数字信号处理实验全部报告

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验六报告

数字信号处理实验六报告

实验六 频域抽样定理和音频信号的处理实验报告 (一)频域抽样定理给定信号1, 013()27, 14260, n n x n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它 1.利用DTFT 计算信号的频谱()j X e ω,一个周期内角频率离散为M=1024点,画出频谱图,标明坐标轴。

n=0:100; %设定n 及其取值范围for n1=0:13 %对于n 处于不同的取值范围将n 代入不同的表达式xn(n1+1)=n1+1;endfor n2=14:26xn(n2+1)=27-n2;endfor n3=27:100xn(n3+1)=0;endM=1024; %设定抽样离散点的个数k=0:M-1; %设定k 的取值范围w=2*pi*k/M; %定义数字角频率[X,w] = dtft2( xn,n, M ) %调用dtft2子程序求频谱plot(w,abs(X)); %画出幅度值的连续图像xlabel('w/rad');ylabel('|X(exp(jw))|');title(' M=1024时的信号频谱图像'); %标明图像的横纵坐标和图像标题function [X,w] = dtft2(xn, n, M ) %定义x(n)的DTFT 函数w=0:2*pi/M:2*pi-2*pi/M; %将数字角频率w 离散化L=length(n); %设定L 为序列n 的长度 for (k=1:M) %外层循环,w 循环M 次sum=0; %每确定一个w 值,将sum 赋初值为零for (m=1:L) %内层循环,对n 求和,循环次数为n 的长度sum=sum+xn(m)*exp(-j*w(k)*n(m)); %求和X(k)=sum; %把每一次各x(n)的和的总值赋给X ,然后开始对下一个w 的求和过程end %内层循环结束end%外层循环结束M=1024时的信号频谱图像如图1-1所示:图1-1 M=1024时的信号频谱图像2.分别对信号的频谱()jX eω在区间π[0,2]上等间隔抽样16点和32点,得到32()X k和16()X k。

数字信号处理实验报告 (实验四)

数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。

2. 运用MA TLAB 验证离散时间傅立叶变换的性质。

二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。

由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。

在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。

为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。

例3.1 运用MA TLAB 画出以下系统的频率响应。

y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。

数字信号处理实验报告1

数字信号处理实验报告1

《数字信号处理》实验报告实验一:数字低通、高通滤波器实验实验二:数字带通、带阻滤波器实验系别:信息科学与技术系专业班级:电子信息工程0902班学生姓名:王俊知(053)同组学生:成绩:指导教师:刘海龙(实验时间:20年月日——20年月日)华中科技大学武昌分校实验一数字低通、高通滤波器实验1、实验目的使学生了解和熟悉软件Matlab的使用,了解数字低通、高通滤波器零极点的作用及数字低通、高通滤波器的幅频特性和相频特性。

使学生熟悉整数型滤波器的设计。

2、实验内容与步骤1、在计算机上运行Matlab软件,根据滤波器的参数,用Matlab软件设计出数字低通、高通滤波器、画出数字低通、高通滤波器的幅频特性和相频特性的程序,或按照范例程序进行修改,运行程序,观察滤波器的零极点分布图、幅频特性和相频特性图。

2、改变滤波器的零极点分布,再运行程序,观察幅频特性和相频特性的不同,滤波器的通带有什么改变。

3、再次修改程序,输入数字信号,使其通过滤波器,并画出输入、输出滤波器的数字信号波形,运行程序。

观看输入、输出滤波器的数字信号波形,仔细观察其区别。

3、实验设备1、实验场所:信息科学与技术系实验室机房。

2、硬件设备:计算机若干(由学生人数定)。

3、实验软件:Matlab。

整系数低通滤波器程序如下:clear all;clc;close all;m=10;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,-1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:整系数高通滤波器程序如下:clear all;clc;close all;m=10;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:改变参数clear all;clc;close all;m=11;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=1;else B(i)=0;endendendA=[1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid; figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat'); x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号'); figure;plot(w);title('输出信号');正负120度零点抵消程序如下:clear all;clc;close all;m=24;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:正负60度零点抵消程序如下:clear all;clc;close all;m=24;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,-1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:实验二数字带通、带阻滤波器实验1、实验目的使学生了解数字带通、带阻滤波器设计原理及数字带通、带阻滤波器的幅频特性和相频特性。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

数字信号处理实验一报告

数字信号处理实验一报告

实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一 信号的产生及傅立叶分析(设计性)一 实验目的1 学会利用计算机仿真信号。

2 理解信号采样思想。

3学会信号的频谱分析方法。

二 实验原理奈奎斯特抽样定理:要想抽样后能够不失真的还原出原信号,则抽样频率必须大于两倍信号谱的最高频率。

离散傅立叶变换(DFT ): 正变换反变换)(n x 和)(k X 都是点数为N 的有限长序列。

实质上有限长序列都是作为周期序列的一个周期来表示的,都隐含有周期性意义。

三 实验内容1 几种常用序列(如正弦、矩形、指数序列等)的产生。

1.用stem 函数来画出序列的波形,通过改变N 和s 得值来改变时间长度、抽样频率 N=500;k=0:N; s=0.03;X=5*sin(s*pi*k);plot(k,X,k,zeros(1,N+1));Xlabel('k'); Ylabel('X[k]'); title('余弦序列');10)()]([)(1-≤≤==∑--=N k Wn x n x DFT k X N n nk N10)(1)]([)(1-≤≤==∑--=-N n Wk X Nk X IDFT n x N k nk N2.指数序列 clear ;clc%c :指数序列的幅度 %a :指数序列的底数%k1:绘制序列的起始序号 %k2:绘制序列的终止序号c=1;a=0.75;k1=0;k2=20;k=k1:k2; x=c*(a.^k);stem(k,x);%'filled'Xlabel('k'); Ylabel('x');title('Ö¸ÊýÐòÁÐ');3各种序列t=0:0.01:1;k=1:200;x1=0.1*exp(-2*t); %指数序列 x2=2*cos(2*pi*4*t); %余弦序列 x3=[ones(1,10) zeros(1,90) ones(1,10) zeros(1,90)]; subplot(3,1,1); plot(t,x1); title('指数序列'); subplot(3,1,2); plot(t,x2); title('余弦序列'); subplot(3,1,3); plot(k,x3); title('矩形序列');kX [k ]kx指数信号余弦信号矩形信号4 编程实现序列的离散傅里叶变换(DFT),输入x(n),输出X(k)并且对于不同序列(如矩形序列等)做DFT.clear; clck=0:31; x1=2*((0.75).^k);subplot 321; stem(k,x1); title('指数序列');y1=fft(x1,32);subplot 322; stem(k,y1); title('指数序列DFT');k=0:31; x2=sin(k);subplot 323; stem(k,x2); title('正弦序列Sin(k)');y2=fft(x2,32);subplot 324; stem(k,y2); title('正弦序列DFT');x3=[ones(1,8) zeros(1,8) ones(1,8) zeros(1,8)];subplot 325; stem(k,x3); title('矩形序列');y3=fft(x3,32);subplot 326; stem(k,y3); title('矩形序列DFT');指数序列指数序列DFT正弦序列Sin(k)010203040正弦序列DFT矩形序列矩形序列DFT实验二 快速傅立叶变换FFT 及频谱分析(设计性)一 实验目的1 进一步加深对DFT 算法原理和基本性质的理解2 熟悉FFT 算法原理和FFT 的子程序应用3 学习用FFT 对连续时间信号进行频谱分析的方法,了解可能出现的分析误差及原因二 实验原理(参考P187,P189)FFT 只是DFT 的一种快速算法,利用FFT 可减少运算量,提高速度。

史上最全数字信号处理实验报告完美版

史上最全数字信号处理实验报告完美版

实验一、零极点分布对系统频率响应的影响Y(n)=x(n)+ay(n-1)1、调用MATLAB函数freqz计算并绘制的幅频特性和相频特性其中:1 代表a=0.7;2代表a=0.8;3代表a=0.9a=0.7时的零极点图A=0.8时的零极点图a=0.9时的零极点图观察零极点的分布与相应曲线易知:小结:系统极点z=a,零点z=0,当B点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi点形成波谷;z=0处零点不影响幅频响应2、先求出系统传函的封闭表达式,通过直接计算法得出的幅频特性和相频特性曲线。

其中:1代表a=0.7;2代表a=0.8;3代表a=0.9附录程序如下:(对程序进行部分注释)>> a=0.7;w=0:0.01:2*pi;%设定w的范围由0到2π,间隔为0.01y=1./(1-a*exp(-j*w)); %生成函数subplot(211);plot(w/2/pi,10*log(abs(y)),'g');%生成图像其中通过调用abs函数计算幅值hold on;xlabel('Frequency(Hz)');%定义横坐标名称ylabel('magnitude(dB)');%定义纵坐标名称title('a=0.8,直接计算h(ejw)');grid on;%定义图片标题subplot(212);plot(w/2/pi,unwrap(angle(y)),'g');grid on;%生成图像其中通过调用angle计算相角,‘g’为规定线条颜色hold on;>> a=0.8;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'r');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.8,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'r');grid on;hold on;>> a=0.9;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'b');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.9,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'b');grid on;hold on;2、y(n)=x(n)=ax(n-1)通过调用freqz函数绘图,其中:1代表a=0.7,;2代表a=0.8;3代表a=0.9附录程序如下:(因为程序同实验一相同不再进行注释)a=0.7;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.7');hold on;a=0.8;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.8');hold on;a=0.9;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.9');以下为a为不同数值时的零极点图a=0.7A=0.8A=0.9小结:系统极点z=0,零点z=a,当B点从w=0逆时针旋转时,在w=0点,由于零点向量长度最长,形成波峰:在w=pi点形成波谷;z=a处极点不影响相频响应。

硕士信号处理实验报告(3篇)

硕士信号处理实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字信号处理(DSP)技术已成为通信、图像处理、语音识别等领域的重要工具。

本实验旨在通过一系列实验,加深对数字信号处理基本原理和方法的理解,提高实际应用能力。

二、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握常用信号处理算法的MATLAB实现。

3. 培养分析和解决实际问题的能力。

三、实验内容本实验共分为五个部分,具体如下:1. 离散时间信号的基本操作(1)实验目的:熟悉离散时间信号的基本操作,如加法、减法、乘法、除法、延时、翻转等。

(2)实验步骤:- 使用MATLAB生成两个离散时间信号。

- 对信号进行基本操作,如加法、减法、乘法、除法、延时、翻转等。

- 观察并分析操作结果。

2. 离散时间系统的时域分析(1)实验目的:掌握离散时间系统的时域分析方法,如单位脉冲响应、零状态响应、零输入响应等。

(2)实验步骤:- 使用MATLAB设计一个离散时间系统。

- 计算系统的单位脉冲响应、零状态响应和零输入响应。

- 分析系统特性。

(1)实验目的:掌握离散时间信号的频域分析方法,如快速傅里叶变换(FFT)、离散傅里叶变换(DFT)等。

(2)实验步骤:- 使用MATLAB生成一个离散时间信号。

- 对信号进行FFT和DFT变换。

- 分析信号频谱。

4. 数字滤波器的设计与实现(1)实验目的:掌握数字滤波器的设计与实现方法,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。

(2)实验步骤:- 使用MATLAB设计一个低通滤波器。

- 使用窗函数法实现滤波器。

- 对滤波器进行性能分析。

5. 信号处理在实际应用中的案例分析(1)实验目的:了解信号处理在实际应用中的案例分析,如语音信号处理、图像处理等。

(2)实验步骤:- 选择一个信号处理应用案例。

- 分析案例中使用的信号处理方法。

- 总结案例中的经验和教训。

四、实验结果与分析1. 离散时间信号的基本操作实验结果表明,离散时间信号的基本操作简单易懂,通过MATLAB可以实现各种操作,方便快捷。

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告西南交通大学信息科学与技术学院姓名:伍先春学号:20092487班级:自动化1班指导老师:张翠芳实验一序列的傅立叶变换实验目的进一步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅立叶变换(FFT )的应用。

实验步骤1. 复习DFS 和DFT 的定义,性质和应用;2. 熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;利用提供的程序例子编写实验用程序;按实验内容上机实验,并进行实验结果分析;写出完整的实验报告,并将程序附在后面。

实验内容1. 周期方波序列的频谱试画出下面四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。

2. 有限长序列x(n)的DFT(1) 取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2) 将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3) 取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。

利用FFT进行谱分析 已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。

请分别画出N=45; N=50;N=55;N=60时的幅值曲线。

数字信号处理实验一1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=⎩⎨⎧-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验二 用双线性变换法设计IIR 数字滤波器 一、 实验目的1. 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法; 2. 掌握数字滤波器的计算机仿真方法;3.通过观察对实际心电图的滤波作用,获得数字滤波器的感性知识。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t x x aa其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a X Ω-Ω=Ω∑∞-∞= 上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jwae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1)k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]);w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]);endk=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]);Xa=FF(A,a,w,fs);i=i+1;string+['fs=',num2str(fs)];figure(i)DFT(Xa,50,string);1=yesinput1=str2num(1);end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]'); end end end子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数 function[c,l]=DFT(x,N,str) n=0:N-1; k=-200:200; w=(pi/100)*k; l=w; c=x*Xc=stepseq(1,1,5); 子函数:产生信号function c=FF(A,a,w,fs) n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2) n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验报告完整版

数字信号处理实验报告完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系 有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列的N 点DFT,实际上就是序列的DTFT 在N 个等间隔频率点上样本。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFTX (ejω)12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x e N ωωφω--=方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验报告(全)

数字信号处理实验报告(全)

实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。

(完整版)数字信号处理实验三

(完整版)数字信号处理实验三

实验三 离散时间信号的频域分析实验室名称:信息学院2204 实验时间:2015年10月15日姓 名:蒋逸恒 学号:20131120038 专业:通信工程 指导教师:陶大鹏成绩教师签名:一、实验目的1、 对前面试验中用到的信号和系统在频域中进行分析,进一步研究它们的性质。

2、 学习离散时间序列的离散时间傅立叶变换(DTFT 、离散傅立叶变换(DFT 和z 变换。

二、实验内容Q3.1在程序P3.1中,计算离散时间傅里叶变换的原始序列是什么?Matlab 命令pause的作用是什么?Q3.2运行程序P3.1,求离散时间傅里叶变换得的实部、虚部以及幅度和香相位谱。

离散时间傅里叶变换是 w 的周期函数吗?若是,周期是多少?描述这四个图形表示的 对称性。

Q3.2修改程序P3.1,在范围0W w Wn 内计算如下序列的离散时间傅里叶变换:0.7 0.5e jw 0.3e j2w e j3w1 0.3e jw 0.5e j2w 0.7e j3w并重做习题P3.2,讨论你的结果。

你能解释相位谱中的跳变吗? 可以移除变化。

试求跳变被移除后的相位谱。

Q3.6通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

哪个参数控制时移量?Q3.10通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

哪个参数控制频移量?Q3.14通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

Q3.15运行修改后的程序并讨论你的结果。

Q3.17通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

Q3.20通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

试解释程序怎样进行时间反转运算。

Q3.23编写一个MATLAB?序,计算并画出长度为为值,其中L > N,然后计算并画出L 点离散傅里叶逆变换X[k]。

对不同长度N 和不同的 离散傅里叶变换长度L ,运行程序。

讨论你的结果。

U(e jw )MATLAE 命P3.2,对程序生成的图形中的 P3.3,对程序生成的图形中的 P3.4,对程序生成的图形中的P3.5,对程序生成的图形中的 P3.6,对程序生成的图形中的 N 的L 点离散傅里叶变换X[k]的Q3.26在函数circshift 中,命令rem 的作用是什么? Q3.27解释函数circshift 怎样实现圆周移位运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一学习使用MATLAB一、实验目的学习使用MATLAB,为以后的数字信号处理实验操作顺利进行打下基础。

二、实验内容和要求(1)了解MATLAB的基本程序设计原则,常量和变量的用法(2)掌握MATLAB中对矩阵进行输入、运算和比较的方法(3)了解循环语句的类型,并掌握循环语句的用法(4)熟悉M文件的作用,并掌握二维图形的绘制三、思考题(1)例1.14中,程序没有全部给出,余下三个图形的绘制是如何实现的?如果改成3*3的图形又当如何实现?x=-3*pi:pi/50:3*pi;x11=x.*cos(x);x12=-x.*sin(x)+cos(x);x21=sin(x).*cos(x);x22=(sin(x).^2).*(cos(x).^2);subplot(2,2,1)plot(x,x11)title('第一个子图')subplot(2,2,2)plot(x,x12)title('第二个子图')subplot(2,2,3)plot(x,x21,'o')title('第三个子图')subplot(2,2,4)plot(x,x22,'*')title('第四个子图')-10-50510-10-50510第一个子图-10-50510-10-50510第二个子图-10-5510-0.500.5第三个子图-10-5051000.10.20.30.4第四个子图如果改成3*3的图形,程序如下: x=-3*pi:pi/50:3*pi; x11=x.*cos(x);x12=-x.*sin(x)+cos(x); x21=sin(x).*cos(x);x22=(sin(x).^2).*(cos(x).^2); subplot(3,3,1) plot(x,x11)title('第一个子图') subplot(3,3,2) plot(x,x12)title('第二个子图') subplot(3,3,3) plot(x,x21,'o') title('第三个子图') subplot(3,3,4) plot(x,x22,'*')title('第四个子图')-10010-10010第一个子图-10010-10010第二个子图-10010-0.500.5第三个子图-1001000.20.4第四个子图实验二:用FFT 作谱分析一、 实验目的:(1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法,所以FFT 的运算结果必然满足DFT 的基本性质)。

(2) 熟悉FFT 算法原理和FFT 子程序的应用。

(3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。

二、 实验内容和要求:(1)对下列典型信号进行谱分析:()1x n =R4(n)()21,038,470,n n x n n n +<=<=⎧⎪=-<=<=⎨⎪⎩其它n()34,033,470,n n x n n n -<=<=⎧⎪=-<=<=⎨⎪⎩其它n()4x n =cos(pi/4*n) ()5x n =sin(pi/8*n)()6x t =cos(pi*8*t)+ sin(pi*16*t)+cos(20*pi*t)这里给出针对各信号的FFT 变换区间N 以及对连续信号 ()6x t 的采样频率fs ,供实验时参考:三. 实验主要仪器设备和材料计算机,MATLAB6.5 或以上版本 四. 实验方法、步骤及结果测试(1) 复习DFT 的定义、性质和用DFT 做谱分析的有关内容。

(2) 复习FFT 算法原理与编程思想,并对照DIT-FFT 运算流图和程序 框图,读懂本实验提供的FFT 子程序。

(3) 编制信号产生子程序,产生下列典型信号供谱分析用。

()1x n =R4(n)()21,038,470,n n x n n n +<=<=⎧⎪=-<=<=⎨⎪⎩其它n()34,033,470,n n x n n n -<=<=⎧⎪=-<=<=⎨⎪⎩其它n()4x n =cos(pi/4*n) ()5x n =sin(pi/8*n)()6x t =cos(pi*8*t)+ sin(pi*16*t)+cos(20*pi*t)应当注意,如果给出的是连续信号xa(t),则首先要根据其最高频率确定采样速率fs 以及由频率选择采样点数N ,然后对其进行软件采样(即计算x(n)=xa(nT),0<=n<=N-1),产生对应序列x(n)。

对信号x6(t),频率分辨率的选择要以能分辨开其中的三个频率对应的谱线为准则。

对周期序列,最好截取周期的整数倍进行分析,否则有可能产生较大的分析误差。

请实验者根据DFT 的隐含周期性思考这个问题。

(1) 编写主程序。

下图给出了主程序框图,供参考。

本实验提供FFT 子程序和通用绘图子程序。

(2) 复习DFT 的定义、性质和用DFT 作谱分析的有关内容。

(3) 复习FFT 算法原理与编程思想,并对照DIT —FFT 运算流图和程序框图,读懂本实验提供的FFT 子程序。

(4) 编制信号产生子程序,产生以下典型信号供谱分析用:(实验内容和要求)上机实验内容测试对2中所给出的信号逐个进行谱分析。

下面给出针对各信号的FFT 变换区间N 以及对连续信号()6x t 的采样频率fs 。

()1x n ,()2x n ,()3x n ,()4x n ,()5x n ,:N=8,16调用FFT 子程序(函数)计算信号的DTF调用绘图子程序(函数)绘制{X (k )}曲线调用绘图子程序(函数)绘制时间序列波形图结束开始 读入长度N 调用信号产生子程序产生试验信号()6x t:fs=64(hz), N=16,32,64 实验结果:1.()1x n=R4(n)原程序:n=[0:7];x=[1 1 1 1 0 0 0 0] f1=fft(x,8)f2=fft(x,16) subplot(2,2,1) stem(n,x);axis([0 8 0 2]) xlabel('n')ylabel('x1(n)')title('x1的波形') subplot(2,2,4)k=[0:15] stem(k,abs(f2));axis([0 16 0 5]) xlabel('k')ylabel('|x1(k)|')title('x1(n)的8点fft') subplot(2,2,3)k=[0:7]stem(k,abs(f1));axis([0 10 0 5]) xlabel('k')ylabel('|x1(k)|')title('x1(n)的8点fft')得到的波形图如下:2.()28,470,x n n n ⎪=-<=<=⎨⎪⎩其它n原程序:n=[0:7];x=[1 2 3 4 4 3 2 1] f1=fft(x,8) f2=fft(x,16) subplot(2,2,1) stem(n,x);axis([0 8 0 4]) xlabel('n') ylabel('x2(n)') title('x2的波形') subplot(2,2,4) k=[0:15] stem(k,abs(f2)); axis([0 16 0 20]) xlabel('k')ylabel('|x2(k)|')title('x2(n)的8点fft') subplot(2,2,3) k=[0:7]stem(k,abs(f1)); axis([0 10 0 20]) xlabel('k')ylabel('|x2(k)|')title('x2(n)的8点fft')波形图:3.()33,470,x n n n ⎪=-<=<=⎨⎪⎩其它n原程序:n=[0:7];x=[4 3 2 1 1 2 3 4] f1=fft(x,8) f2=fft(x,16) subplot(2,2,1) stem(n,x);axis([0 8 0 4]) xlabel('n') ylabel('x3(n)') title('x3的波形') subplot(2,2,4) k=[0:15]stem(k,abs(f2)); axis([0 16 0 20]) xlabel('k')ylabel('|x3(k)|')title('x3(n)的8点fft') subplot(2,2,3) k=[0:7]stem(k,abs(f1)); axis([0 8 0 20]) xlabel('k')ylabel('|x3(k)|')title('x3(n)的8点fft')4.()4x n =cos(pi/4*n) 原程序:n=[0:7];x=cos(0.25*pi*n) f1=fft(x,8) subplot(2,2,1) stem(n,x);axis([0 8 -4 4]) xlabel('n')ylabel('x4(n)') title('x4的波形') n=[0:15]x=cos(0.25*pi*n) f2=fft(x,16) subplot(2,2,2) stem(n,x);axis([0 16 -4 4]) xlabel('n') ylabel('x4(n)')title('x4的波形') subplot(2,2,4)k=[0:15]stem(k,abs(f2));axis([0 16 0 20]) xlabel('k')ylabel('|x4(k)|')title('x4(n)的16点fft') subplot(2,2,3)k=[0:7]stem(k,abs(f1));axis([0 8 0 20]) xlabel('k')ylabel('|x4(k)|')title('x4(n)的8点fft')波形图:5.()5x n=sin(pi/8*n) 原程序:n=[0:7];x=sin((pi*n)/8)f1=fft(x,8) subplot(2,2,1) stem(n,x);axis([0 8 -4 4]) xlabel('n')ylabel('x5(n)') title('x5的波形') n=[0:15]x=sin(0.125*pi*n) f2=fft(x,16) subplot(2,2,2) stem(n,x);axis([0 16 -4 4]) xlabel('n') ylabel('x5(n)')title('x5的波形') subplot(2,2,4)k=[0:15]stem(k,abs(f2));axis([0 16 0 20]) xlabel('k')ylabel('|x5(k)|')title('x5(n)的16点fft') subplot(2,2,3)k=[0:7]stem(k,abs(f1));axis([0 8 0 20]) xlabel('k')ylabel('|x5(k)|')title('x5(n)的8点fft')波形图:6.()6x t=cos(pi*8*t)+ sin(pi*16*t)+cos(20*pi*t) 原程序:Ts=1/64;n=0:15;Xa=cos(8*n*Ts*pi)+cos(16*n*Ts*pi )+cos(20*n*Ts*pi);f1=fft(Xa,16);subplot(3,2,1);stem(n,Xa);axis([0 15 -2 3]);xlabel('n');ylabel('X6(n)');title('X6(n) N=16');%显示x6(n)N=16k=0:15subplot(3,2,2);stem(k,abs(f1));axis([0 16 0 15]);xlabel('k');ylabel('|X6(k)|');title('X6(n) N=16 的16点FFT');%显示X6(n)的16点FFTn=0:31;Xb=cos(8*n*Ts*pi)+cos(16*n*Ts*pi )+cos(20*n*Ts*pi);f2=fft(Xb,32);subplot(3,2,3);stem(n,Xb);axis([0 32 -2 3]);xlabel('n'); ylabel('X6(n)');title('X6(n) N=32');%显示x6(n)N=32subplot(3,2,4);stem(abs(f2));axis([0 32 0 20]);xlabel('k');ylabel('|X6(k)|');title('X6(n) N=32 的32点FFT');%显示X6(n)的32点FFTn=0:63;Xc=cos(8*n*Ts*pi)+cos(16*n*Ts*pi )+cos(20*n*Ts*pi);f3=fft(Xc,64);subplot(3,2,5);stem(n,Xc);axis([0 64 -2 3]);xlabel('n');ylabel('X6(n)');title('X6(n) N=64');%显示x6(n)N=64subplot(3,2,6);stem(abs(f3));axis([0 64 0 40]);xlabel('k');ylabel('|X6(k)|');title('X6(n) N=64 的64点FFT');%显示X6(n)的64点FFT波形图:(2)令45()()()x n x n x n =+,用FFT 计算8点和16点离散傅立叶变换,[]()()x k DFT x n =,并根据DFT 的对称性,由()x k 求出[]44()()x k DFT x n =和[]55()()x k DFT x n =并与(1)中所得结果比较。

相关文档
最新文档