2015六年级数学下册解正比例、反比例练习题
六年级数学下册《正比例和反比例》(1)
六年级数学下册《正比例和反比例》(1)一.解答题(共30小题)1.小明家的客厅长6m,宽4m,现在准备铺地砖,每块地砖的面积和所需要的地砖数量如表所示,600 1200 2400每块地砖的面积/cm2所需地砖的数量/块400 200 100所需地砖的数量与每块地砖的面积是否成反比例关系?为什么?2.根据x×y=40,填下表.y 20 40.5x 10 52.53.同学们做早操,每行站的人数与站的行数关系如表:8 12 16 24 48每行站的人数站的行数60 40 30 20 10(1)写出几组对应的行数和每行站的人数的乘积,并比较它们的大小.(2)这个乘积表示什么意义?用关系式表示它与以上两种量之间的关系.4.下列各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来.工作时间/时 1 2碾米质量/t 0.6 1.2杆高/m 5 9影长/m 2.5 4.55.一种铅笔每支售价0.5元,把下表填写完整.数量/支0 1 2 3 4 5 6 …总价/元0 0.5 …(1)把铅笔的数量与总价所对应的点在图中描出来,并连线.(2)买7支铅笔需要多少钱?(3)小丽买铅笔花的钱是小明的4倍,小丽买的铅笔支数是小明的几倍?6.工地要运一批水泥,每天运的吨数和运的天数如下表.每天运的吨数/吨60 30 20 15 10运的天数/天 1 2 3 4 6(1)表中相关联的两种量是和.(2)每天运的吨数增加,运的天数就会;每天运的吨数减少,运的天数就会.(3)表中表示的几种量的关系是一定,与成反比例.7.如图所示的图象表示斑马和长颈鹿的奔跑情况.(1)斑马的奔跑路程与奔跑时间是否成正比例关系?长颈鹿呢?(2)估计一下,两种动物18分钟各跑了多少千米?(3)从图象上看,斑马跑的快还是长颈鹿跑的快?8.电脑兴趣小组的同学练习打同一份稿件,下表记录了每人打字所用的时间.欢欢笑笑乐乐跳跳打字所用的时间/分30 40 50 60平均每分钟打字数/80字(1)表中和是两种相关联的量,随着的变化而变化.(2)笑笑打完稿件共用了40分钟,他平均每分钟打个字;跳跳打完稿件共用了60分钟,他平均每分钟打个字,一共打了个字.(3)在本题中,一定,所以和成比例.9.捷悔希望小学操场上直立着4根不同长度的木桩,上午9时整,小霞同学测量出这些木桩的高度及其影子的长度如表木桩高度(米) 1.2 1.8 2.1 2.5影子长度(米)0.72 1.08 1.20 1.5木桩高度与影长的比(1)补充上表.(2)根据上表数据写两个比例.(3)小霞身高150厘米,这时她的影长是多少?10.(1)判断下列说法是否正确(对的画“√”,错的画“×”)①甲、乙两车是同时出发的.②甲和乙行驶的路程相同.③甲车比乙车速度快.(2)从图中可以看出,随着时间的增加,距离有什么变化?11.如图是A汽车行驶路程与耗油量的统计图:下表是B汽车行驶路程与耗油量关系表:耗油量/升3 6 9 12路程/千米20 40680如果驾驶A汽车,行驶50千米耗油多少升?12.根据题中的条件,回答下面的问题.某省打长途电话的时间与话费的对照表通话时间/分钟1 2 3 4 5 6 7 8 …话费/元0.300.60.91.21.51.82.12.4…(1).和是两种相关联的量,增加,也随着增加.(2).通话5分钟需付话费元,2.10元可通话分钟.(3).话费和通话时间这两种量中相对应的两个数的比值都是,这个比值实质表示的.(4).因为比值一定,所以表中的两种量是成的量,它们的关系叫做.13.判断下面各题中的两个量是否成正比例或反比例关系(1)全班人数一定,出勤人数与缺勤人数.(2)已知=3,y与x.(3)三角形的面积一定,它的底与高.(4)正方体的表面积与它的一个面的面积.(5)已知xy=1,y与x.(6)出油率一定,花生油的质量与花生的质量.14.购买同一种茶杯的数量和总价如表:数量/1 3 6 8 …个总价/15 45 90 120 …元用同样多的钱购买不同单价的茶杯和数量如表:单价/5 6 8 10 …元数量/24 20 15 12 …个每个表中两个量的变化各有什么规律?哪个表中的两个量成正比例关系?哪个表中的两个量成反比例关系?15.在下面成正比例关系的两个量的后面画“√”.(1)平行四边形的底一定,它的面积与高..(2)汽车行驶的速度一定,行驶的路程与时间..(3)正方形的面积和边长..(4)订阅《英语报》的份数和总钱数..(5)圆的周长和它的半径..(6)4A=12B(A、B均不为0),A和B..(7)圆的半径和它的面积..(8)李玲的体重和她的身高..16.判断下面每题中两种量是否成反比例,并说明理由.(1)比值一定,比的前项和后项.(2)被减数一定,减数和差.(3)修路的总米数一定每天修的米数和修路的天数.(4)花生的出油率一定,花生的重量和油的重量.(5)分母一定,分子和分数值.17.判断下面各题中的两种量是否成反比例关系,并说明理由(1)煤的数量一定,使用天数与每天的平均用煤量.(2)全班的人数一定,按各组人数相等的要求分组,组数与每组的人数.(3)圆柱体积一定,圆柱的底面积与高.(4)在一块菜地上种的黄瓜与西红柿的面积.(5)书的总册数一定,按各包册数相等的规定包装书,包数与每包的册数.18.如图,一个棱长为a的正方体,它的表面积与棱长是否成比例?体积与棱长是否成比例?19.x、y、z三个相关联的量,并有xy=z.(1)当z一定时,x与y成比例关系.(2)当x一定时,z与y成比例关系.(3)当y一定时,z与x成比例关系.20.判断下面各题中的两种量是否成正比例:(1)圆的周长和直径.(2)圆的面积和半径.(3)圆柱的底面半径一定,侧面积和高.21.根据表格填空:汽车行驶时间/时 3 5 7 9 11 13汽车行驶路程/千240 400 560 720 880 1040米(1)表中两种相关联的量是.(2)当时间扩大时,行驶的路程也随着;当时间缩小时,行驶的路程也随着.(3)在变化过程中,始终没有发生变化.(4)汽车行驶的时间和路程成关系.(5)当汽车行驶8时,路程是千米,汽车要到600千米的地方,需要时.22.下面各题中的量,哪些成正比例,哪些成反比例,哪些不成比例?(1)教室的面积一定,某班学生人数与人均占地面积比例.(2)大豆油的总质量一定,大豆的质量和出油率比例.(3)圆的半径和周长比例.(4)长方形的周长一定,长和宽比例.(5)一袋面粉用去的质量和剩下的质量比例.(6)长度一定的铁丝平均分成若干段,每段长度和截的段数.23.(2015•广东)一些长方形的长与宽的长度变化如下表.长/厘米 5 7.5 10 12.5 15 17.5 …宽/厘米 2 3 4 5 6 7 …(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)24.(2015春•利辛县校级月考)一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(1)填写下表.长度/米 1 2 3 4 5总价/元6 0(2)根据表中的数据,在如图中描出长度和总价对应的点,把这些点按顺序连起来.(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?25.(2015•龙泉驿区校级三模)右面的图象表示小军骑车的路程和时间的关系.(1)看图填表.时间/分30路程/千米24(2)小军骑车行驶的路程和时间成比例,这是因为:.(3)利用图象估计,小军20分钟大约行千米;行20千米大约需要分钟.行驶区间车次起始时刻到站时刻经历时间全程甲地到乙地K12 14:26 22:26 8时640千米26.(2015•衡水模拟)如图是某厂甲、乙两个车间各生产600个零件过程中,生产零件的个数与生产时间的关系图:(1)从图上可以看出两个车间生产零件的个数分别与它们所用的时间成比例.(2)乙车间生产天后赶上甲车间生产的个数,甲、乙两个车间完成任务时,车间所用的时间多(3)当乙完成任务时,甲还有个没做,车间工作效率高,高%.27.(2015春•台安县期中)买笔记本的数量和钱数的关系如下表:数量(本) 1 2 3 4 5 6总价(元)1.53(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?28.(2015春•海安县校级期中)根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.装订的本数1 2 3 4 5 …纸的张数25 50 75 100 125…表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.用了的张数10020030004005000…剩下的张数90080070006005000…表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.装订的本数900 7506045036…纸的张数10 12 15 20 25 …(1)选择正确的答案序号填在横线中.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.29.(2014•佛山)小丽用自制的橡皮筋来称量物体质量.她把测量的数据制作成的统计图和统计表.(皮筋最多可称量2kg质量)物体质量与皮筋伸长长度的统计表所称质量/g 皮筋伸长长度/cm0 0100 26450……a(a<2000)(1)根据统计图补充表格.(2)填空,我们可以发现与所称物体的质量成(选填“正比”或“反比”)(3)小丽用此皮筋称一袋苹果,皮筋长43厘米,求这袋苹果的质量.30.(2014春•利川市期末)某商场全部商品打八折出售(如图).原价10元的商品,现价8元,原价50元的商品,现价元.请你在左图中描出这个点.如果用x表示商品的原价,y表示商品的现价,那么y=,现价与原价成比例.。
人教版六年级下册数学 正比例和反比例 同步练习
人教版六年级下册数学 正比例和反比例 同步练习(共20题,共100分)一、单选题(共5题,共15分)1.在比例里,两个外项的积一定,两个内项成( )A .正比例B .反比例C .不成比例D .无法判断2.下面式子中a 和b 成反比例关系的是( )。
A .b=4aB .a :4=b :9C .a 5 = 4bD .a+b=103.有两个相关联的量,它们的关系如图所示,这两个量不可能是()。
A .路程一定,已走的路程和剩下的路程B .圆的周长与直径C .圆柱的底面积一定,体积和高D .单价一定时,购物的总价和购物数量4.下面是关于正比例和反比例的描述,其中正确的是( ) ①正比例的图像是一条直线。
②一个人的年龄和体重既不成正比例关系,也不成反比例关系。
③圆柱的底面积一定,体积和高成反比例关系。
④路程一定,已走的路程和剩下的路程不成比例。
A .①②③B .①②④C .②③④D .①③④5.一本书每天看20页,15天看完,如果要10天看完,每天要看( )页。
A .10B .20C .30D .40二、判断题(共5题,共15分)6.出盐率一定,盐的质量和海水质量成正比例。
( )7.如果ab+4=40,那么a 与b 成反比例。
( )8.正比例与反比例的图象都是一条直线。
( )9.在同一时间,旗杆的高度和影子的长度成反比例关系。
( )10.如果A ×B =10,B ×C =20,那么A 与C 成正比例。
( )三、填空题(共5题,共27分)11.宽不变,长方形面积与长成 比例;运一堆煤,车的载质量和需要运的次数成 ;有15个苹果,已吃的个数与未吃的个数 。
12.若x= 15 y ,那么x和y成 比例关系;若 1y = x 5 ,那么x和y成 比例关系。
13.下表中,如果x 和y 成正比例,“?”处填 ;如果x 和y 成反比例,“?”处填 。
x4 ? y 12 24 14.小宇在操场上量得1.4m 长的标杆的影长是2.1m 。
年级正比例和反比例比例练习题
年级正比例和反比例比例练习题
正比例和反比例是数学中重要的概念,在年级研究中经常会遇到这两种类型的题目。
以下是一些年级正比例和反比例比例练题,希望能帮助你更好地理解这两种关系。
正比例题目
1. 一辆汽车以每小时60公里的速度行驶,求2小时内汽车行驶的路程。
解答:
设汽车行驶的路程为x公里,则根据正比例关系可得:
60公里/1小时 = x公里/2小时
解方程得:x = 60 * 2 = 120公里
2. 小明去超市买苹果,苹果的单价是每个2元。
如果小明买了5个苹果,他要支付的金额是多少?
解答:
设小明支付的金额为y元,则根据正比例关系可得:
2元/1个 = y元/5个
解方程得:y = 2 * 5 = 10元
反比例题目
1. 一辆车以每小时60公里的速度行驶,行驶1小时后发现油
箱中的油量减少了1/6。
求这辆车油箱的容量。
解答:
设油箱的容量为z升,则根据反比例关系可得:
60公里/1小时 = z升/1/6升
解方程得:z = 60 * (1/6) = 10升
2. 5个工人需要3天时间完成一项任务,如果再增加3个工人,那么完成该任务需要多少天?
解答:
设完成任务需要的天数为t天,则根据反比例关系可得:
5个工人/3天 = 8个工人/t天
解方程得:t = 3 * 5 / 8 = 1.875天,约等于1.88天
以上是一些年级正比例和反比例比例练题的解答,在解题过程中需要注意明确所给的条件,并正确运用正比例和反比例的概念。
希望这些题目对你的研究有所帮助!。
六年级数学正比例和反比例试题
六年级数学正比例和反比例试题1.、、三个水桶的总容积是公升,如果、两桶装满水,桶是空的;若将桶水的全部和桶水的,或将桶水的全部和桶水的倒入桶,桶都恰好装满.求、、三个水桶容积各是多少公升?【答案】560【解析】根据题意可知,桶水的全部加上桶水的等于桶水的全部加上桶水的,所以桶水的等于桶水的,那么桶水的全部等于桶水的,桶水为桶水的.所以、、三个水桶的容积之比是.又、、三个水桶的总容积是公升,所以桶的容积是公升,桶的容积是公升,桶的容积是公升.2.甲、乙两人原有的钱数之比为,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比为,求原来两人的钱数之和为多少?【答案】660【解析】两人原有钱数之比为,如果甲得到180元,乙得到150元,那么两人的钱数之比仍为,现在甲得到180元,乙只得到30元,相当于少得到了120元,现在两人钱数之比为,可以理解为:两人的钱数分别增加180元和150元之后,钱数之比为,然后乙的钱数减少120元,两人的钱数之比变为,所以120元相当于4份,1份为30元,后来两人的钱数之和为元,所以原来两人的总钱数之和为元.3.某水果批发市场存放的苹果与桃子的吨数的比是,第一天售出苹果的,售出桃子的吨数与所剩桃子的吨数的比是;第二天售出苹果吨,桃子吨,这样一来,所剩苹果的吨数是所剩桃子吨数的,问原有苹果和桃子各有多少吨?【答案】74 37【解析】法一:设原来苹果有吨,则原来桃子有吨,得:,解得.所以原有苹果37吨,原有桃子(吨).法二:原来苹果和桃子的吨数的比是,把原来的苹果的吨数看作1,则原来桃子的吨数为2,第一天后剩下的苹果是,剩下的桃子是,所以此时剩下的苹果和桃子的重量比是.现在再售出苹果18吨,桃子12吨,所剩的苹果与桃子的重量比是.这就相当于第一天后剩下的苹果和桃子的重量比是,先售出桃子12吨,苹果吨,此时剩下的苹果和桃子的重量比还是,再售出吨苹果,剩下的苹果和桃子的重量比变为,所以这相当于份,最后剩下的桃子有吨,那么第一天后剩下的桃子有吨,原有桃子吨,原有苹果吨.4.(2009年第七届“希望杯”二试六年级)某高速公路收费站对于过往车辆收费标准是:大型车元,中型车元,小型车元.一天,通过该收费站的大型车和中型车数量之比是,中型车与小型车之比是,小型车的通行费总数比大型车多元.(1)这天通过收费站的大型车、中型车、小型车各有多少辆?(2)这天的收费总数是多少元?【答案】(1)90 108 297(2)7290【解析】(1)大型车、小型车通过的数量都是与中型车相比,如果能将中的与中的统一成,就可以得到大型车、中型车、小型车的连比.由和,得到.以辆大型车、辆中型车、辆小型车为一组.因为每组中收取小型车的通行费比大型车多(元),所以这天通过的车辆共有(组).所以这天通过大型车有(辆),中型车有(辆),小型车有(辆).(2)这天收取的总费用为:元.5.下列问题与小刚、小强两人骑车去旅行有关系,请回答。
六年级下学期数学 正比例与反比例的判断50题训练 带答案
正比例与反比例的判断50题训练1、速度一定,路程和时间(正)比例路程一定,速度和时间(反)比例时间一定,路程和速度(正)比例2、工作效率一定,工作总量和工作时间(正)比例工作时间一定,工作效率和工作总量(正)比例工作总量一定,工作效率和工作时间(反)比例3、总价一定,单价和数量(反)比例数量一定,单价和总价(正)比例单价一定,数量和总价(正)比例4、每公顷产量一定,总产量和公顷数(正)比例公顷数一定,每公顷产量和总产量(正)比例总产量一定,每公顷产量和公顷数(反)比例5、份数一定,每份数和总数(正)比例每份数一定,份数和总数(正)比例总数一定,每份数和份数(反)比例6、商一定,除数和被除数(正)比例除数一定,商和被除数(正)比例被除数一定,除数和商(反)比例7、积一定,两个因数(反)比例一个因数一定,另一个因数和积(正)比例8、和一定,两个加数(不成)比例一个加数一定,另一个加数与和(不成)比例9、差一定,减数和被减数(不成)比例减数一定,被减数和差(不成)比例被减数一定,减数和差(不成)比例10、前项一定,比的后项和比值(反)比例比值一定,比的前项和后项(正)比例后项一定,比的前项和比值(正)比例11、分数值一定,分子和分母(正)比例分母一定,分数值和分子(正)比例分子一定,分数值和分母(反)比例12、在长方形中,长一定,面积和宽(正)比例宽一定,面积和长(正)比例面积一定,长和宽(反)比例周长一定,长和宽(不成)比例长一定,周长和宽(不成)比例宽一定,周长和长(不成)比例13、在平行四边形里,底一定,面积和高(正)比例高一定,面积和底(正)比例面积一定,底和高(反)比例14、在三角形里,底一定,面积和高(正)比例高一定,面积和底(正)比例面积一定,底和高(反)比例15、在正方形中,边长和周长(正)比例面积和边长(不成)比例16、在圆中,面积和半径(不成)比例周长和半径(正)比例直径和半径(正)比例直径和面积(不成)比例17、在长方体中,底面积一定,体积和高(正)比例体积一定,底面积和高(反)比例高一定,底面积和体积(正)比例18、在比例尺中,比例尺一定,图上距离和实际距离(正)比例图上距离一定,比例尺和实际距离(反)比例实际距离一定,比例尺和图上距离(正)比例19、用大豆榨油时,出油率一定时,油的重量和大豆的重量(正)比例大豆的重量一定,油的重量和出油率(正)比例油的重量一定时,大豆的重量和出油率(反)比例20、甲×乙=丙,当丙一定时,甲和乙(反)比例当甲一定时,丙和乙(正)比例当乙一定时,甲和丙(正)比例21、车轮的周长(或半径、直径)一定,车轮前进路程和转数(正)比例22、一堆煤的总重量一定,烧去的和剩下的(不成)比例23、要行的总路程一定,已经走过的路程和剩下的路程(不成)比例24、在规定的时间里,制造每个零件的时间和制造零件的个数(反)比例25、一批纸总页数一定,装订练习本本数和每本练习本的页数(反)比例26、每件上衣用布量一定,做上衣的件数和用布总米数(正)比例27、每块砖的面积一定,铺地总面积和用砖的总块数(正)比例28、铺地总面积一定,每块砖的面积和用砖的总块数(反)比例29、每立方厘米的铁的重量一定,铁的总重量和体积(正)比例30、购买各种货物的总价和数量(正)比例31、互相咬合的齿轮的齿数和转数(反)比例32、一个人的身高和体重(不成)比例33、总人数一定,每排人数和排数(反)比例34、一堆货物的总重量一定,每辆车的载重量和汽车辆数(反)比例35、正方体的棱长一定,它的体积和表面积(不成)比例36、一条公路的全长一定,已经修好的和没修好的(不成)比例37、同样的铁丝,每米长的重量一定,铁丝总重量和长度(正)比例38、正方体的棱长和体积(不成)比例。
六下数学 正比例与反比例 应用题训练30题 带答案
相同时间内,路程和速度成正比例,速度之比=路程之比
(2x-130):(x+130)=3:2 解得x=650
8、一辆卡车与一辆小轿车同时从甲、乙两城相对开出,相遇后两 车继续向前行驶.当小轿车到达甲地、卡车到达乙地后.立即返回 ,第二次相遇点距甲城120千米,已知:卡车与小轿车的速度比是3 :4,甲、乙两城相距多少千米?
13、用方砖铺一间教室的地面,如果用边长为2dm的方砖 ,需要用60块,如果改用边长为3dm的方砖,需要用多少 块? 27块 解析:解设需要用x块砖 教室的面积一定,所用的方砖的块数和每块方砖的面积成 反比例
2×2×60=3×3×x 解得 x=80/3 进一法,所以需要27块
14、有甲乙丙三个相互咬合的齿轮,当甲齿轮转动2圈时, 乙齿轮转动3圈,丙齿轮转动4圈,这三个齿轮的齿数之比 是( ):( ):( )。 6:4:3 解析:相互咬合的齿轮转动的总齿数是相同的,那么一圈 的齿数和转动的圈数是成反比例的,设三个齿轮的齿数分 别为x y z 则2x=3y=4z 得x:y :z=6:4:3
16、学校组织同学参观爱国主义纪念展,每60名同学配2
X=18
4、某修路队修一条公路,前6天修了180米,照这样的速度,修路 队又修了5天才全部修完,这条公路全长是多少米?
解设这条公路的全长是x米 每天修的长度一定,路的全长和时间成正比例关系 180:6=x:(6+5)
X=330
5、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时, 丙还差多少米?
解设:甲乙两城相距x千米 则第二次相遇时,卡车经过的路程为:x+x-120=2x-120 小轿车经过的路程为:x+120
小学数学六年级下学期正比例和反比例测试题
小学数学六年级下学期正比例和反比例测试题一.填空题:1.两种【】的量.一种量变化.另一种量【】.如果这两种量中【】的两个数的【】一定.这两种量就叫做成正比例的量.它们的关系叫做【】.关系式是【】。
2.两种【】的量.一种量变化.另一种量【】.如果这两种量中【】的两个数的【】一定.这两种量就叫做成反比例的量.它们的关系叫做【】.关系式是【】。
3.练习本总价和练习本本数的比值是【】.当【】一定时.【】和【】成【】比例.4.35:【】=20÷16=25()=【】%=【】【填小数】5.因为14X=2Y.所以X:Y=【】:【】.X和Y成【】比例。
6.一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是【】。
7.向阳小学三年级与四年级人数比是3:4.三年级比四年级少【】% 四年级比三年级多【】%8.甲乙两个正方形的边长比是2:3.甲乙两个正方形的周长比是【】.甲乙两个正方形的面积比是【】。
二.判断题:1.一个因数不变.积与另一个因数成正比例.【】2.长方形的长一定.宽和面积成正比例.【】3.大米的总量一定.吃掉的和剩下的成反比例.【】4.圆的半径和周长成正比例.【】5.分数的分子一定.分数值和分母成反比例.【】6.铺地面积一定.方砖的边长和所需块数成反比例.【】7.除数一定.被除数和商成正比例.【】8.比的前项和后项同时乘以同一个数.比值不变。
【】9.总价一定.单价和数量成反比例。
【】10. 正方体体积一定.底面积和高成反比例。
【 】11. 订阅《今日泰兴》的总钱数和分数成正比例。
【 】三.选择题:1.把一堆化肥装入麻袋.麻袋的数量和每袋化肥的重量.【 】A .成正比例B .成反比例C .不成比例2.和一定.加数和另一个加数.【 】A .成正比例B .成反比例C .不成比例3.在汽车每次运货吨数.运货次数和运货的总吨数这三种量中.成正比例关系是【 】.成反比例关系是【 】.A .汽车每次运货吨数一定.运货次数和运货总吨数.B .汽车运货次数一定.每次运货的吨数和运货总吨数.C .汽车运货总吨数一定.每次运货的吨数和运货的次数.4. 已知X 8 =1.2.8Y =1.2.所以X 和Y 比较【 】A.X 大B.YC.一样大5.如果A×2=B÷3.那么A :B=【 】。
人教版六年级数学下册《正比例和反比例》练习
一、填空。
1.因为=工作效率工作总量( )(一定),所以工作总量与工作效率成( )比例。
2.因为=除数被除数( )(一定),所以( )和( )成正比例。
3.根据=yx4填表。
二、判断下列两个量是否成正比例关系,是的打“√”否则打“×”。
1. 速度一定,路程和时间。
( ) 2. 一个平行四边形的底是5.5cm ,它的面积和高成正比例。
( ) 3. 正方形的周长和边长。
( ) 4. a 是b 的45,a 和b 。
( )5. 圆的直径一定,它的周长和圆周率。
( ) 三、判断下面各题中的两种量是不是成正比例,并说明理由。
1.一袋大米已经吃了的和没吃的质量。
2. y=5x ,y 和x 。
3.出油率一定,油的质量和油菜子的4.4y= 3x ,y 和x 。
质量。
一、希望小学订阅《作文报》的份数与总钱数如下表。
份数 10 20 30 40 50 60 … 总钱数/元150300450600750900…1.选择几组数据,写出几组总钱数与份数的比,并比较比值的大小。
这个比值表示什么?2.《作文报》的总钱数与份数成正比例吗?为什么?3.根据下表在图中描出对应点并连线。
根据图像订90份《作文报》需要( )元。
二、判断x 和y 是否成正比例关系,是的打“√”否则打“×”。
1. x :y=5 ( ) 3. xy=5 ( )2. y=x ( ) 4. 5+x=y ( ) 三、判断题。
1.因为k xy,所以y 和x 成正比例。
( )2.圆的面积与半径成正比例。
( )3.修一条公路,已修的长度和未修的长度不成比例。
( )4.分数值一定,分子和分母成正比例。
( )四、一种农药,药液与水的质量比是1:150,35kg 药液加水多少千克?如果用3600kg 水,需要加多少千克药液?1.单价书的总价=本数(一定),书的总价和单价成( )比例;本数书的总价=单价(一定),书的总价和本数成( )比例;单价×本数=书的总价(一定),书的单价和本数成( )比例。
六年级数学正比例和反比例试题答案及解析
六年级数学正比例和反比例试题答案及解析1.把一根木料锯成4段要用12分钟,照这样,如果要锯成6段,一共需要______分钟。
【答案】20【解析】解:设一共需要x分钟,则有12:(4-1)=x:(6-1),3x=12×5,3x=60,x=20;答:一共需要20分钟。
2.把一根木料锯成4段要6分钟,锯成7段要______分钟。
【答案】12【解析】6÷(4-1)×(7-1),=6÷3×6,=2×6,=12(分钟)答:锯成7段要12分钟。
3.学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪______根跳绳。
【答案】80【解析】解:设剩下的塑料绳还可以剪x根跳绳,21:12=(161-21):x,21:12=140:x,x=804.正午时小丽量得自己的影子有40cm,同时它量得身旁一棵树的影长是1m,已知小丽的身高是160cm,那么这棵树高______m。
【答案】4【解析】解:设这棵数高xm,160:40=x;1,40x=160×1,x=160÷40,x=4;答:这棵数高4米。
5.张师傅5小时生产了300个零件.照这样计算,生产480个零件需要多少小时?因题中______一定,所以这道题用______解答。
设_________________为X,列式为__________。
【答案】工作效率;正比例;生产480个零件需要的时间;300:5=480:x.【解析】因为题中的工作效率一定,所以这道题用正比例解答,设生产480个零件需要x小时,300:5=480:x,300x=480×5,x=x=86.正午时小丽量得自己的影子有30cm,同时它量得身旁一棵树的影长是1m,已知小强的身高是180cm,那么这棵树高______m。
【答案】6【解析】解:设这棵数高xm,180:30=x;1,30x=180×1,x=180÷30,x=6答:这棵数高6米。
比例(含正比例和反比例)(试题)-小学数学六年级下册北师大版
比例(含正比例和反比例)(试题)-小学数学六年级下册北师大版(1)计算船费与对应人数的比值,说一说哪个量没有变化?(2)乘船船费与人数有什么关系?6.小明和小芳两人压岁钱的比是4∶3,开学时交学费用去钱的比是18∶13,这时小明和小芳各剩下36元、48元,求原来两人各有多少元压岁钱?7.A、B两种商品的价格之比为7∶2,如果它们的价格分别上涨60元后,价格之比为5∶2,这两种商品原来的价格各是多少?8.大宝和小宝一起吃饺子,本来大宝碗里的和小宝碗里的个数之比为2∶3,后来大宝想要减肥,又夹了10个饺子到小宝碗里,此时大小宝碗里饺子之比为3∶7,求两人一共有多少个饺子?3∶2,这块地的实际面积是多少?17.用边长为60cm的方砖给客厅铺地,需要80块。
如果改用边长为80cm的方砖铺地,需要多少块?(用比例解决问题)18.育才小学为美化校园环境,购买了一些杜鹃花,要栽在一个长方形花园里。
如果每行栽24棵,正好可以栽48行;如果每行多栽12棵,现在可以栽多少行?(用比例解答)19.周末早晨,小明从家骑自行车到紫云湖广场去健身,前4分钟行了600米,照这样的速度,从家到紫云湖广场一共用了16分钟。
小明家到紫云湖广场相距多少米?(用比例解)20.按要求画图。
(每个小方格表示1平方厘米)(1)长方形A点用数对表示是多少。
把图中的长方形绕A点逆时针旋转90°,画出旋转后的图形。
旋转后,B点的位置用数对表示是多少。
(2)图中三角形的面积是多少平方厘米。
按1∶2的比画出三角形缩小后的图形。
缩小后的三角形的面积是原来的多少。
(3)在方格纸上画出一个和圆有关的轴对称图形,这个图形的对称轴只有两条。
参考答案:0.2×300=0.5x0.5x=60x=120答:需要120块地砖。
本题考查用比例解决问题,明确房子的面积不变是解题的关键。
3.(1)正比例;(2)反比例;(3)既不成正比例,也不成反比例。
【分析】判断两种相关联的量之间成什么比例,就看这两个量是对应的比值(商)一定,还是对应的乘积一定;如果是比值(商)一定,这两种相关联的量成正比例;如果是乘积一定,这两种相关联的量成反比例;如果既不是比值一定,也不是乘积一定,则这两种相关联的量不成比例。
人教版六年级数学下册第四单元 第2课时 正比例和反比例(同步练习)
人教版六年级数学下册课时作业第四单元 第2课时 正比例和反比例一、填空题1. a÷b =c ,当a 一定时b 和c 成 比例。
2. 已知5a =b 7(a 和b 都是不为0的自然数),a 和b 成 (填“正”或“反”)比例,ab ﹣25= 。
3. 若12x =34y(x ,y 均不为0),则x :y = ,x 和y 成 比例。
4. 表中,如果x 与y 成正比例,那么☆表示的数是 ;如果x 与y 成反比例,那么☆表示的数是 。
5. 如果x :7=y ,那么x 和y 成 比例,当y =1.4时,x = 。
6. 一辆自行车的前齿轮数是28,后齿轮数是16。
后齿轮转数是14转时,前齿轮转数是 转。
车轮半径是32cm ,蹬一圈,自行车前进了 m(保留一位小数)。
7. a 和b 都是非0自然数,且a =14b 则a 与b 成 比例,它们的最小公倍数是 。
8. 报纸的单价一定,订阅的份数和总价成 比例;正方体的体积一定,它的底面积和高成 比例。
9. 中国古代数学名著《九章算术》在“粟米章”中对比例就有深入研究。
请解决问题:如果a 与b 互为倒数,那么a 与b 成 比例:如果4a =6b(a 、b 均不为0),那么a 与b 成 比例。
二、判断题10. 圆柱的底面半径一定时,它的体积和高成正比例。
()11. 车轮的周长一定,车轮的转数与车辆行驶的距离成正比例。
()12. 长方形的宽一定,它的面积和长成正比例。
()13. 圆的周长和它的半径成反比例关系。
()14. 每袋大米的质量一定,大米的总质量和袋数成正比例。
()15. 妈妈读一本书,已读页数和剩下的页数成反比例。
()16. X和Y表示两种相关联的量,同时5X﹣7Y=0,X和Y不成比例。
( )三、单选题17. m,n是两种相关联的量(m,n均不为0),下列各式中,m和n 成反比例的是()。
A. mn =310B. n2=mC. m6=n5D. 7mn=818. 下列说法正确的是()。
六年级数学正比例和反比例试题
六年级数学正比例和反比例试题1.(1分)在一定时间里,做一个零件所用时间和做这种零件的个数成比例.【答案】反.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:做一个零件所用时间×做这种零件的个数=总时间(一定),即乘积一定,所以做一个零件所用时间和做这种零件的个数成反比例;故答案为:反.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.2.(3分)两变一不变,一定,成正比例关系,一定,成关系.【答案】比值,乘积,反.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:两变一不变,比值一定,成正比例关系,乘积一定,成反关系.故答案为:比值,乘积,反.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.(3分)A÷C=B,当A一定时,B与C成反比例..【答案】正确【解析】要想判定B和C是不是成反比例关系,必须根据式子,进行推导.再根据正反比例的意义,分析数量关系,找出一定的量A,然后看B与C是比值一定还是乘积一定,从而判定成什么比例关系.解:因为:A÷C=B,所以:B×C=A(一定);可以看出,B和C是两种相关联的量,B随C的变化而变化,A是一定的,也就是B与C相对应数的乘积一定,所以B与C成反比例关系.故答案为:正确.点评:此题重点考查反比例的意义.4.(2分)(2013•芜湖县)圆的面积与它的半径()A.成正比例B.成反比例C.不成比例D.无法判断【答案】C【解析】判断圆的面积与它的半径之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆的面积S=πr2,所以S÷r2=π(一定),是面积与半径的平方的比值一定,所以圆的面积与半径的平方成正比例;但圆的面积与半径不成比例;故选:C.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.(1分)实际距离一定,图上距离和比例尺()A.成正比例B.成反比例C.不成比例【答案】A【解析】判断图上距离和比例尺成什么比例,就看这两种量是相对应的比值一定,还是乘积一定,如果是比值一定,则成正比例;如果是乘积一定,则成反比例.解:图上距离÷比例尺=实际距离(一定),是比值一定,所以图上距离和比例尺成正比例.故选:A.点评:此题属于辨识成正比例的量与成反比例的量,就看这两种量是对应的比值一定,还是对应的乘积一定,再做判断.6.(6分)如果a=(c≠0),那么一定时,和成反比例;一定时,和成正比例.【答案】b,a,c ;a,b,c或(c,b,a).【解析】判断两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.解:因为a=(c≠0),当b一定时,则有ac=b(一定),是a和c对应的乘积一定,所以a和c成反比例;a一定时,则有=a(一定),是b和c对应的比值一定,所以b和c成正比例;或c一定时,则有=c(一定),是b和a对应的比值一定,所以b和a成正比例;故答案为:b,a,c,a,b,c或(c,b,a).点评:此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.7.(2分)(2008•南海区)时间一定,路程和速度成正比例..(判断对错)【答案】正确【解析】由“速度×时间=路程”可得“(定值)”,从而可以判定路程和速度成正比例.解:因为速度×时间=路程,则(定值),所以说路程和速度成正比例.故答案为:正确.点评:解答此题的主要依据是:若两个量的商一定,则这两个量成正比例关系.8.王老师的钱数一定,购买《好卷》的单价和本数成反比例。
六年级下册数学第二学期练习题第4单元 比例 正比例和反比例
t和组装的手机总数之第1页/共4页(3)如果这批组装任务需要8天完成。
每天组装多少部手机?13.京沪高铁的火车平均行驶速度与行驶完全程所需时间如下表。
(2)如果用v表示火车的平均速度,t表示驶完全程所需时间。
t与v个关系式吗?(3)如果火车的平均速度为325千米/时,驶完全程需要多长时间?14.下面的图象表示斑马和长颈鹿的奔跑情况。
(1关系?长颈鹿呢?(2)估计一下,两种动物18分钟各跑多少千米?(3)从图象上看,斑马跑的快还是长颈鹿跑的快?,强化了记忆,又发展了思维,为说打下了基础。
这个工作可让学生分组负责收集整理,登在小黑板上,目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,有x、y、z三个相关联的量,并有xy=z。
对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
(1)当z一定时,x与y成______比例关系。
(2)当x一定时,z与y成______比例关系。
(3)当y一定时,z与x成______比例关系。
一个长方形的面积是36cm2,用x和y表示它的长和宽。
y与x成什么比例关系?如果把它们的关人教版(新课标)第4单元比例正比例反比例练习题第3页/共4页(5)总页数=已读页数+未读页数,所以未读页数与已读的页数不成正比例关系。
3.下面是某几种汽车所行路程和耗油量的对应数值表。
(2)下图是表示汽车所行路程与相应耗油量关系的图象,说一说它有什么特点。
(3)利用图象估计一下,汽车行驶55km 的耗油量是多少?解:(1)成正比例关系,因为耗油量:所行路程=行驶1km 的耗油量,而行驶1km 的耗油量一定。
(2)图像是一条经过原点的直线。
(3)汽车行驶55km 的耗油量大约是7.3L 。
小学数学六年级下册 正比例与反比例反比例专项练习题
小学数学六年级下册正比例与反比例反比例专项练习题第4课时反比例1.填空题1) XXX拿一些钱去买饮料,单价与购买瓶数如下表。
因为单价和瓶数的乘积一定,所以瓶数随着单价的变化而变化。
单价提高,瓶数减少,单价降低,瓶数增加,而且单价和瓶数的乘积一定,我们就说单价和瓶数成反比例。
2) 一种水果600千克,每筐装20千克,可装30筐;每筐装30千克,可装20筐。
①题中有三种量:水果总重量、每筐装的重量和可装的筐数。
②每筐装的重量和可装的筐数是两种相关联的量。
③水果总重量是一定的量,每筐装的重量和可装的筐数成反比例。
2.XXX要装配一批计算机,每天装配的台数和需要的天数如下表:每天装配的台数。
需要的天数10.2412.2015.1620.1230.81) 表中有两种量:每天装配的台数和需要的天数。
它们是相关联的量。
2) 写出这两种量中几组相对应的两个数的积。
这些积保持一定。
例如:10×24=12×20=15×16=20×12=30×8=240.3) 这个积表示的意义是生产的计算机数量和时间的乘积是一定的。
4) 表中的两种量成反比例,因为每天装配的台数越多,需要的天数就越少,两种量的乘积保持不变。
3.XXX从家骑自行车到学校,下面是已行路程和剩下路程的对应表。
表中已行路程和剩下路程成反比例,因为已行路程越多,剩下路程越少,两种量的乘积保持不变。
已行路程(公里)剩下路程(公里)1.92.83.74.65.54.下表中x和y两个量成反比例,请把表格填写完整。
x。
y2.105.41.205.40.1.20040.0.55.465.0.30775.十一黄金周120名游客在张家界游览,准备分组活动,提出的分组建议如下表,并填写下表。
每组人数。
组数6.2010.1212.1020.61) 此题中每组人数没有发生变化。
2) 每组人数和组数成反比例,因为每组人数越多,组数越少,两种量的乘积保持不变。
(完整版)六年级数学正比例反比例练习题(最新整理)
第一部分、正比例与反比例练习题1、圆的面积和圆的半径成正比例。
()2、圆的面积和圆的半径的平方成正比例。
()3、圆的面积和圆的周长的平方成正比例。
()4、正方形的面积和边长成正比例。
()5、正方形的周长和边长成正比例。
()6、长方形的面积一定时,长和宽成反比例。
()7、长方形的周长一定时,长和宽成反比例。
()8、三角形的面积一定时,底和高成反比例。
()9、梯形的面积一定时,上底和下底的和与高成反比例。
()10、圆的周长和圆的半径成正比例。
()11.选择填空。
a÷b=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。
(12)路程一定,速度和时间成正比例。
()(13)一堆煤的总量不变,烧去的煤与剩下的煤成反比例。
()(14)花生的出油率一定,花生的重量与榨出花生油的重量成正比例。
(15)平行四边形的面积不变,它的底与高成反比例。
()(16)长方形的_________________,它的长和面积成正比例。
(17)圆柱体体积一定,________________和高成反比例。
(18)工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)(19)一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)2、写出关系式(1)买相同的电脑,购买的电脑台数与总价=单价(一定),(2)每捆练习本的本数相同,练习本的总本数与捆数=每捆练习本的本数(一定)(3)总路程一定,已行的路程与未行的路程(4)分数值一定,分数的分子与分母=比值(一定),(5)长方形的长一定,它的面积和宽(6)长方体的体积一定,底面积和高(7)一本书的总页数一定,看的天数与平均每天看的页数(8)圆的周长和直径=∏(一定)(9)订阅《扬子晚报》,订的份数与总价=单价(一定)(10)图上距离一定,实际距离与比例尺(11)小麦的出粉率一定,小麦的质量与面粉的质量(12)六(1)班同学做操,每排站的人数与排数3、常见的转化问题1.把6×8=24×2改写成四个比例。
精选练习六年级下册 正比例、反比例应用题专项训练 含答案解析
精选练习六年级下册正比例、反比例应用题专项训练含答案解析1.XXX的身高为1.5米,她的影长为2.4米。
如果在同一时间同一地点测得一棵树的影子长为4米,那么这棵树有多高?2.一间房子原计划用边长为5分米的方砖铺地,需要2000块。
如果改用边长为4分米的方砖,需要多少块?(使用比例解法)3.使用相同的方砖铺地,铺18平方米需要618块砖。
那么铺24平方米需要多少块砖?(使用比例知识解答)4.测量小组要测量一棵树的高度,先量得树的影子长为12米,接着在树的附近直立了一根长2米的竹竿,量得竹竿的影子长为1.2米。
这棵树的高度是多少米?5.XXX计划每天加工240个零件,20天完成。
实际每天多加工60个,那么需要多少天才能完成任务?(使用比例知识解答)6.XXX收割小麦。
前6天收割了114公顷,剩下152公顷。
1)按照前几天的工作效率,剩下的还需要多少天才能完成?(使用比例解法)2)前几天收割的比后几天收割的少百分之几?3)每公顷平均收小麦7.5吨,这个农场用载重5吨的卡车运回全部小麦,需要运多少次?7.XXX的身高为1.6米,他的影长为2.4米。
如果在同一时间同一地点测得一棵树的影长为6米,那么这棵树有多高?8.市政工程队原计划每天铺0.6千米,24天完成。
实际每天铺0.8千米,那么实际用多少天完成?9.给学校教务处办公室铺地砖,原计划选用边长为3分米的方砖,需要960块。
后来实际选用了边长为4分米的方砖铺地,那么实际需要多少块4分米的方砖?10.甲乙两地相距XXX,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)时间(小时):2 3 4 …路程(千米):100 150 200 …11.工程队修一条公路,原计划每天修4.5千米,20天完成。
实际每天修6千米,那么实际需要几天才能完成?(使用比例解法)12.一辆汽车3小时行了135千米,那么行驶315千米需要多少小时?(使用比例解法)13.一辆汽车从甲地出发,每小时行45千米,4小时到达乙地。
六年级下正比例或反比例练习题(可编辑修改word版)
一、判断下面两个量是否成正比例或反比例,说明理由。
1、每箱木瓜的个数一定,运来木瓜的箱数和木瓜的总个数。
2、看一本书,每天看的页数和所看的天数。
3、房间的面积一定,铺地砖的块数与每块地砖的面积。
4、每块地砖的面积一定,铺地面积与所需地砖的块数。
5、A、B 、C 三种量的关系是:A×B =C(1)如果 A 一定,那么 B 和 C 成()比例;(2)如果 B 一定,那么 A 和C 成()比例;(3)如果 C 一定,那么 A 和 B 成()比例.6、4X=Y,X 和Y 成()比例。
4÷X=Y ,X 和Y 成()比例。
7、7.35:()=20÷16==()%=()(填小数)二、用比例尺知识解决问题。
1、一条跑道全长200 米,在图纸上的长度是10 厘米。
这幅图的比例尺是多少?2、一个零件的实际长度是8 毫米,在设计图上用4 厘米表示,这幅图的比例尺是多少?3、在一幅比例尺是1:4500000 的地图上,量得甲乙两地之间的距离是20 厘米,甲乙两地的实际距离是多少千米?4、在一张图纸上,量得学校操场的长是12 厘米,宽是8 厘米。
这张图纸的比例尺是1:200,这个操场的实际面积是多少平方米?5、甲乙两地的实际距离是300 千米,在一幅地图上量得两地之间的距离是6 厘米。
在这一幅地图上,又量得甲丙之间的距离是4 厘米,甲丙的实际距离是多少千米?三、用正反比例解决问题。
1、光辉服装厂4 天加工服装160 套,照这样计算,生产360 套服装,需要多少天?2、化肥厂有一批煤,每天用12 吨,可用40 天。
如果这批煤要用60 天,每天只能用多少吨?3、修路队3 天修路150 米,照这样的速度,再修10 天,又修多少米?4、一辆汽车从甲城开往乙城,每小时行45 千米,5 小时到达。
返回时,每小时行驶50 千米,几小时回到甲城?5、一间房子,用面积是16 平方分米的方砖铺地,需要54 块。
小学数学六年级下册 正比例与反比例单元测试专项练习题
习题汇编姓名:仅供参考,内容可修改第二单元测试卷一、活用概念,认真填空。
1.在单价、数量和总价三种量中,①如果单价一定,( )和( )成( )比例。
②如果数量一定,( )和( )成( )比例。
③如果总价一定,()和()成()比例。
2.如果a=8b,那么a和b成()比例;如果ab=8,那么a和b成()比例。
3.一副图的()和()的比,叫做这幅图的比例尺。
4.比例尺l:100 表示图上1厘米长的线段相当于实际( )米;比例尺100:1表示图上1厘米长的线段相当于实际()毫米。
5.图上距离2厘米表示实际距离12千米,这幅图的比例尺是()6.在比例尺是1:10000的地图上,量的学校操场的长是0.9厘米,宽为0.6厘米,学校操场的实际面积是()平方米。
7.把改写成数值比例尺是( )。
8.大米和面粉的质量比是4:5,大米的质量和面粉质量成( )比例。
9.如果x与y成正比例,“?”填();如果x与y成反比例,“?”填()。
10.在同一时间,同一地点,测得不同电线杆的高度与影长如下表(1)根据表中数据,杆高与影长成((2)如果杆高为4.5米,影长约为()比例。
)米。
(3)如果电线杆的影长为5米,这根电线杆高为( )米。
二、反复比较,精挑细选。
1.图上距离(A.大于B.小于2.在一幅比例尺是l:1000000的地图上,用(A.0.6 B.6 C.60)实际距离。
C.可能大于、小于或等于)厘米表示60千米。
3.如果 3x=y ,则 x 和 y( A .成正比例B .成反比例4.比值一定,比的前项和后项( A .成正比例B .成反比例)。
C.不成比例 )。
C .不成比例5.圆锥的体积一定,它的底面积和高( A .成正比例B .成反比例C .不成比例6.下面各题中,两种量成正比例关系的是( );两种量成反比例关系的是(两种量不成比例关系的是()。
A .时间一定,每分打字个数和打字总个数 )。
);B .梯形的面积一定,它的上底和下底的和与高C .正方形的边长和面积17.甲、乙两地相距 l2千米,如果用 的比例尺画在图纸上,甲、乙两地间的距40000 离应用( A .30)厘米的线段表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例与反比例练习题一
一、判断题:
1、圆的面积和圆的半径成正比例。
()
2、圆的面积和圆的半径的平方成正比例。
()
3、圆的面积和圆的周长的平方成正比例。
()
4、正方形的面积和边长成正比例。
()
5、正方形的周长和边长成正比例。
()
6、长方形的面积一定时,长和宽成反比例。
()
7、长方形的周长一定时,长和宽成反比例。
()
8、三角形的面积一定时,底和高成反比例。
()
9、梯形的面积一定时,上底和下底的和与高成反比例。
()
10、圆的周长和圆的半径成正比例。
()
四.判断对错
(1)路程一定,速度和时间成正比例。
()
(2)一堆煤的总量不变,烧去的煤与剩下的煤成反比例。
()
(3)花生的出油率一定,花生的重量与榨出花生油的重量成正比例。
()
(4)平行四边形的面积不变,它的底与高成反比例。
()
二、选择题
(1)长方形的_________________,它的长和面积成正比例。
A.周长一定
B.宽一
定 C.面积一定
(2)圆柱体体积一定,
________________和高成反比例。
A.底面半径
B.底面
积 C.表面积
3、a÷b=c,当c一定时a和b();当a一定时b和c();当b一定时a和c ()。
A. 成正比例 B. 成反比例
三、应用题
(1)工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)
(2)一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)正比例与反比例练习二
一、复习
1、什么是正比例?用字母怎样表示?也就是怎样才成正比例?
2、什么是反比例,用字母怎样表示?也就是怎样才成反比例?
二、练习
1.判断下面每题中的三个量成什么比例?
(1)速度、路程和时间(2)工作总量、工作效率和工作时间
(3)单价、总价和数量(4)平行四边形的面积、底和高
(5)出示“练一练”第5题
2.下列各题中的两种量是不是成比例,成什么比例,并说明理由。
(1)买相同的电脑,购买的电脑台数与总价=单价(一定),正比例
(2)每捆练习本的本数相同,练习本的总本数与捆数=每捆练习本的本数(一定),正比例
(3)总路程一定,已行的路程与未行的路程(是和关系,不是积或比值关系)
(4)分数值一定,分数的分子与分母=比值(一定),正比例
(5)长方形的长一定,它的面积和宽不成比例
(6)长方体的体积一定,底面积和
高底面积×高=体积(一定),反比例
(7)一本书的总页数一定,看的天数与平均每天看的页数
看的天数×平均每天看的页数=一本
书的总页数(一定)反比例
(8)圆的周长和直径=∏(一定)正比例
(9)订阅《扬子晚报》,订的份数与总价=单价(一定)正比例
(10)图上距离一定,实际距离与比例尺实际距离×比例尺=图上距离(一定),反比例
(11)小麦的出粉率一定,小麦的质量与面粉的质量不成比例
(12)六(1)班同学做操,每排站的人数与排数每排人数×排数=总人数(一定)(六(1)班人数一定)
三、用正反比例解决问题。
1、光辉服装厂4天加工服装160套,照这样计算,生产360套服装,需要多少天?
2、化肥厂有一批煤,每天用12吨,可用40天。
如果这批煤要用60天,每天只能用多少吨?
3、修路队3天修路150米,照这样的速度,再修10天,又修多少米?
4、一辆汽车从甲城开往乙城,每小时行45千米,5小时到达。
返回时,每小时行驶50千米,几小时回到甲城?
5、一间房子,用面积是16平方分米的方砖铺地,需要54块。
如果改用面积是9平方分米的方砖,需要多少块?
7、用同样的砖铺地,铺18平方米要用砖618块。
如果铺24平方米,要用砖多少块?。