【初中】中考数学章节复习测试 二元一次方程组(含解析)

合集下载

中考数学总复习《二元一次方程组》专项测试卷-附带有参考答案

中考数学总复习《二元一次方程组》专项测试卷-附带有参考答案

中考数学总复习《二元一次方程组》专项测试卷-附带有参考答案(测试时间60分钟 满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.已知 {x =2,y =3是关于 x ,y 的方程 4kx −3y =−1 的一个解,则 k 的值为 ( )A . 1B . −1C . 2D . −22.下列各组 x ,y 的值中,是方程 3x +y =5 的解的是 ( )A . {x =1,y =2B . {x =2,y =1C . {x =−2,y =1D . {x =0,y =−53.二元一次方程 2a +5b =−6,用含 a 的代数式表示 b ,下列各式正确的是 ( )A . a =5b−62B . a =5b+62C . b =2a−65D . b =−2a+654.某市在“污水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水 a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时 b 吨的定流量增加).若污水处理厂同时开动 2 台机组,需 30 小时处理完污水;若同时开动 3 台机组,需 15 小时处理完污水.现要求用 5 个小时将污水处理完毕,则需同时开动的机组数为 ( )A . 4 台B . 5 台C . 6 台D . 7 台5.解方程组 {2x −3y =2, ⋯⋯①2x +y =10. ⋯⋯② 时,由 ②−① 得 ( )A . 2y =8B . 4y =8C . −2y =8D . −4y =86.方程 2x +y =8 的正整数解的个数是 ( )A . 4 个B . 3 个C . 2 个D . 1 个7.若 ∣a +2b −5∣+(2a +b −1)2=0,则 (a −b )2 的值等于 ( )A . ±1B . 1C . ±4D . 168.为了绿化校园,甲、乙两班共植树苗 30 棵.已知甲班植树数量是乙班的 1.5 倍,设甲班植树 x 棵,乙班植树 y 棵.根据题意,所列方程组正确的是 ( )A . {x +y =30,x =2.5yB . {x +y =30,x =1.5yC . {x =y +30,3y =2xD . {x =y +30,x =y +1.5二、填空题(共5题,共15分)9.轮船顺流航行时速度为 m km/h ,逆流航行时速度为 (m −8)km/h ,则水流速度是 .10.甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做 3 个,甲做 30 个所用的时间与乙做 20 个所用的时间相等,那么甲每小时做 个零件.11.甲、乙两人在东西方向的公路上行走,甲在乙的西边 300 m ,若甲、乙两人同时向东走,那么 30 min 后,甲正好追上乙;若甲、乙两人同时相向而行,2 min 后相遇.问甲、乙两人的速度各是 .12.若关于 x ,y 的二元一次方程组 {3x −my =5,2x +ny =6的解是 {x =1,y =2, 则关于 a ,b 的二元一次方程组 {3(a +b )−m (a −b )=5,2(a +b )+n (a −b )=6的解是 .13.定义运算“∗”,规定 x ∗y =ax 2+by ,其中 a ,b 为常数,且 1∗2=5,2∗1=6则 2∗3= .三、解答题(共3题,共45分)14.体育器材室有 A ,B 两种型号的实心球,1 只 A 型球与 1 只 B 型球的质量共 7 千克,3 只 A 型球与 1 只 B 型球的质量共 13 千克.(1) 每只 A 型球、 B 型球的质量分别是多少千克?(2) 现有 A 型球、 B 型球的质量共 17 千克,则 A 型球、 B 型球各有多少只?15.现有 190 张铁皮做盒子,每张铁皮可做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完整的盒子.(一张铁皮只能生产一种产品)(1) 问用多少张铁皮做盒身,多少张铁皮做盒底,可以正好用完 190 张铁皮并制成一批完整的盒子?(2) 这一批盒子一共有多少个?16.甲、乙两人解关于 x ,y 的方程组 {4x −by =−1,ax +by =5,甲因看错了 a ,解得 {x =2,y =3, 乙将其中一个方程的 b 写成了它的相反数,解得 {x =−1,y =−1,求 a 2+b 3 的值.参考答案1. 【答案】A2. 【答案】A3. 【答案】D4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】D8. 【答案】B9. 【答案】 4 km/h10. 【答案】911. 【答案】 80 m/min ,70 m/min12. 【答案】 {a =32,b =−1213. 【答案】 1014. 【答案】(1) 设每只 A 型球、 B 型球的质量分别是 x 千克、 y 千克,根据题意可得:{x +y =7,3x +y =13.解得:{x =3,y =4.答:每只 A 型球的质量是 3 千克、 B 型球的质量是 4 千克.(2) ∵ 现有 A 型球、 B 型球的质量共 17 千克∴ 设 A 型球 1 个,设 B 型球 a 个,则 3+4a =17解得:a =72(不合题意舍去)设 A 型球 2 个,设 B 型球 b 个,则 6+4b =17解得:b =114(不合题意舍去)设 A 型球 3 个,设 B 型球 c 个,则 9+4c =17解得:c =2设 A 型球 4 个,设 B 型球 d 个,则 12+4d =17解得:d =54(不合题意舍去)设 A 型球 5 个,设 B 型球 e 个,则 15+4e =17解得:e =12(不合题意舍去) 综上所述:A 型球、 B 型球各有 3 只、 2 只.15. 【答案】(1) 设用 x 张铁皮做盒身,用 y 张铁皮做盒底根据题意,得:{2×8x =22y,y +x =190.解得:{x =110,y =80.答:用 110 张铁皮做盒身,80 张铁皮做盒底,可以正好用完 190 张铁皮并制成一批完整的盒子.(2) 880 个.16. 【答案】31.。

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。

中考数学总复习二元一次方程组专题复习(含答案)

中考数学总复习二元一次方程组专题复习(含答案)

中考数学总复习二元一次方程组专题复习(含答案)一、选择题。

(在每小题给出的四个选项中,只有一个选项是符合题目要求的。

)1、下列各式中是二元一次方程的是()。

A、6x+2y=zB、+2=3yC、x-5=y2D、2x+5y=132、二元一次方程组的解是()。

3、若方程4x-3ky=12有一组解是,则k的值等于()。

A、-4B、4C、5D、-54、当方程kx+4y=9x-8是二元一次方程时,k的取值为()。

A、k≠0B、k≠-9C、k≠9D、k≠45、如果是二元一次方程组的解,那么m+n=()。

A、-1B、1C、-5D、56、可以使得方程x+5y=8和3x+y=-4同时成立的x、y的值分别为()。

A、x=2且y=2B、x=-2且y=2C、x=2且y=-2D、x=-2且y=27、方程5x-y=8的非负整数解有()。

A、2组B、3组C、4组D、无数组8、已知新星学校和山泉中学相距4千米,苏兰和肖英两人分别从新星学校和山泉中学同时出发,若同向而行,苏兰2小时可追上肖英;若两人相向而行,1小时相遇。

求苏兰、肖英两人的速度各是多少?如果设苏兰的速度为x千米/时,肖英的速度为y千米/时,则可以得一个二元一次方程组为()。

9、有一个两位数,它的十位数字与个位数字之和为8,则符合条件的两位数有()。

A、6个B、7个C、8个D、9个10、已知是二元一次方程组的解,则(3m+n)3的值为()。

A、1B、-1C、2D、-2二、填空题。

(将正确的答案填在括号里。

)1、若是二元一次方程,则m=(),n=()。

2、若是二元一次方程2x-ky=11的一个解,则k=()。

3、如果关于x、y的二元一次方程组的解满足2(x+y)-16≤0,则t的取值范围为()。

4、若(4x+y-13)2+│3x+2y-1│=0 则x-4y=()。

5、育龙中学组织一场知识竞赛。

规定知识竞赛的记分为:答对一题得3分,答错一题扣1分。

已知九(1)班答了12道题,共得24分,那么九(1)班答对了()道题。

中考数学专题复习《二元一次方程组》测试卷-附带参考答案

中考数学专题复习《二元一次方程组》测试卷-附带参考答案

中考数学专题复习《二元一次方程组》测试卷-附带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式是二元一次方程的是( )A .x 2+y =0B .x =2y +1C .2x 3−2y =0D .y +12x 2. 解方程组{2x +y =3①,2x −3y =4②时,若将①-②可得( ) A .4y=1 B .4y=-1 C .-2y=-1 D .-2y=1 3.{x =5y =3是下面哪个二元一次方程的解( ) A .2x −y =7 B .y =−x +2 C .x =−y −2 D .2x −3y =−14.若{x =3,y =4是方程kx +y =−5的一个解,则k 的值是( ) A .−13 B .−3 C .3 D .13 5.亮亮求得方程组{x +y =●3x −y =6的解为{x =2y =●,由于不小心滴上了两滴墨水,刚好遮住了两个数●和☆,请你帮他找回这两个数,“●”“☆”表示的数分别为( )A .●=2,●=0B .●=2,●=3C .●=0,●=2D .●=26.七(3)班为奖励在校运会上取得好成绩的同学,花了200元钱购买甲、乙两种奖品共30件,其中甲种奖品每件8元,乙种奖品每件6元,若设购买甲种奖品x 件,乙种奖品y 件,则所列方程组正确的是( )A .{x +y =306x +8y =200B .{x +y =308x +6y =200C .{6x +8y =30x +y =200D .{8x +6y =30x +y =200 7.两位同学在解关于x 、y 的方程组{ax +3y =9①3x −by =2②时甲看错①中的a ,解得x =2,y =1,乙看错②中的b ,解得x =3,y =−1,那么a 和b 的正确值应是( )A .a =1.5,b =−7B .a =4,b =2C .a =4,b =4D .a =−7,b =1.58.周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有( )A .3种B .4种C .5种D .6种二、填空题9.若关于x ,y 的方程4x m−n −5y m+n =6是二元一次方程,则mn = .10.若方程组 {x +y =73x −5y =−3,则 3(x +y)−(3x −5y) 的值是 . 11.小亮解方程组:{2x +y =•2x −y =12的解为{x =5y =●,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★= .12.若方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =3y =4,则方程组{12a 1x +13b 1y =c 112a 2x +13b 2y =c 2的解是 . 13.塑料凳子轻便实用,在生活中随处可见.如图,若4个塑料凳子叠放在一起的高度为60cm ,6个塑料凳子叠放在一起的高度为70cm .当有11个塑料凳子整齐的叠放在一起时,其高度是 cm .三、解答题14.解下列方程组:(1){x +3y =9x =2y +1(2){3x +2y =43x 2−y+13=1 15.已知{x =3y =2是方程组{ax +by =13(a +b)x −ay =9的解,那么(a −b)2030的值为多少? 16.某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?17.已知关于x ,y 的二元一次方程组{x +2y =3m ,x −y =9m.(1)求方程组的解(用含m 的式子表示)。

中考数学总复习《二元一次方程组》专项测试题-带参考答案

中考数学总复习《二元一次方程组》专项测试题-带参考答案

中考数学总复习《二元一次方程组》专项测试题-带参考答案(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.如果 ∣x +y −1∣ 和 2(2x +y −3)2 互为相反数,那么 x ,y 的值为 ( )A . {x =1,y =2B . {x =−1,y =−2C . {x =2,y =−1D . {x =−2,y =−12.如图,宽为 50 cm 的长方形图案由 10 个全等的小长方形拼成,其中一个小长方形的面积为 ( )A .400 cm 2B .500 cm 2C .600 cm 2D .300 cm 23.若关于 x ,y 的方程组 {2x −y =m,x +my =n 的解是 {x =2,y =1,则 ∣m −n ∣ 为 ( )A . 1B . 3C . 5D . 24.已知关于 x ,y 的二元一次方程组 {2x −y =k,x −2y =−1的解满足 x =y ,则 k 等于( )A . −1B . 0C . 1D . 25.由方程组 {x +m =4,y −3=m可得出 x 与 y 的关系是 ( )A . x +y =1B . x +y =−1C . x +y =7D . x +y =−76.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余 4.5 尺;将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头长为 x 尺,绳子长为 y 尺,则所列方程组正确的是 ( )A . {y =x +4.5,0.5y =x −1B . {y =x +4.5,y =2x −1C . {y =x −4.5,0.5y =x +1D . {y =x −4.5,y =2x −17.在三元一次方程组 {mx −ny −z =7,2nx −3y −2mz =5中,x +y +z =k.x =2,y =−1,z =−3,则那么代数式m 2−7n +3k 等于 ( )A . 125B . 119C . 113D . 718.把一根长 7 m 的绳子剪成 2 m 长和 1 m 长的绳子共 5 小段,并且不造成浪费,其中 2 m 长的绳子可以剪去 ( ) 段.A . 1B . 2C . 3D . 4二、填空题(共5题,共15分) 9.三个同学对问题“若方程组的 {a 1x +b 1y =c 1a 2x +b 2y =c 2解是 {x =2y =3 ,求方程组 {4a 1x +3b 1y =5c 13a 2x +4b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .10.请写出方程4x +y =11的所有正整数解: .11.对于实数 a , b 定义一种运算“*”规定: a ∗b ={ab −b 2(a ≥b)a 2−ab(a <b),例如:4*2,∵4>2 ∴4∗2=4×2−22=4 ,若 x , y 是方程 {x +2y =−52x −3y =−3的解,则 x ∗y .12.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,礼盒的单价是 元.13.若一个正数的两个不同平方根分别是a +5和2a −17,则这个数是 .三、解答题(共3题,共45分)14.甲、乙两名同学在解方程组:{mx +y =5,2x −ny =13 时,甲解题时看错了 m ,解得 {x =72,y =−2,乙解题时看错了 n ,解得 {x =3,y =−7,请你以上两种结果,求出原方程组的正确解.15.已知 {x =2,y =1是二元一次方程 ax +2by =8 的解. (1) 求 a +b 的值.(2) 解是 {x =2,y =1的二元一次方程唯一吗?如果唯一,请直接回答,如果不唯一,请再写出另一个二元一次方程.(3) 你在(2)中写的二元一次方程只有 {x =2,y =1这一个解吗?如果是,直接回答:如果不是,请再写出它的另一个解.16.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的 2 倍少 1.而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的 35.问该兴趣小组男生、女生各有多少人?参考答案1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】C5. 【答案】C6. 【答案】A7. 【答案】C8. 【答案】B9.【答案】10.【答案】{x =1y =711.【答案】612.【答案】513.【答案】8114. 【答案】由题意可知 {x =72,y =−2是方程 2x −ny =13 的解 ∴2×72−(−2)n =13,解得 n =3;{x =3,y =−7是方程 mx +y =5 的解 ∴3m −7=5,解得 m =4;∴ 原方程组为:{4x +y =5,2x −3y =13,解此方程组得 {x =2,y =−3.∴ 原方程组的解为:{x =2,y =−3.15. 【答案】(1) ∵{x =2,y =1是二元一次方程 ax +2by =8 的解 ∴2a +2b =8∴a +b =4.(2) 解是 {x =2,y =1的二元一次方程不唯一 解是 {x =2,y =1的二元一次方程可以是 x +y =3.(答案不唯一) (3) 二元一次方程 x +y =3 不止 {x =2,y =1这一个解 它的另外的解有 {x =3,y =0, {x =0,y =3等.16. 【答案】设该兴趣小组男生有 x 人,女生有 y 人依题意得:{y =2(x −1)−1,x =35(y −1).解得:{x =12,y =21.答:该兴趣小组男生有 12 人,女生有 21 人.。

2024年中考数学复习专题:二元一次方程组(含答案)

2024年中考数学复习专题:二元一次方程组(含答案)

2024年中考数学复习专题:二元一次方程组一、单选题1.已知2524a b a b +=⎧⎨+=⎩是关于a 、b 的二元一次方程组,求a b +是( ) A .15 B .3 C .9 D .12 2.某网友的QQ 号码是M ,M 被10000除所得的商与余数之和为18889,M 被100000除所得的商与余数之和为58741,则M 的千位数字是( )A .4B .5C .6D .7 3.下列四组数是二元一次方程26x y -=的解的是( )A .14x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D .32x y =⎧⎨=⎩4.小明计划用21元钱购买A 、B 两种笔记本,A 种每个3元,B 种每个2元,在钱全部用完的情况下,有多少种购买方案( )A .5种B .4种C .3种D .2种 5.若458kx y x -=+是关于x 、y 的二元一次方程,则k 的取值范围是( ) A .0k ≠ B .5k ≠ C .3k ≠ D .1k ≠-6.与方程组480240x y x y +-=⎧⎨+=⎩有相同解的方程是( ) A .480x y +-=B .240x y +=C .(48)(24)0x y x y +-+=D .2(48)|24|0x y x y +-++= 7.已知关于x 与y 的方程组321431x y m x y m +=+⎧⎨+=-⎩的解满足0x y ->,则m 应满足( ) A .6m >- B .6m <C .1m >D .11m -<< 8.某品牌汽车经销商在7月份售出手动型和自动型汽车共900台,8月份售出这两种型号的汽车共1145台,其中手动型和自动型汽车8月份的销售量分别比7月份增长30%和25%,问7月份销售的手动型和自动型汽车分别为多少台?若设7月份销售的手动型和自动型汽车分别x 台,y 台,则可列方程组为( )A .()()900130%125%1145x y x y +=⎧⎨-+-=⎩B .()()900130%125%1145x y x y +=⎧⎨+++=⎩C .()()1145130%125%900x y x y +=⎧⎨+++=⎩D .()()1145130%125%900x y x y +=⎧⎨-+-=⎩二、填空题9.若()143a a x y -+=是关于x y ,的二元一次方程,则=a .10.已知不等式组213x a x b +>⎧⎨-<⎩的解集为11x -<<,则()()11a b ++的值是 . 11.我国明代数学读本《算法统宗》中有一道题, 其题意为:客人一起分银子,若每人7两, 还剩4两;若每人9两,还差8两;则①人数为 人;②银子共有 两. 12.某学校计划为“建党百年,铭记党史”演讲比赛购买奖品,已知购买2个A 种奖品和4个B 种奖品共需100元:购买5个A 种奖品和2个B 种奖品共需130元,求A 、B 两种奖品的单价.设A 种奖品的单价为x 元,B 种奖品的单价为y 元,那么可列方程组为 .13.已知关于x ,y 的方程组212ax y x by +=⎧⎨-=⎩,小明看错a 得到的解为12x y =⎧⎨=-⎩,小亮看错了b 得到的解为11x y =⎧⎨=⎩,则原方程组正确的解为 .三、解答题14.解方程组(1)用代入法解:32143x y x y +=⎧⎨=+⎩ (2)用加减法解:43525x y x y +=⎧⎨-=-⎩15.已知方程组33121x y m x y m +=+⎧⎨+=-⎩的解满足x y >,求m 的取值范围.16.若方程组37x yax y b-=⎧⎨+=⎩和方程组28x by ax y+=⎧⎨+=⎩有相同的解.(1)求方程组正确的解.(2)求a,b的值.17.已知用2辆A型车和1辆B型车载满货物一次可运货10t;用1辆A型车和2辆B型车载满货物一次可运货11t.某物流公司现有31t货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.18.如图,现要在长方形草坪中规划出3块大小、形状一样的小长方形(图中阴影部分)区域种植鲜花.(1)如图①,大长方形的相邻两边长分别为60m和45m,求小长方形的相邻两边长;(2)如图①,设大长方形的相邻两边长分别为a和b,小长方形的相邻两边长分别为x和y,1个小长方形的周长与大长方形的周长的比值是否为定值?若是,请求出这个值;若不是,请说明理由.参考答案:1.B2.D3.B4.C5.B6.D7.A8.B9.1-10.4-11. 6 4612.2410052130x y x y +=⎧⎨+=⎩13.32x y =⎧⎨=⎩ 14.(1)41x y =⎧⎨=⎩; (2)13x y =-⎧⎨=⎩.15.3m >16.(1)32x y =⎧⎨=⎩ (2)a 的值是75-,b 的值是11517.(1)1辆A 型车载满货物一次可运3t,1辆B 型车载满货物一次可运4t (2)解:由(1),得3431a b +=,3143b a -∴=.,a b 都是正整数,91a b =⎧∴⎨=⎩,,或5,4,a b =⎧⎨=⎩或17a b =⎧⎨=⎩,. ∴有3种租车方案:方案一:A 型车9辆,B 型车1辆;方案二:A 型车5辆,B 型车4辆;方案三:A 型车1辆,B 型车7辆.(3)租A 型车1辆,B 型车7辆,最少租车费为940元18.(1)设小长方形的宽为m m ,长为m n . 根据题意,得260245m n m n +=⎧⎨+=⎩解得1025m n =⎧⎨=⎩答:小长方形的相邻两边长分别是10m ,25m .(2)是定值13,理由如下: 根据题意可知1个小长方形的周长()2C x y =+小. 根据题意可知2a x y =+,2b x y =+,大长方形的周长()()()22226C a b x y x y x y =+=+++=+大. 可得()()2163x y C C x y +==+小大. 所以,1个小长方形的周长与大长方形的周长的比值是定值,为13.。

中考数学专题复习卷:二元一次方程组含解析

中考数学专题复习卷:二元一次方程组含解析

二元一次方程组一、选择题1.下列各式中是二元一次方程的是()A. x+y=3zB. ﹣3y=2C. 5x﹣2y=﹣1D. xy=32.下列方程组中,是二元一次方程组的是()A. B. C. D.3.已知关于x,y的方程组,当x+y=3时,求a的值()A. -4B. 4C. 2D.4.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车辆,37座客车辆,根据题意可列出方程组()A. B. C. D.5.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,则道路的宽为()A. 5米B. 3米C. 2米D. 2米或5米6.若|a﹣4|+(b+1)2=0,那么a+b=()A. 5B. 3C. ﹣3D. -57.若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为( )A. 20°B. 55°C. 20°或55°D. 75°8.已知且-1<x-y<0,则k的取值范围是( )A.-1<k<-B.0<k<C.0<k<1D.<k<19.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A. 14B. 13C. 12D. 1510.若a,b为实数,且|a+1|+ =0,则(ab)2 017的值是()A. 0B. 1C. -1D. ±111.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()A. 6种B. 7种C. 8种D. 9种12.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A. B. C. D.二、填空题13.方程组的解为________.14.如果方程组的解与方程组的解相同,则a+b=________.15.某铁路桥长y米,一列x米长的火车,从上桥到过桥共用30秒,整列火车在桥上的时间为20秒,若火车的速度为20米∕秒,则桥长是________米.16.设实数x、y满足方程组,则x+y=________.17.已知:关于x,y的方程组的解为负数,则m的取值范围________.18.若关于x , y的二元一次方程3x﹣ay=1有一个解是,则a=________.19.已知,则=________ .20.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶________ km.三、解答题21.解方程(组)(1)(2)22.已知,xyz ≠0,求的值.23.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.24.先化简再求值:,其中x , y的值是方程组的解.25.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨。

中考数学一轮复习《二元一次方程组》专项练习-附含答案

中考数学一轮复习《二元一次方程组》专项练习-附含答案

中考数学一轮复习《二元一次方程组》专项练习-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列方程组中是二元一次方程组的是()A.B.C.D.2.七年级某班由于布置班级的需要,用彩纸剪出了一些“星星”和“花朵”,一张彩纸可以剪出6个“星星”或4个“花朵”,已知剪出的“星星”数量是“花朵”数量的3倍,该班级共用了12张彩纸,设用x张彩纸剪“星星”,y张彩纸剪“花朵”,根据题意,可列方程组为()A.B.C.D.3.有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价是14元,2枝大圆珠笔和3枝小圆珠笔的售价为11元设大圆珠笔为x元枝,小圆珠笔为y元枝,根据题意,列方程组正确的是()A.B.C.D.4.二元一次方程组的解是()A.B.C.D.5.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限6.已知方程组的解满足方程,则()A.4 B.-3 C.3 D.不能确定7.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将20元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.2种B.3种C.4种D.5种8.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和◆,则这两个数●和◆的值为()A.B.C.D.二、填空题9.若关于x、y的方程组有整数解,则正整数a的值为.10.已知关于x,y的二元一次方程组,则.11.已知方程组与有相同的解,则.12.某次地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有种.13.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是.三、解答题14.解方程组 .15.已知是关于x、y的二元一次方程组的解,求a+b的值16.甲、乙两人同时解方程组时,甲看错了方程(1)中的a,解得,乙看错了(2)中的b,解得,求原方程组的正确解.17.因强降雨天气,有500名群众被困,某救援队前往救援,已知3艘小型船和2艘大型船一次可救援125名群众,1艘小型船和3艘大型船一次可救援135名群众.(1)每艘小型船和每艘大型船各能坐多少名群众?(2)若安排m艘小型船和n艘大型船,一次救援完,且恰好每艘船都坐满,请设计出所有的安排方案.18.巴川河是铜梁的母亲河,为打造巴川河风光带,现有一段长为米的河道整治任务由A、B两个工程队先后接力完成A工程队每天整治米,B工程队每天整治米,共用时天.(1)求A、B两工程队分别整治河道多少天?(用二元一次方程组解答)(2)若A工程队整改一米的工费为元,B工程队整改一米的工费为元,求完成整治河道时,这两工程队的工费共是多少?参考答案:1.A2.A3.B4.D5.A6.B7.B8.B9.2、4、810.111.14412.613.1:814.解:①+②,得解得①-②,得解得:∴15.解:将x=4,y=3代入方程组得:解得:则a+b=−1+2=1.16.解:17.(1)解:设每艘小型船能坐x名群众,每艘大型船能坐y名群众.由题意得解得答:每艘小型船能坐15名群众,每艘大型船能坐40名群众.(2)解:由题意得,所以.因为n,m是正整数所以.有四种安排方案:方案一:安排28艘小型船和2艘大型船;方案二:安排20艘小型船和5艘大型船;方案三:安排12 艘小型船和8艘大型船;方案四:安排4艘小型船和11艘大型船.18.(1)解:设A工程队整治河道x天,B工程队整治河道y天根据题意得:解得:.答:A工程队整治河道天,B工程队整治河道天;(2)解:根据题意得:元.答:完成整治河道时,这两工程队的工费共是元。

中考数学专题练习 二元一次方程组(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 二元一次方程组(含解析)-人教版初中九年级全册数学试题

二元一次方程组一、选择题1.已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣2.如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.3.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:14.直线kx﹣3y=8,2x+5y=﹣4交点的纵坐标为0,则k的值为()A.4 B.﹣4 C.2 D.﹣25.如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.46.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.7.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+28.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.49.无论m为何实数,直线y=2x+m与y=﹣x+4的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.二、填空题11.若关于x,y的二元一次方程组的解满足x+y=1,则k=.12.若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是.13.已知2x﹣3y=1,用含x的代数式表示y,则y=,当x=0时,y=.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为.15.已知x=2a+4,y=2a+3,如果用x表示y,则y=.三、解答题16.解方程组.17.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.18.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁.19.有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?20.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?21.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示,y表示乙:x表示,y表示(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.二元一次方程组参考答案与试题解析一、选择题1.已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据绝对值和偶次方得出关于x、y的方程组,求出方程组的解即可.【解答】解:∵|x+y|+(x﹣y+5)2=0,∴x+y=0,x﹣y+5=0,即,①+②得:2x=﹣5,解得:x=﹣,把x=﹣代入①得:y=,即方程组的解为,故选A.【点评】本题考查了解二元一次方程组和解一元一次方程的应用,关键是能得出关于x、y的方程组.2.如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.【考点】二元一次方程组的解.【专题】计算题.【分析】将x=1,y=2代入方程组得到关于a与b的方程组,即可求出a与b的值.【解答】解:将x=1,y=2代入方程组得:,①×2﹣②得:3b=3,即b=0,将b=1代入①得:a=1,则.故选B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:已知,①×2﹣②得,7y﹣21z=0,∴y=3z,代入①得,x=8z﹣6z=2z,∴x:y:z=2z:3z:z=2:3:1.故选C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.4.直线kx﹣3y=8,2x+5y=﹣4交点的纵坐标为0,则k的值为()A.4 B.﹣4 C.2 D.﹣2【考点】两条直线相交或平行问题.【专题】计算题.【分析】本题可先根据函数2x+5y=﹣4求出交点的坐标,然后将交点坐标代入直线kx﹣3y=8中,即可求出k的值.【解答】解:在直线2x+5y=﹣4中,当y=0时,2x=﹣4,∴x=﹣2.∴这两条直线的交点坐标为(﹣2,0).将(﹣2,0)代入kx﹣3y=8中,得:﹣2k=8,∴k=﹣4.故选B.【点评】解答此题应根据两直线相交时,函数图象的交点应同时满足两个函数的解析式.5.如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.4【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值【解答】解:根据题意得,把(3)代入(1)得:3y+7y=10,解得:y=1,x=1,代入(2)得:a+(a﹣1)=5,解得:a=3.故选C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.6.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】计算题.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是根据题意找出合适的等量关系列方程组.7.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【考点】一次函数与二元一次方程(组).【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.8.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.4【考点】二元一次方程组的解;算术平方根.【分析】由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m与n的值,继而求得2m﹣n的算术平方根.【解答】解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选C.【点评】此题考查了二元一次方程组的解、二元一次方程组的解法以及算术平方根的定义.此题难度不大,注意理解方程组的解的定义.9.无论m为何实数,直线y=2x+m与y=﹣x+4的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】两条直线相交或平行问题.【专题】计算题.【分析】直线y=﹣x+4经过第一,二,四象限,一定不经过第三象限,因而直线y=2x+m与直线y=﹣x+4的交点不可能在第三象限.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=2x+m与直线y=﹣x+3的交点不可能在第三象限.【点评】本题考查了两条直线相交的问题,需注意应找到完整的函数,进而找到它不经过的象限,那么交点就一定不在那个象限.10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90°,从图中可看出∠1+∠2+90°=180°;②∠1比∠2的度数大50°,则∠1=∠2+50°.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为,故选:C.【点评】此题考查了学生对二元一次方程组的灵活运用,学生应该重视培养对应用题的理解能力,准确地列出二元一次方程组.二、填空题11.若关于x,y的二元一次方程组的解满足x+y=1,则k= 2 .【考点】二元一次方程组的解.【分析】直接将方程组中两方程相加得出3x+3y=3k﹣3,进而求出k的值.【解答】解:∵关于x,y的二元一次方程组的解满足x+y=1,∴3x+3y=3k﹣3,∴x+y=k﹣1=1,解得:k=2.故答案为:2.【点评】此题主要考查了二元一次方程组的解,将两方程相加得出k的值是解题关键.12.若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是﹣6 .【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【分析】首先联立解方程组,求得直线y=4﹣3x和y=2x﹣1的交点,再进一步代入y=ax+7中求解.【解答】解:根据题意,得4﹣3x=2x﹣1,解得x=1,∴y=1.把(1,1)代入y=ax+7,得a+7=1,解得a=﹣6.故答案为:﹣6.【点评】此题考查了两条直线的交点的求法,即联立解方程组求解即可.13.已知2x﹣3y=1,用含x的代数式表示y,则y=,当x=0时,y= ﹣.【考点】解二元一次方程.【专题】计算题.【分析】将x看做已知数,求出y即可;将x=0代入计算即可求出y的值.【解答】解:2x﹣3y=1,变形得:y=,将x=0代入,得:y=﹣.故答案为:;﹣【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为35 .【考点】二元一次方程组的应用.【分析】设这个两位数的十位数字为x,个位数字为y,等量关系为:十位数字与个位数字的和为8,两位数加上18=这个两位数的十位数字与个位数字对调后所组成的新两位数,列方程组求解.【解答】解:设这个两位数的十位数字为x,个位数字为y,由题意得,,解得:,则这个两位数为:35.故答案为:35.【点评】本题考查了二元一次方程组的应用,解答本题的关键是找出等量关系,根据等量关系列方程组求解.15.已知x=2a+4,y=2a+3,如果用x表示y,则y= x﹣1 .【考点】解二元一次方程.【专题】计算题.【分析】由x=2a+4,y=2a+3,两式相减,即可得出关于x与y的关系式,然后移项即可得出答案.【解答】解:由x=2a+4,y=2a+3,两式相减得:x﹣y=1,移项得:y=x﹣1.故答案为:x﹣1.【点评】本题考查了解二元一次方程,难度不大,关键是两式相减后建立关于x与y的关系式.三、解答题16.解方程组.【考点】解二元一次方程组.【专题】计算题.【分析】方程组整理后两方程相减消去y求出x的值,进而求出y的值,即可确定出方程组的解.【解答】解:方程组整理得:,①﹣②得:2x=﹣6,即x=﹣3,将x=﹣3代入①,得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.17.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.【考点】二元一次方程组的应用.【分析】(1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.【解答】解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据题意,得解这个方程组,得答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.【点评】本题考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.18.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁.【考点】二元一次方程组的应用.【专题】年龄问题.【分析】根据题意,有“当我的岁数是你现在的岁数时,你才4岁”可得出:乙的年龄﹣两人的年龄差=4,由“当我的岁数是你现在的岁数时,你将61岁”,可得出:甲的年龄+两人的年龄差=61.由此列出方程组求解.【解答】解:设甲现在年龄x岁,乙现在年龄y岁,则,整理得①+②×2得3y=69,即y=23,把y=23代入②得x=42.∴原方程的解为.答:甲现在42岁,乙现在23岁.【点评】解题关键是弄清题意,合适的等量关系,直接设未知数,列出二元一次方程组求解.19.有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?【考点】二元一次方程组的应用.【专题】应用题.【分析】先设甲、乙两种合金各应取x千克和y千克,再根据混合物中某物质的质量=混合物的质量×混合物中该物质的质量分数进行求解即可得出答案.【解答】解:设需甲合金的质量为x千克,乙合金的质量为y千克,由题意得:,解得:.答:甲合金应取60千克,乙合金应取40千克.【点评】本题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题用到的等量关系是混合物中某物质的质量=混合物的质量×混合物中该物质的质量分数.20.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?【考点】二元一次方程组的应用.【分析】设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据甲乙两地相距160千米1小时20分后相遇和拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,列出方程,求出x,y的值,再根据路程=速度×时间即可得出答案.【解答】解:设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:( +)×90=165(千米),拖拉机行驶的路程是:( +)×30=85(千米).答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米.【点评】本题主要考查了二元一次方程组的应用的知识点,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键;本题用到的知识点是路程=速度×时间.21.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示产品的重量,y表示原料的重量乙:x表示产品销售额,y表示原料费(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.【考点】二元一次方程组的应用.【分析】(1)仔细分析题意根据题目中的两个方程表示出x,y的值并补全方程组即可;(2)将x的值代入方程组即可得到结论.【解答】解:(1)甲:x表示产品的重量,y表示原料的重量,乙:x表示产品销售额,y表示原料费,甲方程组右边方框内的数分别为:15000,97200,乙同甲;则,.(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元∴运费为15000+97200=112200元,∴2400000﹣(400000+112200)=1887800(元)答:这批产品的销售额比原料费和运费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是从题目中找到等量关系并写出表示出x、y所表示的实际意义.。

中考数学总复习《二元一次方程组》专项测试卷(含答案)

中考数学总复习《二元一次方程组》专项测试卷(含答案)

中考数学总复习《二元一次方程组》专项测试卷(含答案)一、单选题(共12题;共24分)1.若方程组{3x +2y =m +14x +3y =m −1的解满足x >y ,则m 的取值范围是( ) A .m>-6 B .m<6 C .m<-6 D .m>62.已知m 为正整数,且关于x ,y 的二元一次方程组 {mx +2y =103x −2y =0有整数解,则m 2的值为( )A .4B .1,4C .1,4,49D .无法确定3.方程3x+y=7的正整数解的个数是( )A .1个B .2个C .3个D .4个4.一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )A .2个B .3个C .4个D .5个5.若{x =1y =2是关于x 、y 的二元一次方程ax-3y=1的解,则a 的值为( ) A .-5 B .-1 C .2 D .76.小亮求得方程组 {2x +y =●2x −y =12的解为 {x =5y =● ,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这两个数,“●”“★”表示的数分别为( )A .5,2B .8,﹣2C .8,2D .5,47.已知x 、y 满足方程组{x +2y =2m −12x +y =5,且x 与y 互为相反数,则m 的值为( ) A .m =−2 B .m =2 C .m =−3 D .m =38.已知非零实数a 、b 、c 满足ab = 13 (a +b) ,bc = 14 (b +c) ,ca = 15 (c +a) ,则 b a−c=( ) A .1 B .3 C .4 D .69.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了( )A .19题B .18题C .20题D .21题10.已知|a +b −1|+√2a +b −2=0,则(a −b)2022的值为( )A .1B .-1C .2022D .-202211.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-20)=300B.x(x+20)=300C.60(x+20)=300D.60(x-20)=30012.已知(x-1)2+√y+2=0,则(x+y)2的算术平方根是()A.±1B.1C.-1D.0二、填空题(共6题;共6分)13.《孙子算经》是中国古代重要的数学著作,《孙子算经》中的数学问题大多浅显易懂,其中一些趣味问题在后世广为流传.其中有这样一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.14.已知{x=5y=7是方程kx﹣2y﹣1=0的解,则k=.15.若(a+2)2+|b−1|=0,则(a+b)2016=。

中考数学总复习《二元一次方程组》专项测试题-附带参考答案

中考数学总复习《二元一次方程组》专项测试题-附带参考答案

中考数学总复习《二元一次方程组》专项测试题-附带参考答案(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.已知 {x =3,y =−2 是方程组 {ax +by =2,bx +ay =−3的解,则 a −b 的值是 ( )A . −1B . −5C . 1D . 52.用代入法解方程组 {3x +4y =2, ⋯⋯①2x −y =5, ⋯⋯②使得代入后化简比较容易的变形是 ( ) A .由 ① 得 x =2−4y 3B .由 ① 得 y =2−3x 4C .由 ② 得 x =y+52D .由 ② 得 y =2x −53.已知方程组 {2x +3y =k,3x −4y =k +11中的 x ,y 满足 5x −y =3,则 k = ( )A . −5B . −3C . −6D . −44.用加减消元法解方程组 {2x −3y =5, ⋯⋯①3x −2y =1 ⋯⋯②,下列解法错误的是 ( )A .① ×2− ② ×(−3),消去 yB .① ×(−3)+ ② ×2,消去 xC .① ×2− ② ×3,消去 yD .① ×3− ② ×2,消去 x5.已知两数 x ,y 之和是 10,x 比 y 的 2 倍小 1,则所列方程组正确的是 ( )A . {x +y =10,x =2y −1B . {x +y =10,x =2y +1C . {x +y =10,y =2x −1D . {x +y =10,y =2x +16.如图,宽为 50 cm 的长方形图案由 10 个全等的小长方形拼成,其中一个小长方形的面积为 ( )A .400 cm 2B .500 cm 2C .600 cm 2D .300 cm 27.两位同学在解方程组时,甲同学由 {ax +by =2,cx −7y =8正确地解出 {x =3,y =−2, 乙同学因把 c 写错了解得 {x =−2,y =2,那么 a ,b ,c 的正确的值应为 ( )A . a =4,b =5,c =−1B . a =4,b =5,c =−2C . a =−4,b =−5,c =0D . a =−4,b =−5,c =28.既是方程 2x −y =3,又是 3x +4y −10=0 的解的是 ( )A . {x =1,y =−1B . {x =2,y =1C . {x =4,y =5D . {x =−4,y =−5二、填空题(共5题,共15分)10.若 3x −2y =11,则用含有 x 的式子表示 y ,得 y = .11.以方程组 {y =−x,4x +y =−3 的解为坐标的点 (x,y ) 在平面直角坐标系中的位置第 象限.12.写出一个以 {x =2,y =−3为解的二元一次方程组 .13.某学校计划将 34 件同样的奖品全部用于在“经典诵读”活动中表现突出的班级,一等奖奖励 6 件,二等奖奖励 4 件,则分配一、二等奖个数的方案有 种.三、解答题(共3题,共45分)14.m 为何值时,方程组{3x −5y =2m 3x +5y =m −18的解互为相反数?求这个方程组的解.15.小明和小华同时解方程组 {mx +y =52x −ny =13 ,小明看错了m ,解得 {x =72y =−2,小华看错了n ,解得 {x =3y =−7,你能知道原方程组正确的解吗?16.阅读下列解方程的解法,然后解决有关问题.解方程组 {19x +18y =17(1)17x +16y =15(2)时,如果考虑常规的消元法(即代入消元法和加减消元法),那将非常麻烦!若用下面的方法非常规的解法,则轻而易举(1)−(2) ,得 2x +2y =2 ,即 x +y =1(3)(3)×16 ,得 16x +16y =16(4)(2)−(4) ,得 x =−1把 x =−1 代入(3)得 −1+y =1 ,即 y =2所以原方组的解是 {x =−1y =2以上的解法的技巧是根据方程的特点构造了方程(3).我们把这种解法称为构造法,请你用构造法解方程组 {7x +11y =1513x +17y =21参考答案1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】A5. 【答案】A6. 【答案】D7. 【答案】B8. 【答案】B9. 【答案】 310. 【答案】3x−11211. 【答案】二12. 【答案】 {x +y =−1,x −y =5(答案不唯一)13. 【答案】 314.【答案】解:{3x −5y =2m ①3x +5y =m −18②①+②得:6x=3m-18即x=3m−186; ①-②得:-10y=m+18即y=-m+1810; 根据题意得:x+y=0即3m−186-m+1810=0 去分母得:30m-180=6m+108 移项合并得:24m=288解得:m=12方程组为{3x −5y =24①3x +5y =−6②解得:{x =3y =−3. 15.【答案】解:将 {x =72y =−2代入②,得2× 72 -n ×(-2)=13,解得n=3 将 {x =3y =−7代入①,3m-7=5解得m=4 ∴原方程组为{4x +y =52x −3y =13①×3+②得14x=28,解得x=2 将x=2代入①得y=-3即原方程组的解为 {x =2y =−316.【答案】解: {7x +11y =15①13x +17y =21②②−①得:6x +6y =6即:x +y =1③ ①−③×7得:4y =8解得:y =2 把y =2代入③得:x =−1所以原方程组的解为: {x =−1y =2。

中考数学总复习《二元一次方程组》练习题附带答案

中考数学总复习《二元一次方程组》练习题附带答案

中考数学总复习《二元一次方程组》练习题附带答案一、单选题(共12题;共24分)1.(2分)关于x 、y 的方程组{x +2y =3mx −y =9m 的解也是方程3x+2y=34的一组解,那么m的值是( ) A .2B .-1C .1D .-22.(2分)如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两顶点上的数加起来,将和写在这条边上,已知AB 边上的数是3,BC 边上的数是7,CD 边上的数是12,则AD 边上的数是( )A .2B .7C .8D .153.(2分)下列方程是二元一次方程的是( )A .2x+3y=zB .4x +y=5C .y= 12(x+8)D .x 2﹣2x ﹣3=04.(2分)若二元一次方程组 {2x +y =3,4x −7y =9 的解为 {x =m,y =n, 则 m −n 的值是( ) A .3B .1C .−13D .25.(2分)如果关于 x,y 的方程组 {x +y =3x −2y =a −2 的解是正数,那a 的取值范围是( ) A .−4<a <5B .a >5C .a <−4D .无解6.(2分)已知{x +2y =−32x +y =7,则代数式x −y 的值为( )A .4B .-4C .-10D .107.(2分)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x 尺,木条长y 尺,根据题意所列方程组正确的是( )A .{x −y =4.512x −y =1B .{x −y =4.5y −12x =1 C .{x +y =4.5y −12x =1 D .{x −y =4.5x −12y =18.(2分)某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )A .{45x −35=y 60(x −2)=y −35B .{45x =y −3560(x −2)+35=yC .{45x +35=y60(x −1)+35=yD .{45x =y +35y −60(x −2)=359.(2分)若方程mx+ny=6的两个解是 {x =1y =1 , {x =2y =−1 则m ,n 的值为( ) A .{m =4n =2B .{m =2n =4C .{m =−2n =−4D .{m =−4n =−210.(2分)为保护生态环境,南充市响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。

中考数学真题二元一次方程组(含答案)

中考数学真题二元一次方程组(含答案)

中考真题解析考点汇编解二元一次方程组以及简单的三元一次方程组一、选择题1. 若 a :b :c =2:3:7,且 a -b +3=c -2b ,则 c 值为何?()A .7B .63C .21 D . 2124考点:解三元一次方程组。

专题:计算题。

分析:先设 a =2x ,b =3x ,c =7x ,再由 a -b +3=c -2b 得出 x 的值,最后代入 c =7x 即可. 解答:解:设 a =2x ,b =3x ,c =7x , ∵a -b +3=c -2b ,∴2x -3x +3=7x -6x , 3解得 x = , 2∴c =7× 3 =21 ,22故选C .点评:本题考查了解三元一次方程组,解题的关键是由题意中的比例式设 a =2x ,b =3x ,c=7x ,再求解就容易了.2. 若二元一次联立方程式的解为 x=a ,y=b ,则a+b 之值为何?( )A 、1B 、3C 、4D 、6考点:解二元一次方程组。

分析:将其中一个方程两边乘以一个数,使其与另一方程中 x 的系数互为相反数,再将两方程相加,消去一个未知数,达到降元的目的,求出另一个未知数,再用代入法求另一个未知数. 解答:解:,⎩ ⎩ ⎩ ⎩ ⎩ ⎩ 专题:计算题.分析:解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y ,得到一个关于 x 的一元一次方程,解出 x 的值,再把 x 的值代入方程组中的任意一个式子,都可以求出 y 的值解答:解: ,①﹣2×②得,5y=﹣10,y=﹣2,代入②中得,x+4=7,解得, x=3∴a+b=3+(﹣2)=1, 故选(A )点评:本题主要考查解二元一次方程组:用加减法解二元一次方程组,用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数,把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得未知数的值,将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⎧x + y = 3 3. 方程组⎨x - y = -1的解是()⎧x = 1A 、⎨y = 2⎧x = 1B 、⎨y = -2⎧x = 2C 、⎨y = 1⎧x = 0 D 、⎨y = -1考点:解二元一次方程组. ①+②得:2x=2,x=1,把 x=1 代入①得:1+y=3, y=2,⎧x = 1∴方程组的解为: ⎨ y = 2故选:A ,⎩⎩⎨点评:此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.⎧x + m = 64. 由方程组⎨ y - 3 = m 可得出 x 与y 的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9考点:解二元一次方程组。

中考数学总复习《二元一次方程组》专项测试题-附参考答案

中考数学总复习《二元一次方程组》专项测试题-附参考答案

中考数学总复习《二元一次方程组》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列各对数值,是方程2x﹣3y=6的解是()A.{x=0y=4B.{x=1y=−2C.{x=2y=−1D.{x=3y=0 2.在等式y=kx+b中,当x=1时y=2,当x=−1时y=4,则b的值是()A.1B.-1C.3D.-3 3.已知2x+3y=6,用x的代数式表示y得( )A.y=2- 23x B.y=2-2xC.x=3-3y D.x=3- 3 2y4.解三元一次方程组{a+b−c=1①a+2b−c=3②2a−3b+2c=5③具体过程如下:(1 )②-①,得b=2;(2)①×2+③,得4a-2b=7;(3)所以{b=24a−2b=7;(4)把b=2代入4a-2b=7,得4a-2×2=7(以下求解过程略)其中开始出现错误的一步是()A.(1)B.(2)C.(3)D.(4)5.解方程组{2x−3y=2, ⋯⋯①2x+y=10. ⋯⋯②时,由②−①得( )A.2y=8B.4y=8C.−2y=8D.−4y=86.方程2x+y=8的正整数解的个数是( )A.4个B.3个C.2个D.1个7.若∣a+2b−5∣+(2a+b−1)2=0,则(a−b)2等于( )A.±1B.1C.±4D.168.为了绿化校园,甲、乙两班共植树苗 30 棵.已知甲班植树数量是乙班的 1.5 倍,设甲班植树 x 棵,乙班植树 y 棵.根据题意,所列方程组正确的是 ( ) A . {x +y =30,x =2.5yB . {x +y =30,x =1.5yC . {x =y +30,3y =2xD . {x =y +30,x =y +1.5二、填空题(共5题,共15分)9.若 −2x m−n y 2 与 3x 4y 2m+n 是同类项,则 m −3n 的立方根是 .10.已知 m 为整数且方程组 {mx +2y =2m +10,3x −2y =0 有正整数解,则 m = .11.二元一次方程 2x +y =7 的正整数解有 个.12.以方程组 {y =x +2,y =−x +1 的解为坐标的点 (x,y ) 在第 象限.13.某学校要购买电脑,A 型电脑每台 5000 元,B 型电脑每台 3000 元.购买 10 台这两种型号的电脑共花费 34000 元.设购买A 型电脑 x 台,购买B 型电脑 y 台.则根据题意可列方程组为 .三、解答题(共3题,共45分)14.平面直角坐标系中A (a,0),B (0,b ),a ,b 满足 (2a +b +5)2+√a +2b −2=0,将线段 AB 平移得到 CD ,A ,B 的对应点分别为 C ,D ,其中点 C 在 y 轴负半轴上.(1) 求 A ,B 两点的坐标;(2) 如图 1,连 AD 交 BC 于点 E ,若点 E 在 y 轴正半轴上,求BE−OE OC的值;(3) 如图 2,点 F ,G 分别在 CD ,BD 的延长线上,连接 FG ,∠BAC 的角平分线与 ∠DFG 的角平分线交于点 H ,求 ∠G 与 ∠H 之间的数量关系.15.已知方程组 {3x −2y =4,mx +ny =7 与 {2mx −3ny =19,5y −x =3 有相同的解,求 m ,n 的值.16.一艘轮船在相距 90 千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用 6 小时,逆流航行比顺流航行多用 4 小时. (1) 求该轮船在静水中的速度和水流速度;(2) 若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?参考答案1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】B 5. 【答案】B 6. 【答案】B 7. 【答案】D 8. 【答案】B 9. 【答案】 210. 【答案】 −2 或 −1 11. 【答案】 1 12. 【答案】二 13. 【答案】 0 14. 【答案】(1) ∵(2a +b +5)2≥0 √a +2b −2≥0 且 (2a +b +5)2+√a +2b −2=0 ∴{2a +b +5=0a +2b −2=0解得:{a =−4b =3∴A (−4,0) B (0,3). (2) 设 C (0,c ) E (0,y )∵ 将线段 AB 平移得到 CD ,A (−4,0),B (0,3) ∴ 由平移的性质得 D (4,3+c ) 过 D 作 DP ⊥x 轴于 P∴AO =4=OP ,DP =3+c ,OE =y ,OC =−c ∴S △ADP =S △AOE +S 梯形OEDP ∴AP×DP 2=OA×OE 2+(OE+DP )×OP2∴8×(3+c )2=4y 2+(y+3+c )×42解得 y =3+c 2.∴BE −OE =(BO −OE )−OE =BO −2OE =3−2×3+c 2=−c =OC∴BE−OE OC=1.(3) ∠G 与 ∠H 之间的数量关系为:∠G =2∠H −180∘.如图,设 AH 与 CD 交于点 Q ,过 H ,G 分别作 DF 的平行线 MN ,KJ ∵HD 平分 ∠BAC ,HF 平分 ∠DFG∴ 设 ∠BAH =∠CAH =α,∠DFH =∠GFH =β ∵AB 平移得到 CD ∴AB ∥CD ,BD ∥AC∴∠BAH =∠AQC =∠FQH =α,∠BAC +∠ACD =180∘=∠BDC +∠ACD ∴∠BAC =∠BDC =∠FDG =2α ∵MN ∥FQ∴∠MHQ =∠FQH =α,∠NHF =∠DFH =β ∴∠QHF =180∘−∠MHQ −∠NHF =180∘−(α+β) ∵KJ ∥DF∴∠DGK =∠FDG =2α,∠DFG =∠FGJ =2β ∴∠DGF =180∘−∠DGK −∠FGJ =180∘−2(α+β) ∴∠DGF =2∠QHF −180∘.15. 【答案】 ∵ 方程组 {3x −2y =4,mx +ny =7 与 {2mx −3ny =19,5y −x =3 有相同的解∴{3x −2y =4,5y −x =3 与原两方程组同解.由 5y −x =3 可得:x =5y −3将 x =5y −3 代入 3x −2y =4,则 y =1. 再将 y =1 代入 x =5y −3,则 x =2. 将 {x =2,y =1 代入 {mx +ny =7,2mx −3ny =19 得:{2m +n =7, ⋯⋯①4m −3n =19. ⋯⋯② 将 ①×2−② 得:n =−1 将 n =−1 代入①得:m =4.16. 【答案】(1) 设该轮船在静水中的速度是 x 千米/小时,水流速度是 y 千米/小时依题意,得:{6(x +y )=90,(6+4)(x −y )=90,解得:{x =12,y =3.答:该轮船在静水中的速度是 12 千米/小时,水流速度是 3 千米/小时.(2) 设甲、丙两地相距 a 千米,则乙、丙两地相距 (90−a ) 千米 依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.。

中考数学专题复习《二元一次方程组》测试卷-附带参考答案

中考数学专题复习《二元一次方程组》测试卷-附带参考答案

中考数学专题复习《二元一次方程组》测试卷-附带参考答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列方程是二元一次方程的是( )A .2x y +=B .2x y +C .10y x +=D .221x y += 2.《九章算术》中记载:“今有共买羊 人出五 不足四十五 人出七 不足三 问人数 羊价各几何?”其大意是:今有人合伙买羊 若每人出5钱 还差45钱 若每人出7钱 还差3钱 问合伙人数 羊价各是多少?设合伙人数为x 人 羊价为y 钱 根据题意 可列方程组为( )A .54573y x y x =+⎧⎨=+⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=-⎩D .54573y x y x =-⎧⎨=-⎩ 3.已知关于x y 的二元一次方程7ax y -= 下表中给出的几组x 的值都是此方程的解 则a 的值为( ) x … 1- 0 1 2 …y … 10- 7- 4- 1- …A .2-B .1C .2D .34.已知x y 满足方程组43x m y m +=⎧⎨+=⎩则无论m 取何值 x y 恒有的关系式是( ) A .1x y += B .1x y -= C .7x y += D .7x y -=- 5.某货运公司有大 小两种货车 已知9辆小货车一次运货的质量比7辆大货车少6吨 11辆小货车一次运货的质量比7辆大货车一次运货的质量多2吨 则1辆小货车一次可以运货的质量为( )A .6吨B .5吨C .4吨D .3吨6.方程2516x y +=与某方程构成的方程组的解为32x y =⎧⎨=⎩ 则该方程可以是( ) A .310x y -= B .2210x y += C .23x y -=- D .39x y +=7.李老师准备用40元钱全部购买A B 两种型号的签字笔(两种型号的签字笔都买) A 型签字笔每支5元 B 型签字笔每支2元 则李老师的购买方案有( )A .4种B .3种C .2种D .1种8.若关于x y ,的二元一次方程20ax by +-=的两个解分别是53x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩ 则a b ,的值是( )A . 1,0a b ==B .11a b ==-,C .11a b =-=,D .12a b ==,二 填空题9.由方程组213x m y m +=⎧⎨=+⎩可用含x 的代数式来表示y 为 . 10.方程组45x ay x y +=⎧⎨-=-⎩的解满足235x y += 则a 的值是 . 11.已知31x y =⎧⎨=⎩是关于x y 的二元一次方程组21310x my x ny -=⎧⎨+=⎩的解 则关于x y 的二元一次方程组2()()13()()10x y m x y x y n x y ++-=⎧⎨+--=⎩的解是 . 12.在长方形ABCD 中 放入六个形状 大小相同的小长方形 所标尺寸如图所示 则每个小长方形的面积为 2cm .13.科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物 具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克 两片银杏树叶与三片国槐树叶一年的平均滞尘总量为146毫克.设一片银杏树叶一年的平均滞尘量为x 毫克 一片国槐树叶一年的平均滞尘量为y 毫克.依据题意 可列方程组为 .三 解答题14.解方程组:(1)427y x x y =-⎧⎨+=⎩(2)431123a b a b -=⎧⎨+=⎩. 15.已知关于x y 的二元一次方程组343223x y x y m +=⎧⎨+=-⎩的解满足231x y += 求m 的值. 16.河南之于中国 正如中国之于世界 了解老家河南可以帮助我们更好地了解我们伟大的祖国.为了更好地了解河南文化特色 某学校八年级举办了传统文化知识大讲堂活动 并在活动后对表现优异的100位同学准备了甲乙两种共计100件纪念品 活动效果优秀 同学也对纪念品赞不绝口.学校采购甲种纪念品4元/件 乙种纪念品6元/件.(1)如果购买这两种纪念品共用520元 那么甲 乙两种纪念品各购买多少件?(2)该校准备对七年级同学也举办同样的活动 并再次购买这两种纪念品 使乙种纪念品数量是甲种数量的2倍少4件 且总需费用不多于600元 求甲种纪念品最多能再购买多少件?17.我们规定:对于数对(),a b 如果满足a b ab += 那么就称数对(),a b 是“和积等数对”:如果满足a b ab -= 那么就称数对(),a b 是“差积等数对” 例如333322+=⨯ 222233-=⨯.所以数对3,32⎛⎫ ⎪⎝⎭为“和积等数对” 数对22,3⎛⎫ ⎪⎝⎭为“差积等数对”. (1)下列数对中 “和积等数对”的是 “差积等数对”的是 . ①2,23⎛⎫-- ⎪⎝⎭①2,23⎛⎫- ⎪⎝⎭ ①2,23⎛⎫- ⎪⎝⎭. (2)若数对()()21,3x +-是“差积等数对” 求x 的值.(3)是否存在非零有理数m n 使数对()3,2m 是“和积等数对” 同时数对()2,n m 也是“差积等数对” 若存在 求出m n 的值 若不存在 说明理由.18.为倡导读书风尚 打造书香校园.某校计划购买一批图书 若同时购进A 种图书20本和B 种图书50本.则共需1700元.且购进A 种图书16本和购进B 种图书28本的价格相同.(1)求A B 两种图书的单价各是多少元.(2)若学校计划购买这两种图书共60本 要求每种都要购买.且A 种图书的数量多于B 种图书的数量 根据学校预算 购买总金额不能超过1690元.请问学校共有哪几种购买方案?参考答案:1.A2.A3.D4.A5.C6.B7.B8.B9.24y x =-+10.211.12x y =⎧⎨=⎩ 12.1613.2423146x y x y =-⎧⎨+=⎩14.(1)51x y =⎧⎨=⎩(2)21 ab=⎧⎨=-⎩.15.1m=16.(1)购买甲种纪念品40件乙种纪念品100件(2)甲种纪念品最多能再购买39件17.(1)① ①(2)118 x=-(3)存在非零有理数23m=1n=使数对()3,2m是“和积等数对” 同时数对()2,n m也是“差积等数对”18.(1)A种图书的单价为35元B种图书的单价为20元(2)共有两种购买方案。

中考数学第八章 二元一次方程组单元测试附解析

中考数学第八章 二元一次方程组单元测试附解析

中考数学第八章 二元一次方程组单元测试附解析一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.若关于x ,y 的方程组()348217x y mx m y +=⎧⎨+-=⎩的解也是二元一次方程x -2y =1的解,则m的值为( ) A .52B .32C .12D .13.若2446x y x y -=⎧⎨+=⎩,则x +y 的值是( )A .﹣5B .5C .﹣4D .44.已知559375a b a b +=⎧⎨+=⎩,则-a b 等于( )A .8B .83C .2D .15.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 6.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③B .①②④C .①③④D .②③④7.甲、乙两人共同解关于x ,y 的方程组,甲正确地解得乙看错了方程②中的系数c ,解得,则的值为( ) A .16B .25C .36D .498.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩9.方程组的解的个数是( )A .1B .2C .3D .410.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( ) A .4种B .5种C .6种D .7种二、填空题11.某公园的门票价格如表: 购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b (a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.12.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____. 13.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)14.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.15.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b 满足方程组3401416a cbc ⎧++-=⎪-=-(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___.16.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒17.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)18.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 19.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.20.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________三、解答题21.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值.②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 22.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程(2)变形:4105x y y ++=, 即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,将1y =-代入(1)得4x =,所以原方程组的解为41x y =⎧⎨=-⎩.[解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩,(2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.24.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n . (3)若AM =BN ,MN=43BM ,求m 和n 值.25.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值,}min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组: }}1{,?{?3{39,311?4max x x ymin x x y-=++=. 26.“一带一路”是对古丝绸之路的传承和提升,让中国和世界的联系更紧密,电气设备是“一带一路”沿线国家受青睐的商品。

中考数学第八章 二元一次方程组单元测试及解析

中考数学第八章 二元一次方程组单元测试及解析

中考数学第八章 二元一次方程组单元测试及解析一、选择题1.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x ﹣y =( )A .2B .4C .6D .82.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个3.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天4.三元一次方程组236216x y z x y z ==⎧⎨++=⎩①②的解是( )A .135x y z =⎧⎪=⎨⎪=⎩B .556x y z =⎧⎪=⎨⎪=⎩C .632x y z =⎧⎪=⎨⎪=⎩D .642x y z =⎧⎪=⎨⎪=⎩5.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173 B .888C .957D .696.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩7.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( )A . ;B .;C .;D .8.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 9.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩10.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3二、填空题11.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的12用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了112,则百货区新增的摊位数量与该夜市总摊位数量之比是______.12.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.13.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.14.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 15.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____. 16.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b 满足方程组3401416a cbc ⎧++-=⎪-=-(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___.17.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号) 18.若方程组2232x y k x y k +=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.19.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 20.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包.三、解答题21.阅读材料并回答下列问题:当m ,n 都是实数,且满足2m =8+n ,就称点P (m ﹣1,22n +)为“爱心点”. (1)判断点A (5,3),B (4,8)哪个点为“爱心点”,并说明理由; (2)若点A (a ,﹣4)是“爱心点”,请求出a 的值;(3)已知p ,q 为有理数,且关于x ,y 的方程组333x y qx y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点B (x ,y )是“爱心点”,求p ,q 的值.22.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.23.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?24.某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同).()1A 、B 两种花草每棵的价格分别是多少元?()2若再次购买A 、B 两种花草共12棵(A 、B 两种花草价格不变),且A 种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用. 25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息: (说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?26.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x-y)中即可求出结论.【详解】依题意得:22226 x y yx y-=+⎧⎨-=-+⎩,解得:82 xy=⎧⎨=⎩,∴x﹣y=8﹣2=6.故选:C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.B解析:B【详解】解:把①22xy==⎧⎨⎩代入得左边=10=右边;把②2{1xy==代入得左边=9≠10;把③2{2xy==-代入得左边=6≠10;把④1{6xy==代入得左边=10=右边;所以方程4x+y=10的解有①④2个.故选B.3.B解析:B【详解】解:根据题意设有x天早晨下雨,这一段时间有y天,有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组7(9)6 y xy x-=⎧⎨--=⎩,解得411 xy=⎧⎨=⎩,所以一共有11天, 故选B . 【点睛】本题考查二元一次方程组的应用.4.D解析:D 【分析】根据2x=3y=6z,设x=3k,y=2k,z=k,代入求值即可解题. 【详解】 解:∵2x=3y=6z, ∴设x=3k,y=2k,z=k, ∵x+2y+z=16,即3k+4k+k=16, 解得:k=2,∴642x y z =⎧⎪=⎨⎪=⎩, 故选D. 【点睛】本题考查了三元一次方程组的求解,中等难度,根据等量关系设未知数是解题关键.5.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845, 解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0,故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.6.D解析:D 【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.7.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= .故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.8.B解析:B 【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=.3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=,116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B . 【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.9.C解析:C 【分析】根据解二元一次方程组的方法可以解答本题. 【详解】解:125x y x y +=⎧⎨+=⎩①②②﹣①,得 x =4,将x =4代入①,得 y =﹣3,故原方程组的解为43x y =⎧⎨=-⎩,故选:C .本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法.10.C解析:C 【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可. 【详解】 解:根据题意,得121m n m n -=⎧⎨+-=⎩,解得21m n =⎧⎨=⎩. 故选:C .二、填空题11.【分析】由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n 和m 的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式, 解析:3:20【分析】由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n ,再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析即可得出答案. 【详解】解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元), 6月份的管理费为:1(1)60065012n n +⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m , 由餐饮区的摊位数量占到了夜市总摊位数量的920,可得: 91(12)5202n m n m +⨯=+,化简后可得:8m n =,即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),当百货区新增3n ,杂项区新增n 时,满足条件,所以百货区新增的摊位数量与该夜市总摊位数量之比是3:(128)3:203:20n n n n n +==.故答案为:3:20.【点睛】本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析是解答本题的关键. 12..【分析】设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,根据题意,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进 解析:3817. 【分析】 设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,根据题意,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入124%32x y--中即可求出结论. 【详解】设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,依题意,得:()()534115%243115%x y x y ⎧-=-⎪⎨-=-⎪⎩, 解得:0.170.085x y =⎧⎨=⎩, ∴124%383217x y -=-. 故答案为:3817.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,解析:51【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.14.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB ,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.15.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得:,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x yx y-=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①② , ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.16.()【解析】【分析】由方程组变形可得,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标.【详解】解:∵方程组(c 为常数),∴,∵,,∴,∴c=4,∴解析:(1,33-)【解析】【分析】由方程组变形可得3=-(4)4(4)a c c ⎧+-⎪=-,由非负数性质可求c =4,a =-3,b =1,再依据影子点定义即可求出点P /的坐标.【详解】解:∵方程组340416a c c ⎧++-=⎪=-(c 为常数),∴3=-(4)4(4)a c c ⎧+-⎪=-, ∵30a +≥0,∴-(4)04(4)0c c -≥⎧⎨-≥⎩, ∴c =4,∴31a b =-⎧⎨=⎩, ∴P 坐标为(-3,1),根据定义可知点P 的影子点P /为(13(,)31--- ,即为P /(1,33-). 故答案为(1,33-).【点睛】本题考查了非负数性质和新定义运算.解题关键是利用方程变形和非负数性质得出c -4=0. 17.①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组,得,,,,当时,,,x ,y 的值互为相反数,结论正确;当时,,,方程两解析:①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组343x y ax y a +=-⎧-=⎨⎩,得{121x a y a =+=-, 31a -≤≤,53x ∴-≤≤,04y ≤≤,①当2a =-时,123x a =+=-,13y a =-=,x ,y 的值互为相反数,结论正确; ②当1a =时,23x y a +=+=,43a -=,方程4x y a +=-两边相等,结论正确; ③当1x ≤时,121a +≤,解得0a ≤,且31a -≤≤,30a ∴-≤≤,114a ∴≤-≤,14y ∴≤≤结论正确,故答案为①②③.【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x 、y 的表达式及x 、y 的取值范围.18.3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.19.3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以解析:3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=21150003000+=3750(千米). 故答案为:3750.点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.20.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.三、解答题21.(1)A 是爱心点,B 不是,理由见解析;(2)-2;(3)20,3p q ==-【分析】(1)根据“爱心点”的定义,列出方程组计算即可求解; (2)根据“爱心点”的定义,可得方程组1242m a n -=⎧⎪⎨+=-⎪⎩,先求得n ,再求得m ,进一步得到a 的值;(3)解方程组用q 和p 表示x 和y ,代入2m =8+n ,得到关于p 和q 的等式,再根据p ,q 为有理数,求出p ,q 的值.【详解】(1)∵15232m n -=⎧⎪⎨+=⎪⎩, ∴64m n =⎧⎨=⎩, ∵2×6=8+4,∴点A 是爱心点; ∵14282m n -=⎧⎪⎨+=⎪⎩, ∴514m n =⎧⎨=⎩, ∵2×5≠8+14,∴点B 不是爱心点;(2)∵1242m a n -=⎧⎪⎨+=-⎪⎩, ∴n =﹣10,又∵2m =8+n ,∴2m =8+(﹣10),解得m =﹣1,∴﹣1﹣1=a ,即a =﹣2;(3)解方程组3x y q x y q ⎧+=+⎪⎨-=-⎪⎩得2x q y q ⎧=-⎪⎨=⎪⎩, 又∵点B 是“爱心点”满足:1222m q n q ⎧-=-⎪⎨+=⎪⎩,∴142m q n q ⎧=-+⎪⎨=-⎪⎩, ∵2m =8+n ,∴22842q q -+=+-,整理得:64q -=,∵p ,q 是有理数,p =0,﹣6q =4,∴ p=0, q=23 .【点睛】本题主要考查了解二元一次方程组的应用、点的坐标,同时考查了阅读理解能力及迁移运用能力.22.(1)C(a+h,b-1),D(m+h,n-1);(2)①见解析;②相等,理由见解析【分析】(1)根据平移规律解决问题即可..(2)①证明A,D的纵坐标相等即可解决问题;②如图,设AD交直线l于J,首先证明BJ=DJ=1,推出D(m+1,n-1),再证明p=q,即可解决问题.【详解】解:(1)由题意,C(a+h,b-1),D(m+h,n-1);(2)①∵b=n-1,∴A(a,b),D(m+h,n-1),∴点A,D的纵坐标相等,∴AD∥x轴,∵直线l⊥AD,∴直线l⊥x轴;②相等,理由是:如图,设AD交直线l于J,∵DE的最小值为1,∴DJ=1,∵BJ=1,∴D(m+1,n-1),∴二元一次方程px+qy=k(pq≠0)的图象经过点B,D,∴mp+nq=k,(m+1)p+(n-1)q=k,∴p-q=0,∴p=q,∴m+n=kp,∵tp+sp=k,∴t+s=kp,∴m+n=t+s.【点睛】本题考查坐标与图形的变化-平移,二元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.24.(1)A 种花草每棵的价格是20元,B 种花草每棵的价格是5元;(2)购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元.【解析】【分析】()1设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据第一次分别购进A 、B 两种花草30棵和15棵,共花费940元;第二次分别购进A 、B 两种花草12棵和5棵,两次共花费675元;列出方程组,即可解答.()2设A 种花草的数量为m 株,则B 种花草的数量为()12m -株,根据A 种花草的数量不少于B 种花草的数量的4倍,得出m 的范围,设总费用为W 元,根据总费用=两种花草的费用之和建立函数关系式,由一次函数的性质就可以求出结论.【详解】解:()1设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据题意得:3015675125940675x y x y +=⎧+=-⎨⎩, 解得 {205x y ==. A ∴种花草每棵的价格是20元,B 种花草每棵的价格是5元;()2设A 种花草的数量为m 株,则B 种花草的数量为()12m -株, A 种花草的数量不少于B 种花草的数量的4倍,()412m m ∴≥-,解得:9.6m ≥,9.612m ∴≤≤,设购买树苗总费用为()205121560W m m m =+-=+,当10m =时,最省费用为:151060210(⨯+=元),答:购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元.【点睛】本题考查了列二元一次方程组,一元一次不等式解实际问题的运用,一次函数的解析式的运用,一次函数的性质的运用,解答时根据总费用=两种花草的费用之和建立函数关系式是关键.25.(1)a=2.2,b=4.2;(2) 小王家六月份最多能用水40吨【解析】分析:(1)根据等量关系:“小王家2012年4月份用水20吨,交水费66元”;“5月份用水25吨,交水费91元”可列方程组求解即可;(2)先求出小王家六月份的用水量范围,再根据6月份的水费不超过家庭月收入的2%,列出不等式求解即可.详解:(1)由题意,得解得(2)当用水量为30吨时,水费为17×(2.2+0.8)+(30-17)×(4.2+0.8)=116(元),9200×2%=184(元),∵116<184,∴小王家六月份的用水量可以超过30吨.设小王家六月份的用水量为x吨,则17×3+13×5+6.8(x-30)≤184,解得x≤40.∴小王家六月份最多能用水40吨.点睛:本题考查了二元一次方程组及一元一次不等式的知识,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.26.(1)方程组的解为32xy⎧⎨⎩==;(2)19.【解析】【分析】(1)仿照小军的方法将方程②变形,把方程①代入求出y的值,即可确定出x的值;(2)方程组两方程变形后,利用加减消元法求出所求即可.【详解】解:(1)由②得:3(3x-2y)+2y=19③,把①代入③得:15+2y=19,解得:y=2,把y=2代入①得:x=3,则方程组的解为32 xy⎧⎨⎩==;(2)由①得:3(x2+4y2)-2xy=47③,由②得:2(x2+4y2)+xy=36④,③+④×2得:7(x2+4y2)=119,解得:x2+4y2=17.③×2得:6(x2+4y2)-4xy=94⑤,④×3得:6(x2+4y2)+3xy=108⑥,⑥-⑤得:7 xy=14xy=2.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

中考数学数学第八章 二元一次方程组试题附解析

中考数学数学第八章 二元一次方程组试题附解析

中考数学数学第八章二元一次方程组试题附解析一、选择题1.下列方程组中是二元一次方程组的是()A.12xyx y=⎧⎨+=⎩B.52313x yyx-=⎧⎪⎨+=⎪⎩C.20135x zx y+=⎧⎪⎨-=⎪⎩D.5723zz y=⎧⎪⎨+=⎪⎩2.小明要用40元钱买A、B两种型号的口罩,两种型号的口罩必须都买....,40元钱全部用尽,A型每个6元,B型口罩每个4元,则小明的购买方案有()种.A.2种B.3种C.4种D.5种3.已知()11na a n d+-=(n为自然数),且25a=,514a=,则15a的值为(). A.23 B.29 C.44 D.534.下列各组数中①22xy=⎧⎨=⎩;②21xy=⎧⎨=⎩;③22xy=⎧⎨=-⎩;④16xy⎧⎨⎩==是方程410x y+=的解的有( )A.1个B.2个C.3个D.4个5.二元一次方程组2213x yax y+=⎧⎪⎨+=⎪⎩的解也是方程36x y-=-的解,则a等于()A.-3 B.13-C.3 D.136.如图,将正方形ABCD的一角折叠,折痕为AE,点B落在点B′处,B AD∠'比BAE∠大48︒.设BAE∠和B AD∠'的度数分别为x︒和y︒,那么x和y满足的方程组是( )A.4890y xy x-=⎧⎨+=⎩B.482y xy x-=⎧⎨=⎩C.48290x yy x-=⎧⎨+=⎩D.48290y xy x-=⎧⎨+=⎩7.甲、乙两人同求方程ax-by=7的整数解,甲正确地求出一个解为11xy=⎧⎨=-⎩,乙把ax-by=7看成ax-by=1,求得一个解为12xy=⎧⎨=⎩,则a,b的值分别为( )A.25ab=⎧⎨=⎩B.52ab=⎧⎨=⎩C.35ab=⎧⎨=⎩D.53ab=⎧⎨=⎩8.如图,宽为25cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是()A.2200cm B.2150cm C.2100cm D.275cm9.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x尺,绳子的长度为y尺.则可列出方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩10.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3二、填空题11.方程组251036238x y zx z⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).12.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____.13.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.14.已知21xy=⎧⎨=⎩,是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则m+3n的平方根为______.15.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个.16.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.17.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____. 18.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.19.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____.20.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .三、解答题21.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.22.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).23.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?24.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量(m3)收费(元)357.54927(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.25.先阅读材料再回答问题.对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.26.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】含有两个未知数,并且所含未知数的项的次数是1的整式方程组是二元一次方程组,根据定义解答. 【详解】A 、B 、C 都不是二元一次方程组,D 符合二元一次方程组的定义, 故选:D . 【点睛】此题考查二元一次方程组的定义,正确理解定义并运用解题是关键.2.B解析:B 【分析】根据题意得出方程,进而得出方程的整数解解答即可.【详解】解:设A型x个,B型口罩y个,由题意得6x+4y=40,因为x,y取正整数,解得:44xy=⎧⎨=⎩,61xy=⎧⎨=⎩,27xy=⎧⎨=⎩,所以小明的购买方案有三种,故选:B.【点睛】此题考查二元一次方程的应用,关键是根据题意列出二元一次方程解答.3.C解析:C【分析】分别令n=2与n=5表示出a2,a5,代入已知等式求出a1与d的值,即可确定出a15的值.【详解】令n=2,得到a2=a1+d=5①;令n=5,得到a5=a1+4d=14②,②-①得:3d=9,即d=3,把d=3代入①得:a1=2,则a15=a1+14d=2+42=44.故选:C.【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.B解析:B【详解】解:把①22xy==⎧⎨⎩代入得左边=10=右边;把②2{1xy==代入得左边=9≠10;把③2{2xy==-代入得左边=6≠10;把④1{6xy==代入得左边=10=右边;所以方程4x+y=10的解有①④2个.故选B.5.C解析:C 【分析】把2x y +=与36x y -=-组成方程组,求出x ,y 的值,再代入方程213ax y +=,即可解答. 【详解】由题意得:236x y x y +=⎧⎨-=-⎩,解得:13x y =-⎧⎨=⎩,把13x y =-⎧⎨=⎩代入方程213ax y +=,得:()21313a⨯-+⨯=,解得:3a =. 故选:C . 【点睛】本题考查了二元一次方程组的解,方程组的解为能使方程组中两方程都成立的未知数的值.6.D解析:D 【分析】根据由将正方形ABCD 的一角折叠,折痕为AE ,∠B'AD 比∠BAE 大48°的等量关系即可列出方程组. 【详解】解:.设BAE ∠和B AD ∠'的度数分别为x ︒和y ︒由题意可得:48290y x y x -=⎧⎨+=⎩故答案为D. 【点睛】本题考查了二元一次方程组的应用,根据翻折变换的性质以及正方形的四个角都是直角寻找等量关系是解答本题的关键.7.B解析:B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 8.C解析:C 【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解. 【详解】设一个小长方形的长为xcm ,宽为ycm , 由图形可知,2524x y x x y+=⎧⎨=+⎩,解得:205x y =⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm 2) . 故选:C . 【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.9.C解析:C 【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】依题意,得: 4.512y x yx -=⎧⎪⎨-=⎪⎩, 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10.B解析:B 【详解】把11x y =⎧⎨=-⎩代入方程组231ax by ax by +=⎧⎨-=⎩得:231a b a b -=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.二、填空题11.是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三解析:是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y zx z⎧+-=⎪⎨⎪-=⎩是三元一次方程组;故填:是.【点睛】本题主要考查三元一次方程组的定义.12.15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可. 【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a , ∴x =15%, 故答案为15%. 【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.13.24 【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24 【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解. 【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b xa b x+⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24. 【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.14.±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.15.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.16.m>﹣【分析】利用方程组中两个式子加减可得到和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减解析:m>﹣23【分析】利用方程组中两个式子加减可得到5x y-和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得32040 mm+>⎧⎨--<⎩,解得:m>23 -,故答案为:m>23 -.此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换17.76, 56.【解析】【分析】逐项代入求值即可解题.【详解】解:将x=32代入x+3y=5得,y=76,将x=32,y=76代入x+2y-z=3得z=56,∴y=76,解析:,.【解析】【分析】逐项代入求值即可解题.【详解】解:将x=代入x+3y=5得,y=,将x=,y=代入得z=,∴y=, z=.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入求值的方法是解题关键.18.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x和y关于a的解,根据方程组的解是正整数,得到5-a与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x和y关于a的解,根据方程组的解是正整数,得到5-a与a+4都要能被3整除,即可得到答案.322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数, ∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.19.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案. 解答:解:把代入, 得,解得,c=-2. 再把代入ax+by=-2, 得,解得: , 所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以解析:3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=21150003000+=3750(千米). 故答案为:3750. 点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.三、解答题21.(1)(134)8F =;(2)325361s t =. 【分析】(1)由题意直接根据()F n 的定义把“相异数”任意两个数位上的数字对调后得到的三个不同的新三位数进行代入计算即可;(2)根据题意由“相异数”的定义进行分析,并根据()F n 的定义求出()F s 和()F t ,进而依据()()20F s F t +=建立不定方程进行分析即可求解.【详解】解:(1)(134)(314431143)1118F =++÷=;(2)∵s ,t 都是“相异数”,10025s x =+,360t y =+,∴()(2051052010052)1117F s x x x x =+++++÷=+, ()(6301006330610)1119F t y y y y =+++++÷=+.∵()()20F s F t +=,∴791620x y x y +++=++=,∴4x y +=,∵19x ≤≤,19y ≤≤,且x ,y 都是正整数,13x y =⎧⎨=⎩,22x y =⎧⎨=⎩,31x y =⎧⎨=⎩ ∵s 是“相异数”,∴2x ≠,5x ≠.∵t 是“相异数”,∴3y ≠,6y ≠.∴31x y =⎧⎨=⎩是符合条件的解 ∴100325325s =⨯+=,3601361t =+= ∴325361s t =. 【点睛】 本题属于材料阅读题,考查代数以及二元一次方程中不定方程的应用,读懂题干所给的定义和分析解决二元一次方程是解题的关键.22.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15. 【解析】【分析】(1)设A 款瓷砖单价x 元,B 款单价y 元,根据“一块A 款瓷砖和一块B 款瓷砖的价格和为140元;3块A 款瓷砖价格和4块B 款瓷砖价格相等”列出二元一次方程组,求解即可; (2)设A 款买了m 块,B 款买了n 块,且m>n ,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A 款正方形瓷砖边长为a 米,B 款长为a 米,宽b 米,根据图形以及“A 款瓷砖的用量比B 款瓷砖的2倍少14块”可列出方程求出a 的值,然后由92b b -+是正整教分情况求出b 的值.【详解】解: (1)设A 款瓷砖单价x 元,B 款单价y 元,则有14034x y x y+=⎧⎨=⎩, 解得8060x y =⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.23.应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z,再利用共花费346元,分别得出x,y,z的取值范围,进而得出z的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有5x+7y+10z=346,y=2z.易知0<x≤69,0<y≤49,0<z≤34,∴5x+14z+10z=346,5x+24z=346,即346245z x -=. ∵x ,y ,z 均为正整数,346-24z ≥0,即0<z ≤14∴z 只能取14,9和4. ①当z 为14时,346242,228.445z x y z x y z -====++= 。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.解方程组。

【答案】【解析】先用加减消元法,再用代入消元法即可求出方程组的解。

试题解析:,①+②得,4x=14,解得x=,把x=代入①得,+2y=9,解得y=。

故原方程组的解为:【考点】解二元一次方程组。

2.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?【答案】(1)0.5万元、1.5万元;(2)15.【解析】(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.试题解析:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30-z)≤30,解得:z≥15,答:至少购买A种设备15台.【考点】1.一元一次不等式的应用;2.二元一次方程组的应用.3.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是(用,的代数式表示)【答案】ab【解析】设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,大正方形中未被小正方形覆盖部分的面积=()2﹣()2=ab.故答案为:ab.【考点】1、方程组 2、正方形面积 3、整式的运算4.如图,把面积分别为9与16的两个等边三角形重叠,得到的两个阴影部分的面积分别为a与b(a<b),则b-a等于( )A.7B.6C.5D.4【答案】A.【解析】根据题意得16-b=9-a∴b-a=16-9=7故选A.【考点】二元一次方程组的应用.5.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是A.3场B.4场C.5场D.6场【答案】C.【解析】设获胜的场次是x,平y场,负z场.3x+y+0•z=17因为x,y都是整数,所以x最大可取到5.故选C.【考点】二元一次方程的应用.6.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动. 有A、B 两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y. (1)若甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax-y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax-y=5的解的概率.(请用树形图或列表法求解)【答案】(1)a="2" (2)P=【解析】(1)将x=2,y=-1代入方程计算即可求出a的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程ax-y=5的解的情况数,即可求出所求的概率.试题解析:(1)将x=2,y=-1代入方程得:2a+1=5,即a=2;(2)列表得:所有等可能的情况有9种,其中(x,y)恰好为方程2x-y=5的解的情况有(0,-5),(2,-1),(3,1),共3种情况,则P==【考点】1、列表法和树状图发;2、二元一次方程的解.7.在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中的三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是 _.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S= .(用数值作答)【答案】7、3、10; 11.【解析】由图可知图中格点多边形DEFGHI所对应的S,N,L分别是7、3、10.不妨设某个格点四边形由两个小正方形组成,此时,S=1,N=0,L=6∵格点多边形的面积S=aN+bL+c,∴结合图中的格点三角形ABC及多边形DEFGHI可得,解得.∴.将N=5,L=14代入可得S=11.【考点】1.探索规律题(图形的变化类);2.新定义;3.网格问题;4.认识平面图形;5.特殊元素法和待定系数法的应用.8.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.【答案】B【解析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元,儿童票每张35元,共花了1225元”可得方程:70x+35y=1225,把两个方程组合即可.设其中有x张成人票,y张儿童票,根据题意得.【考点】由实际问题抽象出二元一次方程组.9.列方程或方程组解应用题:某酒店有三人间、双人间的客房,三人间每天每间150元,双人间每人每天140元,为了吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人间和双人间客房,若每间客房正好住满且一天共花去住宿费1510元,则该旅行团住了三人间和双人间客房各多少间?【答案】8,12.【解析】方程的应用解题关键是找出等量关系,列出方程求解.本题等量关系为:三人间所住人数+二人间所住人数=50人;三人间费用×0.5+二人间费用×0.5=1510.设三人间和双人间客房各x间、y间,根据题意得,解得.答:三人普间和双人间客房各8间、13间.【考点】二元一次方程组的应用.10.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35gC.20g,30g D.30g,20g【答案】C【解析】根据图可得:3块巧克力的重=2个果冻的重;1块巧克力的重+1个果冻的重=50克,由此可设出未知数,列出方程组.解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选C.11.为进一步建设秀美、宜居的生态型环境,某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙、丙三种树每棵的价格之比为2∶2∶3,甲种树每棵200元.现计划用210 000元资金,购买这三种树共1 000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵数是乙种树的2倍,且恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10 120元的购树款,在购买总棵数不变的前提下,求丙种树最多可以购买多少棵?【答案】(1)乙种树每棵200元,丙种树每棵300元;(2)能购买甲种树600棵,乙种树300棵,丙种树100棵;(3)丙种树最多可以购买201棵.【解析】解:(1)乙种树每棵200元,丙种树每棵×200=300(元)(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1 000-3x)棵,根据题意,得200×2x+200x+300(1 000-3x)=210 000,解得x=300,∴2x=600,1 000-3x=100,(3)设购买丙种树y棵,则购买甲、乙两种树共(1 000-y)棵,根据题意,得200(1 000-y)+300y≤210 000+10 120,解得y≤201.2,∵y为正整数,∴y取201.答:(1)乙种树每棵200元,丙种树每棵300元;(2)能购买甲种树600棵,乙种树300棵,丙种树100棵;(3)丙种树最多可以购买201棵.12.已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.【答案】【解析】解:由①②组成的方程组①+②,得3x=6.∴x=2把x=2代入①,得2+y=4,∴y=2.∴方程组的解为.13.毕业在即,九年级(一)班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念.其中送给老师的留念册的单价比给同学的单价多8元.请问这两种不同留念册的单价分别为多少元?【答案】20元和12元【解析】解:设送给老师的留念册的单价为x元,则送给同学的单价为(x-8)元,由题意得50(x-8)+10x=800,解这个方程,得x=20(元).∴x-8=12(元).答:送给老师、同学的留念册的单价分别为20元和12元.14.把下图折成正方体后,如果相对面所对应的值相等,那么xy的值为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组
一、填空题
1.已知⎩⎨⎧==5
,3y x 是方程ax-2y=2的一个解,那么a 的值是________________.
答案:4
提示:方程的定义.
2.2x+y=7的解有________________个,在自然数的范围内的解分别是________________. 答案:无数 x=1,y=5;x=2,y=3;x=3,y=1
3.若-5x a-3b y 8与3x 8y 5a+b 的和仍是一个单项式,则a=________________,b=_________________.
答案:2 -2
提示:a-3b=8,5a+b=8,解二元一次方程组.
4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现在的城市人口数与农村人口数.若设农村现有人口为x 万,城镇现有人口为y 万,则所列方程组为___________________.
答案:⎩⎨⎧+=+++=+%)
11(42%)1.11(%)8.01(42x y y x
提示:列二元一次方程组.
二、选择题
5.若x a-b -2y a+b-2=11是二元一次方程,那么a,b 的值分别是 A.0,-1 B.2,1 C.1,0 D.2,-3
答案:B
提示:a-b=1,a+b-2=1,二元一次方程的定义.
6.二元一次方程组⎩
⎨⎧==+x y y x 2,102的解是( ) A.⎩⎨⎧==34y x B.⎩⎨⎧==6
3y x
C.⎩⎨
⎧==42y x D.⎩⎨⎧==24y x
答案:C
提示:用代入法.
7.如图7-38,AB ⊥BC,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y,那么下面可以求出这两个角的度数的方程组是
图7-38
A.⎩⎨⎧-==+1590y x y x
B.⎩
⎨⎧-==+15290y x y x C.⎩⎨⎧-==+y x y x 21590 D.⎩⎨⎧-==15
2902y x x
答案:B
提示:列二元一次方程组.
8.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时,若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从上午到下午一共走了_______________千米(途中休息时间不计).
A.5
B.10
C.20
D.答案不唯一
答案:C
提示:设平均路长为a,山路为b,则
4a +3b +6b +4a =5,得a+b=10. 三、解答题
9.解方程组:
(1)⎩⎨⎧=-+=5
2,5y x y x (代入法);
(2)⎩
⎨⎧=-=-22,534y x y x (加减法); (3)⎪⎩⎪⎨⎧=+=-;
2223,123y x y x
(4)⎩
⎨⎧+=-+=-).5(3)1(5,5)1(3x y y x 答案:(1)⎩⎨⎧-==;
5,0y x (2)⎩⎨⎧-==;1,5.0y x (3)⎩⎨⎧==;2,6y x (4)⎩⎨⎧==.7,5y x
提示:求解二元一次方程组.
10.小颖解方程组⎩⎨⎧=-=+4,72dy cx y ax 时,把a 看错后得到的解是⎩⎨⎧==.1,5y x 而正确解是⎩
⎨⎧-==.1,3y x 请你帮小颖写出原来的方程组.
答案:⎩⎨⎧=-=+.
4,723y x y x
提示:求解关于a 、b 的二元一次方程组.
11.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?
答案:甲、乙两种商品原来的单价各是40元和60元.
提示:设甲、乙两种商品原来的单价各是x 、y 元.由x+y=100,(1+10%)x+(1+40%)y=120解得.
12.某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的宿舍每间可住5人.该校198个住宿生恰好住满这30间宿舍.问大、小宿舍各有多少间?
答案:大、小宿舍各有16和14间.
提示:大、小宿舍各有x、y间,由x+y=30,8x+5y=198解得.
13.某校初三(2)班40名同学为希望工程捐款,共捐款100元.捐款情况如下表:
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,请你根据已有的信息求出捐款2元和3元的人数分别是多少?
答案:捐款2元和3元的人数分别是15人和12人.
提示:设捐款2元和3元的人数分别是x、y人,由6+2x+3y+28=100,6+x+y+7=40解得.
14.一辆汽车在公路上行驶,看到里程碑上是一个两位数,1小时后又看到一里程碑,其上的数也是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程碑上是一个三位数,她是第一次看到的两位数中间加一个0,求汽车的速度和第一次看到的两位数.
答案:速度为45千米/时,数字为16.
提示:设第一次看到的两位数个位数字是x,十位数字是y,10x+y-(10y+x)=100y+x-(10x+y),由题意知y=1解得x.。

相关文档
最新文档