(完整版)一元二次方程解法及其经典练习题

合集下载

(完整版)一元二次不等式的经典例题及详解

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

(完整版)一元二次不等式的经典例题及详解

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

(完整版)一元二次方程知识点和经典例题

(完整版)一元二次方程知识点和经典例题

一元二次方程一.基本概念定义:形如:02=++c bx ax (0≠a )的方程,叫做一元二次方程的一般式. 例题:若方程32)1(1=--+x x m m 是关于x 的一元二次方程,求m 的值.二.一元二次方程的解法(1)直接开方法: 02=+c ax , 开平方求出未知数的值:ac x -±= (2)因式分解法:0)(2=++-mn x n m x ,因式分解得:0))((=--n x m x ∴m x =1,n 2=x(3)配方法:061232=-+x x ,得:242=+x x ,∴222)2(2)2(4+=++x x 即:6)2(2=+x ∴621+-=x ,622--=x(4)公式法:解法步骤:○1先把一元二次方程化为一般式; ○2找出方程中a 、b 、c 等各项系数和常数的值;○3计算出ac b 42-的值;○4把a,b, ac b 42-的值代入公式;○5求出方程的两个根.例题:解方程: x(x+12)=8x+12解:原方程化简得:01242=-+x x ,方程中:a=1,b=4,c=-12∆=ac b 42-=(4)2-4×1×(-12)=16+48=64.∴28412644±-=⨯±-=x =42±- ∴原方程根为:21=x ,=2x -6.一元二次方程解法练习题:(1)用直接开方法解一元二次方程: ○1 (2x-1)2=7 ○222)43()43(x x -=- ○30144)3(2=--x(2)用因式分解法解一元二次方程:○11)1(3-=-x x x ○25x(x-3)=6-2x ○32(x +2)(x -1)=(x +2)(x +4)○4025)2(10)2(2=++-+x x ○542)2)(1(+=++x x x ○60)4()52(22=+--x x(3)用配方法解一元二次方程:○1x(x+4)=8x+12 ○226120x x --= ○30223)12(22=-+-+x x(4)用公式法解一元二次方程:○123520x x -+= ○5(3)(1)2x x +-=- ○112x 2-33x+130=0(5)选择适当的方法解下列方程:○122(2)9x x -= ○22299990x x +-= ○32(101)10(101)90x x +-++=○42690x x -+= ○5x(37)2x x -= ○6}113111[1()]222323x x x x ⎧--+-+=⎨⎩三.一元二次方程根的判别式1.一元二次方程根的判别式:把ac b 42-=∆叫做一元二次方程:02=++c bx ax (0≠a )的根的判别式.利用根的判别式可以不解方程判别一元二次方程跟的情况:20(1)00(2)400.b ac ∆>⇔⎧∆≥⇔⎨∆=⇔⎩∆=-∆<⇔当时方程有两个不相等的实根;当时方程有两个实数根;当时方程有两个相等的实数根;当的值小于时,即:时方程无实数根例1.不解方程判断下列方程跟的情况:(1)08822=+-x x (2)24120x x +-= (3)20232=+-x x解:(1)方程中:a=2,b=-8,c=8,∆=ac b 42-=(-8)2-4×2×8=64-64=0∵∆=0 ∴原方程有两个相等的实数根.(2)方程中:a=1,b=4,c=-12,∆=ac b 42-=(4)2-4×1×(-12)=16+48=64 ∵∆>0 ∴原方程有两个不相等的实数根.(3)方程中:a=2,b=-3,c=2,∆=ac b 42-=(-3)2-4×2×2=9-16=-7∵∆<0 ∴原方程无实数根.例2.关于x 的一元二次方程(m -1)x 2-2(m -3)x +m +2=0有实数根,求m 的取值范围.解:当m -1≠0时, 即:m 1≠时,该方程是关于x 一元二次方程.∵原方程有实数根∴0≥∆,即:Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥ 解得:711≤m ∴m 的取值范围是711≤m 且m 1≠. 例3. 求证:关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根. 证明:∵224=[2(1)]4(2)(1)4(3)b ac k k k k ∆=-----+=-且k 3≤,∴总有0≥∆ ∴关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根.四.一元二次方程根与系数的关系1.定理:设一元二次方程02=++c bx ax (0≠a 且042≥-ac b )的两个根分别为1x 和2x ,则:ab 2x 1x -=+; a 2x 1xc =• 特别地:对于一元二次方程20x px q ++=,根与系数的关系为:12x x p +=-; 12x x q =注:○1此定理成立的前提是0∆≥.也就是说必须在方程有实..数根..时才可使用. ○2此定理在其他一些数学书籍中也叫做韦达定理。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

(完整版)解一元二次方程(公式法)__习题精选.doc

(完整版)解一元二次方程(公式法)__习题精选.doc

解一元二次方程(公式法)习题精选基础测试一、选择题(每题 5 分,共 15 分)1.用公式法解方程 4x 2-12x=3,得到()A .x=C .x=3 6 3 62B .x=23 2 332 32D .x=22.方程 2 x 2+4 3 x+6 2 =0 的根是()A .x =2,x =3B .x =6,x =21212C .x 1=2 2 ,x 2= 2D .x 1=x 2=-63.(m 2-n 2)(m 2-n 2-2)- 8=0,则 m 2-n 2的值是()A .4B .-2C .4 或-2D .-4或 2二、填空题(每题 5 分,共 15 分)1.一元二次方程 ax 2+bx+c=0(a ≠0)的求根公式是________,条件是 ________.2.当 x=______时,代数式 x 2-8x+12 的值是- 4.3.若关于 x 的一元二次方程(m -1)x 2+x+m 2+2m- 3=0 有一根为 0,则 m 的值是 _____.三、用公式法解下列方程(每题6 分,共 18 分)1.3x 2+5x -2=02.3x 2-2x -1=03.8(2- x )=x 2四、当 m 为何值时,方程 x2-(2m+2)x+m2+5=0 (20 分)(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根能力测试题1.用公式法解关于 x 的方程: x2-2ax-b2+a2=0.(12 分)2 2.某数学兴趣小组对关于 x 的方程( m+1)x m 2 + (m-2)x-1=0 提出了下列问题.(1)若使方程为一元二次方程, m 是否存在?若存在,求出 m 并解此方程.(2)若使方程为一元二次方程 m 是否存在?若存在,请求出.你能解决这个问题吗?(20 分)拓展测试题1.如果关于 x 的一元二次方程 a(1+x2)+2bx-c(1-x2)=0 有两个相等的实数根,那么以 a,b,c为三边的△ ABC 是什么三角形?请说明理由.(10 分)2.某电厂规定:该厂家属区的每户居民一个月用电量不超过 A 千瓦时, ?那么这户居民这个月只交 10元电费,如果超过 A 千瓦时,那么这个月除了交 10?A元用电费外超过部分还要按每千瓦时100 元收费.(1)若某户 2 月份用电 90 千瓦时,超过规定 A千瓦时,则超过部分电费为多少元?( ?用 A 表示)(2)下表是这户居民 3 月、4 月的用电情况和交费情况月份用电量(千瓦时)交电费总金额(元)3802544510根据上表数据,求电厂规定的 A 值为多少?( 10 分)参考答案基础测试一、 1.D 2.D 3.Cbb2 4ac二、 1.x= 2a ,b2-4ac≥0 2.4 3.-31三、 1.x1=-2,x2= 3 2.x1=1,x2=-1/3 3. x14 4 2, x2 4 4 2四、 m>2,m=2,m<2能力测试题2a4a24b24a21.x= 2 =a±│ b│2、解:(1)存在.根据题意,得:m2+1=2m2=1m=±1当 m=1 时, m+1=1+1=2≠0当 m=-1 时, m+1=-1+1=0(不合题意,舍去)∴当 m=1 时,方程为 2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(- 1)2-4×2×(- 1)=1+8=9(1)9 1 3x= 2 2 41x1=,x2=-2因此,该方程是一元二次方程时,m=1,1两根 x1=1,x2=-2.(2)存在.根据题意,得:①m2+1=1,m2=0,m=0因为当 m=0 时,(m+1)+(m-2)=2m-1= -1≠0所以 m=0 满足题意.②当 m2+1=0,m 不存在.③当 m+1=0,即 m=-1 时, m-2=-3≠0所以 m=-1 也满足题意.当 m=0 时,一元一次方程是 x-2x-1=0,解得: x=-1当 m=-1 时,一元一次方程是- 3x-1=01解得 x=-3因此,当 m=0 或- 1 时,该方程是一元一次方程,并且当 m=0 时,其根为 x=-1;当 m=-?1 时,其一1元一次方程的根为x=-3.拓展测试题1.直角三角形,理由略.A19 2.(1)超过部分电费 =(90-A )·100 =-100 A 2+ 10 AA(2)依题意,得:(80-A)·100 =15,A1=30(舍去),A 2=50。

(完整版)一元二次方程经典习题及深度解析

(完整版)一元二次方程经典习题及深度解析

一元二次方程及解法经典习题及解析知识技能: 一、填空题:1.下列方程中是一元二次方程的序号是 .42=x ① 522=+y x ② ③01332=-+x x 052=x ④5232=+x x ⑤ 412=+x x⑥ x x x x x x 2)5(0143223-=+=+-。

⑧⑦ ◆答案:⑤④③①,,,◆解析:判断一个方程是否是一元二次方程,要根据一元二次方程的定义,看是否同时符合条件 ①含有一个未知数;②未知数的最高次数是③;2整式方程.若同时符合这三个条件的就是一元次方程,否则缺一不可.其中方程②含两个未知数,不符合条件①;方程⑥不是整式方程,lil 不符合条件③;方程⑦中未知数的最高次数是3次,不符合条件②;方程⑧经过整理后;次项消掉,也不符合条件②. 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a◆答案:5-=/◆解析:方程12)5(2=-+ax x a 既然是一元二次方程,必符合一元二次方程的定义,所以未知数 的最高次数是2,因此,二次项系数,05=/+a 故.5-=/a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程.◆答案:2±◆解析:方程05)3()4(22=+-+-x k x k 不是关于2的一元二次方程,则二次项系数.042=-k 故.2±=k4.解一元二次方程的一般方法有 , , , ·◆答案:直接开平方法;配方法;公式法;因式分解法 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: .◆答案:◆解析:此题不可漏掉042≥-ac b 的条件.6.(2004·沈阳市)方程0322=--x x 的根是 .◆答案:3.1-◆解析:.4)1(,412,032222=-=+-=--x x x x x 所以.3,121=-=x x7.不解方程,判断一元二次方程022632=+--x x x 的根的情况是 .◆答案:有两个不相等的实数根◆解析:原方程化为,02)26(32=++-x x,04864348234)]26([422>-=-=⨯-+-=-ac b.‘.原方程有两个不相等的实数根.8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 .◆答案:425≤k ◆解析:‘..方程有实根,⋅≤∴≥-=-∴425,045422k k ac b 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根.◆答案:43≥◆解析:..‘方程0)2()12(22=-+++m x m x 有实数根.⋅≥∴≥-=-+-++=--+=-∴43,0152016164144)2(4)12(42.2222m m m m m m m m ac b 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 .◆答案:无实根 ◆解析:,)2(4)44(4162044)4)(1(4)2(422242422222+-=++-=---=++--=-k k k k k k k k k ac b∴<-∴>+∴≥,04,02,0222ac b k k 原方程无实根. 二、选择题:11.(2004·北京市海淀区)若a 的值使得1)2(422-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2◆答案:C◆解析:,341441)2(222++=-++=-+x x x x x a 的值使得,3,341)2(4222=∴++=-+=++a x x x a x x 故C 正确.12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( )3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D◆答案:C ◆解析:方程x x 332-=-化为.0332=-+x x 故.3.3.1-===c b a 故C 正确. 13.方程02=+x x 的解是( )x A .=土1 0.=x B 1,0.21-==x x C 1.=x D◆答案:C◆解析:运用因式分解法得,0)1(=+x x 故.1,021-==x x 故C 正确.14.(2006·广安市)关于X 的一元二次方程有两个不相等的实数根,则k 的取值范围是( )1.->k A 1.>k B 0.=/k C 1.->k D 且0=/k ◆答案:D◆解析:由题意知⎩⎨⎧>+=/.044,0k k 解得1->k 且.0=/k15.(2006·广州市)一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D◆答案:C16.解方程.251212;0)23(3)32(;0179;072222x x x x x x x =+=-+-=--=-④③②① 较简便的方法是( )A .依次为:开平方法、配方法、公式法、因式分解法B .依次为:因式分解法、公式法、配方法、直接开平方法①.C 用直接开平方法,②④用公式法,③用因式分解法 ①.D 用直接开平方法,②用公式法,③④用因式分解法 ◆答案:D17.(2004·云南省)用配方法解一元二次方程.0782=++x x 则方程可变形为( )9)4.(2=-x A 9)4.(2=+x B 16)8.(2=-x C 57)8.(2=+x D ◆答案:B18.一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是( )2.>k A 2.<k B 且1=/k 2.<k C 2.>k D 且1=/k◆答案:B◆解析:‘.‘方程有两个不相等的实根4)2(4,22--=-∴ac b(1,048)1()>-=-⨯-k k 2<∴k 且,1=/k 故B 正确.19.下列方程中有两个相等的实数根的方程是( )09124.2=++x x A 032.2=-+x x B 02.2=++x x C 072.2=-+x x D ◆答案:A◆解析:只有A 的判别式的值为零,故A 正确.20.(2004·大连市)一元二次方程0422=++x x 的根的情况是( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆答案:D◆解析:∴<-=⨯-=-,012442422ac b 方程没有实数根,故D 正确 21.下列命题正确的是( )x x A =22.。

(完整版)一元二次方程应用题经典题型汇总含答案

(完整版)一元二次方程应用题经典题型汇总含答案

z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题一元二次方程的解法及经典练题方法一:直接开平方法(基于平方根的定义)平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

即,如果x²=a,那么x=±√a。

注意,x可以是多项式。

一、使用直接开平方法解下列一元二次方程:1.4x²-1=22.(x-3)²=233.81(x-2)²=1644.(x+1)²/4=255.(2x+1)²=(x-1)²6.(5-2x)²=9(x+3)²7.2(x-4)²/3-6=0.方法二:配方法解一元二次方程1.定义:把一个一元二次方程的左边配成一个平方,右边为一个常数,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2.配方法解一元二次方程的步骤:1)将方程移项,使等式左边为完全平方,右边为常数。

2)将等式左右两边开平方。

3)解出方程的根。

二、使用配方法解下列一元二次方程:1.y²-6y-6=02.3x²-2=4x3.3x²-4x=94.x²-4x-5=05.2x²+3x-1=06.3x²+2x-7=0方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法。

2.公式的推导:使用配方法解方程ax²+bx+c=0(a≠0),解得x=[-b±√(b²-4ac)]/(2a)。

3.由上可知,一元二次方程ax²+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因为1)当b²-4ac>0时,方程有两个实数根,x₁=[-b+√(b²-4ac)]/(2a),x₂=[-b-√(b²-4ac)]/(2a)。

2)当b²-4ac=0时,方程有一个实数根,x₁=x₂=-b/(2a)。

(完整版)解一元二次方程练习题(配方法)(最新整理)

(完整版)解一元二次方程练习题(配方法)(最新整理)

(7) 5x 2 -3x+2 =0
(8) 7x 2 -4x-3 =0
(9) -x 2 -x+12 =0
(10) x 2 -6x+9 =0
韦达定理:对于一元二次方程 ax2 bx c 0(a 0) ,如果方程有两个实数根 x1, x2 ,那么
x1
x2
b a
,
x1x2
c a
说明:(1)定理成立的条件 0
2.已知 x1,x2 是方程 2x2-7x+4=0 的两根,则 x1+x2=
,x1·x2=

(x1-x2)2=
1
3.已知方程 2x2-3x+k=0 的两根之差为 2 ,则 k=
;
2
4.若方程 x2+(a2-2)x-3=0 的两根是 1 和-3,则 a=
;
5.若关于 x 的方程 x2+2(m-1)x+4m2=0 有两个实数根,且这两个根互为倒数,那么 m 的值为
(2)注意公式重
x1
x2
b a
的负号与
b
的符号的区别
根系关系的三大用处
(1)计算对称式的值
例 若 x1, x2 是方程 x2 2x 2007 0 的两个根,试求下列各式的值:
(1) x12 x22 ;
(2) 1 1 ; x1 x2
(3) (x1 5)(x2 5) ;
(4) | x1 x2 | .
25、 5x2 7x 1 0
26、 5x2 8x 1
27、 x2 2mx 3nx 3m2 mn 2n2 0
28、3x2+5(2x+1)=0
29、 (x 1)(x 1) 2 2x
30、 3x2 4x 1

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析

一元二次方程班级 姓名一、填空题:1.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a2.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 .3.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根.二、选择题:4.一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是( ) 2.>k A 2.<k B 且1=/k 2.<k C 2.>k D 且1=/k5.(2004·大连市) 关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 ( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根6.已知:关于x 的方程019)13(22=-+--m x m mx 有实数根,则m 的范围为( ) 51.≤m A 51.≤m B 且51.0≥=/m C m 51.<m D 三、解答题:7.(2006·浙江省)解方程.222=+x x8.用因式分解法解方程:.15)12(8)3(;05112)2(;015123)1(22=+=+-=-+x x x x x x9.已知关于z 的方程,03)12(22=-+++k x k x 当k 为何值时,方程有两个实数根?10.k 取何值时,方程0)4()1(2=++++k x k x 有两个相等的实数根?并求出这时方程的根.11.如果关于z 的一元二次方程06)4(22=+--x mx x 没有实数根,求m 的最小整数值.12、已知关于x 的一元二次方程.012=-+kx x (1)求证:方程有两个不相等的实数根;(2)设方程的两根满足,2121x x x x ⋅=+求k 的值13.若关于x 的方程01)2()2(22=+---x m x m 的两个根互为倒数,求m 的值。

(完整)一元二次方程100道计算题练习(附答案)

(完整)一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=16 6、2(2x -1)-x (1-2x)=07、x 2 =64 8、5x 2—52=0 9、8(3 —x )2–72=010、3x (x+2)=5(x+2) 11、(1-3y)2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2—x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x —4=0 24、x 2—3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=—1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x —1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x (5—x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)235、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x —3)2042=-x x 3(1)33x x x +=+x 2—23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x —3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x(x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0。

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。

1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。

1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。

1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。

1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。

1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。

1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。

(完整版)一元二次方程100道计算题练习(附答案)

(完整版)一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1). 3(=11)2)(2答案第二章 一元二次方程备注:每题2.5分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。

(精品)一元二次方程解法及其配套练习

(精品)一元二次方程解法及其配套练习

一元二次方程解法定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项. 解法一 ——直接开方法适用范围:可解部分一元二次方程例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1例2.市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.例3. 如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s •的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8cm 2?BCA QP例4.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?配套练习题一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-23x+1=0正确的解法是().A.(x-13)2=89,x=13B.(x-13)2=-89,原方程无解C.(x-23)2=59,x1=23x2D.(x-23)2=1,x1=53,x2=-13二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b2-12b+36=0,那么ab的值是_______.三、综合提高题1.解关于x的方程(x+m)2=n.2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?解法二——配方法适用范围:可解全部一元二次方程引例:要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽各是多少?用配方法解一元二次方程小口诀二次系数化为一常数要往右边移 一次系数一半方两边加上最相当例1.用配方法解下列关于x 的方程 (1)x 2-8x+1=0 (2)x 2-2x-12=0例2.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B •两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ •的面积为Rt △ACB 面积的一半.C AQ P例3.解下列方程(1)2x 2+1=3x (2)3x 2-6x+4=0 (3)(1+x )2+2(1+x )-4=0配套练习题一、选择题1.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0 C .(x-13)2=89 D .(x-13)2=109 2.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(12x-a )2=a 3.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ).A .1B .2C .-1D .-24.将二次三项式x 2-4x+1配方后得( ).A .(x-2)2+3B .(x-2)2-3C .(x+2)2+3D .(x+2)2-35.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ).A .x 2-8x+(-4)2=31B .x 2-8x+(-4)2=1C .x 2+8x+42=1D .x 2-4x+4=-116.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于( ).A .1B .-1C .1或9D .-1或9二、填空题1.方程x 2+4x-5=0的解是________.2.代数式2221x x x ---的值为0,则x 的值为________. 3.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,所以求出z 的值即为x+y 的值,所以x+y 的值为______.4.如果x 2+4x-5=0,则x=_______.5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数.6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.三、综合提高题1.用配方法解方程.(1)9y 2-18y-4=0 (2)x 22.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.3.如果x 2-4x+y 2,求(xy )z 的值.4.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?5.已知:x 2+4x+y 2-6y+13=0,求222x y x y -+的值. 6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.解法三——公式法适用范围:可解全部一元二次方程 首先,要通过Δ=b^2-4ac 的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac<0时 x 无实数根(初中)2.当Δ=b^2-4ac=0时 x 有两个相同的实数根 即x1=x23.当Δ=b^2-4ac>0时 x 有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac )}/2a 来求得方程的根求根公式的推导用配方法解方程(1) ax 2-7x+3 =0 (2)a x 2+bx+3=0(3)如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=,x 2这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c •也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a )2=2244b ac a - ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时2244b ac a -≥0∴(x+2b a )2=(2a)2直接开平方,得:x+2b a = 即∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。

一元二次不等式解法专题知识梳理及典型练习题(含答案)

一元二次不等式解法专题知识梳理及典型练习题(含答案)

一元二次不等式解法专题一.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1} ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}Φ Φ二.穿针引线法例 1 解下列不等式:(1)x x ≥-2414 (2)0822≥+--x x (3)0)3)(2(>-+x x例2 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =_____.例3(穿针引线法) 解不等式:(x-1)2(x+1)(x-2)(x+4)<0例4 不等式xx ->+111的解集为( ) A .{x|x >0}B .{x|x≥1}C.{x|x >1} D .{x|x >1或x =0}解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x-1>0,即x >1.选C . 例5 与不等式023≥--xx 同解得不等式是( ) A .(x -3)(2-x)≥0B.0<x -2≤1C .≥230--xx D .(x -3)(2-x)≤0 练习1:1.不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)答案 D2.(2011·XX)不等式2x 2-x -1>0的解集是( ). A.⎝ ⎛⎭⎪⎫-12,1B .(1,+∞) C .(-∞,1)∪(2,+∞) D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 D3.不等式9x 2+6x +1≤0的解集是( ).A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-13C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-13≤x ≤13D .R答案 B4.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26 答案 C5.函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎨⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎨⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3)6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组. 解 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a - 选C .例解不等式≥.8 237232x x x -+-解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 练习21.(x+4)(x+5)2(2-x)3<0.2.解下列不等式(1);22123+-≤-x x 127314)2(22<+-+-x x x x3.解下列不等式1x 5x 2)2(;3x 1x 1+>+-≤-)(4.解下列不等式()()12log 6log 1log )2(;08254)1(21212121≥-++≥+⋅-+x x x x5解不等式1)123(log 2122<-+-x x x .。

一元二次方程练习题-含答案(解法20题-题海111题)

一元二次方程练习题-含答案(解法20题-题海111题)

经典解法20题(1)(3x+1)^2=7(2)9x^2-24x+16=11(3) (x+3)(x-6)=-8(4) 2x^2+3x=0(5) 6x^2+5x-50=0 (选学)(6)x^2-4x+4=0 (选学)(7)(x-2)^2=4(2x+3)^2(8)y^2+2√2y-4=0(9)(x+1)^2-3(x+1)+2=0(10)x^2+2ax-3a^2=0(a为常数)(11)2x^2+7x=4.(12)x^2-1=2 x (13)x^2 + 6x+5=0(14) x ^2-4x+ 3=0(15)7x^2 -4x-3 =0(16)x ^2-6x+9 =0(17)x²+8x+16=9(18)(x²-5)²=16(19)x(x+2)=x(3-x)+1(20) 6x^2+x-2=0海量111题1)x^2-9x+8=0(2)x^2+6x-27=0(3)x^2-2x-80=0(4)x^2+10x-200=0(5)x^2-20x+96=0(6)x^2+23x+76=0(7)x^2-25x+154=0(8)x^2-12x-108=0(9)x^2+4x-252=0(10)x^2-11x-102=0(11)x^2+15x-54=0(12)x^2+11x+18=0(13)x^2-9x+20=0(14)x^2+19x+90=0(15)x^2-25x+156=0(16)x^2-22x+57=0(17)x^2-5x-176=0(18)x^2-26x+133=0(19)x^2+10x-11=0(20)x^2-3x-304=0(21)x^2+13x-140=0(23)x^2+5x-176=0(24)x^2+28x+171=0(25)x^2+14x+45=0(26)x^2-9x-136=0(27)x^2-15x-76=0(28)x^2+23x+126=0(29)x^2+9x-70=0(30)x^2-1x-56=0(31)x^2+7x-60=0(32)x^2+10x-39=0(33)x^2+19x+34=0(34)x^2-6x-160=0(35)x^2-6x-55=0(36)x^2-7x-144=0(37)x^2+20x+51=0(38)x^2-9x+14=0(39)x^2-29x+208=0(40)x^2+19x-20=0(41)x^2-13x-48=0(42)x^2+10x+24=0(43)x^2+28x+180=0(45)x^2+23x+90=0(46)x^2+7x+6=0(47)x^2+16x+28=0(48)x^2+5x-50=0(49)x^2+13x-14=0(50)x^2-23x+102=0(51)x^2+5x-176=0(52)x^2-8x-20=0(53)x^2-16x+39=0(54)x^2+32x+240=0(55)x^2+34x+288=0(56)x^2+22x+105=0(57)x^2+19x-20=0(58)x^2-7x+6=0(59)x^2+4x-221=0(60)x^2+6x-91=0(61)x^2+8x+12=0(62)x^2+7x-120=0(63)x^2-18x+17=0(64)x^2+7x-170=0(65)x^2+6x+8=0(67)x^2+24x+119=0(68)x^2+11x-42=0(69)x^20x-289=0(70)x^2+13x+30=0(71)x^2-24x+140=0(72)x^2+4x-60=0(73)x^2+27x+170=0(74)x^2+27x+152=0(75)x^2-2x-99=0(76)x^2+12x+11=0(77)x^2+17x+70=0(78)x^2+20x+19=0(79)x^2-2x-168=0(80)x^2-13x+30=0(81)x^2-10x-119=0(82)x^2+16x-17=0(83)x^2-1x-20=0(84)x^2-2x-288=0(85)x^2-20x+64=0(86)x^2+22x+105=0(87)x^2+13x+12=0(89)x^2+26x+133=0(90)x^2-17x+16=0(91)x^2+3x-4=0(92)x^2-14x+48=0(93)x^2-12x-133=0(94)x^2+5x+4=0(95)x^2+6x-91=0(96)x^2+3x-4=0(97)x^2-13x+12=0(98)x^2+7x-44=0(99)x^2-6x-7=0 (100)x^2-9x-90=0 (101)x^2+17x+72=0 (102)x^2+13x-14=0 (103)x^2+9x-36=0 (104)x^2-9x-90=0 (105)x^2+14x+13=0 (106)x^2-16x+63=0 (107)x^2-15x+44=0 (108)x^2+2x-168=0 (109)x^2-6x-216=0(111)x^2+18x+32=0答案(1)(3x+1)^2=7解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= (±√7-1)/3(2)9x^2-24x+16=11解:9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= (±√11+4)/3 ∴原方程的解为x1=(√11+4)/3 x2=(-√11+4)/3(3) (x+3)(x-6)=-8解:(x+3)(x-6)=-8 化简整理得x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程解法及其经典练习题
方法一:直接开平方法(依据平方根的定义)
平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根
即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式
一、 用直接开平方法解下列一元二次方程。

1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x
5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22
=--x
方法二:配方法解一元二次方程
1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2. 配方法解一元二次方程的步骤:(1) (2)
(3) 4) (5)
二、用配方法解下列一元二次方程。

1、.0662=--y y
2、x x 4232=- 39642=-x x 、
4、0542=--x x
5、01322=-+x x
6、07232=-+x x
方法三:公式法
1.定义:利用求根公式解一元二次方程的方法叫做公式法
2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)
解:二次项系数化为1,得 ,
移项 ,得 ,
配方, 得 ,
方程左边写成平方式 ,
∵a ≠0,∴4a 2 0,有以下三种情况:
(1)当b 2-4ac>0时,=1x , =2x
(2)当b 2-4ac=0时,==21x x 。

(3)b 2-4ac<0时,方程根的情况为 。

3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因
(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。

当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;
当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;
当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。

(2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,•将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法.
4.公式法解一元二次方程的步骤:(1) (2) (3)
(4) (5)
二、用公式解法解下列方程。

1、0822=--x x 2、22
314y y -= 3、y y 32132=+
4、01522=+-x x
5、1842-=--x x
6、02322=--x x
7.x 2+4x -3=0.
8..03232=--x x
方法四:因式分解法
1.定义:当一元二次方程的一边为 ,而另一边易于分解成两个 时,然后令每一个因式为零分别解之,从而得到一元二次方程解的方法叫做因式分解法
2.步骤:(1) (2) (3)
(4) (5)
3. 因式分解的方法:(1)提公因式法:
(3)公式法:平方差: 完全平方:
(3)十字相乘法: ② ③
二、 用因式分解法解下列一元二次方程。

1、x x 22=
2、0)32()1(22=--+x x
3、0862=+-x x
4、22)2(25)3(4-=+x x
5、0)21()21(2=--+x x
6、0)23()32(2=-+-x x
三、 用适当的方法解下列一元二次方程。

(选用你认为最简单的方法)
1、2260x y -+=
2、x x 5322=-
3、()()513+=-x x x x 4.030222=--x x
5、01072=+-x x
6、()()623=+-x x 7. x 2+4x -12=0 8.0432=-y y
9、()02152=--x 10
、0432=-y y 11、03072=--x x
12、()()412=-+y y 13
、()()1314-=-x x x 14、()025122=-+x
15.02222=+-+a b ax x 16、3631352=+x x 17、()()213=-+y y
18、0
3)19(32=--+a x a x 19
、()()03342=-+-x x x 20、 22244a b ax x -=-
解答题:类型一;知道根的情况,利用判别式列不等,求参数的取值范围
1、已知一元二次方程0132=-+-m x x .
(1)若方程有两个不相等的实数根,求m 的取值范围.
(2)若方程有两个相等的实数根,求此时方程的根
2.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.
3、已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值.
(1)方程有两个相等的实数根;(2)方程的一个根为0.
4.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.
5.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值
类型二:证明一元二次方程根的情况。

1、无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由
2.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.
3.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.
4.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.
(1)求证:当m 取非零实数时,此方程有两个实数根;
(2)若此方程有两个整数根,求m 的值.。

相关文档
最新文档