2018届云南省昆明市高三上学期期末摸底调研测理科数学试题扫描版含答案
云南省昆明一中2018届高三考前适应性训练数学(理)试卷及答案
云南省昆明第一中学2018届高三第八次月考理 科 数 学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}ln A x y x ==,集合{}xB y y e==,则集合A 与B 的关系是( )A . AB = B .A B ≠⊂ C .B A ≠⊂ D .A B ∈2.在复平面内,复数z 与复数103i+对应的点关于实轴对称,则z =( ) A .3i + B .3i - C .3i -+ D .3i --3.某班有50人,一次数学考试的成绩X 服从正态分布()110,100N .已知()1001100.34P x <≤=,估计该班本次考试学生数学成绩在120分以上的有( ) A .5人 B .6人 C .7人 D .8人4. ()62111x x ⎛⎫-+ ⎪⎝⎭展开式中3x 的系数为( ) A .14- B .14 C. 15 D .305.已知点F 是抛物线()2:20C x py p =>的焦点,O 为坐标原点,若以F 为圆心,FO 为半径的330x y -+=相切,则抛物线C 的方程为( )A . 22x y = B .24x y = C. 26x y = D .28x y =6.已知函数()()()2sin 0f x x ωϕω=+>的部分图像如图所示,若图中在点,A D 处()f x 取得极大值,在点,B C 处()f x 取得极小值,且四边形ABCD 的面积为32,则ω的值是( ) A .18 B .14 C. 8π D .4π7.已知函数()f x x =,函数()2g x x =-,执行如图所示的程序框图,若输入的[]3,3x ∈-,则输出m 的值为()g x 的函数值的概率为( ) A .16 B .14 C. 13 D .128.设数列{}n a 的前n 项和为n S ,若()11,,*,2n n n S S S n N n -+∈≥构成等差数列,且122,4a a =-=-,则6a =( ) A . 64- B .32- C. 16 D . 649.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为12,F F ,点A 是双曲线C 底面右顶点,点M 是双曲线C 上一点,MA 平分12F MF ∠,且12:2:1MF MF =,则双曲线的离心率为( )A .2B .3 C. 2 D .310.过正方体1111ABCD A B C D -的顶点A 的平面α与直线1AC 垂直,且平面α与平面11ABB A 的交线为直线l ,平面α与平面11ADD A 的交线为直线m ,则直线l 与直线m 所成角的大小为( )A .6π B .4π C. 3π D .2π11.已知ABC ∆的面积为6,4cos 5A =-,P 为线段BC 上一点,2BP PC =u u u r u u u r ,点P 在线段,AB AC上的投影分别为,Q R ,则PQR ∆的面积为( ) A .625 B .1225 C. 3225 D .362512.已知定义在()0,+∞上的函数()()222,6ln 4f x x m h x n x nx =-=-,其中0n >,设两曲线()y f x =与()y h x =有公共点,且在公共点处的切线相同,则mn的最大值为( ) A .163e -B .133e -C. 1332e D .2313e第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若,x y 满足约束条件3020x y x y +-≥⎧⎨-≤⎩,则函数2z x y =+的最小值为 .14.在数列{}n a 中,112a =,且()11*2n n a n N a +=∈-,设数列{}n a 的前n 项的积为n T ,则100T = .15.定义符号函数()()()()1,00,01,0x g x x x >⎧⎪==⎨⎪-<⎩,若函数()()xf xg x e =⋅,则满足不等式()()233f a a f a +<+的实数a 的取值范围是 .16.已知正方体1111ABCD A B C D -的棱长为4,点P 是1AA 的中点,点Q 是1BDC ∆内的动点,若1PQ BC ⊥,则点Q 到平面1111A B C D 的距离的范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,设平面向量()()sin cos ,sin ,cos sin ,sin p A B A q B A B =+=-u r r ,且2cos p q C ⋅=u r r(Ⅰ)求C ;(Ⅱ)若c a b =+=ABC ∆中边上的高h .18.某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,部分统计数据如下表:(Ⅰ)根据以上22⨯列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?(Ⅱ)从学习成绩优秀的12名同学中,随机抽取2名同学,求抽到不使用智能手机的人数X 的分布列及数学期望.参考公式:()()()()()22=n ad bc a b c d a c b d κ-++++,其中=n a b c d +++参考数据:()0P K k ≥0.05 0,。
云南省2018届高三毕业生复习统一检测理科试题及答案解析
2018年云南省高中毕业生复习统一检测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)己知集合S={x|x+9>0},T={x| x 2 <5 x},则S ∩Y=A.(-9,5)B.(一∞,5)C.(-9,0)D. (0,5)(2)已知i 为虚数单位,设z=3- 1i ,则复数z 在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限(3)已知平面向量 =(1,x), =(一2,1),若,则A ..3 C .10(4)已知直线y=mx+2 与圆x 2+y 2 -2x 一4y -4=0相交于A 、B 两点,若=6,则m=A.4 B .5 C .6 D .7(5)已知函数f(x)的定义域为(-∞,0],若g (x )=是奇函数,则f (一2)=A .一7B .一3C .3D .7(6)执行右面的程序框图,若输入的a=2,b=l , 则输出的n=A .7B .6C .5D .4(7)由圆锥与半球组合而成的几何体的三视图如图所示,其中俯视图是直径为6的圆.若该几何体的体积为30π,则其表面积为A.30πB.(π C .33ππ(8)已知=2, =2,与的夹角等于则A. -6B. -4C.4D.6(9)己知x l、x2是关于x的方程x2+ ax+ 2b=O的实数根,若-l<x1<1,1<x2<2,设c=a-4b+3,则c的取值范围为A.(-4,5)B.(-4,6) C.[-4,5] D. [-4,6](10)己知正三棱柱ABC – A1B1C1的底面边长为2,P、M、N分别是三侧棱AA1、BB1、CC1上的点,它们到平面ABC的距离分别是1、2、3,正三棱柱ABC - A1B l C1被平面PMN分成两个几何体,则其中以A、B、C、P、M、N为顶点的几何体的体积为A. B. C. D.(11)《九章算术>是我国古代数学成就的杰出代表,是“算经十书”中最重要的一种,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系.第九章“勾股”中有如下问题:“今有勾八步,股一十五步,问勾中容圆径几何?”其意思是,“今有直角三角形,短的直角边长为8步,长的直角边长为15步,问该直角三角形能容纳圆的直径最大是多少?”我们知道,当圆的直径最大时,该圆为直角三角形的内切圆,若往该直角三角形中随机投掷一个点,则该点落在此三角形内切圆内的概率为A. B. C. D.(12)已知A,B,C是锐角AABC的三个内角,B的对边为b,若数列A,B,C是等差数列,b=,则△ABC面积的取值范围是A....第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)(13)在的二项展开式中,x3的系数为____(14)若,则sin 2α=(15)已知双曲线M: 的渐近线与圆x2 +(y一2b)2 =a2相切,则双曲线M 的离心率为____.(16)下列结论:①设命题p:a=2:命题q:f(x)=sinax的最小正周期为π,则p是q的充要条件;②设f(x)=sin|x|,则f(x)的最小正周期为2π;⑨设f(x):cos|x|,则f(x)的最小正周期为2π;④已知f(x)的定义域为实数集R,若,f(x+1)=f(x+6)+f(x—4),则30 是f(x)的一个周期;⑤己知f(x)的定义域为实数集R,若,f(x+1)=f(x+6)+f(x—4),则120是f(x)的一个周期;其中正确的结论是(填写所有正确结论的编号).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(17)已知数列{}n a的前n项和为Sn,,设.(Ⅰ)求数列{}n b的通项公式;(Ⅱ)求证:(18)(本小题满分12分)某共享单车公司为了解用户对其产品的满意度,从甲、乙两个小区分别随机调查了20个用户,得到用户对其产品满意度评分的茎叶图如下:(I)从满意度评分在65分以下的用户中,随机抽取3个用户,求这3个用户来自同一小区的概率尸;(Ⅱ)本次调查还统计了40人一星期使用共享单车的次数X,具体情况如下:该公司将一星期使用共享单车次数超过6次的称为稳定消费者,不超过6次的称为潜在消费者,为了鼓励消费者使用该公司的共享单车,公司对稳定消费者每人发放10元代金券,对潜在消费者每人发放15元代金券.为进一步研究,有关部门根据上述一星期使用共享单车次数统计情况,按稳定消费者和潜在消费者分层,采用分层抽样方法从上述40人中随机抽取8人,并在这8人中再随机抽取3人进行回访,求这三人获得代金券总和Y(单位:元)的分布列与均值.(19)(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,APBD为等边三角形,AC=2,PA= (I)求证:平面PBD上平面ABCD:(II)若E为线段PD上一点,DE =2PE,求二面角B-AE-C的余弦值.(20)(本小题满分12分)已知椭圆E的中心在原点,焦点在x轴上,离心率为,抛物线y2=-4x的准线被椭圆E截得的线段长为3.(I)求椭圆E的方程:(II)设m、n是经过E的右焦点且互相垂直的两条直线,m与E交于A、B两点,n与E交于C、D两点,求的最小值.(21)(本小题满分12分)已知f(x):a(x2-x)+lnx+b的图象在点(1,f(1))处的切线方程为3x- y-3=0,(I)求a,b的值:(II)如果对任何x>0,都有f(x)≤kx·[f'(x)-3],求所有k的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(22)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,直线,的参数方程为(t为参数).以原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,点E的直角坐标为(2,,直线,与曲线C交于A、B两点.(I)写出点E的极坐标和曲线C的普通方程;( II)当时,求点E到A,B两点的距离之积.(23)(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x+1|,g(x)=f(x)+|x-l|,b≥ -l.(I)解不等式f(x≥|2x-3|+1;(II)若函数g(x)的最小值是a,求证:。
云南省昆明市2018届高三数学第一次摸底测试试题理2017110201121
云南省昆明市2018届高三数学第一次摸底测试试题理第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.x11.已知集合,集合,则()A{x0}B{x N1x5}A Bx3A.{0,1,3,4,5}B.{0,1,4,5}C.{1,4,5}D.{1,3,4,5}2.如图,正方形ABCD内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是()11A.B.C.D.42841z3.已知(其中是虚数单位),则()i i1z1zA.1 B.0 C.2D.24.设函数f(x)x1x a的图象关于直线x1对称,则a的值为()A.3 B.2 C. 1 D.-15.二项式(x x1)5展开式中的常数项为()xA.10 B.-10 C. 5 D.-56.设数列{a}的前n项和为S,若2,S,3a成等差数列,则S的值是()n n n n5A.-243 B.-242 C.-162 D.2437.执行如图所示的程序框图,若输出n的值为9,则判断框中可填入()1A.S45?B.S36? C. S45?D.S55?8.设x,y为正数,且3x4y,当3x py时,p的值为()A.B. C. D.log4log36log2log234339.一个正方体挖去一个多面体所得的几何体的三视图如图所示,其中正视图、左视图和俯视图均为边长等于2的正方形,这个几何体的表面积为()A.1643B.1645 C. 2043D.204510.已知函数f(x)sin(x)sin(x)(0),且f()0,当取最小值时,623以下命题中假命题是()A.函数f(x)的图象关于直线x对称12B.是函数的一个零点6C. 函数f(x)的图象可由g(x)3sin2x的图象向左平移个单位得到32D.函数f(x)在[0,]上是增函数1211.已知抛物线C:y24x的焦点为F,准线为l,点A l,线段AF交抛物线C于点B,若FA3FB,则AF()A.3 B.4 C.6 D.712.已知数列{a}的前n项和为S,且,S 14a2,则数列{a}中的a为a12n n n n n12()A.20480 B.49152 C. 60152 D.89150第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a(2,1),a b10,a b52,则b.x3y3014.若实数x,y满足不等式组2x y30,则x y的最大值为.x y115.已知双曲线C的中心为坐标原点,点F(2,0)是双曲线C的一个焦点,过点F作渐近线的垂线l,垂足为M,直线l交y轴于点E,若FM3ME,则双曲线C的方程为.16.体积为183的正三棱锥A BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC2:3,点E为线段BD的中点,过点E作球O的截面,则所得截面圆面积的最小值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC中,a,b,c分别是角A,B,C的对边,且a2c23ac b2,3a2b (1)求3a2b的值;(2)若b6,求ABC的面积.18. 如图,在直三棱柱中,,,点分别为ABC A B C BAC900AB AC2M,N111A1C1,AB1的中点.3(1)证明:MN//平面BB C C;11(2)若CM MN,求二面角M CN A的余弦值.19. 某市为了解本市2万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,发现其成绩服从正态分布N(69,49),现从某校随机抽取了50名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.(1)估算该校50名学生成绩的平均值x(同一组中的数据用该组区间的中点值作代表);(2)求这50名学生成绩在[80,100]内的人数;(3)现从该校50名考生成绩在[80,100]的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前26名的人数记为X,求X的分布列和数学期望.参考数据:若X~N(,2),则p(X)0.6826,p(2X2)0.9544p(3X3)0.997420. 已知动点M(x,y)满足:(x1)2y2(x1)2y222.4(1)求动点 M 的轨迹 E 的方程; (2)设过点 N (1, 0) 的直线l 与曲线 E 交于 A , B 两点,点 A 关于 x 轴的对称点为C (点C与点 B 不重合),证明:直线 BC 恒过定点,并求该定点的坐标.a21. 已知函数 f (x )e x , g (x ) x 2x ,(其中 a R , e 为自然对数的底数,2e 2.71828……).(1)令 h (x )f (x )g ' (x ) ,若h (x )0对任意的 x R 恒成立,求实数 a 的值;nim(2)在(1)的条件下,设 m 为整数,且对于任意正整数 n ,( )m ,求 的最小值.nni 1请考生在 22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修 4-4:坐标系与参数方程极坐标系中,O 为极点,半径为 2的圆C 的圆心坐标为 (2, ) .6(1)求圆C 的极坐标方程;(2)设直角坐标系的原点与极点O 重合, x 轴非负关轴与极轴重合,直线l 的参数方程为1 x t2 3y t 82( 为参数),由直线 上的点向圆 引切线,求线线长的最小值.t l C23.选修 4-5:不等式选讲 已知函数 f (x )x 2 x 3 .(1)求不等式 f (x ) 3的解集; (2)若不等式 f (x )a 26a 解集非空,求实数 a 的取值范围.5昆明一中全国联考第一期参考答案参考答案(理科数学)命题、审题组教师杨昆华李文清孙思应梁云虹王在方卢碧如凹婷波吕文芬陈泳序一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C C A B B A C D C B B1.解析:集合A,1U3,,B0,1,2,3,4,5,所以A I B0,1,4,5,选B.2.解析:设正方形边长为2,则圆半径为1.此时正方形面积为224.图中黑色部分面积为2.则此点取自黑色部分的概率为2,选C.481izi3.解析:因为1i ,所以1z 2,选C.4.解析:12a1所以a 3,选A.r15511555r r r5.解析:通项T C x x C x221r 0,所以r 3,所以常,令r rr155x22数项为C5110,选B.336.解析:据题意得223a12;当n 2时,Sa,当n 1时,2S 23a,所以n n113333a S S a a a a ,即11n n n1n n1n n1222213aa a ,即3n 2,所以nn n122an1数列a是首项a ,公比q 3的等比数列,S5,所以12 n a 1q52135 2421q 13选B.7.解析:模拟执行如图所示的程序框图知,该程序的功能是计算S 12L 945,选A.8.解析:可令3x 4y t,则x log t,3y log t,由3x py 得4p3log t3log43,选C.t3log46l og233log t log34t19.解析:将三视图还原可得下图,所以S 5224252045,选D. 263310. 解析:f xxxxsin cos 3 sin2 23得 ,由f ( ) 0 3Z,即 3k 1,由 0 知 的最小值是 2,当 取得最小值时,kk3 33sin2f xx.由 f3 sin 2 3 sin 33 1212 32可得出:函数 f (x )的图象关于直线 x对称,A 为真; 12由 f3 sin 2 066 3可得出: x是函数 f (x ) 的一个零点,B 为真; 6将函数 g x 3 sin 2x 的图象向左平移6个单位得到3sin2f xx 的图象,所以3 C 为假;由复合函数单调性可得 f (x ) 在 0,上是增函数,所以 D 为真,选C.1211.解析:由已知B为AF的三等分点,作BH l于H(如图),则24BHFK,所以33BF BH 43,所以AF 3BF 4,选B.12.解析:由S a有2412a a a ,解得12412a ,故28a22a14,又aSSaa,于是aaaa ,因此数列aa是以n n n n n n n n n n n 221414221212127a 2 2a 14 为首项,公比为 2 的等比数列.得 1 24 2 1 2 1a a,于是nnnnaan 1n11, 22nn因此数列aanan.是以1为首项,1为公差的等差数列,解得1 1nnn ,2n22nnn所以 a 1249152 ,选 B.二、填空题13. 解析:因为 a b 5 2 ,所以2a b50 ,即2 2 2a b a b5 b20 50 250 ,所以所以 b 5 .14. 解析:如图, x y 在点 A (4, 5) 处取得最大值9 .15. 解析:设双曲线C 的方程为:xy2 2221 ,由已知得: FM b ,所以 a b24b 4 3, a 2b而 a 2 4 b 2 ,所以b 2 3 , a 2 1,所以双曲线C 的方程:y2x 21 316. 设 BC 3k ,则 R 2k k0,因为体积为18 3 的正三棱锥 A BCD 的每个顶点都在半13径为R的球O的球面上,所以9k2h 18 3,得34h24.由2R2h R3k,2 k2得k 2或k 324(舍),所以R 4.由题意知点E为线段BD的中点,从而在△ODB中,OD OB 4,DB 6,解得OE 1697.所以当截面垂直于OE时,截面圆的半径为1673,故截面圆面积最小值为9.三、解答题17.解:(Ⅰ)由cos Ba2c2b23ac3得出:2ac2ac2B,6由3a 2b及正弦定理可得出:3sin A 2sin B,所以sin2sin1A,3638再由3a2b 知 a b ,所以 A 为锐角, cos1 12 2 A, 9 3所以sinsinsin sin coscos sin CA BA BA BA B3 226(Ⅱ)由b 6 及3a 2b 可得出 a 4 ,113 2 2所以Sab sin C46 2 3 2 2 . 2 2 618. 解:(Ⅰ)证明:连接 A B , BC 1 ,点 M , N 分别为 A 1C 1 ,A 1B 1的中点,所以 MN 为△ A BC 的一条中位线, MN //BC ,111MN平面 BB C C , 1 1BC平面1BB C C ,1 1所以 MN // 平面 BB C C .1 12a 2 a 2 4 8(Ⅱ)设 AA 1 a ,则1 MN 1,CM, 2a24420CN5 , 2a 2a 244由CMMN ,得CM 2MN 2CN 2 ,解得 a 2 ,由题意以点 A 为坐标原点, AB 为 x 轴, AC 为 y 轴,AA 为 z 轴建立空间直角坐标系.12可得 A (0,0,0) ,C (0, 2,0) , N (1,0, ) , M (0,1, 2) ,22 2 1 0故 AN ( ,, ), AC (0,2,0), CN (1, 2, ), CM (0,1, 2),2 2 设 m (x ,y ,z )为平面 ANC 的一个法向量,则 m m A C AN0 0,得 m (1,0,2),同理可得平面 MNC 的一个法向量为 n (3,2,2),设二面角 MCNA 的平面角为 ,cos m,n mnmn332155,15cos cos m,n5,15所以,二面角M CN A的余弦值为515.919.解:(Ⅰ)x450.08550.2650.32750.2850.12950.0868.2(Ⅱ)0.0080.012105010.10.9974(Ⅲ)P3X3=0.9974,则P X900.0013.20.00132000026.所以该市前26名的学生听写考试成绩在90分以上.上述50名考生成绩中90分以上的有0.08504人.随机变量X0,1,2.于是C12X6, P0==C3210C C811P X1==,64C15210C22P X2==.4C15210X的分布列:X012P 13815215182 4E X012.315155数学期望20.解:(Ⅰ)由已知,动点M到点P (1,0),Q(1,0)的距离之和为22,且PQ 22,所以动点M的轨迹为椭圆,而a 2,c 1,所以b 1,所以,动点M的轨迹E的方程:x22y21.(Ⅱ)设A(x,y),B(x,y),则C(x ,y),由已知得直线l的斜率存在,设斜率为k,则直11221110线l 的方程为: y k (x 1)y k (x 1)由2xy 122 得 (1 2k 2 )x 2 4k 2 x 2k 220, 所以4k2xx12212k,2k 22x x1 2212k ,y yy y x yx y直线 BC 的方程为:21() y xy yx x ,所以211 22 122xxxxxx212121 ,x y x y2kx x k (xx ) 2x x(xx )令 y 0 ,则 x 1 22 11 2121 2122yyk (x x ) 2k(xx ) 2211 212,所以直线 BC 与 x 轴交于定点 D (2, 0) . 21. 解:(Ⅰ)因为 g (x )ax1所以 h (x ) e x ax1,由 h (x )0对任意的 xR 恒成立,即 h x ,( ) 0min由 h (x ) e x a , (1)当 a 0 时, h (x ) e x a0 , h (x )的单调递增区间为,,所以 x(,0) 时, h (x ) h (0) 0 ,所以不满足题意. (2)当 a 0 时,由 h(x ) e x a0 ,得 x ln axa 时, h (x ) 0 , x (ln a,) 时, h (x ) 0 ,( ,ln )所以 h (x ) 在区间(,ln a ) 上单调递减,在区间 (ln a ,) 上单调递增,所以h(x)的最小值为h(ln a)a a ln a1.设(a)a a ln a1,所以(a)0,①因为(a)ln a令(a)ln a0得a1,所以(a)在区间(0,1)上单调递增,在区间(1,)上单调递减,所以(a)(1)0,②11由①②得(a)0,则a 1. (Ⅱ)由(Ⅰ)知e x x10,即1x e x,令xk kk (n N*,k0,1,2,,n1)则01 e,n n nkk所以(1)n(e n)n e k,nni12n1n所以()n()n()n()n()n e(n1)e(n2)e2e11 n n n nn i11e1e1n12,1e1e e1e111ni,所以()2nni1又(1)3(2)3(3)3 1,333所以m的最小值为2.第22、23题中任选一题做答,如果多做,则按所做的第一题记分.22.解:(Ⅰ)设M(,)是圆上任意一点,如图,连接OC,并延长与圆C交于点A,当点M异于O,A时,连接OM、MA,直角△MOA中,OM OA cos MOA,即4cos4cos(),66当点M与O,A重合时,也满足上式,所求圆C的极坐标方程为4cos().6(Ⅱ)直线l的普通方程为3x y80,圆心C(3,1)到直线l的距离为d,3318d3r,所以直线l与圆C相离,2故切线长的最小值为32225.23.解:(Ⅰ)由f(x)x2x33可化为:12xx 3 3 2或 x 2 x 3 3 x 2 x 3 3x 2或x 2 x 3 3 解得:x或 2 x 2 或 x2 ,所以,不等式解集为2,.(Ⅱ)因为 f (x )x 2x 3(x 2) (x 3)5所以 5 f (x ) 5,即 f (x ) 的最小值为 5 , 要不等式 f (x ) a 2 6a 解集非空,需 f (x )a 2 6a ,min从而 a 26a 5 0 ,解得 a1或 a 5 ,所以 a的取值范围为,1U5,.13昆明一中全国联考第一期参考答案参考答案(理科数学)命题、审题组教师 杨昆华 李文清 孙思应 梁云虹 王在方 卢碧如 凹婷波 吕文芬 陈泳序一、选择题 题号 1 2 3 4 5 6 7 8 9 10 1112答案BCCA B BA CDCB B 24. 解析:集合 A,1U3,, B0,1, 2, 3, 4, 5,所以 A I B0,1, 4, 5,选 B.25. 解析:设正方形边长为 2 ,则圆半径为 1.此时正方形面积为 2 2 4 .图中黑色部分面积为 2 .则此点取自黑色部分的概率为 2 ,选 C.4 81 iz i26. 解析:因为1 i,所以 1 z 2 ,选 C. 27. 解析:12 a1 所以 a 3 ,选 A.r15 55r1 r r15 528. 解析:通项TC x xC xr0 ,所以 r3 ,所以常1 ,令rr2 2 r 155x22数项为C,选 B.33511029. 解析:据题意得 22 3 12Sa ,当 n1时, 2S2 3a ,所以 a;当 n 2 时,nn113 3 3 3 a S Saaaa ,即1 1nnn 1nn 1n n 122 2 21 3 a a a ,即 3 n2,所以nnn 122an 1数列S5,a是首项a ,公比q 3的等比数列,所以12n a 1q 21355 24211q 13选B.30.解析:模拟执行如图所示的程序框图知,该程序的功能是计算S 12L 945,选A.31.解析:可令3x 4y t,则x logt,3y log t,由3x py得4p3log t3log43,选C.t3log46l og233log t log34t132.解析:将三视图还原可得右图,所以S 5224252142045,选D.3333.解析:f x sin x cos x3sin x223得,由f()03Z,即3k 1,由0知的最小值是2,当取得最小值时,kk333sin2f x x.由f3sin23sin33121232可得出:函数f(x)的图象关于直线x对称,A为真;12由f3sin20663可得出:x是函数f(x)的一个零点,B为真;6将函数g x 3sin2x的图象向左平移6个单位得到3sin2f x x的图象,所以3C为假;由复合函数单调性可得f(x)在0,12上是增函数,所以D为真,选C.A4334.解析:由已知B为AF的三等分点,作BH l于H(如图),则BH FK ,所以424BF BH333,所以AF 3BF 4,选B.H21B35. 解析:由 Sa 有 28 24 1 2 124 1 2 a,故aa a ,解得a 22a 1 4 ,K22O F又2 21 4 1 4 a2 2a 1 2 a12a ,因此aSS a a ,于是nnnnnnnnn1数列aa 是以,12a 2 2a 14 为首项,公比为 2 的等比数列.得n 1 n 1 aannn n12 4 2 2aa于是 11, 因 此 数列nn22nnan2n 是 以 1为 首 项 , 1为 公 差 的 等 差 数 列 , 解得a nn21 n1n , an 2n .所以na ,选B.1249152二、填空题36. 解析:因为 a b 5 2 ,所以2a b50 ,即2 2 2a b2ab 505 b20 50 ,所以所以 b 5 .37. 解析:如图, x y 在点 A (4, 5) 处取得最大值9 .x -y +1=0yxy2 2 221,由已知得: FMb ,所abx +3y-3=0 32 12x-y -3=038. 解析:设双曲线 C 的方程为:–6 –5 –4 –3 –2 O–1–11 x23456–2 –315以24b4 ,而 3 a 2 ba 24 b 2 ,所以b 23 , a 2 1,所以双曲线C 的方程:y2x 21 339. 设 BC 3k ,则 R 2kk0,因为体积为18 3 的正三棱锥 A BCD 的每个顶点都在半1 3径为 R 的球O 的球面上,所以 9k 2h18 3 ,得 34h24R 2h R3k ,.由22k2得 k 2 或 k 3 24 (舍),所以 R 4 .由题意知点 E 为线段 BD 的中点,从而在△ODB 中,OD OB , DB 6 ,解得OE 16 9 7 .所以当截面垂直于OE 时,截面圆的半径4为 16 73,故截面圆面积最小值为9 .三、解答题 40. 解:(Ⅰ)由cos Ba 2 c 2b 2 3ac 3得 出 : 2ac 2ac 2B, (2)分 6由3a 2b 及正弦定理可得出:3sin A 2sin B ,所以 21sin A sin ,………4分3 6 3 再由3a2b 知 a b ,所以 A 为锐角, cos1 12 2 A, ………6分9 3所以 sinsinsin sin coscos sin CA BA BA BAB3 26………8分(Ⅱ)由b 6 及3a 2b 可得出 a 4 , 所以113 2 2S ab sin C462 3 2 2 .2 2 6………12分41. 解:(Ⅰ)证明:连接 A B , BC 1 ,点 M , N 分别为 A 1C 1 ,A 1B1的中点,所以 MN 为△ A BC 的一条中位线, MN //BC ,111MN平面 BB C C , 1 1BC平面1BB C C ,1 1所以 MN // 平面 BB C C .………6分1 1162a 2a 2 4 8(Ⅱ)设 AA 1a ,则1CM, MN 1,2a244220CN5 , 2a a 244由CMMN ,得CM 2 MN 2 CN 2 ,解得 a 2 ,由题意以点 A 为坐标原点, AB 为 x 轴, AC 为 y 轴,AA 为 z 轴建立空间直角坐标系.12可得 A (0,0,0) ,C (0, 2,0) , N (1,0, ) , M (0,1, 2) ,22 2故 AN ( ,, ), AC (0,2,0), CN (1, 2, ), CM (0,1, 2),1 02 2 设 m (x ,y ,z )为平面 ANC 的一个法向量,则m m A C AN0 0,得 m (1,0,2),同理可得平面 MNC 的一个法向量为 n (3,2,2),设二面角 M CNA 的平面角为 ,cos m , nmnmn3 3 0 2 15 5,15cos cos m , n5,15所以,二面角 M CNA 的余弦值为5 15. ………12分42. 解 : ( Ⅰ )x 45 0.08 55 0.2 65 0.32 75 0.2 85 0.12 95 0.08 68.2 ………4分(Ⅱ) 0.008 0.012105010 .………6分1 0.9974(Ⅲ)P 3 X3=0.9974 ,则P X 900.0013 .2 0.0013 20000 26 .所以该市前26名的学生听写考试成绩在90分以上.上述50名考生成绩中90分以上的有0.08504人.随机变量X0,1,2.于是C126, P X0==C321017C C118, P X1=64=C15210C224.P X2==C15210X的分布列:X012P138152151824数学期望E X12. ………12分31515543.解:(Ⅰ)由已知,动点M到点P (1,0),Q(1,0)的距离之和为22,且PQ 22,所以动点M的轨迹为椭圆,而a 2,c 1,所以b 1,所以,动点M的轨迹E的方程:x22y2 1. (5)分(Ⅱ)设A(x,y),B(x,y),则C(x ,y),由已知得直线l的斜率存在,设斜率为k,112211则直线l的方程为:y k(x 1)(1)y k x由2xy122得(12k2)x24k2x 2k220,所以4k2x x12212k,2k22x x12212k,………8分y y y y x yx y直线BC的方程为:y y 21(x x),所以y 21x 122122x x x x x x212121,x y x y2kx x k(x x)2x x (xx)令y 0,则122112121212x2y y k(x x)2k(x x)2211212,所以直线BC与x轴交于定点D (2,0) (12)分44.解:(Ⅰ)因为g(x)ax 1所以h(x)e x ax 1,由h(x)0对任意的x R恒成立,即h x ,()0min18由h(x)e x a,(1)当a0时,h(x)e x a0,h(x)的单调递增区间为,,所以x(,0)时,h(x)h(0)0,所以不满足题意.(2)当a0时,由h(x)e x a0,得x ln ax a时,h(x)0,x(ln a,)时,h(x)0,(,ln)所以h(x)在区间(,ln a)上单调递减,在区间(ln a,)上单调递增,所以h(x)的最小值为h(ln a)a a ln a1.设(a)a a ln a1,所以(a)0,①因为(a)ln a令(a)ln a0得a1,所以(a)在区间(0,1)上单调递增,在区间(1,)上单调递减,所以(a)(1)0,②由①②得(a)0,则a 1. ………6分(Ⅱ)由(Ⅰ)知e x x10,即1x e x,令xk kk (n N*,k0,1,2,,n1)则01 e,n n nkk所以(1)(e)en n n k,nn i12n1n所以()n()n()n()n()n e(n1)e(n2)e2e11 n n n nn i11e1e1n12,1e1e e1e111ni,所以()n2ni1又(1)3(2)3(3)3 1,333所以m的最小值为2. ………12分19第 22、23 题中任选一题做答,如果多做,则按所做的第一题记分. 45. 解:(Ⅰ)设 M (,) 是圆上任意一点,如图,连接OC ,并延长与圆C 交于点 A , 当点 M 异于O , A 时,连接OM 、 MA , 直角△ MOA 中,OM OAcos MOA ,即4 cos4 cos() ,66当点 M 与O , A 重合时,也满足上式,所求圆C 的极坐标方程为4 cos() .………5分6(Ⅱ)直线l 的普通方程为 3x y 8 0 ,圆心C ( 3,1) 到直线l 的距离为 d ,3 318d3 r ,所以直线l 与圆C 相离,2故切线长的最小值为 32225 .………10分46. 解:(Ⅰ)由 f (x ) x 2 x 3 3 可化为:x 33 x 2或x 2 x 3 3 x 2 x 3 3x 2或 x 2 x 3 3 解得:x 或 2 x 2 或 x2 ,所以,不等式解集为2,. ………5分(Ⅱ)因为 f (x )x 2x 3(x 2) (x 3)5所以 5 f (x ) 5,即 f (x ) 的最小值为 5 , 要不等式 f (x ) a 2 6a 解集非空,需 f (x )a 2 6a ,min从而 a 26a 5 0 ,解得 a1或 a 5 ,所以 a的取值范围为,1U5,.………10分20。
2018届云南省昆明市高三摸底调研测试理科数学试题
2018届云南省昆明市高三摸底调研测试理科数学试题本试卷满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一井交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一 项是符合题目要求的。
1.已知集合},11|{},0|{2<<-=≤-=x x N x x x M 则M ∩N=A.{x|-1<x ≤0}B.{x|-1≤x ≤0}C.{x|0≤x<1}D.{x|0≤x ≤1}2.设复数z 满足(1+i )z=i ,则z 的共轭复数z = A.i 2121+ B.i 2121- C.-i 2121+ D.-i 2121- 3.已知向量a=(-1,2),b=(1,3),则|2a-b|= A.2 B.2 C.10 D.104.已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则a 8=A.-2nB.2nC.2n-1D.2n+15.下图是1951--2016年中国年平均气温变化图.根据上图,下列结论正确的是A.1951年以来,我国年平均气温逐年增高B.1951年以来,我国年平均气温在2016年再创新高C.2000年以来,我国年平均气温都高于1981-2010年的平均值D.2000年以来,我国年平均气温的平均值高于1981-2010年的平均值6.古人采取“用臼春米”的方法脱去稻谷的外壳,获得可供食用的大米,用于春米的“石臼”由一块正方体石料凿去一部分做成(凿去的部分可看作一个简单组合体).一个“石臼”的三视图如图所示,则凿去部分的体积为A.63πB.72πC.79πD.99π7.双曲线)0,0(1:2222>>=-b a by a x C 的左,右焦点分别为F 1,F 2,,以F 1F 2为直径的圆与C 在第一象限交于点P 。
云南省昆明市2018届高三教学质量检查(二统)数学(理)试题及答案解析
昆明市2018届高三复习教学质量检测理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b R ∈,复数21ia bi i+=+,则a b +=( ) A .2 B .1 C .0 D .2-2.设集合{2,1,0,1,2}A =--,2{|20}B x x x =+-≤,则AB =( )A .{0,1,2}B .{2,1,0}--C .{1,0,1}-D .{2,1,0,1}-- 3.若点55(sin,cos )66ππ在角α的终边上,则sin α=( )A .12 C .. 12-4.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差 D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 5.一个简单几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于( )A .26.已知直线:l y m +与圆22:(3)6C x y +-=相交于A ,B 两点,若120ACB ∠=︒,则实数m 的值为( )A .33.3+3-C.9或3- D .8或2-7.执行下面的程序框图,如果输入1a =,1b =,则输出的S =( )A .7B .20 C.22 D .548.若直线(01)x a a π=<<与函数tan y x =的图像无公共点,则不等式tan 2x a ≥的解集为( ) A .{|,}62x k x k k Z ππππ+≤<+∈ B .{|,}42x k x k k Z ππππ+≤<+∈ C. {|,}32x k x k k Z ππππ+≤<+∈ D .{|,}44x k x k k Z ππππ-≤≤+∈9.已知函数24,1()ln 1,1x x a x f x x x ⎧-+<=⎨+≥⎩,若方程()2f x =有两个解,则实数a 的取值范围是( )A .(,2)-∞B .(,2]-∞ C. (,5)-∞ D .(,5]-∞10.已知F 是椭圆2222:1(0)x y E a b a b +=>>的左焦点,经过原点的直线l 与椭圆E 交于P ,Q 两点,若||2||PF QF =,且120PFQ ∠=︒,则椭圆E 的离心率为( )A .13 B .12C. 3 D.211.已知函数2()2ln xe f x k x kx x=+-,若2x =是函数()f x 的唯一极值点,则实数k 的取值范围是( )A . 2(,]4e -∞ B .(,]2e -∞ C. (0,2] D .[2,)+∞12.定义“有增有减”数列{}n a 如下:*t N ∃∈,满足1t t a a +<,且*s N ∃∈,满足1S S a a +>.已知“有增有减”数列{}n a 共4项,若{,,}(1,2,3,4)i a x y z i ∈=,且x y z <<,则数列{}n a 共有( )A .64个B .57个 C.56个 D .54个 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a ,b 满足a b ⊥,||1a =,|2|22a b +=,则||b = .14.已知变量x ,y 满足3040240x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则3z x y =+的最大值为 .15.在ABC △中,角,,A B C 所对的边分别是,,a b c ,若1cos 4C =,3c =,且cos cos a bA B=,则ABC △的面积等于 .16.如图,等腰PAB △所在平面为α,PA PB ⊥,4AB =,点C ,D 分别为PA ,AB 的中点,点G 为CD 的中点.平面α内经过点G 的直线l 将PAB △分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点'P ('P ∉平面α).若点'P 在平面α内的射影H 恰好在翻折前的线段AB 上,则线段'P H 的长度的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 中,13a =,{}n a 的前n 项和n S 满足:21n n S a n +=+. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:(1)2n an n b =-+,求{}n b 的前n 项和n T .18.在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x 和y ,制成下图,其中“*”表示甲村贫困户,“+”表示乙村贫困户.若00.6x <<,则认定该户为“绝对贫困户”,若0.60.8x ≤≤,则认定该户为“相对贫困户”,若0.81x <≤,则认定该户为“低收入户”;若100y ≥,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.(1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户”的概率; (2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用ξ表示所选3户中乙村的户数,求ξ的分布列和数学期望()E ξ;(3)试比较这100户中,甲、乙两村指标y 的方差的大小(只需写出结论). 19. 如图,直三棱柱111ABC A B C -中,M 是AB 的中点.(1)证明:1//BC 平面1MCA ;(2)若BMC △是正三角形,且1AB BC =,求直线AB 与平面1MCA 所成角的正弦值. 20. 设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知以F 为圆心,半径为4的圆与l 交于A 、B 两点,E 是该圆与抛物线C 的一个交点,90EAB ∠=︒.(1)求p 的值;(2)已知点P 的纵坐标为1-且在C 上,Q 、R 是C 上异于点P 的另两点,且满足直线PQ 和直线PR 的斜率之和为1-,试问直线QR 是否经过一定点,若是,求出定点的坐标,否则,请说明理由.21. 已知函数23()(4cos 1)x f x e x x x x α=+++,()(1)x g x e m x =-+. (1)当1m ≥时,求函数()g x 的极值; (2)若72a ≥-,证明:当(0,1)x ∈时,()1f x x >+. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆O 的方程为224x y +=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是2cos21ρθ=. (1)求圆O 的参数方程和曲线C 的直角坐标方程;(2)已知M ,N 是曲线C 与x 轴的两个交点,点P 为圆O 上的任意一点,证明:22||||PM PN +为定值.23.选修4-5:不等式选讲 已知函数()|1|f x x =-.(1)解不等式(2)(4)6f x f x ++≥;(2)若a 、b R ∈,||1a <,||1b <,证明:()(1)f ab f a b >-+.试卷答案一、选择题1-5:ADCDD 6-10:ABBCC 11、12:AD 二、填空题16. 3(0,]2三、解答题17.解:(1)由21n n S a n +=+①,得2111(1)n n S a n +++=++② 则②-①得21n a n =+.当13a =时满足上式, 所以数列{}n a 的通项公式为21n a n =+. (2)由(1)得21(1)2n n n b +=-+, 所以12n n T b b b =+++2[(1)(1)(1)]n =-+-++-+3521(222)n ++++3(1)[1(1)]2(14)1(1)14n n -⨯--⨯-=+---(1)18(41)23n n--=+-. 18.解:(1)由图知,在甲村50户中,“今年不能脱贫的绝对贫困户”有5户, 所以从甲村50户中随机选出一户,该户为“今年不能脱贫的绝对贫困户”的概率为50.150P == (2)由图知,“今年不能脱贫的非绝对贫困户”有10户,其中甲村6户,乙村4户,依题意,ξ的可能值为0,1,2,3.从而36310201(0)1206C P C ξ====,1246310601(1)1202C C P C ξ====,2146310363(2)12010C C P C ξ====,3431041(3)12030C P C ξ====.所以ξ的分布列为:故ξ的数学期望113112()0123 1.262103010E ξ=⨯+⨯+⨯+⨯==. (3)这100户中甲村指标y 的方差大于乙村指标y 的方差.19.解:(1)连接1AC ,设1AC 与1AC 的交点为N ,则N 为1AC 的中点,连接MN ,又M 是AB 的中点,所以1//MN BC .又MN ⊂平面1MCA ,1BC ⊂/平面1MCA ,所以1//BC 平面1MCA .(2)M 是AB 的中点,BMC 是正三角形,则60ABC ︒∠=,30BAC ︒∠=,90ACB ︒∠=,设1BC =,则1AC CC ==1CC 为x 轴,CB 为y 轴,CA 为z 轴建立空间直角坐标系.则(0,1,0)B,A,1A,1(0,2M,(0,1,AB =,1(0,2CM =,1(3,0,CA =.设(,,)n x y z =是平面1MCA 的法向量,则10n CM n CA ⎧⋅=⎪⎨⋅=⎪⎩,可取平面1MCA 的法向量为(1,3,1)n =-,则 |cos ,|AB n 〈〉=||155||||AB n AB n ⋅=,所以直线AB 与平面1MCA .20.解:(1)由题意及抛物线定义,||||||4AF EF AE ===,AEF 为边长为4的正三角形,设准线l 与x 轴交于点D ,11||||4222AD p AE ===⨯=. (2)设直线QR 的方程为x my t =+,点11(,)Q x y ,22(,)R x y . 由24x my t y x=+⎧⎨=⎩,得2440y my t --=,则216160m t ∆=+>,124y y m +=,124y y t ⋅=-. 又点P 在抛物线C 上,则11221144p P PQ P P y y y y k y y x x --==--11441P y y y ==+-,同理可得241PR k y =-. 因为1PQ PR k k +=-,所以124411y y +=--1212124()8()1y y y y y y +--++1681441m t m -==---+,解得734t m =-.由21616073417(1)344m t t m m m ⎧⎪∆=+>⎪⎪=-⎨⎪⎪≠⨯-+-⎪⎩,解得71(,)(,1)(1,)22m ∈-∞-⋃⋃+∞. 所以直线QR 的方程为7(3)4x m y =+-,则直线QR 过定点7(,3)4--. 21.解:(1)()xg x e m '=-,由()0g x '=得ln x m =. 由ln x m >得()0g x '>,ln x m <得()0g x '<,所以函数()g x 只有极小值(ln )(ln 1)ln g m m m m m m =-+=-.(2)不等式等价于3214cos 1x x x ax x x e++++>,由(1)得:1xe x ≥+, 所以22(1)x e x ≥+,所以2111xx e x +<+,(0,1)x ∈, 321(4cos 1)x x x ax x x e ++++->31(4cos 1)1x ax x x x +++-+34cos 1x x ax x x x =++++21(4cos )1x x x a x =++++令21()4cos 1h x x x a x =++++,则21()24sin (1)h x x x x '=--+, 令()24sin I x x x =-,则()24cos 2(12cos )I x x x '=-=-, 当(0,1)x ∈时,1cos cos1cos32x π>>=,所以12cos 0x -<,所以()0I x '<,所以()I x 在(0,1)上为减函数,所以()(0)0I x I <=,则()0h x '<,所以()h x 在(0,1)上为减函数,因此,3()(1)4cos12h x h a >=++,因为4cos14cos 23π>=,而72a ≥-, 所以34cos102a ++>,所以()0h x >,而(0,1)x ∈,所以()1f x x >+. 22.解:(1)圆O 的参数方程为2cos 2cos x y αα=⎧⎨=⎩,(α为参数),由2cos21ρθ=得:222(cossin )1ρθθ-=,即2222cos sin 1ρθρθ-=,所以曲线C 的直角坐标方程为221x y -=.(2)由(1)知(1,0)M -,(1,0)N ,可设(2cos ,2sin )P αα,所以22||||PM PN +=2222(2cos 1)(2sin )(2cos 1)(2sin )αααα+++-+54cos 54cos 10αα=++-=所以22||||PM PN +为定值10.23.解:(1)由(2)(4)6f x f x ++≥得:|21||3|6x x -++≥, 当3x <-时,2136x x -+--≥,解得3x <-;当132x -≤≤时,2136x x -+++≥,解得32x -≤≤-; 当12x >时,2136x x -++≥,解得43x ≥;综上,不等式的解集为4{|2}3x x ≤-≥或.(2)证明:()(1)|1||f ab f a b ab a b >-+⇔->-, 因为||1a <,||1b <,即21a <,21b <, 所以22|1|||ab a b ---=2222212a b ab a ab b -+-+-=22221a b a b --+=22(1)(1)0a b -->,所以22|1|||ab a b ->-,即|1|||ab a b ->-,所以原不等式成立.。
2018届云南省昆明市高三上学期摸底调研测试理科数学试题及答案 精品
昆明市2018届高三摸底调研测试理科数学试卷第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设全集U=R,集合A={x| x(x -3)>0},则C A=(A) [0,3] (B)(0,3)(C) (-∞,0) (3,+ ∞) (D) (-∞,0][3,+ ∞)(2) 设复数z满足(13)3,i z i z-=+=则(A)一i (B) i (C) 3455i-(D) 3455i+(3)设命题p:∀x∈R ,2x>0,则⌝p为(A) ∀x∈R, 2x<0(B) ∀x∈R, 2x<0(C) ∃xo∈R, 2 xo <0 (D)∃3xo∈R, 2xo <0(4) 一个几何体的三视图如图所示,则该几何体的体积等于(A) 8+4π(B) 8+2π(C) 8+43π(D) 8+23π(5)设a ,b ∈N*,记R(a\b)为a 除以b 所得的余数.执行 如图所示的程序框图,若输入a= 243,b=45,则输 出的值等于 (A) 0 (B) 1 (C) 9 (D) 18(6)已知ω>0,在函数y=sin ωx 与y=cos ωx 的图像的交点中,相邻两个交点的横坐标之差为1,则ω=(A)1 (B)2 (C)π (D) 2π(7)己知四边形ABCD 为正方形,3BP CP =,AP 与CD 交于点E ,若PE mCP nPD =+ 则m-n= (A)一23(B)23(C) —13(D) 13(8)己知a ∈(0,2π),cos(a +4π)= 一35,则tan a =(A) 17(B) 7 (C) 34(D) 43(9)四人进行一项游戏,他们约定:在一轮游戏中,每人掷一枚质地均匀的骰子1次,若某人掷出的点数为5或6,则此人游戏成功,否则游戏失败.在一轮游戏中,至少有2 人游戏成功的概率为(A) 127 (B) 827(C) 1127(D)89(10)已知F1,F2为双曲线C的左,右焦点,过F1的直线分别交C的左,右两支于A,B两点,若△AF2B为等腰直角三角形,且∠AF2B=90°,那么C的离心率为(11)已知曲线f(x)=e2x- 2e x+ax -1存在两条斜率为3的切线,则实数a的取值范围为(A)(3,+∞) (B) [3,72] (C) (一∞,72](D)(0,3)(12)棱长为a的正方体可任意摆放,则其在水平平面上投影面积的最大值为2:22 (D) 2a2第II卷本卷包括必考题和选考题两部分。
昆明市2018届高三摸底调研测试(理数试卷)
A.15 C. 45
B. 30 D. 60
11.若函数 f (x) 2x1 x2 2x 2 ,对于任意 x Z 且 x (, a) , f (x) 0 恒成立,则实数
a 的取值范围是 A. (, 1]
B. (,0]
C. (,3]
D. (, 4]
12.在长方体 ABCD A1B1C1D1 中, AB AD 4,AA1 2 .过点 A1 作平面 与 AB , AD 分 别交于 M , N 两点.若 AA1 与平面 所成角为 45 ,则截面 A1MN 面积的最小值是
.
15.已知函数
f
(x)
log2 (x 1) ,
x3
3x
1,
x 1, 则函数 f (x) 的零点个数为 x 1,
.
16.将数列an 中的所有项按每一行比上一行多 1 项的规则排成如下数阵:
a1 a2 , a3 a4 , a5 , a6 a7 , a8 , a9 , a10
记数阵中的第 1 列数 a1 ,a2 ,a4 , ,构成的数列为bn ,Sn 为数列bn 的前 n 项和.
D.x 0 x 1
2.设复数 z 满足 (1 i)z i ,则 z 的共轭复数 z
A. 1 1 i 22
C. 1 1 i 22
B. 1 1 i 22
D. 1 1 i 22
3.已知向量 a (1, 2) , b (1,3) ,则 2a b
A. 2
B. 2
C. 10
D.10
4.已知等差数列{an} 的公差为 2,且 a4 是 a2 与 a8 的等比中项,则 an
8.定义[x] 表示不超过 x 的最大整数,例如[2] 2 ,[3.6] 3 .右
2018-2019年云南省昆明市质检一:昆明市2018届高三第一次质量检测数学(理)试题-附答案精品
云南省昆明市2018届高三第一次质量检测理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11212i i+++(其中i 为虚数单位)的虚部为( ) A .35 B .35i C .35- D .35i - 2.若集合{|12}A x x =<<,{|,}B x x b b R =>∈,则A B ⊆的一个充分不必要条件是( )A .2b ≥B .12b <≤C .1b ≤D .1b <3.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为2s ,则( )A .4x =,22s <B .4x =,22s >C .4x >,22s <D .4x >,22s > 4.已知椭圆C :22221(0)x y a b a b+=>>,若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A .2213632x y +=B .22198x y +=C .22195x y +=D .2211612x y += 5.已知正项等比数列{}n a 满足31a =,5a 与432a 的等差中项为12,则1a 的值为( ) A .4 B .2 C .12 D .14 6.已知变量x ,y 满足约束条件40221x y x y --≤⎧⎪-≤<⎨⎪≤⎩,若2z x y =-,则z 的取值范围是( )A .[5,6)-B .[5,6]-C .(2,9)D .[5,9]-7.七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.如图,这是一个用七巧板拼成的正方形,其中1号板与2号板为两个全等的等腰直角三角形,3号板与5号板为两个全等的等腰直角三角形,7号板为一个等腰直角三角形,4号板为一个正方形,6号板为一个平行四边形.现从这个。
【数学】云南省昆明市2018届高三教学质量检查(二统)数学(理)试题含答案
【数学】云南省昆明市2018届⾼三教学质量检查(⼆统)数学(理)试题含答案昆明市2018届⾼三复习教学质量检测理科数学⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知a ,b R ∈,复数21ia bi i+=+,则a b +=() A .2 B .1 C .0 D .2-2.设集合{2,1,0,1,2}A =--,2{|20}B x x x =+-≤,则AB =()A .{0,1,2}B .{2,1,0}--C .{1,0,1}-D .{2,1,0,1}-- 3.若点55(sin,cos )66ππ在⾓α的终边上,则sin α=()A .12 C .. 12-4.“搜索指数”是⽹民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越⼤,表⽰⽹民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越⾼.下图是2017年9⽉到2018年2⽉这半年中,某个关键词的搜索指数变化的⾛势图.根据该⾛势图,下列结论正确的是()A .这半年中,⽹民对该关键词相关的信息关注度呈周期性变化B .这半年中,⽹民对该关键词相关的信息关注度不断减弱C. 从⽹民对该关键词的搜索指数来看,去年10⽉份的⽅差⼩于11⽉份的⽅差 D .从⽹民对该关键词的搜索指数来看,去年12⽉份的平均值⼤于今年1⽉份的平均值 5.⼀个简单⼏何体的三视图如图所⽰,其中正视图是等腰直⾓三⾓形,侧视图是边长为2的等边三⾓形,则该⼏何体的体积等于()A .26.已知直线:l y m +与圆22:(3)6C x y +-=相交于A ,B 两点,若120ACB ∠=?,则实数m 的值为()A .33.3+3-C.9或3- D .8或2-7.执⾏下⾯的程序框图,如果输⼊1a =,1b =,则输出的S =()A .7B .20 C.22 D .548.若直线(01)x a a π=<<与函数tan y x =的图像⽆公共点,则不等式tan 2x a ≥的解集为() A .{|,}62x k x k k Z ππππ+≤<+∈ B .{|,}42x k x k k Z ππππ+≤<+∈ C. {|,}32x k x k k Z ππππ+≤<+∈ D .{|,}44x k x k k Z ππππ-≤≤+∈9.已知函数24,1()ln 1,1x x a x f x x x ?-+<=?+≥?,若⽅程()2f x =有两个解,则实数a 的取值范围是()A .(,2)-∞B .(,2]-∞ C. (,5)-∞ D .(,5]-∞10.已知F 是椭圆2222:1(0)x y E a b a b +=>>的左焦点,经过原点的直线l 与椭圆E 交于P ,Q 两点,若||2||PF QF =,且120PFQ ∠=?,则椭圆E 的离⼼率为()A .13 B .12C. 3 D.211.已知函数2()2ln xe f x k x kx x=+-,若2x =是函数()f x 的唯⼀极值点,则实数k 的取值范围是()A . 2(,]4e -∞ B .(,]2e -∞ C. (0,2] D .[2,)+∞12.定义“有增有减”数列{}n a 如下:*t N ?∈,满⾜1t t a a +<,且*s N ?∈,满⾜1S S a a +>.已知“有增有减”数列{}n a 共4项,若{,,}(1,2,3,4)i a x y z i ∈=,且x y z <<,则数列{}n a 共有()A .64个B .57个 C.56个 D .54个⼆、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a ,b 满⾜a b ⊥,||1a =,|2|22a b +=,则||b = .14.已知变量x ,y 满⾜3040240x x y x y +≥??-+≥??+-≤?,则3z x y =+的最⼤值为.15.在ABC △中,⾓,,A B C 所对的边分别是,,a b c ,若1cos 4C =,3c =,且cos cos a bA B=,则ABC △的⾯积等于.16.如图,等腰PAB △所在平⾯为α,PA PB ⊥,4AB =,点C ,D 分别为PA ,AB 的中点,点G 为CD 的中点.平⾯α内经过点G 的直线l 将PAB △分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点'P ('P ?平⾯α).若点'P 在平⾯α内的射影H 恰好在翻折前的线段AB 上,则线段'P H 的长度的取值范围是.三、解答题(本⼤题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.) 17.已知数列{}n a 中,13a =,{}n a 的前n 项和n S 满⾜:21n n S a n +=+. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满⾜:(1)2n an n b =-+,求{}n b 的前n 项和n T .18.在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、⼄两个村各50户贫困户.为了做到精准帮扶,⼯作组对这100户村民的年收⼊情况、劳动能⼒情况、⼦⼥受教育情况、危旧房情况、患病情况等进⾏调查,并把调查结果转化为各户的贫困指标x 和y ,制成下图,其中“*”表⽰甲村贫困户,“+”表⽰⼄村贫困户.若00.6x <<,则认定该户为“绝对贫困户”,若0.60.8x ≤≤,则认定该户为“相对贫困户”,若0.81x <≤,则认定该户为“低收⼊户”;若100y ≥,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.(1)从甲村50户中随机选出⼀户,求该户为“今年不能脱贫的绝对贫困户”的概率;(2)若从所有“今年不能脱贫的⾮绝对贫困户”中选3户,⽤ξ表⽰所选3户中⼄村的户数,求ξ的分布列和数学期望()E ξ;(3)试⽐较这100户中,甲、⼄两村指标y 的⽅差的⼤⼩(只需写出结论). 19. 如图,直三棱柱111ABC A B C -中,M 是AB 的中点.(1)证明:1//BC 平⾯1MCA ;(2)若BMC △是正三⾓形,且1AB BC =,求直线AB 与平⾯1MCA 所成⾓的正弦值. 20. 设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知以F 为圆⼼,半径为4的圆与l 交于A 、B 两点,E 是该圆与抛物线C 的⼀个交点,90EAB ∠=?.(1)求p 的值;(2)已知点P 的纵坐标为1-且在C 上,Q 、R 是C 上异于点P 的另两点,且满⾜直线PQ 和直线PR 的斜率之和为1-,试问直线QR 是否经过⼀定点,若是,求出定点的坐标,否则,请说明理由.21. 已知函数23()(4cos 1)x f x e x x x x α=+++,()(1)x g x e m x =-+. (1)当1m ≥时,求函数()g x 的极值;(2)若72a ≥-,证明:当(0,1)x ∈时,()1f x x >+. 请考⽣在22、23两题中任选⼀题作答,如果多做,则按所做的第⼀题记分. 22.选修4-4:坐标系与参数⽅程在平⾯直⾓坐标系xOy 中,圆O 的⽅程为224x y +=,以坐标原点为极点,x 轴的正半轴为极轴建⽴极坐标系,曲线C 的极坐标⽅程是2cos21ρθ=. (1)求圆O 的参数⽅程和曲线C 的直⾓坐标⽅程;(2)已知M ,N 是曲线C 与x 轴的两个交点,点P 为圆O 上的任意⼀点,证明:22||||PM PN +为定值.23.选修4-5:不等式选讲已知函数()|1|f x x =-.(1)解不等式(2)(4)6f x f x ++≥;(2)若a 、b R ∈,||1a <,||1b <,证明:()(1)f ab f a b >-+.试卷答案⼀、选择题1-5:ADCDD 6-10:ABBCC 11、12:AD ⼆、填空题16. 3(0,]2三、解答题17.解:(1)由21n n S a n +=+①,得2111(1)n n S a n +++=++②则②-①得21n a n =+.当13a =时满⾜上式,所以数列{}n a 的通项公式为21n a n =+. (2)由(1)得21(1)2n n n b +=-+,所以12n n T b b b =+++2[(1)(1)(1)]n =-+-++-+3521(222)n ++++3(1)[1(1)]2(14)1(1)14n n -?--?-=+---(1)18(41)23n n--=+-. 18.解:(1)由图知,在甲村50户中,“今年不能脱贫的绝对贫困户”有5户,所以从甲村50户中随机选出⼀户,该户为“今年不能脱贫的绝对贫困户”的概率为50.150P == (2)由图知,“今年不能脱贫的⾮绝对贫困户”有10户,其中甲村6户,⼄村4户,依题意,ξ的可能值为0,1,2,3.从⽽36310201(0)1206C P C ξ====,1246310601(1)1202C C P C ξ====,2146310363(2)12010C C P C ξ====,3431041(3)12030C P C ξ====.所以ξ的分布列为:故ξ的数学期望113112()0123 1.262103010E ξ=?+?+?+?==. (3)这100户中甲村指标y 的⽅差⼤于⼄村指标y 的⽅差.19.解:(1)连接1AC ,设1AC 与1AC 的交点为N ,则N 为1AC 的中点,连接MN ,⼜M 是AB 的中点,所以1//MN BC .⼜MN ?平⾯1MCA ,1BC ?/平⾯1MCA ,所以1//BC 平⾯1MCA .(2)M 是AB 的中点,BMC 是正三⾓形,则60ABC ?∠=,30BAC ?∠=,90ACB ?∠=,设1BC =,则1AC CC ==1CC 为x 轴,CB 为y 轴,CA 为z 轴建⽴空间直⾓坐标系.则(0,1,0)B,A,1A,(0,1,AB =,1(0,2CM =,1(3,0,CA =.设(,,)n x y z =是平⾯1MCA 的法向量,则10n CM n CA ??==??,可取平⾯1MCA 的法向量为(1,3,1)n =-,则 |cos ,|AB n ??=||155||||AB n AB n ?=,所以直线AB 与平⾯1MCA .20.解:(1)由题意及抛物线定义,||||||4AF EF AE ===,AEF 为边长为4的正三⾓形,设准线l 与x 轴交于点D ,11 ||||4222AD p AE ===?=. (2)设直线QR 的⽅程为x my t =+,点11(,)Q x y ,22(,)R x y . 由24x my t y x=+??=?,得2440y my t --=,则216160m t ?=+>,124y y m +=,124y y t ?=-. ⼜点P 在抛物线C 上,则11221144p P PQ P P y y y y k y y x x --=P y y y ==+-,同理可得241PR k y =-. 因为1PQ PR k k +=-,所以124411y y +=--1212124()8()1y y y y y y +--++1681441m t m -==---+,解得734t m =-.由21616073417(1)344m t t m m m ?=+>?=-≠-+-,解得71(,)(,1)(1,)22m ∈-∞-??+∞. 所以直线QR 的⽅程为7(3)4x m y =+-,则直线QR 过定点7(,3)4--. 21.解:(1)()xg x e m '=-,由()0g x '=得ln x m =. 由ln x m >得()0g x '>,ln x m <得()0g x '<,所以函数()g x 只有极⼩值(ln )(ln 1)ln g m m m m m m =-+=-.。
2018届云南省昆明市第一中学高三上学期第三次双基检测理科数学试卷及答案 精品
昆明第一中学2018届高中新课标高三第三次双基检测理科数学 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合ln|1x M x y x ⎧⎫==⎨⎬-⎩⎭,{|1N y y ==,则MN =( )A .(]0,1B .()0,1C .()1,+∞D .[)1,+∞ 2.232015i i i i ++++=…( )A .-1B .0C .1D .i3.等比数列{}n a 的前n 项和为 n S ,若23a =,313S =,则33log a 的值为( )A .0B .2C .0或2D .1或24.若20sin a xdx π=⎰,则5(1)(2)ax x +-的展开式中3x 项的系数为( ) A .40 B .40- C .120 D .120- 5.执行如图所示的程序框图,若输出的结果为35S =,那么判断框中应填入的关于n 的条件是( )A .6?n <B .6?n ≤C .6?n >D .6?n ≥6.已知正四棱锥P ABCD -的各顶点在同一个球O 的球面上,且该棱锥的体积为2,则球O 的表面积为( ) A .6π B .8π CD.37.设'()f x 为函数()f x 的导函数,函数'()y xf x =的图象如图,则以下说法错误的是( ) A .'(2)'(2)f f =-B .当2x =-时,函数()f x 取得极小值C .当2x =时,函数()f x 取得极大值D .方程'()0xf x =与()0f x =均有3个实根8.已知变量x ,y 满足约束条件20,,,x y y x y x a -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为4,则实数a 的值为( )A .1B .52C .83D .9.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为2的正方形,则此四面体的体积是( )A .23B .43C .83D .810.设3log 4a =,4log 3b =,3log 2c =,则( )A .a c b >>B .a b c >>C .b c a >>D .c a b >> 11.已知抛物线E :22y x =的焦点为F ,E 上有四点A ,B ,C ,D 满足0FA FB FC FD +++=,则||||||||FA FB FC FD +++=( )A .4B .3C .2D .112.在Rt △ABC 中,AB AC ==M 为BC 的中点,动点P 满足3PM =,则△ABP 与△ACP 的面积之比的最大值为( )A .7B .8C .9D .10第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在△ABC 中,||||AB AC AB AC +=-,||2AB =,||1AC =,D ,E 为线段BC 的两个三等分点,则AD AE ⋅= . 14.已知函数1()cos()12f x x ωϕ=++(0ω>),若()112f π=,1()42f π=,则ω的最小值为 .15.从正方体的8个顶点中任取3个点,则以这3个点为顶点能构成正三角形的概率为 .16.数列{}n a 的前n 项和为n S ,已知18a =,42a =,且212n n n a a a ++=-(*n N ∈),若nS 的最大值为a,nnS 的最大值为b,则a b += .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且222cos cos sin 1cos A C A C B +=+.(1)求B ; (2)设函数2()cos cos f x x x x =-(x R ∈),求()f A 的取值范围.18.(本小题满分12分)某工厂在2018年至2018年每年的机器维修费用y (单位:千元)的数据如下表:年份 2018 2018 2018 2018 2018 年份代号t 12345维修费用y1.82.2 2.7 2.83.5(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析该厂在2018年至2018年每年的机器维修费用的变化情况,并预测该厂在2018年所需的机器维修费用.附:回归直线的斜率和截距的最小二乘估计公式分别为121()()()nii i nii tt y y b tt ==--=-∑∑,a y bt =-19.(本小题满分12分) 如图,三棱柱111ABC A B C -中,AC BC =,1AB AA =,1120ABB ∠=︒.(1)证明:1AB AC ⊥; (2)若平面11A ABB ⊥平面ABC,AB =AC ,求二面角111A CC B --的余弦值.20.(本小题满分12分)已知点P 为圆226x y +=上一动点,过点P 作x 轴的垂线,垂足为Q ,点M 满足2(1)PM PQ =-. (1)求点M 的轨迹E 的方程;(2)过点(0,2)D -的直线l 与E 交于A ,B 两点,若以线段AB 为直径的圆N 过坐标原点O ,求圆N 的方程.21.(本小题满分12分) 已知函数()ln()x f x ke x m =-+.(1)若1k m ==,求函数()f x 的极小值; (2)当3k =,3m ≤时,证明:()ln 31f x >-.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是圆O 的直径,AC 是弦,直线EF 和圆O 相切于点C ,AD ⊥EF ,垂足为D ,直线EF 交BA 的延长线于点F . (1)求证:∠BAC =∠DAC ; (2)若2OB =,1AD =,求证:BC AFBFBC=.23.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为3,4x m s y s=+⎧⎨=⎩(s为参数),在以O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为cos 24cos ρρθθ=+. (1)求直线l 与曲线C 的普通方程;(2)设直线l 与x 轴交于点P ,且于曲线C 相交于A ,B 两点,若||AB 是||PA 与||PB 的等比中项,求实数m 的值. 24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a =+,a R ∈.(1)当1a =-时,求不等式()|1|30f x x ++-≤的解集; (2)若对[]1,2x ∀∈,2()1f x x <+恒成立,求a 的取值范围.昆明市第一中学2018届高三考试参考答案(理科数学) 一、选择题BACAC BDDCB DA1.解析:集合|0{M x x =>且1}x ≠,{}|1N y y =≤,所以{}|01M N x x =<<I ,选B . 2.解析:因为()1230i i i i kk k k k ++++++=∈Z ,所以232015231i i i i i i i +⋅⋅⋅=+++-=++,选A .P3.解析:因为23a =,313S =,联立化为231030q q -+=,解得13q =或3q =;当13q =时,31a =,33log 0a =,当3q =时,39a =,33log 2a =,选C .4.解析:由题意,2200sin (cos )1a xdx x ππ==-=⎰,则5(2)x -展开式中含2x 与3x 的项为232235280T C x x ==,323345240T C x x =-=-,所以5(1)(2)x x +-展开式中3x 项的系数为804040-=,选A.5.解析:第一次循环,11S =,9n =;第二次循环20S =,8n =;第三次循环,28S =,7n =;第四次循环,35S =,6n =,结束循环,输出35S =,因此6n >,选C .6.解析:如图,设点M 为正四棱锥P ABCD -的底面的中心,则PM为四棱锥的高,球心O 必在直线PM 上, 不妨设点线段PM 上,球O 的半径为R ,连接OA ,则OA R=;由条件知132PM=,所以2PM =,则OM R =-,又由条件可求得AM =,在RtAOM ∆由勾股定理得222)R R =+得R =;当点O 在线段PM的延长线上时求得同样结果,故球O 的表面积为248ππ=,选B .7.解析:函数()f x 在(,2)-∞-单调递减,(2,2)-单调递增,(2,)+∞单调递减,所以(2)(2)0f f ''=-=,当2x =-时,函数取得极小值,当2x =时,函数取得极大值,其图像可如图,所以D 错误,选D .8.解析:画出可行域(如图阴影部分所示)和直线0l :20x y +=,观察图形,知直线2x y z +=过直线y x a=-+和20x y -=的交点2,33a a A ⎛⎫ ⎪⎝⎭时,z 取得最小值,即22433a a ⨯+=,解得3a =,选D.9.解析:由于正视图、侧视图、俯视图都是边长为2的正方形,所以此四面体一定可以放在正方体中,所以可以在正方体中寻找四面体,如图所示,四面体ABCD 满足题意,所以此四面体的体积是11884222323-⨯⨯⨯⨯⨯=,选C.10.解析:3log 41a b=>>,令()log (1)x f x x =-,()ln(1)log (1)ln x x f x x x-=-=,()21[ln (1)ln(1)]0(1)ln f x x x x x x x x'=--->-,()f x 在(1,)+∞单调递增,所以()()43f f >,即b c >,所以a b c >>,选B .11.解析:设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,由+++=0FA FB FC FD 得12341111+++=08888y y y y ----,12341+++=2y y y y ,根据抛物线定义有+++=FA FB FC FD12341111+++++++=18888y y y y ,选D . 12. 解析:由1sin sin 2==1sin sin 2ABP ACPAB AP BAPS BAPS CAP AC AP CAP ∆∆⋅⋅⋅∠∠∠⋅⋅⋅∠可知要ABP ∆与ACP ∆的面积之比最大,只需BAP ∠最大,CAP ∠最小,所以当AP 与以M为圆心,半径为3的圆相切时BAP ∠最大.因为3sin =5MAP ∠,4cos =5MAP ∠,所以ABP∆与ACP∆的面积之比的最大值为sin (45+)sin (45)MAP MAP ︒︒∠-∠cos +sin ==7cos sin MAP MAPMAP MAP∠∠∠-∠,选A .二、填空题13.10914.3 15.1716.12813.解析:由AB AC AB AC+=-,化简得0AB AC ⋅=,所以AB AC ⊥,所以ABC ∆为直角三角形. 如图,以AB 所在直线为x 轴,以AC 所在直线为y 轴建立平面直角坐标系,则()0,0A ,()2,0B ,()0,1C .由D ,E 为线段BC 的两个三等分点知41,33D ⎛⎫ ⎪⎝⎭,22,33E ⎛⎫ ⎪⎝⎭,41,33AD ⎛⎫= ⎪⎝⎭,22,33AE ⎛⎫= ⎪⎝⎭,所以AD AE ⋅=42121033339⨯+⨯=.14.解析:由题意可知函数12()cos()1(0)f x x ωϕω=++>的图象的一个对称中心为点,112π⎛⎫⎪⎝⎭,一条对称轴为直线4x π=,所以4412T ππ≤-,即232ππω≤,得3ω≥,所以ω的最小值为3.15.解析:从正方体的8个顶点中任取3个点有38C 种取法,能构成正三角形的有11A BC ∆,11A DC ∆,11AB D ∆,11CB D ∆,1AB C ∆,1ADC ∆,1A BD ∆,1C BD ∆共8种可能,则所求的概率为81567P ==. 16.解析:因为212()n n n a a a n ++=-∈*N ,所以数列{}n a 为等差数列,由18a =,42a =得2d =-,所以22(1)9818(2)9=224n n n S n n n n -⎛⎫=+-=-+--+ ⎪⎝⎭,可知n S 的最大值20a =;329n nS n n =-+,由()2318=0n nS n n '=-+,得6n =,可知n nS 的最大值108b =;所以128a b +=. 三、解答题17.解:(1)由222cos cos sin 1cos A C A C B +=+,得2221sin 1sin sin 2sin A C A C B -+-=-,由正弦定理得:222a cb +-=,于是222cos 22a cb B ac +-==-,所以56B π=.(2)因2()cos cos f x x x x =-cos 21222x x +=-1sin(2)62x π=--, 所以1()sin(2)62f A A π=--.C 1A ADABCA 1C 1B 1又因为ABC ∆中,56B π=,所以06A π<<,所以2666A πππ-<-<,所以11sin(2)262A π-<-<,即1()0f A -<<,所以()f A 的取值范围是()1,0-.18.解:(1)由所给数据计算可得1(12345)35t =++++=,1(1.8 2.2 2.7 2.8 3.5) 2.65y =++++=,521()4101410i i t t =-=++++=∑, 51()()(2)(0.8)(1)(0.4)0(0.1)10.220.94iii t t y y =--=-⨯-+-⨯-+⨯-+⨯+⨯=∑,则51521()()40.410()ii i ii tt y y b t t ==--===-∑∑,a y bt =- 2.60.43 1.4=-⨯=, 则回归直线方程为0.4 1.4y t =+.(2)由(1)知,0.40b =>,故从2018年至2018年每年的机器维修费用在逐年增加,平均每年增加0.4千元,将2018年的年份代号记为7t =,代入(1)中的回归方程得ˆ0.47 1.4 4.2y =⨯+=(千元),故预测该厂在2016年所需的机器维修费用为4.2千元. ……… 12分17.解:(Ⅰ)证明:取AB 的中点D ,连接CD ,1A D ,因为1120ABB ∠=,所以160A AB ∠=,又1AB AA =, 所以1A AB ∆为正三角形,则11A A A B =,得1AB A D ⊥; 又因为AC BC =,所以AB CD ⊥, 因为1A DCD D =,所以AB ⊥平面1A DC ,1因为1AC ⊂平面1A DC ,所以1AB AC ⊥. (Ⅱ)由(Ⅰ)知1A D AB ⊥,AB CD ⊥, 因为平面11A ABB ⊥平面ABC ,交线为AB , 所以1A D ⊥平面ABC ,则1A D CD ⊥.以D 为原点,分别以DB ,DC ,1DA 所在直线 为x ,y ,z 轴建立空间直角坐标系D xyz -AB =AC ,由(Ⅰ)知11AA A B AB ===, 所以13A D =,CD =;所以(0,0,0)D,(A,B ,1(0,0,3)A,C ,得11(3,0,3)CC AA ==,1(0,CA =,(BC =;设(,,)m x y z =为平面11ACC 的法向量,由1m CC ⊥,1m CA ⊥可求得(3,m =-;设(,,)n x y z =为平面1BCC的法向量,同理可求得(3,n =-;由cos ,m n m n m n⋅<>=⨯17==, 所以二面角111A CC B --的余弦值为17.18. 解:(Ⅰ)设00(,)P x y ,0(,0)Q x ,(,)M x y ,由2=1PM PQ ⎛⎫- ⎪ ⎝⎭得000(,)=1(0,)x x y y y ⎛---⎝,0=x x ,00=1y y y ⎫--⎪⎪⎭,所以0=x x ,0y ,代人22+=6x y 得22+2=6x y ,22+=163x y .(Ⅱ)设11(,)A x y ,22(,)B x y ,根据题意直线l 的斜率存在,设直线l 的方程为=2y kx -,由方程组22=2+2=6y kx x y -⎧⎨⎩消去y ,整理得22(2+1)8+2=0k x kx -,1228+=2+1k x x k ,1222=2+1x x k , 所以121224+=(+)4=2+1y y k x x k --,21212246=(2)(2)=2+1k y y kx kx k ---. ………8分 设点(,)C x y 为圆N上任意一点,由=0AC BC ⋅得1122(,)(,)=0x x y y x x y y --⋅--,1212()()+()()=0x x x x y y y y ----,2212121212(+)++(+)+=0x x x x x x y y y y y y --,因为圆N 过坐标原点O ,所以1212+=0x x y y ,222246+=02+12+1k k k -,解得=1k ±, ………10分 所以圆N的方程为2284++=033x x y y -或2284+++=033x x y y . ………12分 19. 解:(Ⅰ)()ln(1)x f x e x =-+,所以()11x f x e x '=-+, (1)分观察得()01001f e '=-=且()11x f x e x '=-+在(1,)-+∞上单调递增,所以当(1,0)x ∈-时()0f x '<,当(0,)x ∈+∞时()0f x '>,所以()f x 在(1,0)x ∈-单调递减,()f x 在(0,)x ∈+∞单调递增,故()f x 有极小值()01f = (5)分证明:(Ⅱ)因为3k m =≥,所以()3ln()3ln(3)x x f x e x m e x =-+≥-+,……7分令()3ln(3)x h x e x =-+,1()33x h x e x '=-+,易知1()33x h x e x '=-+在(3,)-+∞单调递增,221(2)331023h e e --'-=-=-<-+,1111(1)330132h e e --'-=-=->-+, 设0001()303xh x e x '=-=+,则0(2,1)x ∈--,当0(3,)x x ∈-时,()0h x '<,当0(,)x x ∈+∞时,()0h x '>;所以()h x 在0(3,)x x ∈-上单调递减,0(,)x x ∈+∞上单调递增,……9分 所以0min 00()()3ln(3)xh x h x e x ==-+,又因为0001()303xh x e x '=-=+,故00133x e x =+, 所以001ln 3ln ln3x e x +=+,即00ln3ln(3)x x +=-+,所以0min 00()()3ln(3)x h x h x e x ==-+001ln 33x x =+++001(3)3ln 33x x =++-++3ln 3≥+ln 31=- 当且仅当00133x x =++,即02x =-或04x =-时等号成立,而0(2,1)x ∈--,所以min ()ln31h x >-即()ln31h x >-,所以()ln 31f x >-.……12分20.解:(Ⅰ)连接BC ,因为AB 是圆O 的直径,所以90ACB ∠=,所以90B BAC ∠+∠=,因为AD CE ⊥,所以90ACD DAC ∠=∠=, 因为AC 是弦,且直线CE 和圆O 切于点C所以 ACD B ∠=∠, 所以DAC BAC ∠=∠, ………5分(Ⅱ)由(Ⅰ)知ABC ∆∽ACD ∆,所以AC ADAB AC=, 由此得2AC AB AD =⋅, 因为2OB =,1AD =,所以4AB =,且2414AC AB AD =⋅=⨯=,所以2AC =,又1AD =,故2AC AD =,又AD CE ⊥,于是30ACD ∠=,因为ACD B ∠=∠,所以30B ∠=,30BFD ∠=,故BC CF =,因为CF 与圆O 相切,由切割线定理得2CF AF BF =⋅, 所以2BC AF BF =⋅,即BC AF BFBC=.21.解:(Ⅰ)由直线l 的参数方程得:34y x m =+⋅, 所以,直线l 的普通方程为4340x y m --=;由cos 24cos ρρθθ=+得:()2222cos sin 4cos ρρθθρθ=-+,即22y x =, 所以,曲线C 的普通方程为22y x =.(Ⅱ)因为()0,m P ,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t m x 5453(t 为参数),将其代入22y x =得:21632255t m t ⎛⎫=+ ⎪⎝⎭,即2815250t t m --=, 由2258000m ∆=+>得932m >-,12158t t +=,12258m t t =-, 因为AB是PA与PB的等比中项,所以2AB PA PB=⋅,即21212()t t t t -=,所以2121212()4t t t t t t +-=显然当0m ≥时不满足题意,于是0m <, 所以21212()5t t t t +=,即215255()88m⎛⎫=- ⎪⎝⎭,所以940m =-. 22.解:(Ⅰ) 当1a =-时,不等式()130f x x ++-≤即为不等式21130x x -++-≤不等式21130x x -++-≤同解于:1330x x <-⎧⎨--≤⎩ 或11210x x ⎧-≤≤⎪⎨⎪--≤⎩ 或12330x x ⎧>⎪⎨⎪-≤⎩, 解得:∅ 或 112x -≤≤ 或 112x <≤,所以不等式()130f x x ++-≤的解集为[]1,1-.(Ⅱ) 因为[]1,2x ∀∈,2()1f x x <+恒成立,即[]1,2x ∀∈,221x a x +<+恒成立,而221x a x +<+⇒22121x x a x --<+<+ ⇒222121x x a x x ---<<-+, 即[]1,2x ∀∈,222121x x a x x ---<<-+恒成立, 设()221g x x x =---,()221h x x x =-+可转化为[]1,2x ∀∈,()()max min g x a h x <<,即40a -<< 所以a 的取值范围是()4,0-.。
云南省昆明市2018届高三数学第一次摸底测试试题 理
云南省昆明市2018届高三数学第一次摸底测试试题 理第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1{0}3x A xx -=≥-,集合{15}B x N x =∈-≤≤,则A B =( ) A .{0,1,3,4,5} B .{0,1,4,5} C .{1,4,5} D .{1,3,4,5} 2.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )A .4π,则1z +=( ) A . 21x =对称,则a 的值为( ) A .-15.二项式51()x展开式中的常数项为( ) A .10 B .-10 C. 5 D .-56.设数列{}n a 的前n 项和为n S ,若2,,3n n S a 成等差数列,则5S 的值是( ) A .-243 B .-242 C.-162 D .2437.执行如图所示的程序框图,若输出n 的值为9,则判断框中可填入( )A .45?S ≥B .36?S ≥ C. 45?S > D .55?S ≥ 8.设,x y 为正数,且34xy=,当3x py =时,p 的值为( ) A .3log 4 B .4log 3 C. 36log 2 D .3log 29.一个正方体挖去一个多面体所得的几何体的三视图如图所示,其中正视图、左视图和俯视图均为边长等于2的正方形,这个几何体的表面积为( )A 20+.20+)2x πω+(0ω>),且()03f π=,当ω取最小值时,以下命题中假命题是( ) A .函数()f x 的图象关于直线12x π=对称B .6x π=-是函数()f x 的一个零点C. 函数()f x 的图象可由()2g x x =的图象向左平移3π个单位得到D .函数()f x 在[0,]12π上是增函数11.已知抛物线2:4C y x =的焦点为F ,准线为l ,点A l ∈,线段AF 交抛物线C 于点B ,若3FA FB =,则AF =( )A .3B .4 C.6 D .712.已知数列{}n a 的前n 项和为n S ,且12a =,142n n S a +=+,则数列{}n a 中的12a 为( )A .20480B .49152 C. 60152 D .89150第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2,1)a =,10a b ∙=,52a b +=,则b = .14.若实数,x y 满足不等式组33023010x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则x y +的最大值为 .15.已知双曲线C 的中心为坐标原点,点(2,0)F 是双曲线C 的一个焦点,过点F 作渐近线的垂线l ,垂足为M ,直线l 交y 轴于点E ,若3FM ME =,则双曲线C 的方程为.16.体积为A BCD -的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且:2:3R BC =,点E 为线段BD 的中点,过点E 作球O 的截面,则所得截面圆面积的最小值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,,,a b c 分别是角,,A B C 的对边,且222a cb +=,32a b = (1)求32a b =的值;(2)若6b =,求ABC ∆的面积.18. 如图,在直三棱柱111ABC A B C -中,090BAC ∠=,2AB AC ==,点,M N 分别为111,A C AB 的中点.(1)证明://MN 平面11BB C C ;(2)若CM MN ⊥,求二面角M CN A --的余弦值.19. 某市为了解本市2万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,发现其成绩服从正态分布(69,49)N ,现从某校随机抽取了50名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.(1)估算该校50名学生成绩的平均值x (同一组中的数据用该组区间的中点值作代表); (2)求这50名学生成绩在[80,100]内的人数;(3)现从该校50名考生成绩在[80,100]的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前26名的人数记为X ,求X 的分布列和数学期望. 参考数据:若2~(,)X N μσ,则()0.6826p X μσμσ-<≤+=,(22)0.9544p X μσμσ-<≤+= (33)0.9974p X μσμσ-<≤+=20. 已知动点(,)M x y =(1)求动点M 的轨迹E 的方程;(2)设过点(1,0)N -的直线l 与曲线E 交于,A B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合),证明:直线BC 恒过定点,并求该定点的坐标. 21. 已知函数()xf x e =,2()2a g x x x =--,(其中a R ∈,e 为自然对数的底数,2.71828e =……).(1)令'()()()h x f x g x =+,若()0h x ≥对任意的x R ∈恒成立,求实数a 的值; (2)在(1)的条件下,设m 为整数,且对于任意正整数n ,1()nn i i m n =<∑,求m 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程极坐标系中,O 为极点,半径为2的圆C 的圆心坐标为(2,)6π.(1)求圆C 的极坐标方程;(2)设直角坐标系的原点与极点O 重合,x 轴非负关轴与极轴重合,直线l的参数方程为1282x t y t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数),由直线l 上的点向圆C 引切线,求线线长的最小值. 23.选修4-5:不等式选讲 已知函数()23f x x x =--+. (1)求不等式()3f x ≤的解集;(2)若不等式2()6f x a a <-解集非空,求实数a 的取值范围.昆明一中全国联考第一期参考答案参考答案(理科数学)命题、审题组教师 杨昆华 李文清 孙思应 梁云虹 王在方 卢碧如 凹婷波 吕文芬 陈泳序积为2π.,选C.3. 解析:因为1iz i 1i--==--,所以1A.()1552251rr r r C x -=-,令155022r -=,所以3r =,所以1n =时,11223S a =+,所以12a =-;当2n ≥时,13322n n a a --,即11322n n a a -=,即()132n n a n a -=≥,所以数列n 是首项12a =-,公比3q =的等比数列,所以()()55151213242113a q S q---===---,选B.7. 解析:模拟执行如图所示的程序框图知,该程序的功能是计算12945S =+++=L ,选A.8. 解析:可令34x y t==,则3l o g x t =,4log y t =,由3x p y=得33343log 3log 43log 46log 2log log 3t t t p t ====,选C. 9. 解析:将三视图还原可得下图,所以52214252⨯⨯⨯+⨯=S 5420+=,选D.10. 解析:()3cos 23f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由()03f π=得()33k k ππωπ+=∈Z ,即31k ω=-,由0ω>知ω的最小值是2,当ω取得最小值时,()23f x x π⎛⎫=+ ⎪⎝⎭.由2121232f ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭可得出:函数()f x 的图象关于直线12x π=对称,A 为真;由20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦可得出:6x π=-是函数()f x 的一个零点,B 为真;将函数()2g x x =的图象向左平移6π个单位得到()23f x x π⎛⎫=+ ⎪⎝⎭的图象,所以C 为假;由复合函数单调性可得()f x 在0,12π⎡⎤⎢⎥⎣⎦上是增函数,所以D 为真,选C.11. 解析:由已知B 为AF 的三等分点,作BH l ⊥于H (如图),则2433BH FK ==,所以43BF BH ==,所以34BF AF ==,选B.12. 解析:由2142S a =+有12142a a a +=+,解得28a =,故2124a a -=,又221144n n n n n a S S a a ++++=-=- ,于是()211222n n n n a a a a +++-=-,因此数列{}12n n a a +-是以2124a a -=为首项,公比为2的等比数列.得1112422n n n n a a -++-=⨯=,于是11122n n n n a a ++-=,因此数列2n n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,解得()112n n a n n =+-=,2nn a n =⋅.所以1249152a =,选B.二、填空题52a b +=,250a b += ,即22250a b a b ++⋅=,所以22050b +=5b =.解析:如图,在点(4,5)A 处取得最大值9.15. 解析:设双曲线C 的方程为:22221x y a b-=,由已知得:FM b =,a b =,而224a b =-,所以23b =,21a =,所以双曲线C 的方程:2213y x -=16. 设3BC k =,则()20R k k =>,因为体积为的正三棱锥A BCD -的每个顶点都在半径为R 的球O 的球面上,所以2193k h ⨯=,得224h k=.由())222R h R =-+,得2k =或k =,所以4R =.由题意知点E 为线段BD的中点,从而在△ODB 中,4OD OB ==,6DB =,解得OE =所以当截面垂直于OE 3=,故截面圆面积最小值为9π. 三、解答题17. 解:(Ⅰ)由222cos 2a c b B ac +-==6B π=, 由32a b =及正弦定理可得出:3sin 2sin A B =,所以21sin sin 363A π==,再由32a b =知a b <,所以A 为锐角,cos A =,所以()()sin sin sin sin cos cos sin C A B A B A B A B π=-+=+=+=⎡⎤⎣⎦ (Ⅱ)由6b =及32a b =可得出4a =,所以11sin 46222S ab C ==⨯⨯=.18. 解:(Ⅰ)证明:连接1A B ,1BC ,点M ,N 分别为11A C ,B A 1的中点,所以MN 为△11A BC 的一条中位线,1//MN BC , MN ⊄平面11BB C C ,1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(Ⅱ)设a AA =1,则122+=a CM ,48441222+=++=a a MN , 42054222+=+=a a CN , 由CM MN ⊥,得222CN MN CM =+,解得2=a , 由题意以点A 为坐标原点,AB 为x 轴,AC 为y 轴, 1AA 为z 轴建立空间直角坐标系.可得)0,0,0(A ,)0,2,0(C ,)22,0,1(N ,)2,1,0(M , 故),,(2201=,),,(020=AC , ),,(2221-=, )2,1,0(-=CM , 设),,z y x 为平面ANC 的一个法向量,则⎪⎩⎪⎨⎧=⋅=⋅00AN m ,得10m =-(,同理可得平面MNC 的一个法向量为32n =(, 设二面角M CN A --的平面角为α,<,cos 153203⋅++-=155-=, =αcos ><-n m ,cos 155=, 所以,二面角M CN A --的余弦值为155.19. 解:(Ⅰ) 450.08550.2650.32750.2850.12950.0868.2x =⨯+⨯+⨯+⨯+⨯+⨯= (Ⅱ)()0.0080.012105010+⨯⨯=. (Ⅲ)()P 33=0.9974X μσμσ-<≤+,则()10.9974P 900.00132X -≥==.90分以上. 450=⨯人. ()242102P 2==15C X C =.X 的分布列:数学期望()1824012315155E X =⨯+⨯+⨯=.20. 解:(Ⅰ)由已知,动点M 到点(1,0)P -,(1,0)Q的距离之和为且PQ <M的轨迹为椭圆,而a ,1c =,所以1b =,所以,动点M 的轨迹E 的方程:2212x y +=.(Ⅱ)设11(,)A x y ,22(,)B x y ,则11(,)C x y -,由已知得直线l 的斜率存在,设斜率为k ,则直线l 的方程为:(1)y k x =+由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k -=+,直线BC 的方程为:212221()y y y y x x x x +-=--,所以2112212121y y x y x y y x x x x x ++=---, 令0y =,则1221121212122112122()2()2()2()2x y x y kx x k x x x x x x x y y k x x k x x +++++====-+++++,所以直线BC 与x 轴交于定点(2,0)D -. 21. 解:(Ⅰ)因为()1g x ax '=-- 所以()e 1x h x ax =--,由()0h x ≥对任意的x ∈R 恒成立,即min ()0h x ≥, 由()e x h x a '=-,(1)当0a ≤时,()e 0x h x a '=->,()h x 的单调递增区间为(),-∞+∞, 所以(,0)x ∈-∞时,()(0)0h x h <=, 所以不满足题意.(2)当0a >时,由()e 0x h x a '=-=,得ln x a =(,ln )x a ∈-∞时, ()0h x '<,(ln ,)x a ∈+∞时,()0h x '>,所以()h x 在区间(,ln )a -∞上单调递减,在区间(ln ,)a +∞上单调递增, 所以()h x 的最小值为(ln )ln 1h a a a a =-- . 设()ln 1a a a a ϕ=--,所以()0a ϕ≥,① 因为()ln a a ϕ'=-令()ln 0a a ϕ'=-=得1a =,所以()a ϕ在区间(0,1)上单调递增,在区间(1,)+∞上单调递减, 所以()(1)0a ϕϕ≤=,②由①②得()0a ϕ=,则1a =. (Ⅱ)由(Ⅰ)知e 10x x --≥,即1e x x +≤, 令kx n=-(*n N ∈,0,1,2,,1k n =-)则01e k n kn-<-≤,所以(1)(e )e k nn k n k n ---≤=,所以(1)(2)211121()()()()()e e e e 1nn n n n nn n i i n n nn n n n ------=-=++++≤+++++∑111e 1e 1121e 1e e 1e 1n ----=<==+<----, 所以1()2nn i in=<∑,又333123()()()1333++>,所以m 的最小值为2.第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 22. 解:(Ⅰ)设(,)M ρθ是圆上任意一点,交于点A , ,,C 的极坐标方程为4cos()6πρθ=-.0=,圆心C 到直线l 的距离为d ,与圆C 相离,.23. 解:(Ⅰ)由()233f x x x =--+≤可化为: 3233x x x <-⎧⎨-+++≤⎩或32233x x x -≤≤⎧⎨-+--≤⎩或2233x x x >⎧⎨---≤⎩解得:x ∈∅或22x -≤≤或2x >,所以,不等式解集为[)2,-+∞. (Ⅱ)因为()23(2)(3)5f x x x x x =--+≤--+= 所以5()5f x -≤≤,即()f x 的最小值为5-,要不等式2()6f x a a <-解集非空,需2min ()6f x a a <-, 从而2650a a -+>,解得1a <或5a >,所以a 的取值范围为()(),15,-∞+∞U .昆明一中全国联考第一期参考答案参考答案(理科数学)命题、审题组教师 杨昆华 李文清 孙思应 梁云虹 王在方 卢碧如 凹婷波 吕文芬 陈泳序}{25. 解析:设正方形边长为2,则圆半径为1.此时正方形面积为224⨯=.图中黑色部分面积为2π.则此点取自黑色部分的概率为2ππ=,选C.26. 解析:因为1iz i 1i--==--,所以127. 解析:11a -+= 所以3=a ()1552251rr r r C x -=-,令155022r -=,所以3r =,所以1n =时,11223S a =+,所以12a =-;当2n ≥时,13322n n a a --,即11322n n a a -=,即()132n n a n a -=≥,所3q =的等比数列,所以()()55151213242113a q S q---===---,选B.30. 解析:模拟执行如图所示的程序框图知,该程序的功能是计算12945S =+++=L ,选A.31. 解析:可令34x y t ==,则3l o g x t =,4log y t =,由3x p y =得33343log 3log 43log 46log 2log log 3t t t p t ====,选C.32. 解析:将三视图还原可得右图,所以52214252⨯⨯⨯+⨯=S 5420+=,选D.33. 解析:()3cos 23f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由()03f π=得()33k k ππωπ+=∈Z ,即31k ω=-,由0ω>知ω的最小值是2,当ω取得最小值时,()23f x x π⎛⎫=+ ⎪⎝⎭.由2121232f ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭可得出:函数()f x 的图象关于直线12x π=对称,A 为真;由20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦可得出:6x π=-是函数()f x 的一个零点,B 为真;将函数()2g x x =的图象向左平移6π个单位得到()23f x x π⎛⎫=+ ⎪⎝⎭的图象,所以C 为假;由复合函数单调性可得()f x 在0,12π⎡⎤⎢⎥⎣⎦34. 解析:由已知B 为AF 的三等分点,作BH 2433BH FK ==,所以43BF BH ==,所以34BF AF ==,选35. 解析:由2142S a =+有12142a a a +=+,解得28a =,故22a a -又221144n n n n n a S S a a ++++=-=- ,于是22n n a a +-数列{}12n n a a +-是以2124a a -=为首1112422n n n n a a -++-=⨯=,于是11122n n n n a a ++-=,因此数列2n n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,解得()112n n a n n =+-=,2nn a n =⋅.所以1249152a =,选B.二、填空题36. 解析:因为52a b +=,所以250a b += ,即22250a b a b ++⋅=,所以252050b ++= 所以5b =.37. 解析:如图,x y +在点(4,5)A 处取得最大值9.38. 解析:设双曲线C 的方程为:22221x y a b-=,由已知得:FM b =,所a b =,而224a b =-,所以23b =,21a =,所以双曲线C 的方程:2213y x -= 39. 设3BC k =,则()20R k k =>,因为体积为的正三棱锥A BCD -的每个顶点都在半径为R 的球O 的球面上,所以2193k h ⨯=,得224h k=.由())222R h R =-+,得2k =或k =,所以4R =.由题意知点E 为线段BD 的中点,从而在△ODB 中,4OD OB ==,6DB =,解得OE =面垂直于OE3=三、解答题40. 解:(Ⅰ)由222cos 2a c b B ac +-===………2分由32a b =及正弦定理可得出:3sin 2sin A B =,所以21sin sinAπ==,………4分cos A =, ………6分 22sin cos cos sin A B A B =+=4, 以1i 2a =. ………12分41. 解:(Ⅰ)证明:连接1A B ,1BC ,点M ,N 分别为11A C ,B A 1的中点,所以MN 为△11A BC 的一条中位线,1//MN BC , MN ⊄平面11BB C C ,1BC ⊂平面11BB C C ,所以//MN 平面11BB C C . ………6分(Ⅱ)设a AA =1,则122+=a CM ,48441222+=++=a a MN , 42054222+=+=a a CN , 由CM MN ⊥,得222CN MN CM =+,解得2=a , 由题意以点A 为坐标原点,AB 为x 轴,AC 为y 轴, 1AA 为z 轴建立空间直角坐标系.可得)0,0,0(A ,)0,2,0(C ,)22,0,1(N ,)2,1,0(M , 故),,(2201=,),,(020=, ),,(2221-=, )2,1,0(-=, 设),,z y x 为平面ANC 的一个法向量,则⎪⎩⎪⎨⎧=⋅=⋅0AN m,得10m =-(,同理可得平面MNC的一个法向量为32n =(, 设二面角M CN A --的平面角为α,<,cos 153203⋅++-=155-=, =αcos ><-n m ,cos 155=, 所以,二面角M CN A --的余弦值为155. ………12分 42. 解:(Ⅰ)450.08550.2650.32750.2850.12950.0868.2x =⨯+⨯+⨯+⨯+⨯+⨯= ………4分(Ⅱ)()0.0+⨯⨯. ………6分(Ⅲ)()P 33=0.9974X μσμσ-<≤+,则()10.9974P 900.00132X -≥==. 26200000013.0=⨯.所以该市前26名的学生听写考试成绩在90分以上. 上述50名考生成绩中90分以上的有4500.08=⨯人. 随机变量0,1,2X =.于是 ()262101P 0==3C X C =,()11642108P 1==15C C X C ⋅=, ()242102P 2==15C X C =.X 的分布列:12分43. 解:(Ⅰ)由已知,动点M 到点(1,0)P -,(1Q且PQ <M 的轨迹为椭圆,而a 1,所以,动点M 的轨迹E . ………5分(Ⅱ)设11(,)A x y ,22(,)B x y ,则l 的斜率存在,设斜率为k ,0, ………8分 2112212121y y x y x y y x x x x x ++=---, 1212122()2()2x x x x x x ++==-++,所以直线BC 与x 轴交于定点(2,0)D -. ………12分44. 解:(Ⅰ)因为()1g x ax '=--所以()e 1x h x ax =--,由()0h x ≥对任意的x ∈R 恒成立,即min ()0h x ≥,由()e x h x a '=-,(1)当0a ≤时,()e 0x h x a '=->,()h x 的单调递增区间为(),-∞+∞, 所以(,0)x ∈-∞时,()(0)0h x h <=, 所以不满足题意.(2)当0a >时,由()e 0x h x a '=-=,得ln x a =(,ln )x a ∈-∞时, ()0h x '<,(ln ,)x a ∈+∞时,()0h x '>,所以()h x 在区间(,ln )a -∞上单调递减,在区间(ln ,)a +∞上单调递增, 所以()h x 的最小值为(ln )ln 1h a a a a =-- . 设()ln 1a a a a ϕ=--,所以()0a ϕ≥,① 因为()ln a a ϕ'=-令()ln 0a a ϕ'=-=得1a =,所以()a ϕ在区间(0,1)上单调递增,在区间(1,)+∞上单调递减, 所以()(1)0a ϕϕ≤=,②由①②得()0a ϕ=,则1a =. ………6分 (Ⅱ)由(Ⅰ)知e 10x x --≥,即1e x x +≤, 令kx n=-(*n N ∈,0,1,2,,1k n =-)则01e k n kn-<-≤,所以(1)(e )e k nn k n k n ---≤=,所以(1)(2)211121()()()()()e e e e 1nn n n n nn n i i n n nn n n n ------=-=++++≤+++++∑111e 1e 1121e 1e e 1e 1n ----=<==+<----, 所以1()2nn i in=<∑,又333123()()()1333++>,所以m 的最小值为2. ………12分第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 45. 解:(Ⅰ)设(,)M ρθ是圆上任意一点,如图,连接OC ,并延长与圆C 交于点A ,当点M 异于O ,A 时,连接OM 、MA , 直角△MOA 中,cos OM OA MOA =⋅∠, 即4cos 4cos()66ππρθθ=-=-, 当点M 与O ,A 重合时,也满足上式,所求圆C 的极坐标方程为4cos()6πρθ=-. ………5分(Ⅱ)直线l 80y --=,圆心C 到直线l 的距离为d ,3d r ==>,所以直线l 与圆C 相离,. ………10分46. 解:(Ⅰ)由()233f x x x =--+≤可化为:3233x x x <-⎧⎨-+++≤⎩或32233x x x -≤≤⎧⎨-+--≤⎩或2233x x x >⎧⎨---≤⎩解得:x ∈∅或22x -≤≤或2x >,所以,不等式解集为[)2,-+∞. ………5分(2)(3)5x x --+= 5-,2min ()6f x a a <-, 5a >,). ………10分。
云南省昆明市2018届高三数学第一次摸底测试试题 文
云南省昆明市2018届高三数学第一次摸底测试试题 文第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1{0}3x A xx +=≤-,集合{04}B x x =<<,则A B =( ) A .(0,3) B .(0,3] C .(,4)-∞ D .(,4]-∞2.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关3.已知复数2a i-为纯虚数(其中i 是虚数单位),则a 的值为( )A .12-在正方形内随机取一点,则此点取自黑色A .14 B .12 C .8π D .4π5.已知双曲线C 的中心为原点,点F 是双曲线C 的一个焦点,点F 到渐近线的距离为1,则C 的方程为( )A .221x y -= B .2212y x -= C. 22123x y -= D .22133x y -= 6.用一个平面去截正方体,则截面不可能是( )A .等边三角形B .直角三角形 C. 正方形 D .正六边形7.若,x y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数2z x y =+的最小值为( )A .2B .1 C. -2 D .-18. 执行如图所示的程序框图,若输出n 的值为9,则判断框中可填入( )A 45?S > D .55?S ≥ 12log x -的零点个数是( )A 个 D .2个 )2x πω+(0ω>),且()03f π=,当ω取最小值时,以下命题中假命题是( ) A .函数()f x 的图象关于直线12x π=对称B .6x π=-是函数()f x 的一个零点C. 函数()f x 的图象可由()2g x x =的图象向左平移3π个单位得到 D .函数()f x 在[0,]12π上是增函数11.在ABC ∆中,060B =,AC =AC 边上的高为2,则ABC ∆的内切圆半径r =( )A .B .1)1 D .1)12.设O 为坐标原点,P 是以F 为焦点的抛物线22y px =(0p >)上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A .2 B .23C. 3 D .1 第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(6,)a k =,向量(3,1)b =-,a b -与b 共线,则k = . 14.函数2()ln f x x x =+在(1,1)处的切线方程为 . 15.已知3sin()45πα-=,(,)42ππα∈,则tan α= .16.四面体A BCD -中,10AB CD ==,AC BD ==AD BC ==,则四面体A BCD -外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在等差数列{}n a 中,公差0d ≠,前5项和515S =,且137,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)求282631k a a a a -++++(*k N ∈)的值.18. 如图,在直三棱柱111ABC A B C -中,090BAC ∠=,2AB AC ==,点,M N 分别为111,A C AB 的中点.(1)证明://MN 平面11BB C C ;(2)若CM MN ⊥,求三棱锥M NAC -的体积..(1)在答题卡上作出这些数据的频率分布直方图;(2)估算该校50名学生成绩的平均值x 和中位数(同一组中的数据用该组区间的中点值作代表);(3)以该校50名学生成绩的频率作为概率,试估计该市分数在[80,100]的人数.20. 已知中心在原点O ,焦点在x 轴上的椭圆E 过点(0,1)C. (1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于,A B 两点,若OAB ∆的面积为23,求直线l 的方程.21. 已知函数()xf x e =,2()2a g x x x =--,(其中a R ∈,e 为自然对数的底数,2.71828e =……).(1)令'()()h x f x =,求()h x 的单调区间;(2)已知()f x 在0x =处取得极小值,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程极坐标系中,O 为极点,半径为2的圆C 的圆心坐标为(2,)6π.(1)求圆C 的极坐标方程;(2)设直角坐标系的原点与极点O 重合,x 轴非负关轴与极轴重合,直线l的参数方程为128x t y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数),由直线l 上的点向圆C 引切线,求线线长的最小值. 23.选修4-5:不等式选讲 已知函数()23f x x x =--+. (1)求不等式()3f x ≤的解集;(2)若不等式2()6f x a a <-解集非空,求实数a 的取值范围.昆明一中全国联考第一期参考答案参考答案(文科数学)命题、审题组教师 杨昆华 李文清 孙思应 梁云虹 王在方 卢碧如 凹婷波 吕文芬 陈泳序一、选择题正确,选D.3. 解析:因为2(2)(2)12a i a a ii -++-=-,所以2a =-,选B. 4. 解析:设正方形边长为2,则圆半径为1.此时正方形面积为224⨯=.图中黑色部分面积为2π.,选C.5. 解析:设C 的方程为:2222x y a b-=c =1a =,所以C 的方程为221x y -=,选A .6. 解析:因为用一个平面去截正方体,若截面为三角形,则截面三角形只能是锐角三角形,选B .7. 解析:如图,目标函数z 在点(1,0)A 处取得最小值,且1z =,选B.8. 解析:模拟执行如图所示的程序框图知,该程序的功能是计算12945S =+++=L ,选A.9. 解析:如图:函数()f x 与函数12()log g x x =,有2个交点,所以选D.10. 解析:()3cos 23f x x x x πωωω⎛⎫+=+ ⎪⎝⎭,由()03f π=得()33k k ππωπ+=∈Z ,即31k ω=-,由0ω>知ω的最小值是2,当ω取得最小值时,()23f x x π⎛⎫=+ ⎪⎝⎭.由2121232f ππππ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭可得出:函数()f x 的图象关于直线12x π=对称,A 为真;由20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦可得出:6x π=-是函数()f x 的一个零点,B 为真;将函数()2g x x =的图象向左平移6π个单位得到()23f x x π⎛⎫=+ ⎪⎝⎭的图象,所以C 为假;由复合函数单调性可得()f x 在0,12π⎡⎤⎢⎥⎣⎦上是增函数,所以D 为真,选C.11. 解析:由11sin 222ABC S AB BC B =⋅⋅=⨯V 得16AB BC ⋅=,又由余弦定理22222cos ()3AC AB BC AB BC B AB BC AB BC =+-⋅⋅=+-⋅,解得AB BC +=而ABC V 的周长为.由1()2ABCSr AB BC CA =++得21)ABC S r AB BC CA ∆===++,选B.12. 解析:由题意可得,02p F ⎛⎫⎪⎝⎭,设200,2y P y p ⎛⎫ ⎪⎝⎭,当00y <,0OM K <;当00y >,0OM K >.要求OMK 的最大值,可设00y >,则()2001112,3333633y y p OM OF FM OF FP OF OP OF OP OF p ⎛⎫=+=+=+-=+=+ ⎪⎝⎭uuu r uuu r uuu r uuu r uu r uuu r uu u r uuu r uu ur uuu r ,可得2132263OMyKy py pp yp==≤=++.当且仅当222y p=时取得等号,选A.二、填空题13.解析:因为(3,1)a b k-=+,且()//a b b-,所以3(1)3k+=-,所以2k=-.14.解析:因为1()2f x xx'=+,所以切线的斜率k.15.解析:由,42ππα⎛⎫∈ ⎪⎝⎭得0,44ππα⎛⎫-∈ ⎪⎝⎭,所以所以c o s c o s c o s s444410ππππαα⎡⎤⎛⎫⎛=-+=⎪⎢⎥⎝⎭⎝⎣⎦,sinα=,的四个面为全等的三角形,所以可x,y,z宽、高分别为x,y,z的长方体,164.设球半径为R,则有200π.()()211126a d a a d⎪+=+⎩解得13234ad⎧=⎪⎪⎨⎪=⎪⎩,所以数列{}n a的通项公式为()133144na a n d n=+-=+;(Ⅱ)由(Ⅰ)得:()31333313444nn na-=-+=⨯,所以2826a a a+++……31ka-+(12333334=+++……)3k + ()()31339314138kk-=⨯=--.另解:设()31333313444n n n n b a -==-+=⨯,则()13n n b n b *+=∈N , 所以数列{}n b 是首项为94,公比为3的等比数列, 所以数列{}n b 的前k 项和()()9139431138k k k T -==--.18. 解:(Ⅰ)证明:连接1A B ,1BC ,点M ,N 分别为11A C ,1AB的中点,所以MN 为△11A BC 的一条中位线,1//MN BCMN ⊄平面11BB C C ,1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(Ⅱ)设点D ,E 分别为AB ,1AA 的中点,a AA =1,则122+=a CM ,48441222+=++=a a MN ,42054222+=+=a a CN ,由C M M ⊥,得222CN MN CM =+,解得2=a ,又⊥NE 平面C C AA 11,1=NE ,M NAC V -==-AMC N V =⋅∆NE S AMC 31=⨯⨯⨯⨯122213132.所以三棱锥M NAC -的体积为32.19. 解:(Ⅰ)(Ⅱ)450.08550.2650.32750.2850.12950.0868.2x =⨯+⨯+⨯+⨯+⨯+⨯=; 由已知可设中位数为60x +,则0.080.20.0320.5x ++=;所以 6.875x =,所求中位数为66.875x =. (Ⅲ)该市分数在[]80,100的人数6420000400050+⨯=,故所求人数为4000人.0)b >,AB = 当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+ 由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-= 所以2122412k x x k +=-+,21222212k x x k -=+,而12121122OAB S OF y y y y ∆=⋅-=-,由已知23OAB S ∆=得1243y y -=,12y y -=, 所以222224416(12)129k k k k +=++,则4220k k +-=,所以1k =±, 所以直线l 的方程为:10x y -+=或10x y ++=.21. 解: (Ⅰ) 因为()e 1x f x ax '=--,所以()e x h x a '=-,当0a ≤时,()0h x '>,()h x 的单调递增区间为(),-∞+∞, 当0a >时,由()e 0x h x a '=-=,得ln x a =,(,ln )x a ∈-∞时,()0h x '<,(ln ,)x a ∈+∞时,()0h x '>,所以()h x 的减区间为(,ln )a -∞ ,增区间为(ln ,)a +∞ 综上可得,当0a ≤时,()h x 在),(+∞-∞上单调递增当0a >时,()h x 的增区间为(ln ,)a +∞,减区间为(,ln )a -∞. (Ⅱ)由题意得()e 1x f x ax '=--,(0)0f '=, (1)当0a ≤时,()f x '在),(+∞-∞上单调递增, 所以当0x <时,()(0)0f x f ''<=, 当0x >时,()(0)0f x f ''>=,所以()f x 在0x =处取得极小值,符合题意.(2)当01a <<时,ln 0a <, 由(Ⅰ)知()f x '在(ln ,)a +∞单调递增, 所以当(ln ,0)x a ∈时,()(0)0f x f ''<=,当(0,)x ∈+∞时,()(0)0f x f ''>=, 所以()f x 在0x =处取得极小值,符合题意.(3)当1a =时,由(Ⅰ)知()f x '在区间(,ln )a -∞单调递减,()f x '在区间(ln ,)a +∞单调递增,所以()f x '在ln x a =处取得最小值,即()(ln )(0)0f x f a f '''≥==, 所以函数()f x 在R 上单调递增, 所以()f x 在0x =处无极值,不符合题意.(4)当1a >时,ln 0a >,由(Ⅰ)知()f x '的减区间为(,ln )a -∞,所以当(,0)x ∈-∞时,()(0)0f x f ''>=,当(0,ln )x a ∈时,()(0)0f x f ''<=, 所以()f x 在0x =处取得极大值,不符合题意, 综上可知,实数a 的取值范围为(,1)-∞.第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 22. 解:(Ⅰ)设(,)M ρθ是圆上任意一点,如图,连接OC ,并延长与圆C 交于点A , 当点M 异于O ,A 时,连接OM 、MA , 直角△MOA 中,cos OM OA MOA =⋅∠, 即4cos 4cos()66ππρθθ=-=-,当点M 与O ,A 重合时,也满足上式,所求圆C 的极坐标方程为4cos()6πρθ=-.80=,圆心C 到直线l 的距离为d ,l 与圆C 相离,23. 解:(Ⅰ)由()233f x x x =--+≤可化为:3233x x x <-⎧⎨-+++≤⎩或32233x x x -≤≤⎧⎨-+--≤⎩或2233x x x >⎧⎨---≤⎩解得:x ∈∅或22x -≤≤或2x >,所以,不等式解集为[)2,-+∞.(Ⅱ)因为()23(2)(3)5f x x x x x =--+≤--+= 所以5()5f x -≤≤,即()f x 的最小值为5-,要不等式2()6f x a a <-解集非空,需2min ()6f x a a <-, 从而2650a a -+>,解得1a <或5a >,所以a 的取值范围为()(),15,-∞+∞U .昆明一中全国联考第一期参考答案参考答案(文科数学)命题、审题组教师杨昆华李文清孙思应梁云虹王在方卢碧如凹婷波吕文芬陈泳序25.解析:由正相关和负相关的定义知道,D正确,选D.26.解析:因为2(2)(2)12a i a a ii-++-=-,所以2a=-,选B.27.解析:设正方形边长为2此时正方形面积为224⨯=.图中黑色部分面积为2π. C.,由已知1b=,c=1a=,.0)处取得最小值,且1z=,选B.序框图知,该程序的功能是计算12)logx x=,有2个交点,所以选D.33.解析:()3cos23f x x x xπωωω⎛⎫=++⎪⎝⎭,由()03fπ=得()33k kππωπ+=∈Z,即31kω=-,由0ω>知ω的最小值是2,当ω取得最小值时,()23f x xπ⎛⎫+⎪⎝⎭.由2121232f ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭可得出:函数()f x 的图象关于直线12x π=对称,A 为真;由20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦可得出:6x π=-是函数()f x 的一个零点,B 为真;将函数()2g x x =的图象向左平移6π个单位得到()23f x x π⎛⎫=+ ⎪⎝⎭的图象,所以C 为假;由复合函数单调性可得()f x 在0,12π⎡⎤⎢⎥⎣⎦上是增函数,所以D 为真,选C.34. 解析:由11sin 222ABC S AB BC B =⋅⋅=⨯V 得16AB BC ⋅=,又由余弦定理22222cos ()3AC AB BC AB BC B AB BC AB BC =+-⋅⋅=+-⋅,解得AB BC +=而ABC V 的周长为.由1()2ABCSr AB BC CA =++得21)ABC S r AB BC CA ∆===++,选B.35. 解析:由题意可得,02p F ⎛⎫⎪⎝⎭,设200,2y P y p ⎛⎫ ⎪⎝⎭,当00y <,0OM K <;当00y >,0OM K >.要求OMK 的最大值,可设00y >,则()2001112,3333633y y p OM OF FM OF FP OF OP OF OP OF p ⎛⎫=+=+=+-=+=+ ⎪⎝⎭uuu r uuu r uuu r uuu r uu r uuu r uu u r uuu r uu ur uuu r ,可得200013263OM y K y p y p p y p ==≤=++.当且仅当2202y p =时取得等号,选A.二、填空题36. 解析:因为(3,1)a b k -=+,且()//a b b -,所以3(1)3k +=-,所以2k =-. 37. 解析:因为1()2f x x x'=+,所以切线的斜率3=k ,所以切线方程为320--=x y . 38. 解析:由,42ππα⎛⎫∈ ⎪⎝⎭得0,44ππα⎛⎫-∈ ⎪⎝⎭,所以4cos 45πα⎛⎫-= ⎪⎝⎭,所以c o s c o s c o s c oss4444441ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=---=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,sin α=, 所以sin tan 7cos ααα==. 39. 解析:由题意可采用割补法,考虑到四面体A BCD -的四个面为全等的三角形,所以可在其每个面补上一个以10,为三边的三角形作为底面,分别以x ,y ,z 为侧棱长且两两垂直的三棱锥,从而可得到一个长、宽、高分别为x ,y ,z 的长方体,并且22100x y +=,22136x z +=,22164y z +=.设球半径为R ,则有()22222200R x y z =++=,所以24200R =,得球的表面积为200π.三、解答题40.解:(Ⅰ):据题意有(115a a ⎧+⎪⎨⎪+⎩ 解得13234a d ⎧=⎪⎪⎨⎪=⎪⎩ , ………4分………6分)331344n +=⨯, ………9分()()31339314138kk-=⨯=--. ………12分另解:设()31333313444n n n n b a -==-+=⨯,则()13n n b n b *+=∈N , 所以数列{}n b 是首项为94,公比为3的等比数列, ………9分所以数列{}n b 的前k 项和()()9139431138k k k T -==--. ………12分41. 解:(Ⅰ)证明:连接1A B ,1BC ,点M ,N 分别为11A C ,1AB的中点,所以MN 为△11A BC 的一条中位线,1//MN BCMN ⊄平面11BB C C ,1BC ⊂平面11BB C C ,所以//MN 平面11BB C C . ………6分(Ⅱ)设点D ,E 分别为AB ,1AA 的中点,a AA =1,则122+=a CM ,48441222+=++=a a MN ,42054222+=+=a a CN ,由C M M ⊥,得222CN MN CM =+,解得2=a ,又⊥NE 平面C C AA 11,1=NE ,M NAC V -==-AMC N V =⋅∆NE S AMC 31=⨯⨯⨯⨯122213132.所以三棱锥M NAC -的体积为32. ………12分42. 解:(Ⅰ)………3分(Ⅱ)450.x =⨯+; ………6分由已知可设中位数为60x +,则0.080.20.0320.5x ++=;所以6.x =,所求中位数为66x =. ………9分 (Ⅲ)该市分数在[]80,100的人数6420000400050+⨯=,故所求人数为4000人. ………12分43. 解:(Ⅰ)设椭圆E 的方程为:22221x y a b+= (0)a b >>,由已知:2221b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩得:22a =,21b =,所以,椭圆E 的方程为:22x + (4)分(Ⅱ)由已知直线l 过左焦点F 当直线l 与x 轴垂直时,(1,A - 则112OAB S ∆==………5分2220k -= , ………8分12y y -=, 所以222224416(12)129k k k k +=++,则4220k k +-=,所以1k =±, 所以直线l 的方程为:10x y -+=或10x y ++=. ………12分44. 解: (Ⅰ) 因为()e 1x f x ax '=--,所以()e x h x a '=-,当0a ≤时,()0h x '>,()h x 的单调递增区间为(),-∞+∞, 当0a >时,由()e 0x h x a '=-=,得ln x a =,(,ln )x a ∈-∞时,()0h x '<,(ln ,)x a ∈+∞时,()0h x '>,所以()h x 的减区间为(,ln )a -∞ ,增区间为(ln ,)a +∞ 综上可得,当0a ≤时,()h x 在),(+∞-∞上单调递增当0a >时,()h x 的增区间为(ln ,)a +∞,减区间为(,ln )a -∞. ………5分 (Ⅱ)由题意得()e 1x f x ax '=--,(0)0f '=, (1)当0a ≤时,()f x '在),(+∞-∞上单调递增, 所以当0x <时,()(0)0f x f ''<=, 当0x >时,()(0)0f x f ''>=,所以()f x 在0x =处取得极小值,符合题意.(2)当01a <<时,ln 0a <, 由(Ⅰ)知()f x '在(ln ,)a +∞单调递增, 所以当(ln ,0)x a ∈时,()(0)0f x f ''<=,当(0,)x ∈+∞时,()(0)0f x f ''>=, 所以()f x 在0x =处取得极小值,符合题意.(3)当1a =时,由(Ⅰ)知()f x '在区间(,ln )a -∞单调递减,()f x '在区间(ln ,)a +∞单调递增,所以()f x '在ln x a =处取得最小值,即()(ln )(0)0f x f a f '''≥==, 所以函数()f x 在R 上单调递增, 所以()f x 在0x =处无极值,不符合题意.(4)当1a >时,ln 0a >,由(Ⅰ)知()f x '的减区间为(,ln )a -∞,所以当(,0)x ∈-∞时,()(0)0f x f ''>=,当(0,ln )x a ∈时,()(0)0f x f ''<=, 所以()f x 在0x =处取得极大值,不符合题意, 综上可知,实数a 的取值范围为(,1)-∞. ………12分第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 45. 解:(Ⅰ)设(,)M ρθ是圆上任意一点,如图,连接OC ,并延长与圆C 交于点A ,当点M 异于O ,A 时,连接OM 、MA , 直角△MOA 中,cos OM OA MOA =⋅∠, 即4cos 4cos()66ππρθθ=-=-,当点M 与O ,A 重合时,也满足上式,所求圆C 的极坐标方程为4cos()6πρθ=-. ………5分(Ⅱ)直线l 80y --=,圆心C 到直线l 的距离为d ,3d r ==>,所以直线l 与圆C 相离,. ………10分46. 解:(Ⅰ)由()233f x x x =--+≤可化为:3≤或2233x x x >⎧⎨---≤⎩[)2,-+∞. ………5分 (2)(3)5x x --+= 5-,2min ()6f x a a <-, 5a >,所以a 的取值范围为()(),15,-∞+∞U . ………10分。