,连接AD,BE交于点F,若△ABC的面积为18,则△BDF与△AEF的面积之差S△BDF﹣S△AEF等于()A.3B.C.D.6【解答】解:∵S△ABC=BC•h BC=AC•h AC=18,∴S△ABC=(BD+CD)•h BC=(AE+CE)•h AC=18,∵AE=CE=AC,S△AEB=AE•h AC,S△BCE=EC•h AC,∴S△AEB=S△CEB=S△ABC=×18=9,即S△AEF+S△ABF=9①,同理:∵BD=2CD,BD+CD=BC,∴BD=BC,S△ABD=BD•h BC,∴S△ABD=S△ABC=×18=12,即S△BDF+S△ABF=12②,①﹣②得:S△BDF﹣S AEF=(S△BDF+S△ABF)﹣(S△AEF+S△ABF)=12﹣9=3,故选:A.二.填空题(共9小题)11.(2021秋•新兴县期中)如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=16cm2,则阴影部分的面积为4cm².【解答】解:∵点D是BC的中点,且S△ABC=16cm2∴AD是△ABC的中线,则S△ABD=S△ACD==8(cm2),∵点E是AD的中点,∴BE是△ABD的中线,则S△BED==4(cm2),CE是△ACD的中线,则S△CED==4(cm2);∵点F是CE的中点,∴BF是△EBC的中线,则S△BEF===×(4+4)=4(cm2),故答案为:4cm2.12.(2021春•盐都区月考)如图,BD是△ABC的中线,若△ABC的面积是20,则△BCD 的面积是10.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴S△ABD=S△BCD,∵△ABC的面积是20,S△ABC=S△BCD+S△ABD,∴△BCD的面积=S△ABC=×20=10.故答案为:10.13.(2021春•江阴市校级月考)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为4.【解答】解:∵AD是△ABC的中线,∴S△ABD=S△ACD=S△ABC,∵点E是AD的中点,∴S△ABE=S△ADE=S△ABD,S△EDC=S△CAE=S△ACD,∴S△ABE=S△ABC,S△CDE=S△ABC,∴S△ABE+S△CDE=S△ABC+S△ABC=S△ABC==4,故答案为:4.14.(2021春•亭湖区校级月考)如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为60cm2,则△BEF的面积为15cm2.【解答】解:∵点E、F分别是线段AD、CE的中点,∴S△BED=S△ABD,S△CED=S△ADC.∴S△BED+S△CED=S△ABD+S△ADC=S△ABC==30cm2.即S△BEC=30cm2.又因为F是线段CE的中点,∴S△BEF=S△BEC==15cm2.故答案为:15.15.(2021秋•鼓楼区校级月考)如图,图(1)为一个长方体,AD=AB=8,AE=5,M为所在棱的中点,图(2)为图(1)的表面展开图,则图(2)中△ABM的面积为52cm2.【解答】解:如图,BC=AD=AB=8,AE=5,由矩形的性质,得MN=BE=AB+AE=13,△BCM的面积===52,故答案为:52.16.(2021秋•东台市月考)在锐角△ABC中,两边a=3,b=4则第三边c的取值范围<c<5.【解答】解:①∵当∠C是最大角时,有∠C<90°,∴c<,∴c<5,②当∠B是最大角时,有∠B<90°,∴b2<a2+c2,∴16<9+c2,∴c>,∴第三边c的取值范围:<c<5.故答案为:<c<5.17.(2021春•金坛区期末)如图,在△ABC中,D是AB中点,E是BC边上一点,且BE =4EC,CD与AE交于点F,连接BF.若△BEF的面积是4,则△ABC的面积是30.【解答】解:∵BE=4EC,S△BEF=4,∴S△CEF=S△BEF=1,∴S△BCF=S△BEF+S△CEF=4+1=5,∵D是AB中点,∴AD=DB,∴S△ADF=S△BDF,S△ADC=S△BDC,∴S△ADC﹣S△ADF=S△BDC﹣S△BDF,∴S△ACF=S△BCF=5,∴S△ACE=S△ACF+S△CEF=5+1=6,∵BE=4EC,∴S△ABE=4S△ACE=24,∴S△ABC=S△ABE+S△ACE=24+6=30,故答案为:30.18.(2021春•工业园区期末)如图,已知△ABC中,AD=2CD,AE=BE,BD、CE相交于点O.若△ABC的面积为30,则四边形ADOE的面积为12.5.【解答】解:连接AO,∵△ABC的面积为30,AE=BE,∴S△ACE=S△BEC=S△ABC=×30=15,S△AOE=S△BOE,∵AD=2CD,∴S△ABD=S△ABC=×30=20,S△AOD=2S△ODC,设S△COD=x,S△AOE=a,∴S△BOE=a,S△AOD=2x,∴,解得:,∴四边形ADOE的面积=S△AOE+S△AOD=a+2x=7.5+5=12.5.故答案为:12.5.19.(2021春•南京月考)现有长为100cm的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,则n的最大值为9.【解答】解:因为n段之和为定值100cm,故欲n尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意3段都不能拼成三角形,因此这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,1+1+2+3+5+8+13+21+46=100,所以n的最大值为9.故答案为9.三.解答题(共4小题)20.(2021春•重庆期末)如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB =6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.【解答】解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC=BC•AD,∴AD===4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC=AB•AC=×6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD=EC•AD,即S△ABE=S△AEC,∴S△ABE=S△ABC=12(cm2).∴△ABE的面积是12cm2.方法二:因为BE=BC=5,由(1)知AD=4.8,所以S△ABE=BE•AD=×5×4.8=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(2020秋•婺城区校级期末)操作与探究探索:在如图1至图3中,△ABC的面积为a.(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=a(用含a的代数式表示);(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=2a(用含a的代数式表示);(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=6a(用含a的代数式表示).发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.【解答】解:(1)∵CD=BC,△ABC的面积为a,△ABC与△ACD的高相等,∴S1=S△ABC=a;(2)分别过A、E作AG⊥BD,EF⊥BD,G、F为垂足,则AG∥EF,∵A为CE的中点,∴AG=EF,∵BC=CD,∴S2=2S1=2a;(3)∵△BDF的边长BD是△ABC边长BC的2倍,两三角形的两边互为另一三角形两边的延长线,∴S△BDF=2S△ABC,∵△ABC面积为a,∴S△BDF=2a.同理可得,S△ECD=2a,S△AEF=2a,∴S3=S△BDF+S△ECD+S△AEF=2a+2a+2a=6a.∵S3=S△BDF+S△ECD+S△AEF=6a,∴S△EDF=S3+S△ABC=6a+a=7a,∴==7,∴扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.22.(2020春•张家港市期末)如图,已知∠BDC+∠EFC=180°,∠DEF=∠B.(1)求证:ED∥BC;(2)若D,E,F分别是AB,AC,CD边上的中点,四边形ADFE的面积为6.①求△ABC的面积;②若G是BC边上一点,CG=2BG,求△FCG的面积.【解答】解:(1)如图,∵∠BDC+∠EFC=180°,∠EFD+∠EFC=180°,∴∠BDC=∠EFD,∴AB∥EF,∴∠ADE=∠DEF,又∵∠B=∠DEF,∴∠B=∠ADE,∴ED∥BC;(2)设△CEF的面积为a,∵F是CD的中点,∴S△DEF=a,∴S△CDE=2a,同理,S△ADC=4a,S△ABC=8a,∴S四边形ADFE=3a,∵四边形ADFE的面积为6.∴3a=6,即a=2,∴S△ABC=8a=16;(3)如图,连接DG,∵CG=2BG,∴S△DCG=2S△DBG,∴,∵F是CD的中点,∴.23.(2020春•姑苏区期中)【数学经验】三角形的中线的性质:三角形的中线等分三角形的面积.【经验发展】面积比和线段比的联系:如图1,M为△ABC的AB上一点,且BM=2AM,若△ABC的面积为a,若△CBM的面积为S,则S=a(用含a的代数式表示).【结论应用】如图2,已知△CDE的面积为1,,,求△ABC的面积.【迁移应用】如图3,在△ABC中,M是AB的三等分点(AM=AB),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为.【解答】解:【经验发展】∵M为△ABC的AB上一点,且BM=2AM,∴S=a,故答案为a;【结论应用】连接BD,∵△CDE的面积为1,,∴S△BDC=3S△DEC=3,∵,∴S△ABC=4S△BDC=12;【迁移应用】连接BD,设S△ADM=a,∵M是AB的三等分点(AM=AB),∴S△ABD=3a,S△BDM=2a,∵N是BC的中点,∴S△ABN=S△ACN,S△BDN=S△CDN,∴S△ADC=S△ADB=3a,∴S△ACM=4a,∵AM=AB,∴S△CBM=2S△ACM=8a,∴S△CDB=6a,S△ABC=12a,∴S△BDN=3a,∴S四边形BMDN=5a,∴S四边形BMDN=S△ABC=×1=,故答案为.第21页(共21页)。

105用二元一次方程组解决问题(1)-2020-2021学年苏科版七年级数学下册课时作业

105用二元一次方程组解决问题(1)-2020-2021学年苏科版七年级数学下册课时作业

10.5用二元一次方程组解决问题(1) 课时作业学校班级姓名【A类题】1.某校在配备现代化教学设备时,计划购买多媒体教学一体机和学生电脑共120台.已知多媒体教学一体机每8000元,学生电脑每台2500元,若购买这两种设备共花费52万元,求学校购买多媒体教学一体机和学生电脑各多少台?设购买多媒体教学一体机x 台、学生电脑y台,根据题意列出的方程组正确的是A. B.C. D.2.中国清代算书御制数理精蕴中有这样一题:“马四匹、牛六头,共价四十八两我国古代货币单位;马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为______.3.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施月份,甲工厂用水量比5月份减少了,乙工厂用水量比5月份减少了,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为______.4.甲和乙有若干弹珠,甲对乙说:“把你的一半弹珠给我,我就有10颗弹珠”乙却说:“只要把你的给我,我就有10颗”若设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是A. B.C. D.【B类题】5.九章算术中有这样一段表述:“今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗.下禾八秉,益实一斗与上禾二秉,而实一十斗.问上、下禾实一秉各几何?”其意大致为:今有上等稻七捆,减去一斗,加入下等稻二捆,共计十斗;下等稻八捆,加上一斗、上等稻二捆,共计十斗.问上等稻、下等稻一捆各几斗?设一捆上等稻有x斗,一捆下等稻y斗,根据题意,可列方程组为A. B.C. D.6.弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”求弟弟和哥哥的年龄.设这一年弟弟x岁,哥哥y岁,根据题意可列出二元一次方程组是______.7.根据题意列出方程组不必解答:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?8.某班为奖励在校运会上表现优秀的运动员,花了400元购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?【C类题】9.蚌埠云轨测试线自开工以来备受关注,据了解我市首期工程云轨线路约12千米,若该任务由甲、乙两工程队先后接力完成,甲工程队每天修建千米,乙工程队每天修建千米,两工程队共需修建500天,求甲、乙两工程队分别修建云轨多少千米?根据题意,小刚同学列出了一个尚不完整的方程根据小刚同学所列的方程组,请你分别指出未知数x,y表示的意义.x表示______;y表示______;小红同学“设甲工程队修建云轨x千米,乙工程队修建云轨y千米”,请你利用小红同学设的未知数解决问题.10.阅读探索“任意给定一个矩形,是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半?”(1)当已知矩形的长和宽分别是2和1时,小明是这样研究的:设所求矩形的长和宽分别为x和y,由题意得方程组:由①得,将③代入②,得,化简得,方程________,∴满足要求的矩形________.(2)请从A,B两题中任选一题作答.我选________题A.若已知矩形的长和宽分别是6和1,请仿照小明的方法研究是否存在满足要求的矩形.若存在,求出矩形的长和宽;若不存在,说明理由.B.若已知矩形的长和宽分别为a和b,请你研究满足什么条件时,才存在一个新的矩形,它的周长和面积分别是已知矩形周长和面积的一半?11.小明是一个乐思好问的学生,在解答七年级下册教材中一道拓广探索题时遇到了困难.这道题是这样的:一个长方形的长减少,宽增加,就成为一个正方形,并且这两个图形的面积相等.这个长方形的长、宽各是多少?如图,设长方形的长、宽各是,,小明绞尽脑汁列出了三个不同的方程组:以上三个方程组中,能正确反映题意的有(请直接填写序号).(2)小明列出的方程根据目前知识不易求解,便请教老师,老师提示这个问题可以列二元一次方程组来解答,并适时点拨,小明终于明白了.请你写出小明列出的二元一次方程组,并写出解题过程.10.5用二元一次方程组解决问题(1) (答案)1.【答案】B2.【答案】3.【答案】4.【答案】D5.【答案】A6.【答案】7.【答案】解:设明明买元的邮票x枚,2元的邮票y枚,由题意得:.设有m只鸡,n个笼,由题意得:.8.【答案】解:设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共30件,所以因为甲种奖品每件16元,乙种奖品每件12元,所以由上可得方程组解得:答:购买甲种奖品10件,乙种奖品20件9.【答案】解:甲工程队工作的时间;乙工程队工作的时间.依题意,得:解得:.答:甲工程队修建云轨4千米,乙工程队修建云轨8千米.10.【答案】解:无解,不存在;:设所求矩形的长为x,宽为y,根据题意得化简得:,解得:,,.答:存在满足要求的矩形,它的长为2,宽为;或者B:设所求矩形的长为x,则宽为,,化简得:,当,即时方程有解,如果存在一个新矩形,它的周长和面积分别是已知矩形周长和面积的一半.11.【答案】解:设长方形的长、宽各是xcm,ycm,由题意列方程组,得解这个方程组,得答:长方形的长、宽分别是、.。

2020_2021学年七年级数学下册第11章一元一次不等式11.6解一元一次不等式组课时作业新版苏科

2020_2021学年七年级数学下册第11章一元一次不等式11.6解一元一次不等式组课时作业新版苏科

课时作业---[解一元一次不等式组]一、选择题1.[2020·黄石] 不等式组{x -1<-3,2x +9≥3的解集是 ( )A .-3≤x<3B .x>-2C .-3≤x<-2D .x ≤-32.[2019·乐山] 不等式组{2x -6<3x,x+25-x -14≥0的解集在数轴上的表示正确的是( )图K -42-13.[2019·苏州相城区期末] 如果关于x 的不等式组{x -m <0,3x -1>2(x +1)无解,那么m 的取值范围为 ( ) A .3≤m<4B .3<m ≤4C .m<3D .m ≤34.[2019·长沙雨花区期末] 已知x=1是不等式(x-5)(ax-2)>0的解,且x=2不是这个不等式的解,则实数a 的取值范围是 ( )A .a>1B .1<a<2C .1<a ≤2D .1≤a<25.[2019·江阴月考] 已知关于x 的不等式组{x +1≥2,x -m <0有3个整数解,则m 的取值范围是( )A .3<m ≤4B .m ≤4C .3≤m<4D .m ≥3二、填空题 6.不等式组{3-5x 2<-1,3(x -5)+11≤2的解集为 .7.不等式组{2x +1>-1,x +2≤3的整数解为 .8.已知不等式组{3+2x ≥1,x -a <0无解,则a 的取值范围是 .9.若关于x 的不等式组{x -a >2,b -2x >0的解集是-1<x<1,则(a+b )2021= .10.[2019·南京期末] 已知二元一次方程x+2y=-5,当x 满足 ,y 的值是大于-1的负数. 三、解答题11.解下列不等式组,并把它们的解集表示在数轴上: (1){5x -2>3(x +1),12x -1≤7-32x;(2){x -32+3≥x,1-3(x -1)<8-x;(3){2x +3(x -2)<4,x+32<2x -53+3.12.求下列不等式组的整数解: (1){5+2x ≥3,x+13>x 2; (2){2-x ≥0,x -12-2x -13<13.13.[2019·盐城建湖期末] 一个三角形的三边长分别是x cm,(x+2)cm,(x+5)cm,它的周长不超过37 cm .求x 的取值范围.14.求使方程组{x +y =m +2,4x +5y =6m +3的解x ,y 都是正数的m 的取值范围.15.已知关于x 的不等式组{x -1<2n,2x +5>6m -1的解集是-6<x<3,求2m+n 的值.16、 [阅读理解] 先阅读下列例题,再按要求解决下面的问题.例题:解一元二次不等式(3x-2)(2x+1)>0.解:(3x-2)(2x+1)>0,由有理数的乘法法则“两数相乘,同号得正”,得①{3x -2>0,2x +1>0或②{3x -2<0,2x +1<0.解不等式组①,得x>23; 解不等式组②,得x<-12,所以不等式(3x-2)(2x+1)>0的解集为x>23或x<-12. (1)求不等式5x+12x -3<0的解集;(2)通过阅读例题和解决问题(1),你学会了什么知识和方法?答案1.[解析] C {x -1<-3,①2x +9≥3,②由①得x<-2,由②得x ≥-3,则不等式组的解集为-3≤x<-2.故选C .2.[解析] B {2x -6<3x,①x+25-x -14≥0.②解不等式①,得x>-6. 解不等式②,得x ≤13.故不等式组的解集为-6<x ≤13.该不等式组的解集在数轴上的表示如图所示:故选B .3.[解析] D 解不等式x-m<0,得x<m.解不等式3x-1>2(x+1),得x>3.因为不等式组无解,所以m ≤3.故选D .4.[解析] D 因为x=1是不等式(x-5)(ax-2)>0的解,所以(1-5)(a-2)>0,解得a<2.因为x=2不是这个不等式的解,所以(2-5)(2a-2)≤0,解得a ≥1,所以1≤a<2.故选D .5.[解析] A 解不等式x+1≥2,得x ≥1.解不等式x-m<0,得x<m. 因为不等式组有3个整数解,所以3<m ≤4. 故选A .6.[答案] 1<x ≤2[解析] {3-5x 2<-1,①3(x -5)+11≤2.②解不等式①,得x>1, 解不等式②,得x ≤2,所以不等式组的解集为1<x ≤2. 7.[答案] 0,1[解析] {2x +1>-1,①x +2≤3,②由①得2x>-1-1,x>-1;由②得x ≤3-2,x ≤1.所以不等式组的解集为-1<x ≤1,其整数解为0,1. 8.[答案] a ≤-1[解析] {3+2x ≥1,①x -a <0,②由①得x ≥-1;由②得x<a.根据“大大小小无处找”可得a<-1,当a=-1时也无解,所以a ≤-1. 9.[答案] -1[解析] {x -a >2,①b -2x >0,②由①得x>a+2,由②得x<12b.因为-1<x<1,所以a+2=-1,12b=1,所以a=-3,b=2,因此(a+b )2021=(-1)2021=-1.10.[答案] -5<x<-3 [解析] 由x+2y=-5,得y=-5+x 2.由题意得,-1<-5+x 2<0,解得-5<x<-3.11.解:(1){5x -2>3(x +1),①12x -1≤7-32x.②解不等式①,得x>52; 解不等式②,得x ≤4.所以不等式组的解集是52<x ≤4.在数轴上表示不等式组的解集如下:(2){x -32+3≥x,①1-3(x -1)<8-x.②解不等式①,得x ≤3;解不等式②,得x>-2.所以不等式组的解集为-2<x ≤3. 在数轴上表示不等式组的解集如下:(3){2x +3(x -2)<4,①x+32<2x -53+3.②解不等式①,得x<2, 解不等式②,得x>1,所以不等式组的解集为1<x<2. 在数轴上表示不等式组的解集如下:12.解:(1){5+2x ≥3,①x+13>x2.②由①得x ≥-1,由②得x<2, 所以不等式组的解集为-1≤x<2, 所以不等式组的整数解为-1,0,1. (2){2-x ≥0,①x -12-2x -13<13.②由①得x ≤2,由②得x>-3, 故此不等式组的解集为-3<x ≤2, 所以不等式组的整数解为-2,-1,0,1,2.13.解:因为一个三角形的三边长分别是x cm,(x+2)cm,(x+5)cm,它的周长不超过37 cm, 所以{x +(x +2)>x +5,x +(x +2)+(x +5)≤37,解得3<x ≤10.14.解:解方程组{x +y =m +2,4x +5y =6m +3,得{x =-m +7,y =2m -5.因为方程组的解x ,y 都是正数, 所以{-m +7>0,①2m -5>0,②由①,得m<7,由②,得m>52, 所以m 的取值范围是52<m<7.15.解:解x-1<2n ,得x<2n+1, 解2x+5>6m-1,得x>3m-3,所以不等式组的解集为3m-3<x<2n+1, 由已知得3m-3=-6,2n+1=3,解得m=-1,n=1, 所以2m+n=-1. [素养提升][解析] 通过有理数的乘法法则,把一元二次不等式转化为已学过的一元一次不等式组来解决,类似地,根据有理数的除法法则,把分母中含有未知数的不等式转化为一元一次不等式组来解决.解:(1)由有理数的除法法则“两数相除,异号得负”,得①{5x +1>0,2x -3<0或②{5x +1<0,2x -3>0.解不等式组①,得-15<x<32; 解不等式组②,得无解.所以不等式5x+12x -3<0的解集为-15<x<32.(2)通过阅读例题和解决问题(1),学会了分类讨论的思想和解一元二次不等式、分母中含有未知数的不等式的一种方法(答案合理即可).附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

2021年苏科版七年级下册数学课后练习(3)祥细答案与解析

2021年苏科版七年级下册数学课后练习(3)祥细答案与解析

2021年苏科版七年级下册数学课后练习(3)1. 如图,△ABC是锐角三角形.(1)过点A画BC的垂线,垂足为D;过点A画AB的垂线,交BC的延长线于点E.(2)在所画图中,哪些三角形是直角三角形、钝角三角形?AD是哪些三角形的高?2. 如图,AD是△ABC的角平分线,点E、F分别在AB、AC上,且DE // AC,DF // AB.∠1与∠2相等吗?为什么?3.(1)如图,AD是△ABC的中线,△ABC与△ABD的面积有怎样的数量关系?为什么?(2)你能把1个三角形分成面积相等的4个三角形吗?试画出相应的图形.4. 在△ABC中,根据下列条件,求∠A的度数:(1)∠C=20∘,∠B=∠A;(2)∠A、∠B、∠C的度数之比为1:2:3.5. 如图,在△ABC中,∠ACB=70∘,∠1=∠2,求∠BPC的度数.6. 如图,在△ABC中,点D、E分别在AB、AC上,∠B+∠C与∠1+∠2有怎样的数量关系?为什么?7. 如图,CE⊥AF,垂足为E,CE与BF相交于点D,∠F=40∘,∠C=30∘,求∠EDF、∠DBC的度数.8. 如图,从△ABC的纸片中剪去△CED,得到四边形ABDE.若∠C=50∘,求∠1与∠2的和.9. 如果一个八边形的内角都相等,那么它的每个内角等于多少度?10. 如图,在五边形ABCDE中,AE // BC.求∠C、∠D、∠E的和.11. 如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4.求∠CAD的度数.参考答案与试题解析2021年苏科版七年级下册数学课后练习(3)1.【答案】如图,线段AD,AE即为所求.△ABD,△ADC,△ADE,△ABE都是直角三角形,△ACE是钝角三角形,AD是△ABD,△ABC,△ADC,△ADE,△ACE,△ABE的高.【考点】作图—基本作图三角形的角平分线、中线和高【解析】(1)根据要求好像图形即可.(2)根据三角形的高的定义判断即可.【解答】如图,线段AD,AE即为所求.△ABD,△ADC,△ADE,△ABE都是直角三角形,△ACE是钝角三角形,AD是△ABD,△ABC,△ADC,△ADE,△ACE,△ABE的高.2.【答案】∠1与∠2相等.理由如下:∵AD是△ABC的角平分线,∴∠BAD=∠CAD.∵DE // CA,∴∠1=∠CAD.∵DF // BA,∴∠2=∠BAD,∴∠1=∠2.【考点】平行线的性质【解析】先根据角平分线的定义得出∠BAD=∠CAD,再由平行线的性质即可得出结论.【解答】∠1与∠2相等.理由如下:∵AD是△ABC的角平分线,∴∠BAD=∠CAD.∵DE // CA,∴∠1=∠CAD.∵DF // BA,∴∠2=∠BAD,∴∠1=∠2.3.【答案】S△ABC=2S△ABD.理由如下:∵D为AB中点,∴BD=DC.又∵A为三角形ABC顶点,∴△ABD和△ACD等底同高.∴S△ABD=S△ACD.∴S△ABC=2S△ABD.分割方法如下图提示(虚线为分割线):【考点】三角形的面积【解析】(1)△ABD与△ACD属于等底,同高,所以面积相等.(2)三角形的中线把三角形分成面积相等的两个三角形,先分成两个面积相等的三角形,进而继续即可.剩下方法可根据此基本图形进行变形.【解答】S△ABC=2S△ABD.理由如下:∵D为AB中点,∴BD=DC.又∵A为三角形ABC顶点,∴△ABD和△ACD等底同高.∴S△ABD=S△ACD.∴S△ABC=2S△ABD.分割方法如下图提示(虚线为分割线):4.【答案】∵∠A+∠B=180∘−∠C,∠C=20∘,∴∠A+∠B=160∘,∵∠A=∠B,∴∠A=1×160∘=80∘.2∵∠A、∠B、∠C的度数之比为1:2:3,∴可以假设∠A=x,∠B=2x,∠C=3x,∴6x=180∘,∴x=30∘,∴∠A=30∘.【考点】三角形内角和定理【解析】(1)利用三角形的内角和定理求出∠A+∠B=160∘,再根据∠A=∠B,求出∠A即可.(2)设∠A=x,∠B=2x,∠C=3x,利用三角形内角和定理构建方程即可解决问题.【解答】∵∠A+∠B=180∘−∠C,∠C=20∘,∴∠A+∠B=160∘,∵∠A=∠B,∴∠A=1×160∘=80∘.2∵∠A、∠B、∠C的度数之比为1:2:3,∴可以假设∠A=x,∠B=2x,∠C=3x,∴6x=180∘,∴x=30∘,∴∠A=30∘.5.【答案】∠ACB=70∘,即∠1+∠PCB=70∘,又∠1=∠2,∴∠2+∠PCB=70∘,∴∠BPC=180∘−(∠2+∠PCB)=110∘.【考点】三角形内角和定理【解析】根据题意、利用等量代换得到∠2+∠PCB=70∘,根据三角形内角和定理计算即可.【解答】∠ACB=70∘,即∠1+∠PCB=70∘,又∠1=∠2,∴∠2+∠PCB=70∘,∴∠BPC=180∘−(∠2+∠PCB)=110∘.6.【答案】结论:∠1+∠2=∠B+∠C.理由:∵∠1+∠2+∠A=180∘,∠B+∠C+∠A=180∘,∴∠1+∠2=∠B+∠C.【考点】三角形内角和定理【解析】利用三角形的内角和定理证明即可.【解答】结论:∠1+∠2=∠B+∠C.理由:∵∠1+∠2+∠A=180∘,∠B+∠C+∠A=180∘,∴∠1+∠2=∠B+∠C.7.【答案】∵CE⊥AF,∴∠DEF=90∘,∴∠EDF=90∘−∠F=90∘−40∘=50∘;由三角形的内角和定理得,∠C+∠DBC=∠F+∠DEF,所以,30∘+∠DBC=40∘+90∘,所以,∠DBC=100∘.【考点】直角三角形的性质【解析】根据直角三角形两锐角互余列式计算即可求出∠EDF,再根据三角形的内角和定理求出∠C+∠DBC=∠F+∠DEF,然后求解即可.【解答】∵CE⊥AF,∴∠DEF=90∘,∴∠EDF=90∘−∠F=90∘−40∘=50∘;由三角形的内角和定理得,∠C+∠DBC=∠F+∠DEF,所以,30∘+∠DBC=40∘+90∘,所以,∠DBC=100∘.8.【答案】根据三角形内角和180∘,可知∠A+∠B=180∘−50∘=130∘,∵四边形ABDE内角和为360∘,∴∠1+∠2=360∘−(∠A+∠B)=360∘−130∘=230∘.故∠1与∠2的和为230∘.【考点】多边形内角与外角三角形内角和定理【解析】根据三角形内角和180∘,求出∠A+∠B度数,再在四边形ABDE中利用内角和为360∘可求∠1+∠2度数.【解答】根据三角形内角和180∘,可知∠A+∠B=180∘−50∘=130∘,∵四边形ABDE内角和为360∘,∴∠1+∠2=360∘−(∠A+∠B)=360∘−130∘=230∘.故∠1与∠2的和为230∘.9.【答案】∵正八边形的外角和为360∘,∴正八边形的每个外角的度数=360∘÷8=45∘,∴正八边形的每个内角=180∘−45∘=135∘.故它的每个内角等于135∘.【考点】多边形内角与外角【解析】根据n边形的外角和为360∘得到正八边形的每个外角的度数360∘÷8=45∘,然后利用补角的定义即可得到正八边形的每个内角=180∘−45∘=135∘.【解答】∵正八边形的外角和为360∘,∴正八边形的每个外角的度数=360∘÷8=45∘,∴正八边形的每个内角=180∘−45∘=135∘.故它的每个内角等于135∘.10.【答案】五边形ABCDE的内角和为:180∘×(5−2)=540∘,∵AE // BC,∴∠A+∠B=180∘,∴∠C+∠D+∠E=540∘−180∘=360∘.故∠C、∠D、∠E的和为360∘.【考点】平行线的性质【解析】首先利用多边形内角和公式计算出五边形ABCDE的内角和,再根据平行线的性质可得∠A+∠B=180∘,进而可得∠C+∠D+∠E的度数即可求解.【解答】五边形ABCDE的内角和为:180∘×(5−2)=540∘,∵AE // BC,∴∠A+∠B=180∘,∴∠C+∠D+∠E=540∘−180∘=360∘.故∠C、∠D、∠E的和为360∘.11.【答案】∵五边形的内角和是540∘,∴每个内角为540∘÷5=108∘,∴∠E=∠B=∠BAE=108∘,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=(180∘−108∘)÷2=36∘,∴∠CAD=∠BAE−∠1−∠3=108∘−36∘−36∘=36∘.【考点】多边形内角与外角【解析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36∘,从而求出∠CAD=108∘−72∘=36度.【解答】∵五边形的内角和是540∘,∴每个内角为540∘÷5=108∘,∴∠E=∠B=∠BAE=108∘,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=(180∘−108∘)÷2=36∘,∴∠CAD=∠BAE−∠1−∠3=108∘−36∘−36∘=36∘.。

苏科版七年级数学下册全册综合测试题含答案解析【名师版】

苏科版七年级数学下册全册综合测试题含答案解析【名师版】

七下苏科期末测试卷一、选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.下列运算正确的是()A.3•3=26B.(3)2=6C.(﹣22)2=﹣44D.5÷=53.下列命题中,是真命题的为()A.如果a>b,那么|a|>|b| B.一个角的补角大于这个角C.平方后等于4的数是2 D.直角三角形的两个锐角互余4.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.15.下列等式从左到右的变形,属于因式分解的是()A.a(﹣y)=a﹣ay B.2+2+1=(+2)+1C.(+1)(+3)=2+4+3 D.3﹣=(+1)(﹣1)6.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<7.如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△D EF的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35° C.DF=5 D.AB∥DE8.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多,则正方形的面积与长方形的面积的差为()A.2B. C. D.2二、填空题9.人体中成熟的红细胞的平均直径为0.000 0077米,用科学记数法表示为米.10.分解因式:2﹣4+4= .11.命题“锐角与钝角互为补角”的逆命题是.12.一个n边形的内角和是540°,那么n= .13.如果等腰三角形的两边长分别为4和7,则三角形的周长为.14.若不等式(a﹣3)>1的解集为<,则a的取值范围是.15.已知、y是二元一次方程组的解,则代数式2﹣4y2的值为.16.七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为元.1元硬币5角硬币每枚厚度(单位:mm) 1.8 1.7每枚质量(单位:g) 6.1 6.0三、解答题(本题共9题,共60分)17.计算:(1)(﹣1)2015+(π﹣3.14)0+(﹣)﹣2(2)3•5﹣(24)2+10÷2.18.已知2﹣4﹣1=0,求代数式(2﹣3)2﹣(+y)(﹣y)﹣y2的值.19.分解因式:(1)2a2﹣50(2)4﹣82y2+16y4.20.解不等式组,并写出它的整数解.21.已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD()∴∠AFE=∠ADC()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)22.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2+2和2(其中取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?23.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.24.小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少决?25.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.参考答案与试题解析一、选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.2.下列运算正确的是()A.3•3=26B.(3)2=6C.(﹣22)2=﹣44D.5÷=5【分析】分别根据同底数幂的乘法法则、幂的乘方与积的乘方法则对各选项进行逐一分析即可.【解答】解:A、3•3=6≠26,故本选项错误;B、(3)2=6,故本选项正确;C、(﹣22)2=44≠﹣44,故本选项错误;D、5÷=4≠5,故本选项错误.故选B.3.下列命题中,是真命题的为()A.如果a>b,那么|a|>|b| B.一个角的补角大于这个角C.平方后等于4的数是2 D.直角三角形的两个锐角互余【分析】利用反例对A、B进行判断;根据平方根的定义对C进行判断;根据三角形内角和和互余的定义对D进行判断.【解答】解:A、当a=0,b=﹣1,则|a|<|b|,所以A选项错误;B、90度的补角为90度,所以B选项错误;C、平方后等于4的数是±2,所以C选项错误;D、直角三角形的两个锐角互余,所以D选项正确.故选D.4.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.1【分析】根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.【解答】解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.5.下列等式从左到右的变形,属于因式分解的是()A.a(﹣y)=a﹣ay B.2+2+1=(+2)+1C.(+1)(+3)=2+4+3 D.3﹣=(+1)(﹣1)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.6.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【分析】先由数轴观察a、b、c的大小关系,然后根据不等式的基本性质对各项作出正确判断.【解答】解:由数轴可以看出a<b<0<c.A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴>,故选项错误.故选B.7.如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35° C.DF=5 D.AB∥DE【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=70°,∠B=75°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,AB∥DE,∴A、B、D正确,C错误,故选C.8.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多,则正方形的面积与长方形的面积的差为()A.2B. C. D.2【分析】设长方形的宽为a,则长为(+a),则正方形的边长为(+a+a)=(+2a);求出二者面积表达式相减即可.【解答】解:设长方形的宽为acm,则长为(+a),则正方形的边长为(+a+a)=(+2a);正方形的面积为[(+2a)]2,长方形的面积为a(+a),二者面积之差为[(+2a)]2﹣a(+a)=2.故选:D.二、填空题9.人体中成熟的红细胞的平均直径为0.000 0077米,用科学记数法表示为7.7×10﹣6米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0077=7.7×10﹣6;故答案为:7.7×10﹣6.10.分解因式:2﹣4+4= (﹣2)2.【分析】直接用完全平方公式分解即可.【解答】解:2﹣4+4=(﹣2)2.11.命题“锐角与钝角互为补角”的逆命题是如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.【分析】交换原命题的题设与结论部分即可得到原命题的逆命题.【解答】解:命题“锐角与钝角互为补角”的逆命题是如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.故答案为如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.12.一个n边形的内角和是540°,那么n= 5 .【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.13.如果等腰三角形的两边长分别为4和7,则三角形的周长为15或18 .【分析】本题没有明确说明已知的边长哪个是腰长,则有两种情况:①腰长为4;②腰长为7.再根据三角形的性质:三角形的任意两边的和>第三边,任意两边之差<第三边判断是否满足,再将满足的代入周长公式即可得出周长的值.【解答】解:①腰长为4时,符合三角形三边关系,则其周长=4+4+7=15;②腰长为7时,符合三角形三边关系,则其周长=7+7+4=18.所以三角形的周长为15或18.故填15或18.14.若不等式(a﹣3)>1的解集为<,则a的取值范围是a<3 .【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)>1的解集为<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.15.已知、y是二元一次方程组的解,则代数式2﹣4y2的值为.【专题】计算题.【分析】根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.【解答】解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2﹣=5,=,2﹣4y2=()=,故答案为:.16.七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为9 元.1元硬币5角硬币每枚厚度(单位:mm) 1.8 1.7每枚质量(单位:g) 6.1 6.0【分析】首先设5角的硬币枚,1元硬币y枚,根据用尺量出它们的总厚度为22.6mm可得方程1.7+1.8y=22.6,又用天平称出总质量为78.5g可得方程6+6.1y=78.5,两立两个方程,解方程组即可.【解答】解:设5角的硬币枚,1元硬币y枚,由题意得:,解得:,8×0.5+5×1=9(元),故答案为:9.三、解答题(本题共9题,共60分)17.计算:(1)(﹣1)2015+(π﹣3.14)0+(﹣)﹣2(2)3•5﹣(24)2+10÷2.【分析】(1)先算乘方、0指数幂与负指数幂,再算加减;(2)先算同底数的乘除与积的乘方,再算加减.【解答】解:(1)原式=﹣1+1+4=4;(2)原式=8﹣48+8=﹣28.18.已知2﹣4﹣1=0,求代数式(2﹣3)2﹣(+y)(﹣y)﹣y2的值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2﹣4﹣1=0,即2﹣4=1,∴原式=42﹣12+9﹣2+y2﹣y2=32﹣12+9=3()+9=12.19.分解因式:(1)2a2﹣50(2)4﹣82y2+16y4.【分析】(1)直接提取公因式2,进而利用平方差公式分解因式得出即可;(2)直接利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可.【解答】解:(1)原式=2(a2﹣25)=2(a+5)(a﹣5);(2)原式=(2﹣4y2)2=[(+2y)(﹣2y)]2=(+2y)2(﹣2y)2.20.解不等式组,并写出它的整数解.【分析】分别解不等式,然后找出不等式的解集,求出整数解.【解答】解:,解不等式①得:<3,解不等式②得:≥1,则不等式的解集为:1≤<3,则整数解为:1,2.21.已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AFE=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)【专题】推理填空题.【分析】首先证明∠2=∠DCA,然后根据∠1=∠2,可得∠DCA=∠1,再根据同位角相等,两直线平行可判定出EF∥DC,然后根据∠AFE=∠ADC,∠AEF=90°,得出∠ADC=90°.【解答】证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD (两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)故答案为同位角相等,两直线平行;∠ACD;两直线平行,内错角相等;两直线平行,同位角相等;垂直定义.22.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2+2和2(其中取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【专题】新定义.【分析】(1)根据“和谐数”的定义,只需看能否把28和2012这两个数写成两个连续偶数的平方差即可判断;(2)运用平方差公式进行计算.【解答】解:(1)∵28=82﹣62,∴28是“和谐数”∵2016不能表示成两个连续偶数的平方差∴2016不是“和谐数”;(2)(2+2)2﹣(2)2=(2+2+2)(2+2﹣2)=2(4+2)=4(2+1),∵为非负整数,∴2+1一定为正整数,∴4(2+1)一定能被4整除,即由这两个连续偶数构成的“和谐数”是4的倍数.23.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.【分析】(1)根据三角形外角的性质,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根据∠A=∠ABC,即可得出答案;(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,结合(1)的结论证得答案即可.【解答】(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.24.小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少决?【分析】(1)设彩色地砖的单价为元/块,单色地砖的单价为y元/块,根据“购买彩色地砖40块和单色地砖60块则共需花费5600元”、“购买彩色地砖和单色地砖各50块,则需花费6000元”列出方程组;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据“购买地砖的费用不超过3400元”列出不等式并解答.【解答】解:(1)设彩色地砖的单价为元/块,单色地砖的单价为y元/块,由题意,得,解得:,答:彩色地砖的单价为80元/块,单色地砖的单价为40元/块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3400,解得:a≤25.∴彩色地砖最多能采购25块.25.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=140 °;(2)若点P在边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为∠1+∠2=90°+α;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质分三种情况讨论即可.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α.(3)如图,分三种情况:连接ED交BA的延长线于P点如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.。

2020-2021学年七年级数学苏科版下册 每课1练课时作业 9.1[单项式乘单项式]

2020-2021学年七年级数学苏科版下册 每课1练课时作业    9.1[单项式乘单项式]

课时作业(十六)[单项式乘单项式]一、选择题1.计算(-3x2)·2x3的结果是()A.-5x6B.-6x6C.-5x5D.-6x52.下列计算中,不正确的是()A.-3a2b·(-2ab2)=6a3b3B.-0.1m·(10mn)2=-10m3n2C.2x3·3x3=6x6D.10x2·2x5=20x103.若(5×103)×(20×10m)×(4×102)=4×109,则m的值为()A.2B.3C.4D.5二、填空题4.计算:2xy·(-3xy3)=;2xy·=-6x2yz.5.一个长方形的长为4x2y cm,宽为1x cm,则它的面积是cm2.46.若关于x,y的单项式-ax3y a与x b-3y3是同类项,则这两个单项式的积是.7.若a m+1b n+2·a2n-1b2m=a5b3,则m+n的值为.三、解答题8.计算:(1)-9a2b3·8ab2; (2)4x2y3·(-xy2)·1x3z;2(a2)4;(3)3a3·2a5-12(4)-(a2b)3+2a2b(-3a2b)2.9.计算:(1)(2.5×104)×(1.6×103);(2)(3×102)3×(-103)4.10.已知关于x,y的单项式x4y a与(-x b y)2的乘积为x16y4,求ab的值.11.计算如图K-16-1所示阴影部分的面积.(单位:cm)图K-16-1 [新定义] “三角”表示3xyz,“方框”表示-4a b d c,求×的值.[课堂达标]1.D2.[解析] D D 项中,10x 2·2x 5=20x 7.故选D .3.[解析] A 因为(5×103)×(20×10m )×(4×102)=4×109,所以5×20×4×103+m+2=4×109,则4×107+m =4×109,解得m=2.故选A .4.-6x 2y 4 (-3xz )5.[答案] x 3y[解析] 4x 2y ·14x=x 3y (cm 2),则它的面积为x 3y cm 2.6.[答案] -3x 6y 6[解析] 由同类项的定义,得b -3=3,a=3,解得b=6,a=3,所以这两个单项式分别为-3x 3y 3与x 3y 3,所以-3x 3y 3·x 3y 3=-3x 6y 6.7.[答案] 2[解析] 由m+1+2n -1=5,得m+2n=5.由2m+n+2=3,得2m+n=1.故m+2n+2m+n=6,3m+3n=6,所以m+n=2.8.解:(1)原式=-72a 3b 5.(2)原式=[4×(-1)×12]·(x 2·x ·x 3)·(y 3·y 2)·z=-2x 6y 5z. (3)原式=6a 8-12a 8=112a 8. (4)原式=-a 6b 3+2a 2b ·9a 4b 2=-a 6b 3+18a 6b 3=17a 6b 3.9.解:(1)原式=(2.5×1.6)×(104×103)=4×107.(2)原式=(27×106)×1012=2.7×1019.[点评] 最后结果要写成科学记数法的形式.10.解:因为单项式x 4y a 与(-x b y )2的乘积为x 16y 4,即x 4y a ·(-x b y )2=x 16y 4,所以x 4y a ·x 2b y 2=x 16y 4,所以x 4+2b y 2+a =x 16y 4,则4+2b=16,2+a=4,解得a=2,b=6,故ab=2×6=12.11.[解析] 可以从两个方面考虑:一是将原图分解为几块,再求和,如图①所示,S=S 1+S 2+S 3+S 4,但分别计算四块面积较烦琐;另一种是从整体来考虑,如图②所示,所求面积S=S长方形ABCD-S1-S2(S1=S2),这种方法比较简便.解: S=(a+2a+2a+2a+a)·(1.5a+2.5a)-2·2.5a·2a=8a·4a-2·2.5a·2a=32a2-10a2=22a2(cm2).故阴影部分的面积为22a2 cm2.[素养提升]解:由题意,得×=(3mn·3)×(-4n2m5)=[3×3×(-4)]·(m·m5)·(n·n2)=-36m6n3.。

12.2证明(2)-2020-2021学年苏科版七年级数学下册课时作业

12.2证明(2)-2020-2021学年苏科版七年级数学下册课时作业

12.2证明(2) 课时作业 学校 班级 姓名【A 类题】1. 下列问题用到推理的是A. 根据,得B. 观察得到四边形有四个内角C. 老师告诉了我们关于金字塔的许多奥秘D. 由公理知道过两点有且只有一条直线2. 今年世界杯足球赛的积分方法如下:赢一场得3分,平一场得1分,输一场得0分.某小组四个队进行单循环赛后,其中一队积7分.若该队赢了x 场,平了y 场,则是 A. B. C. D.3. 某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下: 甲说:“第二组得第一,第四组得第三”;乙说:“第一组得第四,第三组得第二”;丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是A. 第一组B. 第二组C. 第三组D. 第四组 4. 如图,直线AB ,CD 被EF 所截,若已知,说明的理由.解:根据__________ 得32∠=∠,又因为21∠=∠,所以∠ =∠根据____________________________ 得:_________//_________ .5.四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二”;文文说:“甲得第二,丁得第四”;凡凡说:“丙得第二,丁得第三”名次公布后,他们每人都只猜对了一半,那么甲、乙、丙、丁的名次顺序为按一、二、三、四的名次排序6.甲乙丙三个人在一起聊天,每周从星期一到星期日每人连续两天说谎包括星期日和星期一,其余五天必说真话,且任意两人不会在同一天说谎.已知周一时,乙说:“我昨天说谎了.”周二时,丙说:“太巧了,我昨天也说谎了.”则三个人都没说谎的是星期______.【B类题】7.老师让4个学生猜一猜这次考试中4个人的成绩谁最好.甲说:“乙最好”:乙说:“丁最好”;丙说:“反正我不是最好”;丁说:“乙说我最好,肯定错了”,老师告诉他们,只有一个人猜对了,于是,聪明的孩子们马上知道是谁的成绩最好了,你知道吗?A. 甲B. 乙C. 丙D. 丁8.以下可以用来证明命题“任何奇数都是3的倍数”是假命题的反例是A. 9B. 15C. 5D. 69.在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存.现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1:2:3:若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是A. 甲B. 乙C. 丙D. 丁10.4个人进行游泳比赛,赛前A,B,C,D等4名选手进行预测,A说:“我肯定得第一名”,B说:“我绝对不会得最后一名”,C说:“我不可能得第一名,也不会得最后一名”,D说:“那只有我是最后一名”,比赛揭晓后,发现他们之中只有一位预测错误,预测错误的人是______.11.甲、乙、丙三人相约进行一场田径比赛,在赛前约定三人都必须参加相同项目的比赛并决出第一、二、三名没有同名次,每项比赛第一、二、三名的得分依次记为5、2、1分,谁累计得分最多,谁就是优胜,比赛一开始,甲获得了铅球第一名,但谁也不甘示弱,三个人你追我赶,100米、跳高、比赛在热烈的气氛中一项接着一项进行下去,最后,乙经过超强的努力获得了优胜,累计得分22分,而甲和丙都各得9分下列四个结论:获得铅球第二名的是乙;甲获得第三名的次数与丙获得第二名的次数一样多;甲获得第一名1次,第二名1次,第三名2次;获得100米第二名的是甲.其中正确结论的序号是______ 填所有正确结论的序号12.有一个密码箱,密码由三个数字组成,甲、乙、丙三个人都开过,但都记不清了.甲记得:这三个数字分别是7,2,1,但第一个数字不是7;乙记得:1和2的位置相邻;丙记得:中间的数字不是根据以上信息,可以确定密码是______.【C类题】13.甲、乙、丙、丁四个人共有三个姓甲说:“我和你们三人都不同姓”乙说:“我和丙、丁也不同姓”那么,甲、乙、丙、丁四个人中,哪两个人同姓呢?你是怎样推断的?14.如图,O是直线AB上一点,OC为任一条射线,OD平分,OE平分.指出图中的补角,的补角;若,求和的度数;与具有怎样的数量关系?15.桌子上有7张反面向上的纸牌,每次翻转n张为正整数纸牌,多次操作后能使所有纸牌正面向上吗?用“”、“”分别表示一张纸牌“正面向上”、“反面向上”,将所有牌的对应值相加得到总和,我们的目标是将总和从变化为.当时,每翻转1张纸牌,总和的变化量是2或,则最少______ 次操作后所有纸牌全部正面向上;当时,每翻转2张纸牌,总和的变化量是______ ,多次操作后能使所有纸牌全部正面向上吗?若能,最少需要几次操作?若不能,简要说明理由;若要使多次操作后所有纸牌全部正面向上,写出n的所有可能的值.12.2证明(2)(答案)1.【答案】A2.【答案】B3.【答案】B4.【答案】对顶角相等;1;3;同位角相等,两直线平行;AB;CD5.【答案】甲、乙、丙、丁6.【答案】一7.【答案】C8.【答案】C9.【答案】D10.【答案】A11.【答案】12.【答案】12713.【答案】解:由甲说:“我和你们三人都不同姓.”可得甲自己一个姓;乙说:“我和丙、丁也不同姓.”可得乙自己一个姓;因为甲、乙、丙、丁四个人共有三个姓,所以丙、丁同姓,综合可得甲一个姓,乙一个姓,丙、丁同姓.14.【答案】解:的补角为,;的补角为,.平分,,,,,平分,;平分,OE平分,,,,与互余.15.【答案】7 14解:总变化量:,次数至少:,故答案为:7;两张由反到正,变化:,两张由正到反,变化:,一正一反变一反一正,变化,不能全正,总变化量仍为14,无法由4,,0组成,故不能所有纸牌全正;故答案为:14;由题可知:.当时,由可知能够做到,当时,由可知无法做到,当时,总和变化量为6,,2,,,故可以,当时,总和变化量为8,,4,,0,14无法由8,,4,,0组成,故不可以,当时,总和变化量为10,,6,,2,,,故可以,当时,总和变化量为12,,8,,4,,0,无法组合,故不可以,当时,一次全翻完,可以,故,3,5,7时,可以.。

2020-2021学年苏科版七年级下册课时练:第七章《 平面的图形认识(二)》(一)

2020-2021学年苏科版七年级下册课时练:第七章《 平面的图形认识(二)》(一)

2020-2021学年苏科版七年级下册课时练:第七章《平面的图形认识(二)》(一)1.已知,如图①,点D,E,F,G是△ABC三边上的点,且FG∥AC,(1)若∠EDC=∠FGC,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且MN∥AB,连结GM,若∠A=60°,∠C=55°,∠FGM=4∠MGC,求∠GMN的度数.(3)点M、N分别在射线AC、BC上,且MN∥AB,连结GM.若∠A=α,∠ACB=β,∠FGM=n∠MGC,直接写出∠GMN的度数(用含α,β,n的代数式表示)2.已知:∠1=∠2,EG平分∠AEC.(1)如图①,∠MAE=45°,∠FEG=15°,∠NCE=75°.试判断EF与CD的位置关系,并说明理由.(2)如图②,∠MAE=140°,∠FEG=30°,当AB∥CD时,求∠NCE的度数;(3)如图②,试写出∠MAE、∠FEG、∠NCE之间满足什么关系时,AB∥CD.3.完成下面的证明:如图AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF =90°.证明:∵HG∥AB,(已知)∴∠1=∠3.()∵HG∥CD(已知)∴∠2=∠4.()∵AB∥CD(已知)∴∠BEF+∠EFD=180°()∵EG平分∠BEF(已知)∴∠1=∠BEF()∵FG平分∠EFD(已知)∴∠2=∠EFD()∴∠1+∠2=•(+).∴∠1+∠2=90°.∴∠3+∠4=90°().即∠EGF=90°.4.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).5.如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.解:∵EF∥AD,(已知)∴∠2=.()又∵∠1=∠2,()∴∠1=∠3,()∴AB∥,()∴∠DGA+∠BAC=180°.()6.(1)【感知】如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠AEC=∠A+∠DCE.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E作EF∥AB.∴∠A=∠1 ()∵AB∥CD(已知)EF∥AB(辅助线作法)∴CD∥EF()∴∠2=∠DCE()∵∠AEC=∠1+∠2∴∠AEC=∠A+∠DCE()(2)【探究】当点E在如图②的位置时,其他条件不变,试说明∠A+∠AEC+∠C=360°(3)【应用】如图③,延长线段AE交直线CD于点M,已知∠A=130°,∠DCE=120°,则∠MEC的度数为.(请直接写出答案)7.如图,已知AD∥BC,∠1=∠2,要证∠3+∠4=180°,请完善证明过程,并在括号内填上相应依据:∵AD∥BC(已知),∴∠1=∠3(),∵∠1=∠2(已知),∴∠2=∠3(),∴∥(),∴∠3+∠4=180°()8.如图所示,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.试说明AD∥BC.完成推理过程:∵AB∥DC(已知)∴∠1=∠CFE()∵AE平分∠BAD(已知)∴∠1=∠2 (角平分线的定义)∵∠CFE=∠E(已知)∴∠2=(等量代换)∴AD∥BC()9.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.10.已知BE平分∠ABD,DE平分∠BDC,且∠BED=∠ABE+∠EDC.(1)如图1,求证:AB∥CD;(2)如图2,若∠ABE=3∠ABF,且∠BFD=30°时,试求的值;(3)如图3,若H是直线CD上一动点(不与D重合),BI平分∠HBD,画出图形,并探究出∠EBI与∠BHD的数量关系.参考答案1.解:(1)DE∥BC,理由如下:∵FG∥AC,∴∠FGB=∠C,∵∠EDC+∠ADE=180°,∠FGC+∠FGB=180°,∠EDC=∠FGC,∴∠ADE=∠FGB,∴∠ADE=∠C,∴DE∥BC;(2)∵∠A=60°,∠C=55°,∴∠B=180°﹣∠A﹣∠C=180°﹣60°﹣55°=65°,∵FG∥AC,∴∠FGB=∠C=55°,∵∠FGM=4∠MGC,∴∠FGM+∠MGC+∠FGB=5∠MGC+55°=180°,∴∠MGN=25°,∵MN∥AB,∴∠MNC=∠B=65°,∠MNC=∠MGN+∠GMN,∴∠GMN=∠MNC﹣∠MGN=65°﹣25°=40°;(3)①如图②所示:∵∠A=α,∠ACB=β,∴∠B=180°﹣∠A﹣∠ACB=180°﹣α﹣β,∵FG∥AC,∴∠FGB=∠C=β,∵∠FGM=n∠MGC,∴∠FGM+∠MGC+∠FGB=(n+1)∠MGC+β=180°,∴∠MGN=,∵MN∥AB,∴∠MNC=∠B=180°﹣α﹣β,∠MNC=∠MGN+∠GMN,∴∠GMN=∠MNC﹣∠MGN=180°﹣α﹣β﹣=(180°﹣β)﹣α.②如图③所示:设∠MGN=x,则∠GMN=∠GMA+∠NMC=α+180°﹣nx,∵(n﹣1)x+β=180°,∴x=,∴∠GMN=α+180°﹣nx=α+180°﹣n=α+.2.解:(1)EF∥CD.理由如下:∵∠1=∠2,∴AB∥EF,∴∠AEF=∠MAE,又∠MAE=45°,∠FEG=15°,∴∠AEG=60°,∵EG平分∠AEC,∴∠CEG=∠AEG=60°,∴∠CEF=∠CEG+∠FEG=75°,∠NCE=75°,∴∠NCE=∠CEF,∴EF∥CD.故EF与CD的位置关系是EF∥CD.(2)∵∠1=∠2,∴AB∥EF,∴∠FEA+∠MAE=180°,∠MAE=140°,∴∠FEA=40°,∠FEG=30°,∴∠AEG=70°,∵EG平分∠AEC,∴∠CEG=∠AEG=70°,∴∠FEC=100°,∵AB∥CD,∴EF∥CD,∴∠NCE+∠FEC=180°∴∠NCE=80°.答:∠NCE的度数为80°.(3)∠MAE=2∠FEG+∠NCE时,AB∥CD.理由如下:由(2)可知:∠AEG=180°﹣∠MAE+∠FEG,∠FEC=∠FEG+∠NCE,∠AEG=∠FEC,∠FEC+∠NCE=180°∴(180°﹣∠MAE+∠FEG)+(∠FEG+∠NCE)=180°,整理得:∠MAE=2∠FEG+∠NCE.故当∠MAE、∠FEG、∠NCE之间满足关系:∠MAE=2∠FEG+∠NCE时,AB∥CD.3.证明:∵HG∥AB,(已知)∴∠1=∠3.(两直线平行、内错角相等)∵HG∥CD(已知)∴∠2=∠4.(两直线平行、内错角相等)∵AB∥CD(已知)∴∠BEF+∠EFD=180°(两直线平行、同旁内角互补)∵EG平分∠BEF(已知)∴∠1=∠BEF(角平分线的定义)∵FG平分∠EFD(已知)∴∠2=∠EFD(角平分线的定义)∴∠1+∠2=•(∠BEF+∠EFD).∴∠1+∠2=90°.∴∠3+∠4=90°(等量代换).即∠EGF=90°.故答案为:两直线平行、内错角相等;两直线平行、内错角相等;两直线平行、同旁内角互补,角平分线的定义;角平分线的定义;∠BEF;,∠EFD;等量代换.4.解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.5.解:∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG,(内错角相等,两直线平行)∴∠DGA+∠BAC=180°(两直线平行,同旁内角互补).6.(1)证明:如图①,过点E作EF∥AB,∴∠A=∠1(两直线平行,内错角相等),∵AB∥CD(已知),∵EF∥AB(辅助线作法),∴CD∥EF(平行于同一直线的两条直线平行),∴∠2=∠DCE(两直线平行,内错角相等),∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠DCE(等量代换),故答案为:两直线平行,内错角相等;平行于同一直线的两条直线平行;两直线平行,内错角相等;等量代换;(2)证明:过点E作EF∥AB,如图②所示:∵AB∥CD,∴EF∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°;(3)解:同(2)得:∠A+∠AEC+∠DCE=360°,∴∠AEC=360°﹣∠A﹣∠DCE=360°﹣130°﹣120°=110°,∴∠MEC=180°﹣∠AEC=180°﹣110°=70°,故答案为:70°.7.解:∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴BE∥DF(同位角相等,两直线平行),∴∠3+∠4=180°(两直线平行,同旁内角互补).8.证明:∵AB∥DC(已知)∴∠1=∠CFE(两直线平行,同位角相等)∵AE平分∠BAD(已知)∴∠1=∠2(角平分线的定义)∵∠CFE=∠E(已知)∴∠2=∠E(等量代换)∴AD∥BC(内错角相等,两直线平行).故答案为:两直线平行,同位角相等;∠E;内错角相等,两直线平行.9.(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.10.解:(1)如图1,延长BE交CD于点C,则∠BED=∠C+∠EDC.∵∠BED=∠ABE+∠EDC,∴∠ABE=∠C,∴AB∥CD;(2)由(1)可知,AB∥CD,∴∠ABD+∠BDC=180°,∵BE平分∠ABD,DE平分∠BDC,∴∠BED=(∠ABD+∠BDC)=90°,由∠ABE=3∠ABF,设∠ABF=α,则∠ABE=3α过F作FG平行于AB,如图2,则有∠ABF+∠CDF=∠F,∴∠CDF=30°﹣α过E作EH平行于AB,则有∠ABE+∠CDE=∠BED,∴∠CDE=90°﹣3α,∴∠FDE=60°﹣2α∴==;(3)当点H在点D的左侧时,如图3所示,∠BHD=2∠EBI.理由如下:∵AB∥CD∴∠ABH=∠BHD,∵BE平分∠ABD,BI平分∠HBD,∴∠ABE=∠EBD,∠HBI=∠IBD∵∠ABH=∠ABE+∠EBH=∠EBD+∠EBH=2(∠EBH+∠HBI),∴∠BHD=2∠EBI.当点H在点D的右侧时,如图4所示,∠EBI=90°﹣∠BHD.理由如下:∵AB∥CD∴∠GBH=∠BHD,∵BE平分∠ABD,BI平分∠HBD,∴∠ABE=∠EBD,∠HBI=∠IBD∵∠EBI=∠EBD+∠DBI=∠ABD+∠DBH=∠ABH=(180°﹣∠HBG)∴∠EBI=90°﹣∠BHD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档