一元二次方程经典复习资料

合集下载

一元二次方程专题复习

一元二次方程专题复习

一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

一元二次方程复习资料

一元二次方程复习资料

一元二次方程,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程.)0(02≠=++a c bx“未知数的最高次数是2":一元二次方程 ①该项系数不为“0”; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B02112=-+xxC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程. 例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 .★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 .★★★4、若方程nx m +x n —2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C 。

n=2,m=1 D.m=n=1; 例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 .★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

★2、已知m 是方程012=--x x 的一个根,则代数式=-m m 2. ★★3、已知a 是0132=+-x x 的根,则=-a a 622. ★★4、方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a -★★★5、若=•=-+yx则y x 324,0352 .;④公式法()m x m m ±=⇒≥=,02※※对于()m a x =+2,()()22n bx m ax +=+等形式均适用直接开方法例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x例2、若()()2221619+=-x x ,则x 的值为 .( )A 。

一元二次方程全章复习讲义

一元二次方程全章复习讲义

一元二次方程 内容简介:1. 了解一元二次方程的定义及一元二次方程的一般形式:20(0)ax bx c a ++=≠.2. 掌握一元二次方程的四种解法,并能灵活运用.3. 掌握一元二次方程根的判别式,并能运用它解相应问题.4. 掌握一元二次方程根与系数的关系,会用它们解决有关问题.5. 会解一元二次方程应用题. 知识点一:一元二次方程的定义及一般形式【知识要点】一元二次方程的一般形式:20(0)ax bx c a ++=≠例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。

针对练习:1、方程782=x 的一次项系数是 ,常数项是 。

2、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

知识点二:一元二次方程的解【知识要点】1、 当已知一元二次方程的一个根时,要熟练地将这个根代入原方程,并灵活运用得到的等式。

2、 在20(0)ax bx c a ++=≠中,x 取特殊值时,a 、b 、c 之间满足的关系式。

例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

例3、一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m x x 的两个根,则m 的值为 。

针对练习:1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

《一元二次方程》复习资料(打印版)

《一元二次方程》复习资料(打印版)

《一元二次方程》第一节认识一元二次方程知识点一:一元二次方程的定义(重点)(温馨提示:紧扣定义理解一元二次方程的三要素:整式方程、只含有一个未知数、未知数的最高次数是2,这三个要素必须同时满足,缺一不可。

)例题1:下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1) B. C.ax2+bx+c=0 D.x2+2x=x2-1对应练习1:下列方程是一元二次方程的是()A. B.2x-3y+1=0 C.(x-3)(x-2)=x2 D.(3x-1)(3x+1)=3 知识点二:一元二次方程的一般形式(重点)(温馨提示:一元二次方程的一般形式的特点为方程右边是0,方程左边是关于x的二次整式,其中a≠0是重要组成部分。

)例题1、一元二次方程2x2-5x-7=0的二次项系数、一次项系数、常数项分别是()A.5;2;7 B.2;-5;-7 C.2;5;-7 D.-2;5;7对应练习1:把一元二次方程(1-x)(2-x)=3-x2化成一般形式ax2+bx+c=0(a≠0)其中a、b、c分别为()A.2、3、-1 B.2、-3、-1 C.2、-3、1 D.2、3、1对应练习2:下列一元二次方程是一般形式的为()A.(x-1)2=0 B.3x2-4x+1=0 C.x(x+5)=0 D.(x+6)2-9=0对应练习3:把方程(x-1)2+2=2x(x-3)化为一般形式是,其中二次项是,一次项系数是.知识点三:一元二次方程的解温馨提示:根据方程的解的定义,用代入法和整体思想求代数式的值。

例题1、已知m是方程x2-2014x+1=0的一个根,求代数式2m2-4027m-2+ 的值.对应练习1:(2016•攀枝花)若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4 C.1或-4 D.1或4对应练习2:[易错题哦~~~](2016•济宁二模)关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是()A.-1 B.1 C.1或-1 D.-1或0知识点四:根据实际问题列一元二次方程(重点)例题1:(2016•兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2-3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0第二节:用配方法求解一元二次方程(温馨提示:适用方程为一边是未知数或含有未知数的代数式的平方,另一边是非负..常数。

一元二次方程复习课(绝对经典)

一元二次方程复习课(绝对经典)
2
2
关于 x的一元二次方程 x (2k 3) x k 0有
2 2
两个不相等的实数根 、
(1)求k的取值范围; ( )若 6, 求( ) 3 5的值 2 解: )由题意得, (2
2
解得, k1 1, k 2 3 3 k , k 1 4
2 8、x 2 4 x 2 0, 请用配方法转化成( m) n的 x
形式,则
( x 2) 2
2
9、请写出一个一元二次方程,
它的根为-1和2
(x+1)(x-2)=0
将4个数a、b、c、d排成2行2列,两边各加一条竖线记成
a b a b , 定义 ad bc,这个式子叫做2阶行列式。 c d c d 若 x+1 x-1 1-x x+1 =6则x=
的一个根是-1,则
4 , 另一根为______ x=-3
若a为方程 x2 x 5 0 的解,则 a 2 a 1 的值 为 6
6、若a是方程x 3x 3 0的一个根,则
2
3a 9a 2
2
11
2
7、n是方程x m x n 0一个根(n 0), n m -1
2、若(m+2)x 2 +(m-2) x -2=0是关于x的一元二 ≠- 2 次方程则m 。
一元二次方程的一般式
ax bx c 0 (a≠0)
2
一元二次方程 一般形式 二次项系 一次项 常数项 数 系数
3x²=1
2y(y-3)= -4
3x²-1=0
2y2-6y+4=0
3 2
0
-6
-1 4

九年级上册数学《一元二次方程期末复习资料》

九年级上册数学《一元二次方程期末复习资料》

一元二次方程复习资料一、一元二次方程的概念 (一)知识点:一元二次方程的概念: 一元二次方程的一般形式: 一元二次方程的解: (二)典型例题与练习1. 若x =-1是关于x 的一元二次方程x 2+3x +m +1=0的一个解,则m 的值为 。

2. 一元二次方程(a+1)x 2﹣ax+a 2﹣1=0的一个根为0,则a= 。

3. 若1x =是关于x 的一元二次方程230x mx n ++=的解,则62m n += 。

4.若11x =-是关于x 的方程250x mx +-=的一个根,则此方程的另一个根2x = 。

5.已知关于x 的的一元二次方程20x x k -+=的一个根是2,则k 的值是 。

6.已知x =3是方程260x x k -+=的一个根,则k = 。

7. 已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是 。

二、一元二次方程的解法(一)知识点:直接开平方法 配方法 公式法 因式分解法 (二)典型例题与练习1. 方程()12x x -=的解是( )A.1x =-B. 2x =-C. 1212x x ==-,D.1212x x =-=, 2.方程()()565x x x --=-的解是( )A .5x = B. 5x =或6x = C. 7x = D. 5x =或7x =3.已知三角形两边长是方程0652=+-x x 的两个根,则三角形的第三边c 的取值范围是 .4. 若关于x 的一元二次方程22(1)5320m x x m m -++-+=有一根是0,则m 的值等于 5.一元二次方程x 2+x -2=0的解是____________________.6.方程(1)(2)2(2)x x x -+=+的根是 .7.一元二次方程2340x x +-=的解是 。

8. 方程2560x x --=的两根为( )A . 6和-1B .-6和1C .-2和-3D .2和39. 解方程:(1)2210x x --= (2) x 2+x -1=0.(3)22760x x -+= (4)24)12(3+=+x x x(5)2)3(3)3(222--=-y y y y (6)4)2)(1(22=++-+t t t t10.已知关于x 的方程a a x a x a ,0)1()1(2)2(2=++---为何值时,(1)有一个实数根 (2)有两个相等的实数根 (3)有两个不等实数根11.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 。

《一元二次方程》全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解一元二次方程是高中数学中的重要内容,它是一种形如ax^2 + bx + c = 0的方程,其中a、b、c为实数,且a ≠ 0。

解一元二次方程的方法有因式分解、配方法和求根公式法。

下面将对这些解法进行讲解。

一、因式分解法如果一元二次方程能够因式分解为两个一次因式的乘积,即 (px + q) (rx + s) = 0,那么方程的解就可以直接得到。

具体步骤如下:1. 将二次方程化简成标准形式:ax^2 + bx + c = 0;2. 因式分解方程:(px + q) (rx + s) = 0;3. 解方程:px + q = 0 或 rx + s = 0;4.求解方程得到x的值。

例如,对方程x^2-5x+6=0应用因式分解法:1.方程已经是标准形式;2.可以将方程改写为(x-2)(x-3)=0;3.解方程得到x-2=0或x-3=0;4.求解方程可得x=2或x=3,这就是原方程的解。

二、配方法对于一元二次方程ax^2 + bx + c = 0,有时候可以通过配方法将方程转化为一个平方差或一个完全平方式。

具体步骤如下:1.当a≠0时,将方程两边同时除以a,化简为x^2+(b/a)x+c/a=0;2. 计算出一个值k,使得(b/a)^2 + 2(b/a)k + k^2 = k^2、其中,2(b/a)k为bx的一半,k^2为(c/a)的相反数的一半;3.将方程变形为(x+k)^2+m=0,即(x+k)^2=-m;4.解方程得到x+k=±√(-m);5.求解方程得到x的值。

例如,对方程x^2-6x+8=0应用配方法:1.将方程化简为(x-3)^2-1=0;2.得到k=3,使得(-6/2)^2+2(-6/2)k+k^2=1;3.方程变形为(x-3)^2=1;4.解方程得到x-3=±1;5.求解方程可得x=2或x=4,这就是原方程的解。

三、求根公式法一元二次方程的求根公式是美国数学家Vieta发现的,它的公式形式为:x = (-b ± √(b^2 - 4ac)) / 2a。

《一元二次方程》知识梳理及经典例题

《一元二次方程》知识梳理及经典例题

《一元二次方程》知识梳理及经典例题【知识梳理】考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。

(2)一般表达式:ax2+bx+c=0(a≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:x2=m(m≥0),⇒x=±√m对于(x+a)2=m,(ax+m)2=(bx+n)2等形式均适用直接开方法类型二、因式分解法:(x−x1)(x−x2)=0⇒x=x1,或x=x2方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如(ax+m)2=(bx+n)2,(x+a)(x+b)=(x+a)(x+c),x2+2ax+a2=0类型三、配方法ax2+bx+c=0(a≠0)⇒(x+b2a )2=b2−4ac4a2在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

类型四、公式法⑴条件:(a≠0,且b2−4ac≥0)⑵公式:x=−b±√b2−4ac2a,(a≠0,且b2−4ac≥0)类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。

.考点四、根的判别式b2−4ac根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。

考点五、应用解答题⑴“握手”问题;⑵“利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题考点六、根与系数的关系⑴前提:对于ax2+bx+c=0而言,当满足①a≠0、②Δ≥0时,才能用韦达定理。

⑵主要内容:x1+x2=−ba ,x1x2=ca⑶应用:整体代入求值。

一元二次方程专题复习资料全

一元二次方程专题复习资料全

一元二次方程专题复习知识盘点1.方程中只含有 个未知数.并且整理后未知数的最高次数是 。

这样的 方程叫做一元二次方程。

通常可写成如下的一般形式 ( a 、b 、c 、为常数。

a )。

2。

一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方.而另一边是一个 时.可以根据 的意义。

通过开平方法求出这个方程的解。

(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax的一般步骤是:①化二次项系数为 。

即方程两边同时除以二次项系数;②移项。

使方程左边为 项和 项。

右边为 项; ③配方。

即方程两边都加上 的平方; ④化原方程为2()x m n +=的形式.如果n 是非负数。

即0n ≥。

就可以用 法求出方程的解。

如果n <0。

则原方程 .(3)公式法: 方程20(0)ax bx c a ++=≠。

当24b ac -_______ 0时。

x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 .得到两个 方程; ④解这两个方程.它们的解就是原方程的解。

3.一元二次方程的根的判别式 。

(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根, 即-----=-----=2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根。

即-----==21x x , (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。

4。

一元二次方程根与系数的关系如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x . 则12x x += 。

12x x =提示:在应用一元二次方程根与系数的关系时.一定要保证元二次方程有实数根。

5. 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样.即审、找、设、列、解、答六步。

一元二次方程专题复习资料

一元二次方程专题复习资料

一元二次方程专题复习资料一元二次方程专题复知识盘点:1.一元二次方程是指方程中只含有一个未知数,且整理后未知数的最高次数为2的方程。

通常可写成如下的一般形式:ax^2+bx+c=0(a、b、c为常数,且a≠0)。

2.一元二次方程的解法:1)直接开平方法:当一元二次方程的一边是一个含有未知数的平方,而另一边是一个常数时,可以根据平方的意义,通过开平方法求出这个方程的解。

2)配方法:用配方法解一元二次方程ax^2+bx+c=0(a≠0)的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为一次项和常数项,右边为零项;③配方,即方程两边都加上b/2a的平方;④化原方程为(x+m)^2=n的形式,如果n是非负数,即n≥0,就可以用开平方法求出方程的解。

如果n<0,则原方程无实数解。

3)公式法:方程ax^2+bx+c=0(a≠0),当b^2-4ac>0时,x=(-b±√(b^2-4ac))/2a;当b^2-4ac=0时,x=-b/2a;当b^2-4ac<0时,方程无实数解。

4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为零;②将方程的左边化成两个一次项的乘积;③令每个因式都等于零,得到两个一次方程;④解这两个一次方程,它们的解就是原方程的解。

3.一元二次方程的根的判别式:1)b^2-4ac>0,即一元二次方程ax^2+bx+c=0(a≠0)有两个不相等的实数根,即x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a;2)b^2-4ac=0,即一元二次方程有两个相等的实数根,即x1=x2=-b/2a;3)b^2-4ac<0,即一元二次方程ax^2+bx+c=0(a≠0)无实数根。

4.一元二次方程根与系数的关系:如果一元二次方程ax^2+bx+c=0(a≠0)的两根为x1和x2,则x1+x2=-b/a,x1x2=c/a。

《一元二次方程》全章复习

《一元二次方程》全章复习

《一元二次方程》全章复习1. 一元二次方程的有关概念2. 配方法的应用3. 根判别式,根与系数的关系4. 一元二次方程的解法:1)直接开平方法 2)因式分解法 3)配方法 4)公式法5. 实际问题:1)传播与数字问题 2)增长率与销售问题 3)有关面积的问题【巩固练习】1.下列方程是一元二次方程的是( ) A.211x x x-=+ B.224x xy y -+= C.20ax bx c +=+ D.(x 1)1x x -=- 2.在一元二次方程2410x x --=中,二次项系数和一次项系数分别为( )A.1,4B.1,-4C.-1,-4D.2,4x x -3.在一元二次方程260x kx --=中,已知一个根为3x =,则实数k 的值为( )A.1B.-1C.2D.-24.关于x 的一元二次方程22(a 1)10x x a -++-=的一个根是0,则a 的值为( )A.1B.-1C.1或-1D.12 5.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值范围是( )A.m <1B.m > -1C.m < -1D.m > 16. 若关于x 的方程2(m 1)02x m mx +-+=有两个不等的实数根,则m 的取值范围是7. 已知2410x x a +=-可变为2(2)x b -的形式,则ab=8. 若关于x 的方程2(2)10x x m m +++=-有两个相等的实数根,则m=9.已知一个矩形长比宽多2cm ,其面积为82cm ,则此长方形的周长是10. 若方程2310x x b +=+无解,则b 应满足的条件是11. 若关于x 的方程22(21)20k x x k -+-+=+有实数根,则k 的取值范围是 12. 若分式2817x x x -+-的值为0,则x= 13. 关于x 的方程22202x x a b a +-=+的根是14. 若关于x 的方程260x x k +=+的两根之差为2,则k=15. 已知关于x 的方程22(31)0x x m m --+=有两根为12,x x ,且121134x x +=-,则m= 16.用恰当的方法解下列方程: (1)21(3)13x += (2)2(21)2(2x 1)x +=+(3)(x 8)16x += (4)2280x x +-=(5)22(32)(2x 1)x +=- (5)2(21)4(21)40y y +-++=17.已知,αβ是方程2250x x +-=的两个实数根,求22ααβα++的值18.已知12,x x 是方程2214160x x +-=的两个实数根,求下列代数式的值,(1)212()x x - (2)2112x x x x + (3)12(2)(2)x x -- (4)12x x -19.已知关于x 的方程222(a 1)740x x a a +-+--=的两根为12,x x ,且满足12123340x x x x --+=,求a 的值20.实数k 在什么范围取值时,方程22(k 1)0kx kx -+-=有两个正的实数根21.若关于x 的方程2430x x k -+-=的两根为12,x x ,且满足123x x =,试求出方程的两个实数根及k 的值23.若n > 0,关于x 的方程21(m 2n)04x x mn --+=有两个相等的正的实数根,求m n24.如果2246130x x y y -++=,求(xy)z25.水果店花500元进了一批水果,按40%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利67元.若两次打折相同,每次打了几折?26.如图,在△ABC中,AB=10m,BC= 40m,∠C=90°,点P从点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着CB匀速移动,几秒时,△PCQ的面积等于450m2?25.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为_________ 万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)。

完整版一元二次方程知识点总结和例题复习

完整版一元二次方程知识点总结和例题复习

知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。

(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。

根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。

配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。

2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。

(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。

2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。

数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。

一元二次方程复习资料

一元二次方程复习资料

一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有 ,并且未知数的最高次数是 的 方程叫做一元二次方程。

2、一元二次方程的一般形式: ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中 叫做二次项, 叫做二次项系数; 叫做一次项, 叫做一次项系数; 叫做常数项。

考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+, =x ,当b<0时, 。

2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a+=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的 ,再把二次项的系数化为 ,再同时加上1次项的系数的 的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:=x )04(2≥-ac b公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为 ,一次项的系数为 ,常数项的系数为4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为 ,然后看看是否能用 , (这里指的是分解因式中的公式法)或 ,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和= ,二根之积= 也可以表示为x1+x2=-b/a,x1x2=c/a 。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用考点三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆I 当△>0时,一元二次方程有 ;II 当△=0时,一元二次方程有 ; III 当△<0时,一元二次方程考点四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么=+21x x ,=21x x 。

一元二次方程总复习资料

一元二次方程总复习资料

一元二次方程总复习资料一、知识扫描1.只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.因此,由一元二次方程的定义可知,即一元二次方程必须满足满足以下三个条件:①方程的两边都是关于未知数的整式;②只含有一个未知数;③未知数的最高次数是2。

这样的方程才是一元二次方程,不满足其中任何一个条件的方程都不是一元二次方程。

例如:535,53,02,3422222+===-+-x x x x x x x 都是一元二次方程。

而03132=-+x x 不是一元二次方程,原因是x1是分式。

2.任何关于x 的一元二次方程的都可整理成)0(02≠=++a c bx ax 的形式.这种形式叫做一元二次方程的一般形式,它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

注意b 、c 可以是任何实数,但a 绝对不能为零,否则,就不是一元二次方程了。

化一元二次方程为一般形式的手段是去分母、去括号、移项、合并同类项,整理后的方程最好按降幂排列,二次项系数化为正数。

注意任何一个一元二次方程不可缺少二次项,担可缺少一次项和常数项,即b 、c 均可以为零。

如方程013x 023x 02222=-=-=、、x x 都是一元二次方程。

3.一元二次方程的解. 使一元二次方程左、右两边相等的未知数的值,叫一元二次方程的解,又叫一元二次方程的根。

如x=1时,022=-+x x 成立,故x=1叫022=-+x x的解。

4.一元二次方程的解法解一元二次方程的基本思想是通过降次转化为一元一次方程,本节共介绍了四种解法。

(1)直接开平方法:方程)0(2≥=a a x 的解为a x ±=,这种解一元二次方程的方法叫直接开平方法。

它是利用了平方根的定义直接开平方,只要形式能化成()a =2的一元二次方程都可以采用直接开平方法来解。

一元二次方程章节知识点复习资料

一元二次方程章节知识点复习资料

一元二次方程章节知识点复习资料【知识点一】一元二次方程的解1. 已知2230x x --=,则224x x -的值为( )A .﹣6 B. 6 C .﹣2或6 D .﹣2或302.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根, 则a 的值为( )A.1或4B.-1或-4C.-1或4D.1或-43.已知α是一元二次方程20x x --=1较大的根,则下面对α的估计正确的是( )A .0<α<1B . 1<α<1.5C . 1.5<α<2D . 2<α<3 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ).1 . 1 .0 .2A B C D --5.若1x =-是关于x 的一元二次方程2310x x m +++=的一个解,则m 的值为 .6.若正数a 是一元二次方程x 2﹣5x +m =0的一个根,﹣a 是一元二次方程x 2+5x ﹣m =0的一个根,则a 的值是 .【知识点二】一元二次方程的解法1.一元二次方程x 2﹣x ﹣2=0的解是( )A .x 1=1,x 2=2B .x 1=1,x 2=﹣2C . x 1=﹣1,x 2=﹣2D .x 1=﹣1,x 2=22.一元二次方程220x x --=1的解是( )12121212. 1 .11.11.11A x x B x C x D x ===+=-=+=-=-=-3.方程220x x -=的解为 .4.方程x 2﹣3x =0的根为 .5.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则b a= . 6.解方程:x 2﹣5x ﹣6=0.7.解方程:2x 2﹣4x ﹣1=0.【知识点三】一元二次方程根的判别式1.一元二次方程x 2﹣4x +5=0的根的情况是( )A.有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根2.关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )9999. . . .4444A mB mC mD m ><=<- 3.一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是( ). 1 . 1 . 1 .1Am B m C m D m >=<≤4.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程2120x x k -+=的两个根,则k 的值是( )A .27B .36C .27或36D .185.已知关于x 的方程22(1)04m x m x +-+=有两个不相等的实数根,则m 的最大整数值是 .6.已知关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,求k 的值.7.已知关于x 的一元二次方程(a +c )x 2+2bx +(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x =﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.【知识点四】一元二次方程的根与系数的关系1.已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则21x x ⋅等于( )A . 4-B . 1-C . 1D . 42.若α、β是一元二次方程2260x x +-=的两根,则α2+β2=( )A .﹣8B .32C .16D .403.若方程210x x +-=的两实根为α、β,那么下列说法不正确的是( )A . 1αβ+=-B . 1αβ=-C . 223αβ+=D . 111αβ+=-4.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是( )A.2680x x +=﹣ B. 2230x x +=﹣ C. 260x x =﹣﹣ D. 260x x +=﹣ 5.若12,x x 是一元二次方程210160x x ++=的两个根,则12x x +的值是( )A.﹣10B.10C.﹣16D.166.x 1,x 2是关于x 的一元二次方程x 2﹣mx +m ﹣2=0的两个实数根,是否存在实数m 使12110x x +=成立?则正确的是结论是( ) A .m =0时成立 B .m =2时成立 C .m =0或2时成立 D .不存在7.若α、β是方程2230x x 的两个实数根,则22αβ+=___.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k = .9.已知a ,b 是方程x 2﹣x ﹣3=0的两个根,则代数式2a 3+b 2+3a 2﹣11a ﹣b +5的值为 .10.已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn +3m +n = .11.方程x 2+2kx +k 2﹣2k +1=0的两个实数根x 1,x 2满足x 12+x 22=4,则k 的值为 .12.已知关于x 的方程x 2+ax +a ﹣2=0(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.【知识点五】实际问题与一元二次方程1.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )2222.100(1)81 .100(1)81 .100(1%)81 .10081A x B x C x D x +=-=-==2.某果园2018年水果产量为100吨,2020年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .100)1(1442=-xB .144)1(1002=-xC .100)1(1442=+xD .144)1(1002=+x3.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )11.(1)28 .(1)28 .(1)28 .(1)2822A x xB x xC x xD x x +=-=+=-=4.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=155.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.6.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为x m,由题意列得方程.7.学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.8.某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2018年投资1000万元,预计2020年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2020年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?10. 天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?11.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?12.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程复习资料
考点一、概念 (1)定义:
含有_______未知数,并且未知数的最高次数是______的______方程,就叫做一元二次方程。

(2)一元二次方程的一般表达式:
)0(02≠=++a c bx ax ,其中_______是二次项,________是二次项系数;________是一次项,________是一次项
系数;__________是常数项。

⑶判断一元二次方程的依据:
①二次项系数不为“0”;②未知数最高次数为“2”;③未知数不能放在分母的位置 4、没化简的要化简以后再看 例1、下列方程中是关于x 的一元二次方程的有
(1) ()()12132
+=+x x (2) 021
2
=-+
x
x (3) 02=++c bx ax (4)122
2+=+x x x
例2、方程()0132=+++mx x
m m
是关于x 的一元二次方程,则m 的值为
例3、方程782
=x 的一次项系数是 ,常数项是 。

考点二、一元二次方程的解
⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;
例4、已知322
-+y y 的值为2,则1242
++y y 的值为 。

例5、关于x 的一元二次方程()0422
2
=-++-a x x a 的一个根为0,则a 的值为 。

例6、已知方程0102
=-+kx x 的一根是2,则k 为 ,另一根是 。

例7、已知m 是方程012
=--x x 的一个根,则代数式=+-92
m m 。

例8、若关于x 的一元二次方程)(002
≠=++a c bx ax 中a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是
例9、如果012
=-+x x ,那么代数式722
3
-+x x 的值为 。

考点三、解一元二次方程
(一)直接开方法:形如())0(2
≥=+b b a x ,()()2
2
n bx m ax +=+等形式均适用直接开方法
例10、解方程:();08212=-x ()2
16252x -=0; ()();0914 32
=--x (4)()()2
2
21619+=-x x
(二)因式分解法:()()021=--x x x x 21,x x x x ==⇒或 方程特点:左边可以分解为两个一次因式的积,右边为“0”,
例11解方程:(1)()()3532-=-x x x (2)()()044342
=-+++y x y x
(三)配方法
例12解方程:(1)0142=+-x x (2)0882
=++x x
例13试用配方法说明322+-x x 的值恒大于0。

例14已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

(四)公式法
通过对()002
≠=++a c bx ax 进行配方,可以得到求根公式:
a
ac b b x 242-±-=,()04,02≥-≠ac b a 且
例15 (1)0132=+-x x ⑷03432=--x x
考点四、根的判别式:ac b 42-=∆
当0>∆时,方程有两个不相等的实数根;当0=∆时,方程有两个相等的实数根;当0<∆时,方程没有实数根
根的判别式的作用:
①判断方程根的个数;②求待定系数的值;③应用于其它。

例16、若关于x 的方程0122
=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

例17、关于x 的方程()0212
=++-m mx x m 有实数根,则m 的取值范围是
例18、关于x 的一元二次方程()0212
=++-m mx x m 有实数根,则m 的取值范围是
例19、当k 时,关于x 的二次三项式92
++kx x 是完全平方式。

例20、已知关于x 的方程()0222
=++-k x k x
(1)求证:无论k 取何值时,方程总有实数根;
(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。

考点五、根与系数的关系
⑴前提:对于02=++c bx ax 而言,当满足①0≠a 、②0≥∆时,才能用根与系数的关系(韦达定理)。

⑵根与系数的关系:若21x x ,是方程)(002≠=++a c bx ax 的两个根,则a
c x x a b
x x =-=+2121,。

⑶应用:整体代入求值。

例21、已知一个直角三角形的两边长恰是方程0782
=+-x x 的两根,则这个直角三角形的斜边是 例22、已知关于x 的一元二次方程()01122
2
=+-+x k x k 有两个实数根21,x x ,
(1)求k 的取值范围;
(2)是否存在实数k ,使方程的两实数根21x x =若存在,求出k 的值;若不存在,请说明理由。

例23、(1)已知b a ≠,05132
=--a a ,05132
=--b b ,求=++ab b a (2)已知b a ≠,05132
=--a a ,05132
=--b b ,则
a
b
b a +的值为 。

考点六、应用解答题
⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题 典型例题: 例24、(1)五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?
(2)已知两个数的差是8,积是209,求这两个数.
3、2016某市市政府财政净收入为5000万元,计划两年后实现市财政净收入翻一番,那么这两年中市财政净收入的平均年增长率应为多少?(精确到0.1%)
4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答:
(1)当销售价定为每千克55元时,计算月销售量和月销售利润。

(2)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
5、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
5、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m ),另三边用木栏围成,木栏长35m 。

①鸡场的面积能达到150m 2吗?②鸡场的面积能达到180m 2吗?如果能,请你给出设计方案;如果不能,请说明理由。

(3)若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m 对题目第1小题的解起着怎样的作用?
6、如图3-9-3所示,在△ABC 中, ∠B=90°,AB=5cm ,BC=7cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.
(1)如果QP,分别从BA,同时出发,那么几秒后,△PBQ 的面积等于4cm 2? (2)如果QP,分别从BA,同时出发,那么几秒后,PQ 的长度等于5cm ? (3)在(1)中,△PQB 的面积能否等于7cm 2 说明理由.。

相关文档
最新文档