初中数学2016年中考八大题型典中典专题复习(五)阅读理解问题

合集下载

初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型典中典专题复习(一)数学思想问题

初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型典中典专题复习(一)数学思想问题

专题复习(一)数学思想方法问题题型概述数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路。

因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常见的解题方法与技巧,从而为夺得中考高分搭起灵感和智慧的平台。

初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等。

结合中考走向,我们重点就以下几种思想方法进行赏析强化。

【题型例析】类型1:整体思想整体思想就是考虑数学问题时,不是着眼与它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密的联系这的量作为整体来处理运用的思想方法。

【例题】.(1)(2015•湖南株洲,第13题3分)因式分解:2(2)16(2)x x x ---= 。

【解析】本题考点为:分解因式,首先提取整体公因式(2)x -,然后还要注意彻底分解, 2(16)x -仍可以利用平方差公式分解。

答案为:(2)(4)(4)x x x --+(2)(2015•广东梅州,第18题,7分)已知2-=+b a ,求代数式a b a b a 2)2()1(2+++-的值.考点:整式的混合运算—化简求值..专题:计算题.分析:原式利用完全平方公式及单项式乘以多项式法则计算,将已知等式代入计算即可求出值.解答:解:原式=a 2﹣2a +1+2ab +b 2+2a =(a +b )2+1,把a +b =﹣代入得:原式=2+1=3. 点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则整体运用是解本题的关键.【变式练习】(1)(2015福建龙岩13,3分)若4a﹣2b=2π,则2a﹣b+π= 2π.考点:代数式求值.分析:根据整体代入法解答即可.解答:解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.点评:此题考查代数式求值,关键是根据整体代入法计算.(2)(2015•甘南州第23题 4分)已知a2﹣a﹣1=0,则a3﹣a2﹣a+2015= 2015 .考点:因式分解的应用.分析:首先根据a2﹣a﹣1=0得到a2﹣a=1,从而利用a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015代入求值即可.解答:解:∵a2﹣a﹣1=0,∴a2﹣a=1,∴a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015=a﹣a+2015=2015,故答案为:2015.点评:本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.类型2:分类讨论思想(1)代数问题中的分类讨论针对代数中的有些问题,需要对整体问题进行分解,从不同的角度、不同的范围和不同的思路进行分类,把问题既不重复,不遗漏的分成几种情况进行分析,化整为零,各个击破的解题策略,这样使问题得以轻松解决。

中考数学复习第五讲《阅读理解型问题》经典题型含答案

中考数学复习第五讲《阅读理解型问题》经典题型含答案

中考数学复习专题第五讲阅读理解型问题【要点梳理】阅读理解能力是初中数学课程的主要目标,是改变学生学习方式,实现自主探索主动发展的基础.阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致.这类问题,主要考查解题者的心理素质,自学能力和阅读理解能力,考查解题者的观察分析能力、判辩是非能力、类比操作能力、抽象概括能力、数学归纳能力以及数学语言表达能力.这就要求同学们在平时的学习活动中,逐步养成爱读书、会学习、善求知、勤动脑、会创新和独立获取新知识的良好习惯.阅读理解题型分类:题型一:考查掌握新知识能力的阅读理解题命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查我们自学能力和阅读理解能力,能考查我们接收、加工和利用信息的能力.题型二:考查解题思维过程的阅读理解题言之有据,言必有据,这是正确解题的关键所在,是提高我们数学水平的前提.数学中的基本定理、公式、法则和数学思想方法都是理解数学、学习数学和应用数学的基础,这类试题就是为了检测我们理解解题过程、掌握基本数学思想方法和辨别是非的能力而设置的.题型三:考查纠正错误挖病根能力的阅读理解题理解知识不是拘泥于形式的死记硬背,而是要把握知识的内涵或实质,理解知识间的相互联系,形成知识脉络,从而整体地获取知识.这类试题意在检测我们对知识的理解以及认识问题和解决问题的能力.题型四:考查归纳、探索规律能力的阅读理解题对材料信息的加工提炼和运用,对规律的归纳和发现能反映出我们的应用数学、发展数学和进行数学创新的意识和能力.这类试题意在检测我们的“数学化”能力以及驾驭数学的创新意识和才能.【学法指导】解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.【考点解析】阅读新知识,解决新问题(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2阅读解题过程,模仿解题策略(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D 在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB ∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).阅读探索规律,推出一般结论(2017内江)观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:(1)请写出第六个等式:a6= = ﹣;(2)用含n的代数式表示第n个等式:an= =﹣;(3)a1+a2+a3+a4+a5+a6= (得出最简结果);(4)计算:a1+a2+…+an.【考点】37:规律型:数字的变化类.【分析】(1)根据已知4个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,列项相消求解可得.==﹣,【解答】解:(1)由题意知,a6故答案为:,﹣;(2)a==﹣,n故答案为:,﹣;(3)原式=﹣+﹣+﹣+﹣+﹣+﹣=﹣=,故答案为:;(4)原式=﹣+﹣+…+﹣=﹣=.【真题训练】训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.参考答案:训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.【考点】6B:分式的加减法.【分析】根据所列的等式找到规律=(﹣),由此计算+ ++…+的值.【解答】解:∵ =﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案是:.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【考点】A6:解一元二次方程﹣配方法;A3:一元二次方程的解;A8:解一元二次方程﹣因式分解法.【分析】(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x 1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;。

【初中数学】初中数学2016年中考八大题型典中典专题复习(8份) 通用3

【初中数学】初中数学2016年中考八大题型典中典专题复习(8份) 通用3

专题复习(二)——规律猜想问题题型概述给出一列数字、等式或者一组图形,通过观察、分析、猜想、探索归纳其规律的一类题目就是规律与猜想的探究性试题,这类问题要求大家都有较为敏锐的观察思考、分析、推理、演绎、归纳能力,从具体、特殊的事实中探究其存在的规律,把潜在的表面现象中的本质挖掘出来,是一种发现、创新。

题型例析类型1:数字规律数字变化类的问题,一般在解答时先从数阵前面简单的情形入手,通过观察同一行、同一列的数据排列关系,同时注意这个数据艘所在行数序号之间有何深层次的变化规律,发现这个规律问题就等于解决了。

【例题】(2015•山东泰安,第18题3分)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252考点:规律型:数字的变化类..分析:首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4﹣1=3,6﹣2=4,8﹣3=5,10﹣4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x的值是多少即可.解答:解:∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选:C.点评:此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.【变式练习】(1)(2015湖北荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015是第=1008个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,即≥1008,解得:n≥,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(+1)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.(2)(2015•甘肃武威,第18题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.考点:数字的变化类.专题:规律型:分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.类型2:图形规律对于图形的问题,要注意仔细观察,找到图形之间能够相互循环的关键点,然后把每一个循环组看作一个整体再来研究就可以了。

【初中数学】初中数学2016年中考八大题型典中典专题复习(8份) 通用2

【初中数学】初中数学2016年中考八大题型典中典专题复习(8份) 通用2

专题复习(三)——方案设计问题题型概述方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。

它包括测量方案设计、作图方案设计和经济类方案设计等。

题型例析类型1:利用方程、不等式(组)进行方案设计这类问题往往列方程组或不等式(组)解应用题,但是列方程的关键又是找出题目中存在的的等量关系或不等式关系;对于设计方案题一般要根据题意列出不等式或不等式组,求不等式组的整数解(或者符合要求的解)。

【例题】(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用.分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.【变式练习】(2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。

初中数学2016年中考:初中数学2016年中考八大题型典中典专题复习总结-阅读理解问题

初中数学2016年中考:初中数学2016年中考八大题型典中典专题复习总结-阅读理解问题

专题复习—阅读理解问题题型概述阅读理解型问题一般都是先提供一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容,思想方法,把握本质,解答试题中提出的问题,对于这类题求解步骤是“阅读—分析—理解—创新应用”,其关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材,因此这种试题是考查大家随机应变能力和知识的迁移能力。

题型例析类型1:新定义运算型对于这种新定义型问题解答需要深刻理解新定义运算法则和运算过程,将新定义运算转化为熟悉的加减乘除等运算。

【例题】.(2015·湖北省武汉市,第15题3分)定义运算“*”,规定x *y =ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,则2*3=_________10【解析】由题意知,⎩⎨⎧=+=+6452a b a b ,所以⎩⎨⎧==21a b ,所以x ※y=x 2+2y,所以2※3=22+2×3=10.新定义翻译:新定义的实质是解二元一次方程组,从而确定常数值,最后转化为求代数式的值.本题以新定义的形式出现,使简单问题新颖化,能很好的考查同学们的阅读理解能力.【变式练习】(2015•甘肃天水,第10题,4分)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( ) A . ①④ B. ①③ C. ②③④ D. ①②④考点: 整式的混合运算;有理数的混合运算. 专题: 新定义.分析: 各项利用题中的新定义计算得到结果,即可做出判断.解答: 解:根据题意得:2⊗(﹣2)=2×(1+2)=6,选项①正确; a ⊗b=a (1﹣b )=a ﹣ab ,b ⊗a=b (1﹣a )=b ﹣ab ,不一定相等,选项②错误; (a ⊗a )+(b ⊗b )=a (1﹣a )+b (1﹣b )=a+b ﹣a 2﹣b 2≠2ab,选项③错误; 若a ⊗b=a (1﹣b )=0,则a=0或b=1,选项④正确, 故选A点评: 此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.类型2:学习应用型解决此类问题时要注意以下两点:一要理解阅读材料中解题方法及其存在的规律性;二是熟练把握相关的知识。

中考数学备考专题复习: 阅读理解问题(含解析)

中考数学备考专题复习: 阅读理解问题(含解析)

中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。

最新初中中考数学专题(5)阅读理解问题(含答案)精讲教学案

最新初中中考数学专题(5)阅读理解问题(含答案)精讲教学案

专题五 阅读理解问题一、选择题1.(原创题)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1, 2C .1,1, 3D .1,2, 3解析 A .∵1+2=3,不能构成三角形,故选项错误; B .∵12+12=(2)2,是等腰直角三角形,故选项错误; C .底边上的高是12-⎝ ⎛⎭⎪⎫322=12,可知是顶角120°,底角30°的等腰三角形,故选项错误;D .解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 答案 D2.(改编题)若一个n 位数中各数字的n 次幂之和等于该数本身,这个数叫做“自恋数”.下面四个数中是“自恋数”的是( )A .66B .153C .225D .250解析 ∵62+62=36+36=72≠66,13+53+33=1+125+27=153,23+23+53=8+8+125=141≠225,23+53+03=8+125+0=133≠250,故66,225,250都不是自恋数,153是自恋数.故选B. 答案 B 二、填空题3.(改编题)定义新运算:对任意实数a ,b ,都有a ⊗b =a 2-b 2,例如,3⊗2=32-22=5,那么2⊗1=________.解析 根据题意,得2⊗1=22-12=4-1=3. 答案 34.(改编题)若规定一种运算为:a ★b =2(b -a ),如3★5=2(5-3)=2 2.则2★3=________. 解析 2★3=2(3-2)=6-2. 答案6-2三、解答题5.(改编题)阅读材料:对于任何实数,我们规定符号⎪⎪⎪⎪⎪⎪⎪⎪a b c d 的意义是⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc .例如:⎪⎪⎪⎪⎪⎪⎪⎪1 23 4=1×4-2×3=-2,⎪⎪⎪⎪⎪⎪⎪⎪-2 4 3 5=(-2)×5-4×3=-22. (1)按照这个规定请你计算⎪⎪⎪⎪⎪⎪⎪⎪5 67 8的值; (2)按照这个规定请你计算:当x 2-4x +4=0时,⎪⎪⎪⎪⎪⎪⎪⎪x +1 2x x -1 2x -3的值. 解 (1)⎪⎪⎪⎪⎪⎪⎪⎪5 67 8=5×8-6×7=-2. (2)由x 2-4x +4=0,得x 1=x 2=2,⎪⎪⎪⎪⎪⎪⎪⎪x +1 2x x -1 2x -3=⎪⎪⎪⎪⎪⎪⎪⎪3 41 1=3×1-4×1=-1. 6.(原创题)若△ABC 所在的平面内的一条直线,其上任意一点与△ABC 构成的四边形(或三角形)面积是△ABC 面积的n 倍,则称这条直线为△ABC 的n 倍线.如图1,点P 为直线l 上任意一点,S 四边形PABC=3S △ABC ,则称直线l 为△ABC的三倍线.(1)在如图2的网格中画出△ABC 的一条2倍线;(2)在△ABC 所在的平面内,这样的2倍线有________条.解 (1)如图所示:(2)在△ABC 所在的平面内,这样的2倍线有3条.。

初中数学2016年中考八大题型典中典专题复习试题(五)阅读理解问题

初中数学2016年中考八大题型典中典专题复习试题(五)阅读理解问题

专题复习(五)——阅读理解问题类型1:新定义运算型定义运算“*”,规定x *y =ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,则2*3=_________ 【变式练习】定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A . ①④ B. ①③ C. ②③④ D. ①②④类型2:学习应用型我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF ,BE 是△ABC 的中线, AF ⊥BE , 垂足为P .像△ABC 这样的三角形均为“中垂三角形”.设BC =a ,AC b =,AB c =. 特例探索(1)如图1,当∠ABE =45°,c =22时,a = ,b = ; 如图2,当∠ABE =30°,c =4时, a = ,b = ;45°30°图3图2图1CEFBCEFAPCEF BPAB PA归纳证明(2)请你观察(1)中的计算结果,猜想,,a b c 222三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式; 拓展应用(3)如图4,在□ABCD 中,点E ,F ,G 分别是AD ,BC ,CD 的中点,BE ⊥EG , AD =25,AB =3. 求AF 的长.FBEGCD A【变式练习】如果关于x 的一元二次方程ax 2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 (写出所有正确说法的序号) ①方程x 2﹣x ﹣2=0是倍根方程.②若(x ﹣2)(mx+n )=0是倍根方程,则4m 2+5mn+n 2=0;③若点(p ,q )在反比例函数y=2x的图象上,则关于x 的方程px 2+3x+q=0的倍根方程;④若方程ax 2+bx+c=0是倍根方程,且相异两点M (1+t ,s ),N (4﹣t ,s )都在抛物线y=ax 2+bx+c 上,则方程ax 2+bx+c=0的一个根为54. 类型3:新概念阅读型对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}x x x x Max 12,+=-的解为( ).(A )21- (B )22- (C )2121-+或 (D )121-+或 【变式练习】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。

中考数学专题复习(阅读理解)

中考数学专题复习(阅读理解)

中考数学专题复习:阅读理解题【知识梳理】阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法.【课前预习】1、计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如(1101)表示二进制数,转换为十进制形式是,那么将二进制(1111)转换为十进制形式是数( )A、8B、15C、20D、302、阅读下面材料并完成填空。

你能比较两个数和的大小吗?为了解决这个问题,先把问题一般化,即比较的大小(n≥1的整数)。

然后,从分析n=1,n=2,n=3,……,从这些简单情形入手,从中发现规律,经过归纳,猜想出结论。

⑴通过计算,比较下列①~③各组两个数的大小(在横线上填“>”“<”或“=” )1 ____2 ②____3 ③____④> ⑤ ⑥ ⑦⑵从第⑴小题的结果经过归纳,可以猜想出的大小关系是______________________________________⑶根据上面归纳猜想得到的一般结论,可以得到____(填“>”、“=”或“<”3、阅读下列材料:FEDCBA(图1) (图2) (图3) (图4)如图1,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置;如图2,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图3,以点A为中心,把△ABC旋转180°,可以变到△AED的位置。

2016中考数学专题复习阅读理解试题.doc

2016中考数学专题复习阅读理解试题.doc

2016中考数学专题复习阅读理解试题.doc阅读理解专题阅读理解型问题一般文字叙述较长,信息量较大,各种关系错综复杂,往往是先给一个材料,或介绍一个新的知识点,或给出针对某一种题目的解法,然后再给合条件出题.解决这类题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含的数学知识、结论,或揭示的数学规律,或暗示的解题方法,然后展开联想,如何从题目给定的材料获得新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.一、新定义型例1对于实数a,b,定义运算“* ”:a*b=2a ab(a≥b),2ab b ( a<b).2 2例如:4*2,因为4>2,所以4*2=4 -4×2=8.若x1,x2 是一元二次方程x -5x+6=0的两个根,则x1*x 2=_________________.分析:用公式法或因式分解法求出方程的两个根,然后利用新定义解之.解:可以用公式法求出方程x 1=2,x2=3,也可2-5x+6=0 的两个根是 2 和3,可能是x能是x1=3,x2=2,根据所给定义运算可知原题有两个答案3 或-3..本题容易忽视讨论思想,会少一种情况.评注:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力.跟踪训练:1. 若定义:f(a,b)=(-a,b) ,g(m,n)=(m,-n) ,例如 f (1,2) ( 1,2) ,g( 4, 5) ( 4,5),则g( f (2, 3)) 等于()A.(2,-3 ) B .(-2 ,3) C .(2,3) D .(-2 ,-3 )2.对于实数x, 我们规定【x】表示不大于x 的最大整数,例如1.2 1,3 3, 2.5 3,x 4若 510,则x的值可以是()A.40 B .45 C .51 D .56二、类比型例2阅读下面材料后,解答问题.x - 2 2x 3分母中含有未知数的不等式叫分式不等式. 如:>0 0等. 那么如何求出它们,<x 1 x -1的解集呢?根据我们学过的有理数除法法则可知,两数相除,同号得正,异号得负,其字母表达式为:(1)若a>0 ,b>0 ,则ab>0,若a<0 ,b<0,则ab>0;(2)若a>0 ,b<0 ,则ab<0 ,若a<0,b>0 ,则ab<0.反之,(1)若ab>0,则a0>,或b>,a<0,b<0;(2)若ab<0 ,则__________或_____________.x 2根据上述规律,求不等式﹙A﹚>0,x 1 ﹙B﹚2x2-3x+2019 <2018 的解集.2-3x+2019 <2018 的解集.分析:对于(2),根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后解一元一次不等式组即可.对于(A),据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;对于(B),将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可.解:(2)若<0,则或故答案为或;由上述规律可知,不等式﹙A﹚转化为或所以x>2 或x<﹣1.不等式﹙B﹚即为2x2-3x+1 <0.∵2x 2-3x+1= ﹙x-1﹚(2x-1 ),∴2x 2-3x+1 <0 可化为﹙x -1﹚(2x-1 )<0. 由上述规律可知①x 1 02x 3 0或②x 1 02x 3 0解不等式组①,无解,解不等式组②,得12<x<1.< bdsfid="149" p=""></x<1.<>∴不等式2x2-3x+2019 <2018 的解集为2-3x+2019 <2018 的解集为12<x<1.< bdsfid="154" p=""></x<1.<>评注:本题实质是一元一次不等式组的应用,读懂题目信息,理解不等式转化为不等式组的方法是解题关键.例 4 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcosβ±cos αsin β;tan tantan (α±β)=1m t an tan.利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan15°=tan(45°- 30°) =tan45 - tan 301 tan45 gtan30=2133(3 3)(3 3) 12 6 3 =2- 3 .13 (3 3)(3 3)36根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15 °;(2)一铁塔是市标志性建筑物之一(图1),小草想用所学知识来测量该铁塔的高度,如图2,小草站在与塔底A相距7 米的C处,测得塔顶的仰角为75°,小草的眼睛离地面的距离DC为1.62 米,请帮助小草求出铁塔的高度(精确到0.1 米;参考数据: 3 =1.732 ,2 =1.414 ).分析:(1 )把15°化为(45°- 30°)以后,再利用公式sin (α±β)=sin αcosβ±cos αsin β计算,即可求出sin15 °的值;(2)先根据锐角三角函数的定义求出BE的长,再根据AB=AE+BE即可得出结论.解:﹙1﹚s i n15 °=sin (45°- 30°)=sin45 °co s30°- cos45°sin30 °=2 3 2 1 6 2 6 22 2 2 2 4 4 4;(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,∴BE=DEtan∠BDE=DEtan7°5.∵tan75°=tan(45°+30°)= tan45 tan 301 tan45 gtan 30=133(3 3)(3 3) 12 6 3 =2+ 3 .13 (3 3)(3 3)36∴BE=7(2+ 3 )=14+7 3 ,∴AB=AE+BE=1.62+14+7 3 ≈27.7 (米).答:乌蒙铁塔的高度约为27.7 米.评注:本题考查了特殊角的三角函数值和仰角的知识,此题难度中等,注意能借助仰角构造3直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.例5阅读材料:小艳在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+ =(1+ )2 .善于思考的小艳进行了以下探索:设a+b =(m+n )2(其中a,b,m,n 均为正整数),则有a+b =m2+2n2+2mn .∴a=m2+2n2,b=2mn.这样小艳就找到了一种把类似a+b 的式子化为平方式的方法.请你仿照小艳的方法探索并解决下列问题:(1)当a,b,m,n 均为正整数时,若a+b = ,用含m,n 的式子分别表示a,b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a,b,m,n 填空:+ =(+ )2;(3)若a+4 = ,且a,m,n 均为正整数,求 a 的值.分析: (1)根据完全平方公式的运算法则,即可得出a,b 的表达式;(2)首先确定m,n 的正整数值,然后根据(1)的结论即可求出a,b 的值;(3)根据题意,4=2mn,首先确定m,n 的值,通过分析m=2,n =1 或者m=1,n=2,然后即可确定 a 的值.解:(1)∵a+b = ,∴a+b =m2+3n2+2mn ,2 2 2 2∴a=m+3n ,b=2mn.故答案为m+3n ,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4,2,1,1.(3)由题意,得a=m2+3n2,b=2mn.∵4=2mn,且m,n为正整数,∴m=2,n=1 或者m=1,n=2.∴a=22+3×12+3×12=7,或a=12+3×22=13.评注:本题主要考查二次根式的混合运算,完全平方公式,关键在于熟练运算完全平方公式和二次根式的运算法则.例6阅读:大家知道,在数轴上,x=1 表示一个点,而在平面直角坐标系中,x=1 表示一条直线;我们还知道,以二元一次方程2x-y+1=0 的所有解为坐标的点组成的图形就是一次函数y=2x+1 的图象,它也是一条直线,如图3- ①.x 观察图①可以得出,直线x=1 与直线y=2x+1 的交点P的坐标(1,3) 就是方程组2x 1,y 1 0的解,所以这个方程组的解为x 1 在直角坐标系中,x≤1表示一个平面区域,即直线x=1,y 3.以及它的左侧部分,如图3- ②. y≤2x+1 也表示一个平面区域,即直线y=2x+1 以及它下方4的部分,如图3- ③.(5)图3回答下列问题:(1) 在如图3- ④所示直角坐标系中,用作图象的方法求出方程组x2, 的解;y 2x 2x 2,(2) 用阴影表示不等式组所围成的区域.y 2x 2,y 0分析:通过阅读材料可知,要解决第(1) 小题,只要画出函数x=-2 和y=-2x+2 的图象,找出它们的交点坐标即可;第(2) 小题,该不等式组表示的区域就是直线x=-2 及其右侧的部分,直线y=-2x+2 及其下方的部分和y=0 及其上方的部分所围成的公共区域.解:(1)如图3- ⑤所示,在坐标系中分别作出直线x=-2 和直线y=-2x+2 ,观察图象可知,这两条直线的交点是P(-2,6 ).x 2,x 2, 的解.所以是方程组y 6y 2x 2(2)如图3- ⑤所示.评注:本题给出了一个全新的知识情景,通过阅读材料,可知材料中给出一种解决问题的方法,即方程组的解就是两个函数图象的交点坐标;不等式或不等式组的解集可以用坐标系中图形区域直观地表示出来,不仅要掌握这种方法,还能在原解答的基础上,用这种方法解决类似的问题. 解答这类问题的关键是弄清解题原理,详细分析解题思路,梳理前后的因果关系以及每一步变形的理论依据,然后给出问题的解答.通过该题的解答,我们了解了用函数的图象来解方程组或不等式组,是解方程组或不等5式组的一种特殊方法.跟踪训练:3. 先阅读理解下面的例题,再按要求解答下列问题:解一元二次不等式x2-4 >0.解:不等式x2-4 >0 可化为(x+2)(x-2 )>0,由有理数的乘法法则“两数相乘,同号得正”,得①xx202 0②xx202 0解不等式组①,得x>2,解不等式组②,得x<-2.∴(x+2)(x-2 )>0 的解集为x>2 或x<-2 ,即一元二次不等式x2-4 >0 的解集为x>2 或x<-2 .(1)一元二次不等式x2-16 >0 的解集为;(2)分式不等式x 1 0x 34.阅读下列材料的解集为;材料1:从三张不同的卡片中选出两张排成一列,有6 种不同的排法,抽象成数学问题就是从 3 个不同的元素中选取 2 个元素的排列,排列数记为 2A3 3 2 6 .一般地,从n 个不同的元素中选取m个元素的排列数记作mA .nmA n(n1)( n 2)( n 3) ( n m 1) (m ≤n).n材料2:从三张不同的卡片中选取两张,有3 种不同的选法,抽象成数学问题就是从 3个不同的元素中选取 2 个元素的组合,组合数为2C 3. 32 16 5 4 3例:从 6 个不同的元素选3个元素的组合数为C20.63 2 1阅读后回答问题:(1)从5张不同的卡片中选出3张排成一列,有几种不同的排法?(2)从某个学习小组8人中选取 3 人参加活动,有多少种不同的选法?答案:1. 解:由题意,得f(2 ,-3)=( -2,-3) ,所以g(f(2 ,-3))=g( -2,-3)=( -2,3) ,故选B.2 . C3. 解:(1)不等式x2-16 >0 可化为(x+4)(x-4 )>0,由有理数的乘法法则“两数相乘,同号得正”,得① 4 0xx 4 0 或②x 4 0x 4 0解不等式组①,得x>4,解不等式组②,得x<-4. ∴(x+4)(x-4 )>0 的解集为x>4 或x<-4 ,即一元二次不等式x2-16>0 的解集为x>4 或x<-4 .(2)∵x 1 0x 3 ,∴xx10或xx103 0解得x>3 或x<1. 64. 解:(1) 3A5 5 4 3 60 ;(2)8 7 63C 56.83 2 17。

初中数学中考八大题型点拨导练复习(五)阅读理解问题

初中数学中考八大题型点拨导练复习(五)阅读理解问题

点拨复习(五)——阅读理解问题【专题点拨】阅读理解型问题一般都是先提供一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容,思想方法,把握本质,解答试题中提出的问题,对于这类题求解步骤是“阅读—分析—理解—创新应用”,其关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材,因此这种试题是考查大家随机应变能力和知识的迁移能力。

【典例赏析】【例题1】(2017•乐山)对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为且.【考点】HA:抛物线与x轴的交点;AA:根的判别式;AB:根与系数的关系.【专题】23 :新定义.【分析】根据新定义得到y′=x3+(m﹣1)x2+m2=x2﹣2(m﹣1)x+m2,(1)由判别式等于0,解方程即可;(2)根据根与系数的关系列不等式组即可得到结论.【解答】解:根据题意得y′=x2﹣2(m﹣1)x+m2,(1)∵方程x2﹣2(m﹣1)x+m2=0有两个相等实数根,∴△=[﹣2(m﹣1)]2﹣4m2=0,解得:m=,故答案为:;(2)y′=m﹣,即x2+2(m﹣1)x+m2=m﹣,化简得:x2+2(m﹣1)x+m2﹣m+=0,∵方程有两个正数根,∴,解得:且.故答案为:且.【点评】本题考查了抛物线与x轴的交点,根的判别式,根与系数的关系,正确的理解题意是解题的关键.【例题2】(2017湖北随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.【考点】SO:相似形综合题.【分析】(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到==1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC=a,接着证明△ANF为等腰直角三角形得到NF=a+b,则NE=NF+EF=2a+b,然后计算的值;(4)由于==+=k,则=,然后表示出==•+1,再把=代入计算即可.【解答】解:(1)如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM=∠FEM,在△CDM和△FEM中,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴==1,∴DM=EM,即点M是DE的中点;(2)∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=AD=a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=AF=(a+b+b)=a+b,∴NE=NF+EF=a+b+a=2a+b,∴===;(4)∵==+=k,∴=k﹣,∴=,∴==•+1=•+1=.【例题3】(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON 的长,可求得N点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x 轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).【能力检测】1..(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D2.(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM 较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.3.为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.4.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【考点】S7:相似三角形的性质;KH:等腰三角形的性质.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC ≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC==67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.5.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.。

初中数学16年中考八大题型典中典:初中数学16年中考八大题型

初中数学16年中考八大题型典中典:初中数学16年中考八大题型

初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型最大最全最精的教育资源网专题复习——图形操作问题题型概述操作题是当今中考命题的热点,在今后仍是大趋势,是数形结合的拓展和深化,它有助于学生发展空间观念和创新能力的培养,对于这类问题的解答,首先要求大家积极的参与操作、实验、观察、猜想、探索、发现结论全过程,有效提高解答操作试题的能力。

题型例析类型1:网格与画图结合图形找准关键性格点,需要对网格有深刻理解,同时结合相关几何知识画出图形。

【例题】如图,已知△ABC,∠C=Rt∠,AC用直尺和圆规,作出点D的位置;连结AD,若∠B=37°,求∠CAD的度数. 【答案】解:作图如下:∵△ABC中,∠C=Rt∠,∠B=37°,∴∠BAC=53°. ∵AD=BD,∴,∠B=∠BAD=37°全国中小学教育资源门户网站| 天量课件、教案、试卷、学案下载|最大最全最精的教育资源网∴∠CAD=∠BAC?∠BAD=16°. 【考点】尺规作图;线段垂直平分线的性质;直角三角形两锐角的关系;等腰三角形的性质. 【分析】因为到A,B两点的距离相等在线段AB的垂直平分线上,因此,点D是线段AB的垂直平分线与BC 的交点,据此作图即可. 根据直角三角形两锐角互余,求出∠BAC,根据等腰三角形等边对等角的性质,求出∠BAD,从而作差求得∠CAD的度数. 【变式练习】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是A.2 B.4 C.6D.8 考点:平行线分线段成比例;菱形的判定与性质;作图—基本作图.. 分析:根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF 是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.解答:∵根据作法可知:MN 是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,全国中小学教育资源门户网站| 天量课件、教案、试卷、学案下载|最大最全最精的教育资源网∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.点评:本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例. 类型2:折叠与翻转问题折叠问题是一种常见题型,折叠前后的两个图形对应边、对应角相等,也就是说折叠变换就是全等变换,把握住这些常识性的知识点再来解题就很容易了。

中考数学复习《阅读理解问题》经典题型及测试题(含答案)

中考数学复习《阅读理解问题》经典题型及测试题(含答案)

中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。

初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型典中典专题复习(四)开放研究问题分解

初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型典中典专题复习(四)开放研究问题分解

专题复习(四)——开放研究问题题型概述开放研究型问题是相对于条件和结论明确的封闭试题而言的,是能引起同学们产生联想,并会自然而然的往深处想的一种试题类型,简单来说就是答案不唯一的,解题的方向不确定,条件或者结论不止一种情况的试题,解答此类试题时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法。

根据开放性的试题的特点,主要有如下几种类型:条件开放性、结论开放性、选择开放型、综合开放型。

题型例析类型1:条件开放性解决这种类型的开放性问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻。

【例题】(2015•广东梅州,第12题,3分)已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E, F为顶点的三角形与△ABC相似,则需要增加的一个条件是.(写出一个即可)考点:相似三角形的判定.专题:开放型.分析:根据相似三角形对应边成比例或相似三角形的对应角相等进行解答;由于没有确定三角形相似的对应角,故应分类讨论.解答:解:分两种情况:①∵△AEF∽△ABC,∴AE:AB=AF:AC,即1:2=AF:AC,∴AF=AC;②∵△AFE∽△ACB,∴∠AFE=∠ABC.∴要使以A、E、F为顶点的三角形与△ABC相似,则AF=AC或∠AFE=∠ABC.故答案为:AF=AC 或∠AFE=∠ABC.点评:本题很简单,考查了相似三角形的性质,在解答此类题目时要找出对应的角和边.【变式练习】(2014•齐齐哈尔,13题3分)如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD ≌ACE,则只需添加一个适当的条件是BD=CE .(只填一个即可)考点:全等三角形的判定.专题:开放型分析:此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解答:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.类型2:结论开放性所谓结论性开放题就是给出问题的条件,让解题者根据条件找寻相应的结论,且符合条件的结论往往呈现出多样化,这类问题就是结论的开放性问题。

中考数学复习讲义课件 专题5 阅读理解型问题

中考数学复习讲义课件 专题5 阅读理解型问题
→→ ∴OD1与OD2不垂直. ④∵( 5+2)( 5-2)+ 2× 22≠0,
→→ ∴OE1与OE2不垂直.故选 A.
☞示例 4 (2021·鄂州)数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个 正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题. 猜想发现 由 5+5=2 5×5=10; 13+13=2 13×13=23; 0.4+0.4=2 0.4×0.4=0.8; 15+5>2 15×5=2; 0.2+3.2>2 0.2×3.2=1.6; 12+18>2 12×18=12.
方法迁移型
→ ☞示例 3 (2018·达州)平面直角坐标系中,点 P 的坐标为(m,n),则向量OP可以用点 P 的坐标表示



→→
为OP=(m,n);已知OA1=(x1,y1),OA2=(x2,y2),若 x1·x2+y1·y2=0,则OA1与OA2互相垂直.下
列四组向量:①O→B1=(3,-9),O→B2=(1,-13);②O→C1=(2,π0),O→C2=(2-1,-1);③O→D1=(cos30
→ °,tan45°),OD2
→ =(sin30°,tan45°);④OE1=(
5+2,
→ 2),OE2=(
5-2, 22).其中互相垂
直的组有( A )
A.1 组
B.2 组
C.3 组
D.4 组
[解析] ①∵3×1+(-9)×(-13)=6≠0, →→
∴OB1与OB2不垂直. →→
②∵2×2-1+π0×(-1)=0,∴OC1与OC2垂直. ③∵cos30°×sin30°+tan45°×tan45°≠0,
(2)cos2x=cos2x-sin2x;

中考数学专题复习 阅读理解问题

中考数学专题复习 阅读理解问题

中考数学专题复习—— 阅读理解问题我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明: 对于这两个三角形均为直角三角形,显然它们全等. 对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC 、△A 1B 1C 1均为锐角三角形,AB=A 1B 1,BC=B 1C l ,∠C=∠C l . 求证:△ABC ≌△A 1B 1C 1. (请你将下列证明过程补充完整.)证明:分别过点B ,B 1作BD ⊥CA 于D ,B 1D 1⊥C 1A 1于D 1. 则∠BDC=∠B 1D 1C 1=900,∵BC=B 1C 1,∠C=∠C 1, ∴△BCD ≌△B 1C 1D 1, ∴BD=B 1D 1.(2)归纳与叙述: 由(1)可得到一个正确结论,请你写出这个结论.A D CB 11A 1B 11、在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x)·x -(3⊕x)的值为 (“·”和“-”仍为实数运算中的乘号和减号).2、我们已经学习了相似三角形,也知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形。

比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形。

现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形。

请指出其中哪几对是相似图形,哪几对不是相似图形_______________________.例1、阅读下面的材料:解方程x 4-6x 2+5=0。

这是一个一元四次方程,根据该方程的特点,它的通常解法是:设x 2=y ,那么 x 4=y 2,于是原方程变为y 2-6y +5=0,解这个方程,得y 1=1,y 2=5.当y =1时,x 2=1,解得x =±1;当y =5时,x 2=5,解得x =∴原方程的解为:x 1=1,x 2=-1,x 3=5,x 4=-5. 请用上面的方法解答下列问题:解方程(x 2-x)2-4(x 2-x)-12=0. 例2、阅读下面的材料: ∵ 1111-13213⎛⎫= ⎪⨯⎝⎭,1111-35235⎛⎫= ⎪⨯⎝⎭,1111-57257⎛⎫= ⎪⨯⎝⎭,1111-171921719⎛⎫= ⎪⨯⎝⎭ ∴11111335571719+++⋅⋅⋅+⨯⨯⨯⨯ 111111111111----21323525721719⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111119----1-2133557171921919⎛⎫⎛⎫=+++⋅⋅⋅+== ⎪ ⎪⎝⎭⎝⎭ 请用上面的方法解答下列问题:(1)在和式1111447710+++⋅⋅⋅⨯⨯⨯中,第5项为__________,可化为__________. (2)当n = _______时,()111231223124n n ++⋅⋅⋅+=⨯⨯-⨯想一想:阅读下面的材料:如图,正方形ABCD 和正方形EFGH 对角线BD 、FH都在直线l 上.O 1、O 2分别是正方形的中心,O 1D =2,O 2F=1,线段O 1O 2的长叫做两个正方形的中心距.当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.请回答下列问题:(1)当中心O 2在直线l 上平移到两个正方形只有一个公共点时,中心距O 1O 2=_____.(2)随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程 ).如果成立,请给出证明;如果不成立,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习(五)——阅读理解问题题型概述阅读理解型问题一般都是先提供一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容,思想方法,把握本质,解答试题中提出的问题,对于这类题求解步骤是“阅读—分析—理解—创新应用”,其关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材,因此这种试题是考查大家随机应变能力和知识的迁移能力。

题型例析类型1:新定义运算型对于这种新定义型问题解答需要深刻理解新定义运算法则和运算过程,将新定义运算转化为熟悉的加减乘除等运算。

【例题】.(2015·湖北省武汉市,第15题3分)定义运算“*”,规定x *y =ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,则2*3=_________ 10【解析】由题意知,⎩⎨⎧=+=+6452a b a b ,所以⎩⎨⎧==21a b ,所以x ※y=x 2+2y,所以2※3=22+2×3=10.新定义翻译:新定义的实质是解二元一次方程组,从而确定常数值,最后转化为求代数式的值.本题以新定义的形式出现,使简单问题新颖化,能很好的考查同学们的阅读理解能力.【变式练习】(2015•甘肃天水,第10题,4分)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( ) A . ①④ B. ①③ C. ②③④ D. ①②④考点:整式的混合运算;有理数的混合运算.专题:新定义.分析:各项利用题中的新定义计算得到结果,即可做出判断.解答:解:根据题意得:2⊗(﹣2)=2×(1+2)=6,选项①正确;a⊗b=a(1﹣b)=a﹣ab,b⊗a=b(1﹣a)=b﹣ab,不一定相等,选项②错误;(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a+b﹣a2﹣b2≠2ab,选项③错误;若a⊗b=a(1﹣b)=0,则a=0或b=1,选项④正确,故选A点评:此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.类型2:学习应用型解决此类问题时要注意以下两点:一要理解阅读材料中解题方法及其存在的规律性;二是熟练把握相关的知识。

【例题】.(2015•江苏南昌,第24题12分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线, AF⊥BE , 垂足为P.像△ABC这样的三角形均为“中垂三角形”.设=.=,AB cBC=a,AC b特例探索(1)如图1,当∠ABE=45°,c=22时,a= ,b=;如图2,当∠ABE=30°,c=4时,a= ,b=;45°30°图3图2图1CEFBCEFAPCEF BPAB PA归纳证明(2)请你观察(1)中的计算结果,猜想,,a b c 222三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式; 拓展应用(3)如图4,在□ABCD 中,点E ,F ,G 分别是AD ,BC ,CD 的中点,BE ⊥EG , AD =25,AB =3. 求AF 的长.FBEGCD A答案:解析:(1)如图1,连接EF ,则EF 是△ABC 的中位线,∴EF =AB12=2,∵∠ABE =45°,AE ⊥EF ∴△ABP 是等腰直角三角形, ∵EF ∥AB ,∴△EFP 也是等腰直角三角形, ∴AP =BP =2 ,EP =FP =1, ∴AE =BF =5, ∴a b ==25.如图2,连接EF ,则EF 是△ABC 的中位线.C∵∠ABE =30°,AE ⊥BF ,AB =4, ∴AP =2, BP =23,∵EF //AB12, ∴PE =3,PF =1,∴AE =7, BF =13 ∴a =213 , b =27.(2) a b c +=2225如图3,连接EF , 设AP =m ,BP =n .,则c AB m n ==+2222∵EF //AB 12, ∴PE =12BP =12n , PF =12AP =12m , ∴AE m n =+22214 , BF n m =+22214 , ∴b AC AE m n ===+2222244,a BC BF n m ===+2222244∴()a b m n c +=+=2222255(3)O M NPQF BEG CD A如上图,延长EG ,BC 交于点Q , 延长QD ,BA 交于点P ,延长QE ,BE 分别交PB ,PQ 于点M ,N ,连接EF .∵四边形ABCD 是平行四边形,∴AD//BC , AB//CD ,图3CEFBPA∵E ,G 是分别是AD ,CD 的中点,∴△EDG ≌△QCG ≌△EAM , ∴CQ =DE =5,DG =AM =1.5,∴BM =4.5.∵CD CQ BP BQ =,∴BP =3535,∴BP =9, ∴M 是BP 的中点; ∵AD//FQ , ∴四边形ADQF 是平行四边形,∴AF ∥PQ ,∵E ,F 分别是AD ,BC 的中点,∴AE //BF , ∴四边形ABFE 是平行四边形,∴OA =OF ,由AF ∥PQ 得:,OF BF QN BQ ===51335 OA BA PN BP ===3193, ∴OA OF PN QN =, ∴PN =QN , ∴N 是PQ 的中点;∴△BQP 是“中垂三角形”, ∴()PQ BQ BP =-=?=2222255359144, ∴PQ =12, ∴AF PQ ==143【变式练习】(2015•四川成都,第25题4分)如果关于x 的一元二次方程ax 2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 ②③ (写出所有正确说法的序号) ①方程x 2﹣x ﹣2=0是倍根方程.②若(x ﹣2)(mx+n )=0是倍根方程,则4m 2+5mn+n 2=0;③若点(p ,q )在反比例函数y=2x的图象上,则关于x 的方程px 2+3x+q=0的倍根方程;④若方程ax 2+bx+c=0是倍根方程,且相异两点M (1+t ,s ),N (4﹣t ,s )都在抛物线y=ax 2+bx+c 上,则方程ax 2+bx+c=0的一个根为54. 考点: 根与系数的关系;根的判别式;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.. 专题: 新定义.分析:①解方程x2﹣x﹣2=0得:x1=2,x2=﹣1,得到方程x2﹣x﹣2=0不是倍根方程,故①错误;②由(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣nm,得到nm=﹣1,或nm=﹣4,∴m+n=0于是得到4m2+5mn+n2=(4m+1)(m+n)=0,故②正确;③由点(p,q)在反比例函数y=2x的图象上,得到pq=2,解方程px2+3x+q=0得:x1=﹣1p,x2=﹣2p,故∴③正确;④由方程ax2+bx+c=0是倍根方程,得到x1=2x2,由相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,∴得到抛物线的对称轴x===52,于是求出x1=53,故④错误.解答:①解方程x2﹣x﹣2=0得:x1=2,x2=﹣1,∴方程x2﹣x﹣2=0不是倍根方程,故①错误;②∵(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣nm,∴nm=﹣1,或nm=﹣4,∴m+n=0,4m+n=0,∵4m2+5mn+n2=(4m+n)(m+n)=0,故②正确;③∵点(p,q)在反比例函数y=的图象上,∴pq=2,解方程px2+3x+q=0得:x1=﹣1p,x2=﹣2p,∴x2=2x1,故③正确;④∵方程ax2+bx+c=0是倍根方程,∴设x1=2x2,∵相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,∴抛物线的对称轴x===52,∴x1+x2=5,∴x1+2x1=5,∴x 1=53,故④错误.故答案为:②③.点评: 本题考查了根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,二次函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.类型3:新概念阅读型首先要先读懂题中情形,从而根据相关的知识解决问题,再灵活运用所学过的有关知识点进行点拨解题。

【例题】(2015·南宁,第12题3分)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}x x x x Max 12,+=-的解为( ).(A )21- (B )22- (C )2121-+或 (D )121-+或 考点:解分式方程.. 专题:新定义.分析:根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.解答:当x <﹣x ,即x <0时,所求方程变形得:﹣x =,去分母得:x 2+2x +1=0,即x =﹣1;当x >﹣x ,即x >0时,所求方程变形得:x =,即x 2﹣2x =1,解得:x =1+或x =1﹣(舍去), 经检验x =﹣1与x =1+都为分式方程的解.故选D .点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.【变式练习】(2015•浙江嘉兴,第24题14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。

②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC 沿∠ABC的平分线BB'方向平移得到△A'B'C',连结AA',BC'.小红要是平移后的四边形ABC'A'是“等邻边四边形”,应平移多少距离(即线段BB'的长)?(3)应用拓展如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD==90°,AC,BD 为对角线,AC=AB.试探究BC,CD,BD的数量关系.考点:四边形综合题..分析:(1)由“等邻边四边形”的定义易得出结论;(2)①先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;②由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论;(3)由旋转的性质可得△ABF≌△ADC,由全等性质得∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,利用相似三角形判定得△ACF∽△ABD,由相似的性质和四边形内角和得∠CBF=90°,利用勾股定理,等量代换得出结论.解答:解:(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);(2)①正确,理由为:[来^源&#:中教%~网]∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②∵∠ABC=90°,AB=2,BC=1,∴AC=,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,(I)如图1,当AA′=AB时,BB′=AA′=AB=2;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=;(III)当A′C′=BC′=时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°,∴B′D=B,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2∴x2+(x+1)2=()2,解得:x1=1,x2=﹣2(不合题意,舍去),∴BB′=x=,(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,设B′D=BD=x,则x2+(x+1)2=22,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;(3)BC,CD,BD的数量关系为:BC2+CD2=2BD2,如图5,∵AB=AD,∴将△ADC绕点A旋转到△ABF,连接CF,∴△ABF≌△ADC,∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,∴∠BAD=∠CAF,==1,∴△ACF∽△ABD,∴==,∴BD,∵∠BAD+∠ADC+∠BCD+∠ABC=360°,∴∠ABC+∠ADC﹣360°﹣(∠BAD+∠BCD)=360°﹣90°=270°,∴∠ABC+∠ABF=270°,∴∠CBF=90°,∴BC2+FB2﹣CF2=(BD)2=2BD2,∴BC2+CD2=2BD2.点评:本题主要考查了对新定义的理解,菱形的判定,勾股定理,相似三角形的性质等,理解新定义,分类讨论是解答此题的关键.类型4:纠错补全型对解题过程的阅读,一定要带有批判型的眼光去审查每一步,并且一定要克服自己的思维定势,应把问题想的更宽更深些,这样存在的问题才能被挖掘出来。

相关文档
最新文档