量子力学第三章作业及答案
量子力学课后习题答案
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学教程课后习题答案
量子力学教程课后习题答案量子力学习题及解答第一章量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式,(1)以及,(2),(3)有这里的的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时,取得极大值,因此,就得要求对λ的一阶导数为零,由此可求得相应的λ的值,记作。
但要注意的是,还需要验证对λ的二阶导数在处的取值是否小于零,如果小于零,那么前面求得的就是要求的,具体如下:如果令x= ,则上述方程为这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有把x以及三个物理常量代入到上式便知这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=h,如果所考虑的粒子是非相对论性的电子(),那么如果我们考察的是相对性的光子,那么E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV,远远小于电子的质量与光速平方的乘积,即,因此利用非相对论性的电子的能量——动量关系式,这样,便有在这里,利用了以及最后,对作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
1.3 氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长。
量子力学答案(第二版)苏汝铿第三章课后答案3.17-3#11
合,因此有 x,0 x,0 , 故 t=0 时 x * x,0 x x,0 dx 0
并且 x 不随时间变化。 3.18 考虑一质量为 m 的粒子在一维势场 U x U 0
x 中运动,其中 n 是正整数, a
n
其中 an n* x x, 0 dx
因此 x, t
a x e
n n n
iEn t /
对于谐振子 n x N n e
x / 2
2
H n x
2 2
an dxN n e
2 2
x /2
H n x Ae
3.17
在
t=0
时 , 处 在 谐 振 子 势 U
2
1 2 kx 中 的 一 颗 粒 子 的 波 函 数 是 2
x, 0 Ae x
2
/2
sin cos H 0 x 2 2 H 2 x 其 中 和 A 是 实 常 数 ,
x 2 e [ H n x ] dx
2
1
2
mk ,且厄米多项式归一化条件是
2
2n n !
(i)写出 x, t ; (ii)求出 x, t 态中测量粒子的能量的可能值和相对概率; (iii)求 t=0 时的 x ,并问 x 是否随时间 t 变化? 解: (1)系统的薛定谔方程为 i
x /2
sin cos H 0 x 2 2 H 2 x
A N0 cos n 0 N 2 2 2 sin n 2 2 2
量子力学课后习题答案
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
(完整版)第三章习题和答案
第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E 之间单位体积中的量子态数。
解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c Cn lm h E C nlm E C nn c n c)()(单位体积内的量子态数)(2222222111'''2222'''''12''3'~()2(),(),()()()2,()x y z C t la a a xx y y z zt t lc c x y z at t l a Si Ge E k k k k h E k E m m m m m k k k k k k m m m h E k E k k k m k m m m k g k V m k• 证明:、半导体的(k )关系为()令则:在系中等能面仍为球形等能面在系中的态密度3. 当E-E F 为1.5k 0T ,4k 0T, 10k 0T 时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据各该能级的概率。
''''2'31231'2231'2221223~().().42()()4()1001112()()4()()t t l c n c ntl E E dE k dZ g k k g k k dk m m m dZ g E E E V dE h i m g E sg E E E V hm sm m在空间的状态数等于空间所包含的状态数。
量子力学 第三章习题与解答
第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμω μωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα22122p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
量子力学(周世勋)习题答案 第3章
12
2
(
x
ip 2
)2
p2 2 2
2
p2
e e dx 2 22
12
2
(
x
ip 2
)2
p2
e 2 22
2
1
p2
e 2 22
动量几率分布函数为
( p) c( p) 2
1
p2
e 22
#
3.2.氢原子处在基态 (r, ,)
1 e r / a0 ,求: a03
(1)r 的平均值;
24a2*p04(r(2)a4(02r,a,402
) )d
2
2a
2 0
c(
p)
1 (2)3/ 2
0
1
e r / a0 r 2 dr
e
i
pr cos
sin
d
2 d
a03
0
0
2
r 2e r / a0 dr
e
i pr cos
d ( cos )
(2)3/ 2 a03 0
0
2
(2)3/ 2
a2 n
x
cos
n a
x
a3 n2 2
sin
n a
x
a n
x 2 cos n a
x
2a 2 n2 2
x
sin
n a
x
2a 3 n3 3
cos
n a
a
x]
0
4 15 n3 3
[1 (1)n ]
∴
(E)
Cn
2
240 n6 6
[1 (1)n ]2
960
2
5k 2 2 8
量子力学导论第3章答案
第三章一维定态问题3.1)设粒子处在二维无限深势阱中,⎩⎨⎧∞<<<<=其余区域,0,0 ,0),(by a x y x V 求粒子的能量本征值和本征波函数。
如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为m E y x n n 222π =)(2222bn an y x +,2,1, ,sinsin2==y x y x nn n n byn axn abyx ππψ若b a =,则 )(222222y x n nn n ma E yx +=πayn axn ay x nn yx ππψsinsin2=这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11''==y x n n )3.2)设粒子限制在矩形匣子中运动,即⎩⎨⎧∞<<<<<<=其余区域 ,0,0,0 ,0),,(cz b y a x z y x V 求粒子的能量本征值和本征波函数。
如c b a ==,讨论能级的简并度。
解:能量本征值和本征波函数为)(222222222cn bn an mnn n Ez y x zyx++=π ,,3,2,1,, ,sinsinsin8==z y x z y x n n n czn byn axn abcn n n zy x πππψ当c b a ==时,)(2222222z y x n n n mann n Ezyx++=πayn ayn axn a n n n z y x zy x πππψsinsinsin223⎪⎭⎫⎝⎛=z y x n n n ==时,能级不简并;z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。
z y x n n n ,,三者皆不相等时,能级一般为6度简并的。
如 ⎩⎨⎧→++=++→++=++)9,6,3()10,5,1(2086161210)11,3,1()9,7,1(10438652222222222223.3)设粒子处在一维无限深方势阱中,⎩⎨⎧><∞<<=ax 0, ,0 ,0),(x ax y x V 证明处于定态)(x n ψ的粒子)61(12)x -(x ,22222πn aa x -==讨论∞→ n 的情况,并于经典力学计算结果相比较。
量子力学作业答案:第三四七章
求
† P 1 P 1 1
c1
2
i
c1
i 2 1 2 c1 1 1 2 1 2 1
c 4 2 2 1
2 2 1
42 2
1 1 2 i
P 1
i 1 4 2 2 1 2 42 2
,由上题可知厄米算符的平均值必为实 数,所以厄米算符的本征值也为实数。 4、 证明:厄米算符属于不同本征值的本征态彼此正交。 证明:
量子力学曾谨言习题解答第三章
第三章: 一维定态问题[1]对于无限深势阱中运动的粒子(见图3-1)证明2a x =)()(22226112πn ax x -=- 并证明当∞→n 时上述结果与经典结论一致。
[解]写出归一化波函数: ()ax n ax n πsin2=ψ (1)先计算坐标平均值:xdx axn axdx ax n axdx x aaa)(⎰⎰⎰-==ψ=222cos11sin2ππ 利用公式:2sin cos sin ppx p pxx pxdx x +-=⎰(2)得2c o s s i n c o s ppx ppxx pxdx x +-=⎰(3)22cos 22sin 221022a a x n n a a x n x n a xa x a=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=ππππ计算均方根值用()x x x x x ,)(222-=-以知,可计算2xdx axn x adx axn x adx x xaa)(⎰⎰⎰-==ψ=2222222cos11sin2ππ 利用公式px ppx x ppx x ppxdx x sin 1cos 2sin 1cos 3222-+=⎰(5)aa x n x n a a x n n a x n a x a x222222cos 222sin 22311πππππ⋅⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=222223πn aa-=()22222222223⎪⎭⎫ ⎝⎛--=-=-a n aaxx x x π)( 2222212πn aa-=(6)在经典力学的一维无限深势阱问题中,因粒子局限在(0,a )范围中运动,各点的几率密度看作相同,由于总几率是1,几率密度a1=ω。
210a xdx axdx x aa===⎰⎰ω31222adx x axa==⎰()22222222223⎪⎭⎫ ⎝⎛--=-=-a n aaxx x x π)( 故当∞→n 时二者相一致。
#[2]试求在不对称势力阱中粒子的能级。
原子物理第三章习题答案
原子物理第三章习题答案第三章量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少?解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----=?==秒米千克λhp 能量为:λ/hc hv E==焦耳151083410986.110/1031063.6---?==。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meV h 2/=λ 对于电子:库仑公斤,19311060.11011.9--?=?=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--?=?=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----?==3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-?-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h c m eV eVm h -?-=-=λ 由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-?-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
量子力学第三章习题
而 比较上两式,我们得到:
当时,则 此时我们同时求得能量的本征值和本征函数.
(3)角动量分量 的本征值方程为 它是的一个因子。 的值取决于量子数,题给定的状态不是的本征态,而是本征态的线 性叠加。在态中,而在态中,故在所给的态中,的可能值为和,出现和 的几率分别为和,即和。 的平均值
3.10. 一粒子在硬壁球形空腔中运动,势能为 求粒子的能级和定态波函数。
解: 这是一个无限深方势阱的问题,它只存在束缚态解.当,. 设粒子的质量为,因此,系统的哈密顿算符为 考虑到的球对称性,采用球坐标系,此时,有
第三章 量子力学中的力学量
3.1 一维谐振子处在基态 ,求
(1) 势能的平均值 ;
(2) 动量的几率分布函数;
(3) 动能的平均值 .
解: (1) 势能的平均值:
(2) 动量的几率分布函数
所以
(3) 动能的平均值
计算可知,这一状态中的振子的势能和动能的平均值相等,都是零点
能的一半.
以上计算中,用到积分公式: 费曼方法介绍: 设某系统的能量本征值方程为 其中含有一参数, 那么, 便有 于是有 再根据, 得到
(5) 另解:氢原子基态波函数为
, 仅是的函数而
, 所以只考虑径向的“测不准关系”
氢原子的径向能量为 而 所以
因而
取
由上两式得
即
将上式代入氢原子的径向能量表示式中
得
基态能量是上面表达式使取极小值。满足这一条件的由求极值的方法求
苏汝铿量子力学课后习题及答案chapter3
ˆ, B ˆ ⎤ = 0 。对于有三个分量 x,y,z 的算符,在证明中往往只证明 ˆ 对易,就是说, ⎡ A 和B
⎣ ⎦
其中的任一个分量,其余分量类推。 证:
( p × l + l × p ) x = p y l z − pz l y + l y pz − lz p y
=⎡ ⎣ p y , lz ⎤ ⎦+⎡ ⎣l y , p z ⎤ ⎦
所以有
(3.1)
ˆ 2α ˆ ˆ ˆ 2 −β ˆ = 2β αβ
(2)如果
(3.2)
ˆ n −1α ˆ n−2 ˆ ˆ n −1 − β ˆ = nβ αβ
成立,利用数学归纳法可以证明第三式,实际上
(3.3)
ˆ n −1 α ˆ n−2 )β ˆ =ቤተ መጻሕፍቲ ባይዱ(β ˆ ˆ ˆ n = αβ ˆ ˆ n −1 β ˆ + (n − 1) β αβ ˆ n −1 (αβ ˆ n −1 ˆ ˆ ) +(n − 1) β =β ˆ n −1 ( βα ˆ n −1 ˆ ˆ + 1) +(n − 1) β =β ˆ =β
∫
∞
−∞
ˆ ( x)ψ ( x)dx 来算 ψ *n ( x ) F n
ˆ 写成 p ˆ 的对易形式 ˆx 和 H 其平均值,并巧妙的使用薛定谔方程而证得。而方法二是把 F 1 ˆ ⎤ ,进而证得命题。 ˆ = − d V ( x) = 1 [ p ˆx, H ˆ x , V ( x) ] = ⎡ p F ⎦ i= i= ⎣ dx
1 ˆ⎤ ˆ = − d V ( x) = 1 [ p ˆ x , V ( x)] = ⎡ p ˆx, H F ⎦ i= i= ⎣ dx ˆ 的期望值为 于是在体系束缚定态ψ n ( x) 中,此力 F F= 1 1 ∞ ˆ ⎤ψ ( x)dx ˆ x , V ( x ) ] = ∫ ψ n* ( x ) ⎡ p ˆx, H [p ⎣ ⎦ n −∞ i= i= 1 ∞ * * ˆ ψ ( x)dx − ∞ ( H ˆxH ˆ xψ n ( x)dx = ψ n ( x) p n ∫−∞ ˆψ n ( x)) p ∫ i= −∞ =0
量子力学答案(第二版)苏汝铿第三章课后答案3.1-3#6
ˆ ( S ) ˆ SL da ˆ ˆ ˆ ˆ ˆ L ˆ ˆ ˆ SL e SL ae ˆ SL L Le ae , a(S ) dS
ˆ ( S ) ˆ da ˆ (S ) ˆ ˆ d 2a ˆ (S ) L, L, L, a 2 dS dS
ˆ L ˆ r r ˆ ˆ ˆ ˆ ˆL ˆ i zLy Ly z yLz Lz y i x x
ˆ2 , p L ˆ2 p p L ˆ2 L ˆ 2 L ˆ 2 L ˆ 2 , p L ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ L x x x x y z x y , px Ly Ly Ly , px Lz , px Lz Lz Lz , px
p, f
i
f
2 2 p, p f x i p f
(v) p, pf x p p, pfp p, p fp p p, pf p p, f p pf p, p p p, f p 由(iv)知, p, f
3.3 设 x, p i , f ( x) 是 x 的可微函数, 证明:
2 (i) x, p f x 2i pf
(ii) x, pf x p i ( fp pf )
2 (iii) x, f x p 2i fp
ˆ ˆ BA ˆ,B ˆ 满足 AB ˆ ˆ 1 , 求证: 3.1 若算符 A
ˆ ˆ3 B ˆ 3B ˆ3A ˆ2; ˆ ˆ2 B ˆ 2B ˆ2A ˆ , AB (i) AB ˆ ˆ B ˆ nB ˆ A ˆ (ii)用数学归纳法证明: AB
高等量子力学练习题及答案解析三
3.1幺正算符也有本征矢量。
证明幺正算符的本征值都是绝对值是1的复数;幺正算符的两个本征矢量,若所属本征值不同亦必正交。
证明: 设算符U为幺正算符,ψ为其任意本征矢量,u 为对应的本征值。
即ψψu U =则ψψψψψψψψu u U U U U *+===因0≠ψψ,所以1=*u u 即 1=u即证得幺正算符的本征值都是绝对值是1的复数。
设算符U 为幺正算符的两个本征值为1u 、2u ,对应的矢量分别为1ψ、2ψ,且21u u ≠。
则111ψψu U = 11111ψψu U =- 222ψψu U = 22211ψψu U =- 因为幺正算符1-+=U U则有21212121ψψψψψψu u U U *+==2121211ψψψψu u UU *+== 所以01212121=⎪⎪⎭⎫ ⎝⎛-**ψψu u u u 因为012121≠-**u u u u ,故021=ψψ,即 1ψ和2ψ正交。
即证得幺正算符的两个本征矢量,若所属本征值不同亦必正交。
3.2 投影于某一子空间的投影算符P ,既然是厄米算符,它的本征值是什么?有无简并?本证子空间是什么?解:投影于某一子空间的投影算符∑==mi iP 1,设全空间是n 维的,且n m <。
则本征值方程ψλψψ==∑=mi i iP 1⑴其中λ为本征值,ψ为相应的本征态。
则ψλψλψ22==P P ⑵ 由幺正算符等幂性P P =2得ψψP P =2 ⑶ 由⑴、⑵和⑶式得λλ=2,所以1=λ或0=λ。
即求得投影算符的本征值是1或0。
当1=λ时,本征失量是i ,其中m i ,2,1=。
所以是简并的,本征子空间S 是由这m 个基矢构成的矢量空间。
当0=λ时,本征矢量是与i 正交的矢量。
所以也是简并的,本征子空间是S 空间的补空间。
#练习3.3 证明若算符的本征值谱中有零本征值,则这个算符肯定没有逆。
证明:假设算符A 有逆,则在值域中取一任意|φ>,则定义域有|ψ>存在即ψφφ-==AA 1已知A的全部本征值和相应的本征矢量:i i i a A ψφ= i=1,2,3…,∴()ψψφ--==A a AA算符A 存在零本征值,即00=⇒=φa a∴对于任意本征矢量()ψφa A -≠与()ψφ-=A a 矛盾∴假设不成立,即算符的本征值谱中有零本征值,这个算符肯定没有逆。
量子力学第三章作业答案
1、指出下列算符哪个是厄米算符,说明其理由。
224 dxd dx d i dx d ,,,x p x ˆˆ, )ˆˆˆˆ(21x p p x x x + 解: 不是, 是, 是 不是 是 (1) ˆx p是厄米算符,又因为,ˆx d p i dx =- ,所以d i dx 也是厄米算符,ddx不是厄米算符。
(2) 2222ˆxd p dx =- 是厄米算符,所以224d dx是厄米算符。
(3) ()†††ˆˆˆˆˆˆˆˆx x x x xpp x p x xp ==≠,所以不是厄米算符。
(4)()()()††††††††11ˆˆˆˆˆˆˆˆ()()2211ˆˆˆˆ2211ˆˆˆˆ221ˆˆˆˆ2x x x x x x x x x x xp p x xp p x xp p x p x x p p x xp ⎛⎫+=+ ⎪⎝⎭=+=+=+所以是厄米算符 2、如果 Fˆ和 G ˆ都是厄米算符,但互不对易,试判断下列算符中哪些是厄米算符?(1)G F ˆˆ; (2)F G ˆˆ;(3)G F ˆˆ+F G ˆˆ; (4)G F ˆˆF G ˆˆ-; (5)i (G F ˆˆ+F G ˆˆ); (6)i (G F ˆˆF G ˆˆ-); (7)G Fˆˆ+; (8)G F ˆˆ-; (9))ˆˆ(G F i +; (10))ˆˆ(G F i -;解:(1)(2)不是。
(3)是,(4)不是,(5)不是,(6)是,(7)是(8)是,(9)不是,(10)不是3、下列函数哪些是算符22dx d 的本征函数,其本征值是什么?①2x , ② x e , ③x s i n, ④x c o s 3, ⑤x x c o s s i n + 解:22dxd 2x =2 不是22dxd xe =x e ,是,本征值为1.22dxd x sin =-x sin ,是,本征值为-1. 22dxd x cos 3=-x cos 3,是,本征值为-1. 22dxd (x x cos sin +)=-(x x cos sin +), 是,本征值为-14、证明:[Ô,[Û,Ê]] + [Û,[Ê, Ô]] + [Ê,[ Ô,Û]] = 0 证明:[Ô,[Û,Ê]] + [Û,[Ê, Ô]] + [Ê,[ Ô,Û]]= [Ô, ÛÊ-ÊÛ]+ [Û, ÊÔ -ÔÊ]+ [Ê, Ô Û -Û Ô]=[Ô, ÛÊ] -[Ô, ÊÛ]+ [Û, ÊÔ]- [Û, ÔÊ]+ [Ê, ÔÛ] -[Ê, ÛÔ]=ÔÛÊ- ÛÊÔ- ÔÊÛ+ÊÛÔ+ ÛÊÔ-ÊÔÛ- ÛÔÊ+ ÔÊÛ+ÊÔÛ- ÔÛÊ-ÊÛÔ+ ÛÔÊ=05、证明:处于1s 、2p 和3d 态的氢原子中的电子,当它处于距原子核的距离分别为00094a a a 、、的球壳处的几率最(0a 为第一玻尔轨道半径)。
量子力学答案(第二版)苏汝铿第三章课后答案3.1-3#15
i
(ⅴ) [ p, pf ( x) p]
i
pf ' p
证明:根据题给的对易式以及 x, f ( x) 0;
[ p, pfp ] p 2 fp pfp 2 p( pf fp ) p
pf ' p
i
(ⅵ) [ p, fp 2 ]
i
f ' p2
证明:根据题给的对易式以及 x, f ( x) 0;
( L r r L) x ( Ly z Lz y) ( yLz zLy ) [ Ly , z] [ Lz , y] i x i x 2i x
由于轮换对称性,得到待征的公式:
ˆ r r L ˆ 2i r L
ˆ ˆp ˆ 2i p ˆ L ˆ (2) L p
所以原命题得证。
ˆ2 L ˆ3 L ˆ 3-2 若算符 e 满足 e 1 L 2! 3!
ˆ L
ˆ L
ˆn L n!
,直接通过对易关系证明:
ˆ, a ˆ [L ˆ] e L ae L a
ˆ ˆ
1 ˆ ˆ 1 ˆ ˆ ˆ ˆ ]] [ L ˆ ]]] [ L[ L, a [ L[ L, a 2! 3!
1 ˆnr aL ˆ ˆr L (n r )!r !
(2)
ˆn 的齐次式,共有(n+1)项,对此展开式(1) 这个级数的通项是指 L (2)发现二者相同,
因而待证式子得证。
3-3 设 x, p i , f ( x) 是 x 的可微函数,证明:
2 (ⅰ) x, p f ( x) 2i pf .
所以待证命题得证。
ˆ p ˆ 2i p ˆp ˆ L ˆ 成立。 根据轮换对称性,待证式 L
第三章 原子结构习题及答案
第三章原子结构习题1.是非判断题1-1基态氢原子的能量具有确定值,但它的核外电子的位置不确定。
1-2微观粒子的质量越小,运动速度越快,波动性就表现得越明显。
1-3原子中某电子的合理的波函数,代表了该电子可能存在的运动状态,该运动状态可视为一个原子轨道。
1-4对于氢原子的1s轨道,不应该理解为电子绕核作圆周运动,因为电子有波粒二象性,它的运动轨道是测不准的。
1-5因为氢原子只有一个电子,所以它只有一条原子轨道。
1-6 p轨道的空间构型为双球形,则每一个球形代表一条原子轨道。
1-7因为在s轨道中可以填充两个自旋方向相反的电子,因此s轨道必有两个不同的伸展方向,它们分别指向正和负。
1-8不同磁量子数m表示不同的原子轨道,因此它们所具有的能量也不相同。
1-9随着原子序数的增加,n、l相同的原子轨道的能量也随之不断增加。
1-10每一个原子中的原子轨道需要有3个量子数才能具体确定,而每一个电子则需要4个量子数才能具体确定。
1-11磁量子数m决定原子轨道在空间的取向。
1-12多电子原子中,电子的能量决定与主量子数n和角量子数l。
1-13主量子n相同,角量子数l不同,随l增大,屏蔽作用增加。
1-14 3个p轨道的能量,形状、大小都相同,不同的是在空间的取向。
1-15磁量子数m=0的轨道都是球形对称的轨道。
1-16氢原子的能级中,4s=4p=4d=4f,而多电子原子中,4s<4p<4d<4f。
1-17主量子数n为4时,有4s,4p,4d,4f四条轨道。
1-18电子云的黑点表示电子可能出现的位置,疏密程度表示电子出现在该范围的机会大小。
1-19描述原子核外电子运动状态的波函数Ψ需要用四个量子数来确定。
1-20一组n,l,m组合可以表达核外电子的一种运动状态。
1-21某原子的价电子构型为2s22p2,若用四个量子数表示2p2两个价电子的运动状态,则分别为2,2,0,-1/2和2,2,1,+1/2。
1-22 Na原子的3s能级与K原子的3s能级具有相同的能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章
3.1 设ˆˆ,A
B 均为厄米算符,试证: ()ˆˆˆˆ1 AB-BA
是否为厄米算符; ()()ˆˆˆˆ2 i AB-BA 是否为厄米算符. 解: ()
†
††††ˆˆˆˆˆˆˆˆˆˆ AB-BA =B A -A B =BA-AB
所以不是厄米算符
()
()
()
()()
†
†
††††ˆˆˆˆˆˆˆˆˆˆi AB-BA =-i AB-BA =-i B A -A B ˆˆˆˆˆˆˆˆ=-i BA-AB
=i AB-BA ⎡⎤⎣⎦
所以是厄米算符
3.2 设体系的波函数为球谐函数(),lm Y θϕ,求其角动量矢量与z 轴的夹角 解: 由于z L cos L θ=,
因为()()()22ˆ,1,lm
lm L Y l l Y θϕθϕ=+ ()()ˆ,,z lm lm L Y m Y θϕθϕ=
故可取)L =,z L m =,
所以,
cos z L m
L θ==
3.3 已知 ˆ[sin cot cos ]x L i φθφθφ
∂∂=+∂∂,
ˆ[cos cot sin ]y L i φθφθφ
∂∂=--∂∂ 问(),1lm Y θϕ=是否为ˆx L ,ˆy L 的本征态;如果
是,求其本征值.
解: 由于()ˆ,0x lm L Y θϕ=, ()ˆ,0y lm L Y θϕ=
所以为ˆx L ,ˆy L 的本征态, 其本征值为0
3.4 在经典情形,对称陀螺的能量算符为
()
222
11ˆˆˆˆ22x y z x z
H L L L I I =++ 1. 问(),lm Y θϕ是否为ˆH
的本征态; 2. 如果是,求其本征值.
解:
()
()
222
222
22
11ˆˆˆˆ2211ˆˆˆ22111ˆˆ222x y z
x z
z z x z
z x z x H L L L I I L L L I I L L I I I =++=-+⎛⎫=+- ⎪⎝⎭
所以, 其本征值为
()2
22
1111222x
z x E l l m I I I ⎛
⎫=++- ⎪
⎝⎭
3.5
设粒子处于范围在[0,]a 的一维无限深势阱中,状态用波函数
113()sin sin
x x
x a a ππψ=+
描述,(1)该波函数是否归一,如不归一,请写出归一化波函数 (2)求粒子能量的可能值及相应概率。
解:无限深势阱中,粒子能量的本征态及本征值为
222
2,,1,2,3,2n
n n x E n n a
a
ππϕμ=
==
直接将()x ψ
展开
113()sin sin
1
13x x
x a a x x a a
ππψππ=+=
+
13 1311
x x
a a
ππ
⎛⎫
=+=+
⎪
⎪
⎝⎭
所以能量的可能值及概率为
22
12
2
E
a
π
μ
=,概率,
2
1
1
2
c=
22
32
9
2
E
a
π
μ
=
概率,
2
3
1
2
c=
,
能量的平均值为
22
22
11222
5
2
E E c E c
a
π
μ
=+=
3.6 求平面转子在波函数()2
cos
A
ψϕϕ
=所描述的状态下角动量
d
L i
dϕ
∧
=-的可能值及概率, 角动量的平均值.
解:
角动量本征函数为
1
()im
m
eϕ
ϕ
Φ=
将波函数展开
()2
022
cos
111
244
i i i
A
A e e e
ϕϕϕ
ψϕϕ
-
=
⎛⎫
=++
⎪
⎝⎭
,
对应的本征值为
0,2,2-,
相应的概率
2
222
1
44
4
1114116
41616
A
A A A
==
++
++
,
2
22211116111411641616A
A A A ==
++++, 2
22211116111411641616
A
A A A ==
++++ 角动量的平均值为
()
222
222111022
4
16160
11141616
A A A L A A A ⋅+⋅+⋅-==++
方法2:
2*0222
22
30
cos cos 2cos sin 0
d i d d i L d A A d i A
d d π
ππ
ψψϕϕϕϕϕϕϕϕϕ⎛⎫
==
⎪⎝⎭⎛⎫
⎪⎝
-⎭==-⎰⎰⎰
3.7 对于一维谐振子, 问4
x 与()
2
2
x 相等吗?
解:由递推关系得
111
()n n n x x α-+⎛⎫ψ=+ ⎪ ⎪⎝⎭
得
()22221()212n n n n x x n α+-⎤ψ=
++ψ+
⎦
所以有
,
()22
2
1212n n x x n ψψα
==
+
()()()()2
4
4
424
11221146634n n x x n n n n n n n ψψαα⎡⎤
==+++++-⎣
⎦++=
显然不相等.
3.8 定义
证明
2ˆˆ[,]0L L ±=
3.9
由坐标算符与动量算符的对易关系式
证明角动量算符的对易关系
ˆˆˆˆˆˆx y x y L L iL L L iL +
-
⎧=+⎪⎨
=-⎪⎩ˆˆˆˆˆˆ[,][,]z z x y L L L L iL L ±±
=±=±,i j ij x p i δ∧⎡⎤=⎢⎥
⎣
⎦
[,]0,[,]x x L x L y i z
∧∧
==
3.10氢原子在某一状态
求其能量,角动量的可能值及概率 解
则有
概率为1 3.11设
证明对易关系
3.12设体系处在态
求力学量 的可能值和平均值
解:可能值为
平均值为
3113111(,,)()(,)
r R r Y ψψθϕθϕ==3,1,
n l ==2
22
3
2
,2,
18
s e E L μ=-=()2
ˆˆ2p H V x m
=+ˆˆ[,],x i x H P m
∧
=111210
c Y c Y ψ=+z
L ,0
2
22
1
21
0z L c c c =+⨯=。