年高考第一轮复习数学立体几何的综合问题

合集下载

高考数学(立体几何)第一轮复习

高考数学(立体几何)第一轮复习

高考数学(立体几何)第一轮复习资料知识点小结:高考立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

高三数学一轮复习【立体几何】练习题

高三数学一轮复习【立体几何】练习题

高三数学一轮复习【立体几何】练习题1.空间中,用a,b,c表示三条不同的直线,γ表示平面,则下列说法正确的有()A.若a∥b,b∥c,则a∥cB.若a⊥γ,b⊥γ,则a∥bC.若a∥γ,b∥γ,则a∥bD.若a⊥b,b⊥c,则a⊥c答案AB解析根据空间平行直线的传递性可知A正确;由直线与平面垂直的性质定理知B正确;若a∥γ,b∥γ,则a,b可能平行、相交或异面,故C错误;若a⊥b,b⊥c,则a,c可能相交、平行或异面,故D错误.2.对于两条不同直线m,n和两个不同平面α,β,下列选项正确的为()A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m∥α,n∥β,α⊥β,则m⊥n或m∥nC.若m∥α,α∥β,则m∥β或m⊂βD.若m⊥α,m⊥n,则n∥α或n⊂α答案ACD解析对A,令m,n分别为直线m,n的方向向量,因为m⊥α,n⊥β,所以m⊥α,n⊥β,又α⊥β,所以m⊥n,即m⊥n,所以选项A正确;对B,如图所示,在正方体ABCD-A1B1C1D1中,令平面ABCD为平面α,平面ABB1A1为平面β,直线A1C1为m,直线C1D为n,满足α⊥β,m∥α,n∥β,但m与n既不平行也不垂直,所以选项B错误;对C,若m⊄β,过m作一平面γ分别与平面α和平面β相交,且交线分别为a,b,则m∥a,a∥b,所以m∥b,所以m∥β;若m⊂β,符合题意,所以选项C 正确;对D,若n⊂α,符合题意;若n⊄α,过直线n作一平面β与平面α相交,设交线为b,因为b⊂α,m⊥α,所以m⊥b,又m⊥n,且n,b在同一平面内,所以n∥b,所以n∥α,所以选项D正确.综上,选ACD.3.如图是一个正方体的平面展开图,则在该正方体中()A.AE∥CDB.CH∥BEC.DG⊥BHD.BG⊥DE答案BCD解析由正方体的平面展开图还原正方体如图,连接AH,DE,BG,BH,DG,HC.由图形可知,AE⊥CD,故A错误;因为HE∥BC,HE=BC,所以四边形BCHE为平行四边形,所以CH∥BE,故B正确;因为DG⊥HC,DG⊥BC,HC∩BC=C,HC,BC⊂平面BHC,所以DG⊥平面BHC,又BH⊂平面BHC,所以DG⊥BH,故C正确;因为BG∥AH,而DE⊥AH,所以BG⊥DE,故D正确.故选BCD.4.用一个平面截正方体,所得的截面不可能是()A.锐角三角形B.直角梯形C.有一个内角为75°的菱形D.正五边形答案BCD解析对于A,如图1,截面的形状可能是正三角形,故A可能;图1图2对于B,首先考虑平面截正方体得到的截面为梯形,且QR与AA1不平行,如图2所示,不妨假设PQ⊥QR,因为AA1⊥平面A1B1C1D1,PQ⊂平面A1B1C1D1,所以AA1⊥PQ,从而有PQ⊥平面A1ABB1,这是不可能的,故B不可能;对于C,当平面截正方体得到的截面为菱形(非正方形)时,只有如下情形,如图3,其中P,R为所在棱的中点,易知当菱形为PBRD1时,菱形中的锐角取得最小值,即∠PD1R最小.设正方体的棱长为2,则PD1=RD1=5,PR=22,则由余弦定理,得cos∠PD1R=PD21+RD21-PR22PD1·RD1=5+5-82×5×5=15<6-24=cos 75°,所以∠PD1R>75°,故C不可能;图3对于D,假设截面是正五边形,则截面中的截线必然分别在5个面内,由于正方体有6个面,分成两两平行的三对,故必然有一对平行面中有两条截线,而根据面面平行的性质可知这两条截线互相平行,但正五边形的边中是不可能有平行的边的,故截面的形状不可能是正五边形,故D不可能.综上所述,选BCD.5.已知正方体ABCD-A1B1C1D1的棱长为2,M为AA1的中点,平面α过点D1且与CM垂直,则()A.CM⊥BDB.BD∥平面αC.平面C1BD∥平面αD.平面α截正方体所得的截面图形的面积为9 2答案ABD解析如图,连接AC,则BD⊥AC.因为BD⊥AM,AM∩AC=A,AM,AC⊂平面AMC,所以BD⊥平面AMC,又CM⊂平面AMC,所以BD⊥CM,故A正确;取AD的中点E,连接D1E,DM,由平面几何知识可得D1E⊥DM,又CD⊥D1E,DM∩CD=D,DM,CD⊂平面CDM,所以D1E⊥平面CDM,又CM⊂平面CDM,所以D1E⊥CM.连接B1D1,过点E作EF∥BD,交AB于F,连接B1F,所以CM⊥EF,又D1E∩EF=E,D1E,EF⊂平面D1EFB1,所以CM⊥平面D1EFB1,所以平面α截正方体所得的截面图形即梯形D1EFB1.由EF∥BD,BD⊄平面α,EF⊂平面α,得BD∥平面α,故B正确;连接AB1,AD1,易知平面AB1D1∥平面C1BD,而平面AB1D1∩平面α=B1D1,所以平面C1BD与平面α不平行,故C不正确;截面图形为等腰梯形D1EFB1,EF=2,B1D1=22,D1E=B1F=5,所以截面图形的面积S=12×(2+22)×(5)2-⎝⎛⎭⎪⎫22-222=92,故D正确.6.在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则()A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形答案BCD解析对于选项A,如图,连接NC,PC,则A,N,C三点共线.又M为AP的中点,N为AC的中点,所以CM与PN共面,故A错误;对于选项B,因为P为线段A1D1上的动点(不包括两个端点),所以AC>AP.在△MAC中,CM2=AC2+AM2-2AC·AM cos∠MAC=AC2+14AP2-AC·AP·cos∠MAC.在△PAN中,PN2=AP2+AN2-2AP·AN cos∠PAN=AP2+1 4AC 2-AP ·AC cos ∠PAN ,则CM 2-PN 2=34(AC 2-AP 2)>0,所以CM >PN ,故B 正确;对于选项C ,在正方体ABCD-A 1B 1C 1D 1中,易知AC ⊥平面BDD 1B 1,即AN ⊥平面BDD 1B 1,又AN ⊂平面PAN ,所以平面PAN ⊥平面BDD 1B 1,故C 正确; 对于选项D ,连接A 1C 1,在平面A 1B 1C 1D 1内作PK ∥A 1C 1,交C 1D 1于K ,连接KC .在正方体中,A 1C 1∥AC ,所以PK ∥AC ,PK ,AC 共面,所以四边形PKCA 就是过P ,A ,C 三点的正方体的截面,AA 1=CC 1,A 1P =C 1K ,所以AP =CK ,即梯形PKCA 为等腰梯形,故D 正确.故选BCD.7.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是( )A.直线PB 1∥平面BC 1DB.三棱锥P-BC 1D 的体积为13C.三棱锥D 1-BC 1D 外接球的表面积为3π2D.直线PB 1与平面BCC 1B 1所成角的正弦值的最大值为53 答案 ABD解析 对于A 选项,连接B 1D 1,AB 1,根据正四棱柱的性质可知AD 1∥BC 1,BD ∥B 1D 1,因为BC 1⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,所以BC 1∥平面AB 1D 1,同理得BD ∥平面AB 1D 1,又BC 1∩BD =B ,所以平面AB 1D 1∥平面BC 1D ,又PB 1⊂平面AB 1D 1,所以PB 1∥平面BC 1D ,所以A 选项正确;对于B 选项,易知AD 1∥平面BC 1D ,所以V P-BC 1D =V A-BC 1D =V C 1-ABD =13×12×1×1×2=13,所以B 选项正确;对于C 选项,三棱锥D 1-BC 1D 的外接球即正四棱柱ABCD-A 1B 1C 1D 1的外接球.设外接球的半径为R ,则4R 2=12+12+22=6,所以外接球的表面积为4πR 2=6π,所以C 选项错误;对于D 选项,过P 作PE ∥AB ,交BC 1于点E ,则PE ⊥平面BCC 1B 1,连接B 1E ,则∠PB 1E 即直线PB 1与平面BCC 1B 1所成的角,当B 1E 最小时,∠PB 1E 最大,此时B 1E ⊥BC 1,由等面积法得S △BB 1C 1=12BC 1·B 1E =12BB 1·B 1C 1,解得B 1E =25,在Rt △PB 1E 中,PE =AB =1,所以PB 1=12+⎝ ⎛⎭⎪⎫252=35,所以∠PB 1E 的正弦值的最大值为PE PB 1=53,所以D 选项正确.故选ABD.8.如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则( )A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体ABCD-A1B1C1D1所得的截面的面积为9 2D.点A1和点D到平面AEF的距离相等答案BCD解析对于选项A,假设AF与D1D垂直,又D1D⊥AE,AE∩AF=A,AE,AF⊂平面AEF,所以D1D⊥平面AEF.因为EF⊂平面AEF,所以D1D⊥EF,这显然是错误的,所以假设不成立,故A错误;图1对于选项B,取B1C1的中点N,连接A1N,GN,如图1所示,易知A1N∥AE,又AE⊂平面AEF,A1N⊄平面AEF,所以A1N∥平面AEF.因为GN∥EF,EF⊂平面AEF,GN⊄平面AEF,所以GN∥平面AEF.又A1N,GN⊂平面A1GN,A1N∩GN=N,所以平面A1GN∥平面AEF.因为A1G⊂平面A1GN,所以A1G∥平面AEF,故B正确;对于选项C,连接AD1,FD1,如图2所示,因为AD1∥EF,所以四边形AD1FE 为平面AEF截正方体ABCD-A1B1C1D1所得的截面,又AD1=22+22=22,图2EF =12+12=2,D 1F =AE =12+22=5,所以四边形AD 1FE 为等腰梯形, 高为(5)2-⎝ ⎛⎭⎪⎫222=322,则S 梯形AD 1FE =12×(2+22)×322=92,故C 正确;对于选项D ,连接A 1D ,如图2所示,由选项C 可知A 1D 与平面AEF 相交且交点为A 1D 的中点,所以点A 1和点D 到平面AEF 的距离相等,故D 正确.综上,选BCD.9.已知棱长为a 的正方体ABCD-A 1B 1C 1D 1中,M 是B 1C 1的中点,点P 在正方体的表面上运动,且总满足MP ⊥MC ,则下列结论中正确的是( ) A.点P 的轨迹中包含AA 1的中点B.点P 在侧面AA 1D 1D 内的轨迹的长为5a4 C.MP 长度的最大值为21a4D.直线CC 1与直线MP 所成角的余弦值的最大值为55 答案 BCD解析 如图,取A 1D 1的中点E ,分别取A 1A ,B 1B 上靠近A 1,B 1的四等分点F ,G ,连接EM ,EF ,FG ,MG ,易知EM ∥FG 且EM =FG ,所以E ,M ,F ,G 四点共面.连接GC ,因为MG 2=⎝ ⎛⎭⎪⎫a 22+⎝ ⎛⎭⎪⎫a 42=5a 216,MC 2=⎝ ⎛⎭⎪⎫a 22+a 2=5a 24,GC 2=⎝ ⎛⎭⎪⎫3a 42+a 2=25a 216,因此MG 2+MC 2=GC 2,所以MG ⊥MC ,易知ME ⊥MC ,又MG ∩ME =M ,MG ,ME ⊂平面MEFG ,所以MC ⊥平面MEFG ,即点P 的轨迹为四边形MEFG (不含点M ),易知点P 在侧面AA 1D 1D 内的轨迹为EF ,且EF =MG =5a4,所以A 选项错误,B 选项正确;根据点P 的轨迹可知,当P 与F 重合时,MP 最长,易知FG ⊥平面BB 1C 1C ,则FG ⊥MG ,连接MF ,所以MF =a 2+5a 216=21a4,故C 选项正确;由于点P 的轨迹为四边形MEFG (不含点M ),所以直线CC 1与直线MP 所成的最小角就是直线CC 1与平面MEFG 所成的角,又向量CC 1→与平面MEFG 的法向量CM →的夹角等于∠C 1CM ,且sin ∠C 1CM =a25a 2=55,所以直线CC 1与平面MEFG 所成角的余弦值为55,即直线CC 1与直线MP 所成角的余弦值的最大值等于55,故D 选项正确.10.如图,长方体ABCD-A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N ,则( )A.截面α可能为六边形B.存在点N,使得BN⊥截面αC.若截面α为平行四边形,则1≤CN≤2D.当N与C重合时,截面图形的面积为36 4答案CD解析设N0为棱CC1的中点,当N从C1移动到C时,其过程中存在以下几种情况,如图1,当点N在线段C1N0上时,截面α为平行四边形;当点N在线段N0C上(不包括点N0,C)时,截面α为五边形;当点N与点C重合时,截面α为梯形.图1图2由以上分析可知,对于A,截面α不可能为六边形,所以A错误;对于B,假设BN⊥截面α,因为B1M⊂α,所以BN⊥B1M,所以必有点N,C重合,而BC与平面B1CQM不垂直,所以B错误;对于C,当截面α为平行四边形时,点N在线段C1N0上,则1≤CN≤2,所以C 正确;对于D,当点N与点C重合时,截面α为梯形,如图2,过M作MM′⊥B1C,垂足为M′.设梯形的高为h,B1M′=x,则在Rt△B1MM′中,由勾股定理,得h2=(2)2-x2,①同理h 2=⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫52-x 2,② 由①②,解得x =255,h =65,所以截面α的面积等于12×⎝⎛⎭⎪⎫5+52·h =12×352×65=364,所以D 正确. 综上可知,选CD.。

高考数学第一轮复习立体几何专题题库19.doc

高考数学第一轮复习立体几何专题题库19.doc

241. 已知点P 是正方形ABCD 所在的平面外一点,PD ⊥面AC ,PD=AD=l ,设点C 到面PAB 的距离为d 1,点B 到平面PAC 的距离为d 2,则( ) (A )l <d 1 <d 2(B )d 1< d 2<l (C )d 1<l < d 2(D )d 2<d 1<l解析:l d 221=,l d 332=,故d 2<d 1<l ,选D 。

242.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<<a (1)求MN 的长;(2)当a 为何值时,MN 的长最小; (3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小。

解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。

∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,∴2==BF AC ,21,21a BQ a CP ==, 即2aBQ CP ==, ∴=+-==22)1(BQ CP PQ MN )20(21)22()2()21(222<<+-=+-a a a a(2)由(1)知: 2222==MN a 时,当,的中点时,分别移动到即BF AC N M ,, 22的长最小,最小值为MN (3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN ,∴∠AGB 即为二面角α的平面角。

又46==BG AG ,所以由余弦定理有 ADE31464621)46()46(cos 22-=∙∙-+=α。

故所求二面角)31arccos(-=α。

243. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)20(πθθ<<。

专题8.7 高考解答题热点题型-立体几何(解析版)

专题8.7 高考解答题热点题型-立体几何(解析版)

高考理科数学一轮复习:题型全归纳与高效训练突破专题8.7高考解答题热点题型---立体几何目录一、题型综述 (1)二题型全归纳 (1)题型一空间点、线、面的位置关系及空. (1)题型二平面图形的折叠问题 (7)题型三立体几何中的探索性问题 (10)三、高效训练突破 (15)一、题型综述立体几何是每年高考的重要内容,基本上都是一道客观题和一道解答题,客观题主要考查考生的空间想象能力及简单的计算能力.解答题主要采用证明与计算相结合的模式,即首先利用定义、定理、公理等证明空间线线、线面、面面的平行或垂直关系,再利用空间向量进行空间角的计算求解.重在考查考生的逻辑推理及计算能力,试题难度一般不大,属中档题,且主要有以下几种常见的热点题型.二题型全归纳题型一空间点、线、面的位置关系及空.1证明点共面或线共面的常用方法(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内..(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.2.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.4.求异面直线所成角的方法(1)几何法①作:利用定义转化为平面角,对于异面直线所成的角,可固定一条,平移一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.①证:证明作出的角为所求角.①求:把这个平面角置于一个三角形中,通过解三角形求空间角.(2)向量法建立空间直角坐标系,利用公式|cos θ|=|m ·n ||m ||n |求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.【例1】如图,AE ①平面ABCD ,CF ①AE ,AD ①BC ,AD ①AB ,AB =AD =1,AE =BC =2.(1)求证:BF ①平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E -BD -F 的余弦值为13,求线段CF 的长. 【解题思路】由条件知AB ,AD ,AE 两两垂直,可以A 为坐标原点建立空间直角坐标系,用空间向量解决.(1)寻找平面ADE 的法向量,证明BF →与此法向量垂直,即得线面平行.(2)CE →与平面BDE 的法向量所成角的余弦值的绝对值,即为直线CE 和平面BDE 所成角的正弦值;(3)设CF =h ,用h 表示二面角E -BD -F 的余弦值,通过解方程得到线段长.【规范解答】 (1)证明:以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,AE 所在的直线为z 轴,建立如图所示的空间直角坐标系.则A (0,0,0),B (1,0,0),设F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的一个法向量,又BF →=(0,2,h ),可得BF →·AB →=0,又直线BF ①平面ADE ,所以BF ①平面ADE .(2)依题意,D (0,1,0),E (0,0,2),C (1,2,0),则BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1). 因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49. 所以直线CE 与平面BDE 所成角的正弦值为49. (3)设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0, 不妨令y 1=1,可得m =⎝⎛⎭⎫1,1,-2h . 由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪4-2h 3 2+4h2=13, 解得h =87.经检验,符合题意. 所以线段CF 的长为87. 【例2】.如图,在三棱锥P ­ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0. 不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ①平面BDE ,所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 【例3】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1,又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1,又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1.因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1,所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E .(2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量,易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277,故直线B 1C 1与平面B 1CE 所成角的正弦值为277. 题型二 平面图形的折叠问题【解法】解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.【例1】如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把①DFC 折起,使点C 到达点P 的位置,且PF ①BF .(1)证明:平面PEF ①平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【解题思路】(1)①翻折前后的不变关系,四边形ABFE 是矩形.①证明BF ①平面PEF .①证明平面PEF ①平面ABFD .(2)解法一:①建系:借助第(1)问,过P 作平面ABFD 的垂线为z 轴,垂足为原点,EF 所在直线为y 轴,建系.①求直线DP 的方向向量和平面ABFD 的法向量.①由公式计算所求角的正弦值.解法二:①作:过P 作PH ①EF 交EF 于点H ,连接DH .①证:证明PH ①平面ABFD ,得①PDH 为直线DP 与平面ABFD 所成角.①算:在Rt①PDH 中,PD 的长度是正方形ABCD 的边长,①PHD =90°,易知要求sin①PDH ,关键是求PH ;由此想到判断①PEF 的形状,进一步想到证明PF ①平面PED .【规范解答】(1)证明:由已知可得,BF ①PF ,BF ①EF ,又PF ∩EF =F ,所以BF ①平面PEF .又BF ①平面ABFD ,所以平面PEF ①平面ABFD .(2)解法一:作PH ①EF ,垂足为H .由(1)得,PH ①平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,建立如图所示的空间直角坐标系Hxyz ,设正方形ABCD 的边长为2.由(1)可得,DE ①PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ①PF .所以PH =32,EH =32,则H (0,0,0),P ⎝⎛⎭⎫0,0,32, D ⎝⎛⎭⎫-1,-32,0,DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量. 设DP 与平面ABFD 所成角为θ,则sin θ=|HP →·DP →||HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. 解法二:因为PF ①BF ,BF ①ED ,所以PF ①ED ,又PF ①PD ,ED ∩PD =D ,所以PF ①平面PED ,所以PF ①PE ,设AB =4,则EF =4,PF =2,所以PE =23,过P 作PH ①EF 交EF 于点H ,因为平面PEF ①平面ABFD ,所以PH ①平面ABFD ,连接DH ,则①PDH 即为直线DP 与平面ABFD 所成的角,因为PE ·PF =EF ·PH ,所以PH =23×24=3, 因为PD =4,所以sin①PDH =PH PD =34, 所以DP 与平面ABFD 所成角的正弦值为34. 题型三 立体几何中的探索性问题【技巧要点】对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题【例1】(2020·湖北“四地七校”联考)在四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,平面P AC ①底面ABCD ,P A =PC =2 2.(1)求证:PB =PD ;(2)若点M ,N 分别是棱P A ,PC 的中点,平面DMN 与棱PB 的交点为点Q ,则在线段BC 上是否存在一点H ,使得DQ ①PH ?若存在,求BH 的长;若不存在,请说明理由.【解题思路】 (1)要证PB =PD ,想到在①PBD 中,证明BD 边上的中线垂直于BD ,联系题目条件想到用面面垂直的性质证明线面垂直.(2)借助第(1)问的垂直关系建立空间直角坐标系,求平面DMN 的法向量n ,分别依据P ,B ,Q 共线和B ,C ,H 共线,设PQ →=λPB →和BH →=tBC →,利用垂直关系列方程先求λ再求t ,确定点H 的位置.【规范解答】 (1)证明:记AC ∩BD =O ,连接PO ,①底面ABCD 为正方形,①OA =OC =OB =OD =2.①P A =PC ,①PO ①AC ,①平面P AC ①底面ABCD ,且平面P AC ∩底面ABCD =AC ,PO ①平面P AC ,①PO ①底面ABCD .①BD ①底面ABCD ,①PO ①BD .①PB =PD .(2)存在.以O 为坐标原点,射线OB ,OC ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系如图所示,由(1)可知OP =2.可得P (0,0,2),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),可得M (0,-1,1),N (0,1,1),DM →=(2,-1,1),MN →=(0,2,0).设平面DMN 的法向量n =(x ,y ,z ),①DM →·n =0,MN →·n =0,①⎩⎪⎨⎪⎧2x -y +z =0,2y =0. 令x =1,可得n =(1,0,-2).记PQ →=λPB →=(2λ,0,-2λ),可得Q (2λ,0,2-2λ),DQ →=(2λ+2,0,2-2λ),DQ →·n =0,可得2λ+2-4+4λ=0,解得λ=13. 可得DQ →=⎝⎛⎭⎫83,0,43. 记BH →=tBC →=(-2t,2t,0),可得H (2-2t,2t,0),PH →=(2-2t,2t ,-2),若DQ ①PH ,则DQ →·PH →=0,83(2-2t )+43×(-2)=0,解得t =12. 故BH = 2.故在线段BC 上存在一点H ,使得DQ ①PH ,此时BH= 2.【例2】如图,在四棱锥P­ABCD中,P A①平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD①平面P AC;(2)若①ABC=60°,求证:平面P AB①平面P AE;(3)棱PB上是否存在点F,使得CF①平面P AE?说明理由.【解】(1)证明:因为P A①平面ABCD,所以P A①BD.因为底面ABCD为菱形,所以BD①A C.又P A∩AC=A,所以BD①平面P A C.(2)证明:因为P A①平面ABCD,AE①平面ABCD,所以P A①AE.因为底面ABCD为菱形,①ABC=60°,且E为CD的中点,所以AE①CD,所以AB①AE.又AB∩P A=A,所以AE ①平面P AB .因为AE ①平面P AE ,所以平面P AB ①平面P AE .(3)棱PB 上存在点F ,使得CF ①平面P AE .取F 为PB 的中点,取G 为P A 的中点,连接CF ,FG ,EG .则FG ①AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ①AB ,且CE =12AB . 所以FG ①CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ①EG .因为CF ①平面P AE ,EG ①平面P AE ,所以CF ①平面P AE .【例3】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC , 所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H ­xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B ­CG ­A 的大小为30°.三、高效训练突破1.(2020·深圳模拟)已知四棱锥P­ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN①P C.(2)由(1)知BD ①AC 且PO ①BD ,因为P A =PC ,且O 为AC 的中点,所以PO ①AC ,所以PO ①平面ABCD ,所以P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A , 因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32), 所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0). 设平面AMHN 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0, 令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 2.(2020·河南联考)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,平面P AD ①平面ABCD ,①P AD 是边长为4的等边三角形,BC ①PB ,E 是AD 的中点.(1)求证:BE ①PD ;(2)若直线AB 与平面P AD 所成角的正弦值为154,求平面P AD 与平面PBC 所成的锐二面角的余弦值. 【解析】:(1)证明:因为①P AD 是等边三角形,E 是AD 的中点,所以PE ①AD .又平面P AD ①平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ①平面P AD ,所以PE ①平面ABCD ,所以PE ①BC ,PE ①BE .又BC ①PB ,PB ∩PE =P ,所以BC ①平面PBE ,所以BC ①BE .又BC ①AD ,所以AD ①BE .又AD ∩PE =E 且AD ,PE ①平面P AD ,所以BE ①平面P AD ,所以BE ①PD .(2)由(1)得BE ①平面P AD ,所以①BAE 就是直线AB 与平面P AD 所成的角.因为直线AB 与平面P AD 所成角的正弦值为154, 即sin①BAE =154 ,所以cos①BAE =14. 所以cos①BAE =AE AB =2AB =14,解得AB =8,则BE =AB 2-AE 2=215.由(1)得EA ,EB ,EP 两两垂直,所以以E 为坐标原点,EA ,EB ,EP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则点P (0,0,23),A (2,0,0),D (-2,0,0),B (0,215,0),C (-4,215,0),所以PB →=(0,215,-23),PC →=(-4,215,-23).设平面PBC 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧PB →·m =0,PC →·m =0,得⎩⎨⎧215y -23z =0,-4x +215y -23z =0, 解得⎩⎨⎧x =0,z =5y . 令y =1,可得平面PBC 的一个法向量为m =(0,1,5).易知平面P AD 的一个法向量为n =(0,1,0),设平面P AD 与平面PBC 所成的锐二面角的大小为θ,则cos θ=⎪⎪⎪⎪m ·n |m ||n |=⎪⎪⎪⎪⎪⎪(0,1,5)·(0,1,0)6×1=66. 所以平面P AD 与平面PBC 所成的锐二面角的余弦值为66. 3.(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC ­A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC ­A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33, 所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC ­A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0,整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 4.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1,又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC , 又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC . 因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1. 又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO . 又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示, 由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP→=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A , 所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12.又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55.5.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC . 因为MN ①平面EFC ,EC ①平面EFC , 所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE . 因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC , 所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC . (2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4), 所以DB →=(2,2,0),DM →=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. 因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则 sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.6.(2020·河南郑州三测)如图①,①ABC 中,AB =BC =2,①ABC =90°,E ,F 分别为边AB ,AC 的中点,以EF 为折痕把①AEF 折起,使点A 到达点P 的位置(如图①),且PB =BE .(1)证明:EF ①平面PBE ;(2)设N 为线段PF 上的动点(包含端点),求直线BN 与平面PCF 所成角的正弦值的最大值. 【解析】:(1)证明:因为E ,F 分别为边AB ,AC 的中点,所以EF ①BC . 因为①ABC =90°,所以EF ①BE ,EF ①PE ,又BE ∩PE =E ,所以EF ①平面PBE . (2)取BE 的中点O ,连接PO ,因为PB =BE =PE ,所以PO ①BE .由(1)知EF ①平面PBE ,EF ①平面BCFE ,所以平面PBE ①平面BCFE . 又PO ①平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ①平面BCFE .过点O 作OM ①BC 交CF 于点M ,分别以OB ,OM ,OP 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B ⎝⎛⎭⎫12,0,0,P ⎝⎛⎭⎫0,0,32,C ⎝⎛⎭⎫12,2,0, F ⎝⎛⎭⎫-12,1,0,PC →=⎝⎛⎭⎫12,2,-32, PF →=⎝⎛⎭⎫-12,1,-32,由N 为线段PF 上一动点,得PN →=λPF →(0≤λ≤1),则可得N ⎝⎛⎭⎫-λ2,λ,32(1-λ),BN →=⎝⎛⎭⎫-λ+12,λ,32(1-λ).设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎨⎧12x +2y -32z =0,-12x +y -32z =0,取y =1,则x =-1,z =3,所以m =(-1,1,3)为平面PCF 的一个法向量.设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos 〈BN →,m 〉|=|BN →·m ||BN →|·|m |=25·2λ2-λ+1=25·2⎝⎛⎭⎫λ-142+78≤25·78=47035(当且仅当λ=14时取等号),所以直线BN 与平面PCF 所成角的正弦值的最大值为47035.7.(2020·山东淄博三模)如图①,已知正方形ABCD 的边长为4,E ,F 分别为AD ,BC 的中点,将正方形ABCD 沿EF 折成如图①所示的二面角,且二面角的大小为60°,点M 在线段AB 上(包含端点),连接AD .(1)若M 为AB 的中点,直线MF 与平面ADE 的交点为O ,试确定点O 的位置,并证明直线OD ①平面EMC ; (2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60°?若存在,求此时二面角M ­EC ­F 的余弦值;若不存在,说明理由. 【答案】见解析【解析】:(1)因为直线MF ①平面ABFE ,故点O 在平面ABFE 内,也在平面ADE 内, 所以点O 在平面ABFE 与平面ADE的交线(即直线AE )上(如图所示).因为AO ①BF ,M 为AB 的中点,所以①OAM ①①FBM ,所以OM =MF ,AO =BF ,所以AO =2. 故点O 在EA 的延长线上且与点A 间的距离为2. 连接DF ,交EC 于点N ,因为四边形CDEF 为矩形, 所以N 是EC 的中点.连接MN ,则MN 为①DOF 的中位线,所以MN ①OD ,又MN ①平面EMC ,OD ①/ 平面EMC ,所以直线OD ①平面EMC . (2)由已知可得EF ①AE ,EF ①DE ,又AE ∩DE =E ,所以EF ①平面ADE .所以平面ABFE ①平面ADE ,易知①ADE 为等边三角形,取AE 的中点H ,则易得DH ①平面ABFE ,以H 为坐标原点,建立如图所示的空间直角坐标系,则E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0),所以ED →=(1,0,3),EC →=(1,4,3). 设M (1,t ,0)(0≤t ≤4),则EM →=(2,t ,0),设平面EMC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·EM →=0,m ·EC →=0①⎩⎨⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3为平面EMC 的一个法向量.要使直线DE 与平面EMC 所成的角为60°,则82t 2+4+(8-t )23=32,所以23t 2-4t +19=32,整理得t 2-4t +3=0, 解得t=1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°,取ED 的中点Q ,连接QA ,则QA →为平面CEF 的法向量, 易得Q ⎝⎛⎭⎫-12,0,32,A (1,0,0),所以QA →=⎝⎛⎭⎫32,0,-32.设二面角M -EC -F 的大小为θ, 则|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+(8-t )23=|t -2|t2-4t +19. 因为当t =2时,cos θ=0,平面EMC ①平面CDEF ,所以当t =1时,cos θ=-14,θ为钝角;当t =3时,cos θ=14,θ为锐角.综上,二面角M -EC -F 的余弦值为±14.。

2020届高考数学(理)大一轮复习:专题突破练(5) 立体几何的综合问题

2020届高考数学(理)大一轮复习:专题突破练(5) 立体几何的综合问题

专题突破练(5)立体几何的综合问题2.如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AB=2,BC=1,AC=5,若规定正视方向垂直平面ACC1A1,则此三棱柱的侧视图的面积为()45C.5 D.6答案C折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°5.[2018·河南豫东、豫北十校测试]鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,原为木质结构,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90度榫卯起来,若正四棱柱体的高为4,底面正方形的边长为1,则该鲁班锁的表面积为 ( )A.48 B .60 C .72 D .846.如图所示,已知在多面体ABC -DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A.2 B .4 C .6 D .8答案 B解析 如图所示,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.选B.7.[2017·湖北黄冈中学二模]一个几何体的三视图如图所示,其中正视图是边长为2的等边三角答案 B解析 由三视图可知,该几何体是半圆锥,其展开图如图所示,则依题意,点A ,M 的最短距离,即为线段AM .∵P A =PB =2,半圆锥的底面半圆的弧长为π,∴展开图中的∠BPM =πPB=π2, π5π5π答案 B解析 如图所示,为组合体的轴截面,记BO 1的长度为x ,由相似三角形的比例关系,得PO 13R=x R,则PO 1=3x ,圆柱的高为3R -3x ,所以圆柱的表面积为S =2πx 2+2πx ·(3R -3x )=-4πx 2+6πRx ,则当x =34R 时,S 取最大值,S max =94πR 2.选B.9.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD的中心,M ,N 分别为AB ,BC 边的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的值有( )A.0个 B .1个 C .2个 D .3个10. [2017·东北三省三校二模]已知三棱柱ABC -A 1B 1C 1,侧棱BB 1⊥平面ABC ,AB =2,AC =3,AA 1=14,AC ⊥BC ,将其放入一个水平放置的水槽中,使AA 1在水槽底面内,平面ABB 1A 1与水槽底面垂直,且水面恰好经过棱BB 1,现水槽底面出现一个小洞,水位下降,则在水位下降过程中,几何体露出水面部分的面积S 关于水位下降的高度h 的函数图象大致为( )答案 A1x 时,正四棱锥的体积最大,则x 为 ( )A .0.5B .0.8C .0.2D .1答案 C二、填空题13.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在直线所成角的余弦值等于________.10514.如图,已知球O的面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.答案6π解析如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以64πR315.如图,用一个边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个巢,将半径为1的球体放入其中,则球心与巢底面的距离为__________.3+12解析 由题意知,折起后原正方形顶点间最远的距离为1,如图中的DC ;折起后原正方形顶点到底面的距离为12,如图中的BC .由图知球心与巢底面的距离OF =1-122+12=3+12. 16.[2017·安徽黄山第二次质检]如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′,DD ′交于点M ,N ,设BM=x ,x ∈[0,1].给出以下五个命题:①当且仅当x =0时,四边形MENF 的周长最大;17.[2017·河南洛阳月考]如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=4.(1)若点P为AA的中点,求证:平面B CP⊥平面B C P;值;若不存在,说明理由.解(1)证明:如图,以C为原点,CA,CB,CC1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(2,0,0),B1(0,4,4),C1(0,0,4),P(2,0,2),B(0,4,0),→→118.719.[2018·广东韶关调研]已知四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为菱形,∠ABC(2)由(1)得AE,AD,AP两两垂直,连接AM,以AE,AD,AP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.520.[2017·湖北黄冈期末]如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.(1)求侧棱AA与平面AB C所成角的正弦值的大小;1故以O为坐标原点,建立如图所示的空间直角坐标系Oxyz,。

高考数学一轮复习第七章立体几何阶段检测试题(含解析)文(new)

高考数学一轮复习第七章立体几何阶段检测试题(含解析)文(new)

第七章立体几何阶段检测试题时间:120分钟分值:150分一、选择题(每小题5分,共60分)1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案:B2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1C,EF∩D1C=F,则A1B与EF相交.答案:A3.(2017·嘉兴月考)对于空间的两条直线m,n和一个平面α,下列命题中的真命题是( )A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n解析:对A,直线m,n可能平行、异面或相交,故选项A错误;对B,直线m与n可能平行,也可能异面,故选项B错误;对C,m与n垂直而非平行,故选项C错误;对D,垂直于同一平面的两直线平行,故选项D正确.答案:D4.设P是异面直线a,b外的一点,则过点P与a,b都平行的平面()A.有且只有一个B.恰有两个C.不存在或只有一个D.有无数个解析:过点P作a1∥a,b1∥b,若过a1,b1的平面不经过a,b,则存在一个平面同时与a,b平行;若过a,b1的平面经过a或b,则不存在这样的平面同时与a,b平行.1答案:C5.若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析:由平面α∥平面β知,直线AC与BD无公共点,则直线AC∥直线BD的充要条件是A,B,C,D四点共面.答案:D6.已知a,b为两条不同的直线,α,β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a,b相交,则α,β相交D.若α,β相交,则a,b相交解析:若α,β相交,则a,b可能相交,也可能异面,故D为假命题.答案:D7.一个几何体的侧视图和俯视图如图所示,若该几何体的体积为错误!,则它的正视图为()解析:由几何体的侧视图和俯视图,可知几何体为组合体,由几何体的体积为错误!,可知上方为棱锥,下方为正方体.由俯视图可得,棱锥顶点在底面上的射影为正方形一边上的中点,顶点到正方体上底面的距离为1,所以选B.答案:B8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.27-错误!B.18-错误!C.27-3πD.18-3π解析:由几何体的三视图可知该几何体可以看成是底面是梯形的四棱柱挖去了半个圆柱,所以所求体积为错误!×(2+4)×2×3-错误!π×12×3=18-错误!。

高三数学一轮复习:1218高考中的立体几何问题

高三数学一轮复习:1218高考中的立体几何问题

所成角的正弦值的最大值为
6 3
3.二面角的棱上有 A,B 两点,直线 AC,BD 分别在这个二面角的两个半平面内,且都垂 直于 AB.已知 AB=4,AC=6,BD=8,CD=2 17.则该二面角的大小为________.
5.如图所示,在菱形 ABCD 中,∠ABC=60°,AC 与 BD 相交于点 O,AE⊥平面 ABCD,CF∥AE,AB=AE=2.
例 2 (2020·新高考全国Ⅰ)如图,四棱锥 P-ABCD 的底面为正方形,PD⊥底面 ABCD.设平 面 PAD 与平面 PBC 的交线为 l. (1)证明:l⊥平面 PDC; (2)已知 PD=AD=1,Q 为 l 上的点, 求 PB 与平面 QCD 所成角的正弦值的最大值.
例 3 (2020·全国Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE= AD.△ABC 是底面的内接正三角形,P 为 DO 上一点,PO= 66DO. (1)证明:PA⊥平面 PBC; (2)求二面角 B-PC-E 的余弦值.
例 4 (2021·全国高考真题)在正三棱柱 ABC A1B1C1 中, AB AA1 1 ,点 P 满足
BP BC BB1 ,其中 0,1, 0,1 ,则( )
A.当 1时, △AB1P 的周长为定值
B.当 1时,三棱锥 P A1BC 的体积为定值
C.当
1 2
时,有且仅有一个点
高考中的立体几何问题
作业讲评 2.(多选)如图,在正方体 ABCD-A1B1C1D1 中,点 P 在线段 B1C 上运动,则( )
A.直线 BD1⊥平面 A1C1D B.三棱锥 P-A1C1D 的体积为定值
C.异面直线 AP 与 A1D 所成角的取值范围是π4 ,π2

新高考2023版高考数学一轮总复习练案45高考大题规范解答系列四__立体几何

新高考2023版高考数学一轮总复习练案45高考大题规范解答系列四__立体几何

高考大题规范解答系列(四)——立体几何1.(2022·安徽黄山质检)如图,直三棱柱ABC-A1B1C1中,D是BC的中点,且AD⊥BC,四边形ABB1A1为正方形.(1)求证:A1C∥平面AB1D;(2)若∠BAC=60°,BC=4,求点A1到平面AB1D的距离.[解析] (1)连接BA1,交AB1于点E,再连接DE,由已知得,四边形ABB1A1为正方形,E为A1B的中点,∵D是BC的中点,∴DE∥A1C,又DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)∵在直三棱柱ABC-A1B1C1中,平面BCC1B1⊥平面ABC,且BC为它们的交线,又AD⊥BC,∴AD⊥平面BCC1B1,又∵B1D⊂平面BCC1B1,∴AD⊥B1D,且AD=2,B1D=2.同理可得,过D作DG⊥AB,则DG⊥面ABB1A1,且DG=.设A1到平面AB1D的距离为h,由等体积法可得:VA1-AB1D=VD-AA1B1,即··AD·DB1·h=··AA1·A1B1·DG,即2×2·h=4×4×,∴h=.即点A1到平面AB1D的距离为.(注:本题也可建立空间直角坐标系用向量法求解.)2.(2022·陕西汉中质检)如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.(1)求证:平面PDE⊥平面APC;(2)求直线PC与平面PDE所成的角的正弦值.[解析] 如图所示,以点C为坐标原点,直线CD,CB,CP分别为x,y,z轴,建立空间直角坐标系C-xyz,则相关点的坐标为C(0,0,0),A(2,1,0),B(0,3,0),P(0,0,2),D(2,0,0),E(1,2,0).(1)由于DE=(-1,2,0),CA=(2,1,0),CP=(0,0,2),所以DE·CA=(-1,2,0)·(2,1,0)=0,DE·CP=(-1,2,0)·(0,0,2)=0,所以DE⊥CA,DE⊥CP,而CP∩CA=C,所以DE⊥平面PAC,∵DE⊂平面PDE,∴平面PDE⊥平面PAC.(2)设n=(x,y,z)是平面PDE的一个法向量,则n·DE=n·PE=0,由于DE=(-1,2,0),PE=(1,2,-2),所以有,令x=2,则y=1,z=2,即n=(2,1,2),再设直线PC与平面PDE所成的角为α,而PC=(0,0,-2),所以sin α=|cos〈n,PC〉|===,∴直线PC与平面PDE所成角的正弦值为.3.(2022·湖北百师联盟质检)斜三棱柱ABC-HDE中,平面ABC⊥平面BCD,△ABC为边长为1的等边三角形,DC⊥BC,且DC长为,设DC中点为M,F、G分别为CE、AD的中点.(1)证明:FG∥平面ABC;(2)求二面角B-AC-E的余弦值.[解析] (1)解法一:取BD中点N,连结GN,NF,易知N、M、F三点共线,由GN∥AB,且GN⊄平面ABC,AB⊂平面ABC,故GN∥平面ABC,同理可得NF∥平面ABC,因为GN∩NF=N,故平面GNF∥平面ABC.由FG⊂平面FGN,故FG∥平面ABC.解法二:取AB中点N,连结GN,NC,易知GN是△ABD的中位线,故GN∥BD,GN=BD,因为CE綊BD,F为CE的中点.所以CF綊GN.四边形FGNC是平行四边形,故FG∥CN,因为CN⊂平面ABC,FG⊄平面ABC,故FG∥平面ABC.(2)以BC中点O为坐标原点,以OC、ON、OA分别为x、y、z轴,建立空间直角坐标系O-xyz,由已知可得A,C,E,故CE=(1,,0),AC=,设m=(x,y,z)为平面ACE的法向量,则,解得m=(,-1,1),由于ON⊥平面ABC,不妨取平面ABC的法向量为n=(0,1,0).所以cos〈m,n〉==-.由图可知所求二面角为钝角,故二面角B-AC-E的余弦值为-.4.(2021·全国新高考)在四棱锥Q-ABCD中,底面ABCD是正方形,若AD=2,QD=QA=,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B-QD-A的平面角的余弦值.[解析] (1)取AD的中点为O,连接QO,CO.因为QA=QD,OA=OD,则QO⊥AD,而AD=2,QA=,故QO==2.在正方形ABCD中,因为AD=2,故DO=1,故CO=,因为QC=3,故QC2=QO2+OC2,故△QOC为直角三角形且QO⊥OC,因为OC∩AD=O,故QO⊥平面ABCD,因为QO⊂平面QAD,故平面QAD⊥平面ABCD.(2)在平面ABCD内,过O作OT∥CD,交BC于T,则OT⊥AD,结合(1)中的QO⊥平面ABCD,故可建如图所示的空间坐标系.则D(0,1,0),Q(0,0,2),B(2,-1,0),故BQ=(-2,1,2),BD=(-2,2,0).设平面QBD的法向量n=(x,y,z),则即,取x=1,则y=1,z=,故n=.而平面QAD的法向量为m=(1,0,0),故cos〈m,n〉==.二面角B-QD-A的平面角为锐角,故其余弦值为.5.(2021·安徽省淮北市一模)在直角梯形ABCD(如图1)中,∠ABC=90°,BC∥AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B-ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.[解析] (1)由题设可知AC=4,CD=4,AD=8,∴AD2=CD2+AC2,∴CD⊥AC,又∵平面ABC⊥平面ACD,平面ABC∩平面ACD=AC,∴CD⊥平面ABC.(2)解法一:等体积法取AC的中点O连接OB,由题设可知△ABC为等腰直角三角形,所以OB⊥面ACM,∵V B-ACM=V A-BCM且V B-ACM=S △ACM·BO=,而SΔBCM=4,∴A到面BCM的距离h=,所以sin θ==.解法二:向量法,取AC的中点O,连接OB,由题设可知△ABC为等腰直角三角形,所以OB⊥面ACM,连接OM,因为M、O分别为AD和AC的中点,所以OM∥CD,由(1)可知OM⊥AC,故以OM、OC、OB所在直线为x轴、y轴、z轴建立空间直角坐标系,如图所示.则A(0,-2,0),B(0,0,2),C(0,2,0),M(2,0,0),∴CB=(0,-2,2),CM=(2,-2,0),BA=(0,-2,-2),设平面BCM法向量n=(x,y,z)由得令y=1得n=(1,1,1)∴平面BCM的一个法向量n=(1,1,1),∴sin θ==.6.(2021·山东聊城三模)如图,在平面四边形ABCD中,BC=CD,BC⊥CD,AD⊥BD,以BD为折痕把△ABD折起,使点A到达点P的位置,且PC⊥BC.(1)证明:PD⊥CD;(2)若M为PB的中点,二面角P-BC-D的大小为60°,求直线PC与平面MCD所成角的正弦值.[解析] (1)证明:因为BC⊥CD,BC⊥PC,PC∩CD=C,所以BC⊥平面PCD,又因为PD⊂平面PCD,所以BC⊥PD,又因为PD⊥BD,BD∩BC=B,所以PD⊥平面BCD,又因为CD⊂平面BCD,所以PD⊥CD.(2)因为PC⊥BC,CD⊥BC,所以∠PCD是二面角P-BC-D的平面角,即∠PCD=60°,在Rt△PCD中,PD=CD tan 60°=CD,取BD的中点O,连接OM,OC,因为BC=CD,BC⊥CD,所以OC⊥BD,由(1)知,PD⊥平面BCD,OM为△PBD的中位线,所以OM⊥BD,OM⊥OC,即OM,OC,BD两两垂直,以O为原点,建立如图所示的空间直角坐标系O-xyz,设OB=1,则P(0,1,),C(1,0,0),D(0,1,0),M,CP=(-1,1,),CD=(-1,1,0),CM=,设平面MCD的一个法向量为n=(x,y,z),则由得令z=,得n=(,,),所以cos〈n,CP〉===,所以直线PC与平面MCD所成角的正弦值为.7.(开放题)(2022·云南昆明模拟)如图,在三棱锥A-BCD中,△BCD是边长为2的等边三角形,AB=AC,O是BC的中点,OA⊥CD.(1)证明:平面ABC⊥平面BCD;(2)若E是棱AC上的一点,从①CE=2EA;②二面角E-BD-C大小为60°;③A-BCD的体积为这三个论断中选取两个作为条件,证明另外一个成立.[证明] (1)因为AB=AC,O是BC的中点,所以OA⊥BC,又因为OA⊥CD,所以OA⊥平面BCD,因为OA⊂平面ABC,所以平面ABC⊥平面BCD.(2)连接OD,又因为△BCD是边长为2的等边三角形,所以DO⊥BC,由(1)知OA⊥平面BCD,所以AO,BC,DO两两互相垂直.以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系.设|OA|=m,则O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),D(0,,0),若选①②作为条件,证明③成立.因为CE=2EA,所以E,易知平面BCD的法向量为n=(0,0,1),BE=,BD=(-1,,0),设m=(x,y,z)是平面BDE的法向量,则,所以,可取m=,由二面角E-BD-C大小为60°可得cos θ===,解得m=3,所以A-BCD的体积为×2×××3=.若选①③作为条件,证明②成立.因为A-BCD的体积为,所以×2×××|OA|=,解得|OA|=3,又因为CE=2EA,所以E,易知平面BCD的法向量为n=(0,0,1),BE=,BD=,设m=(x,y,z)是平面BDE的法向量,则所以,可取m=,所以cos θ===,即二面角E-BD-C大小为60°.若选②③作为条件,证明①成立.因为A-BCD的体积为,所以×2×××|OA|=,解得|OA|=3,即A(0,0,3),AC=(-1,0,-3),不妨设AE=λAC(0≤λ≤1),所以E(-λ,0,-3λ+3),易知平面BCD的法向量为n=(0,0,1),BE=(-λ-1,0,-3λ+3),BD=(-1,,0),设m=(x,y,z)是平面BDE的法向量,取m=(3(1-λ),(1-λ),λ+1)cos θ===,解得λ=3(舍),λ=,所以CE=2EA.8.(2022·河北石家庄质检)如图,四棱锥P-ABCD中,底面ABCD为正方形,△PAB 为等边三角形,平面PAB⊥底面ABCD,E为AD的中点.(1)求证:CE⊥PD;(2)在线段BD(不包括端点)上是否存在点F,使直线AP与平面PEF所成角的正弦值为,若存在,确定点F的位置;若不存在,请说明理由.[解析] (1)证明:取AB的中点O,连结PO,OD,因为PA=PB,所以PO⊥AB,又因为平面PAB⊥平面ABCD,所以PO⊥底面ABCD,取CD的中点G,连结OG,则OB,OP,OG两两垂直,分别以OB,OG,OP所在直线为x轴,y轴,z轴建立空间直角坐标系(如图所示),设AB=2,则C(1,2,0),P(0,0,),E(-1,1,0),D(-1,2,0),所以CE=(-2,-1,0),PD=(-1,2,-),则CE·PD=2-2=0,故CE⊥PD,所以CE⊥PD.(2)由(1)可知,A(-1,0,0),B(1,0,0),所以PE=(-1,1,-),AP=(1,0,),BD=(-2,2,0),BE=(-2,1,0),设BF=λBD(0<λ<1),则BF=(-2λ,2λ,0),所以EF=BF-BE=(-2λ+2,2λ-1,0),设平面PEF的法向量为n=(x,y,z),令y=1,则x=,z=,故n=,所以|cos〈AP,n〉|===,整理可得9λ2-6λ+1=0,解得λ=,所以在BD上存在点F,使得直线AP与平面PEF所成角的正弦值为,此时点F为靠近点B的三等分点,即BF=BD.。

2023届高考一轮复习试卷(立体几何)

2023届高考一轮复习试卷(立体几何)

2023届高考一轮复习试卷(立体几何)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知圆锥的侧面展开图是一个半径为2的半圆,则该圆锥的体积为A .3πB .3π3C .3πD .2π2.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的如图所示的正八面体.若某金刚石的棱长为2,则它的表面积为A .8B .82C .83D .1633.如图,用斜二测画法作水平放置的正三角形111A B C 的直观图,则正确的图形是A .B .C .D .4.已知两条不同直线,l m 与两个不同平面,αβ,下列命题正确的是A .若//,l l m α⊥,则m α⊥B .若,//l l αβ⊥,则αβ⊥C .若//,//l m αα,则//l m D .若//,//m αβα,则//m β5.如图,平行六面体1111ABCD A B C D -的体积为482,11A AB A AD ∠=∠,16AA =,底面边长均为4,且π3DAB ∠=,M ,N ,P 分别为AB ,1CC ,11C D 的中点,则A .//MN APB .1AC ⊥平面BDN C .1AP AC ⊥D .//AP 平面MNC6.如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点.F 则下列结论中错误..的是A .存在点E ,使得11//AC 平面1BED FB .存在点E ,使得1B D ⊥平面1BED FC .对于任意的点E ,平面11ACD ⊥平面1BED FD .对于任意的点E ,四棱锥11B BEDF -的体积均不变7.足球运动成为当今世界上开展最广、影响最大、最具魅力、拥有球迷数最多的体育项目之一,2022年卡塔尔世界杯是第22届世界杯足球赛.比赛于2022年11月21日至12月18日在卡塔尔境内7座城市中的12座球场举行.已知某足球的表面上有四个点A ,B ,C ,D 满足2dm AB BC AD BD CD =====,二面角A BD C --的大小为23π,则该足球的体积为A .3742dm 27πB .3352dm 27πC .314dm 27πD .3322dm 27π8.一个长方体的盒子内装有部分液体(液体未装满盒子),以不同的方向角度倾斜时液体表面会呈现出不同的变化,则下列说法中错误的个数是①当液面是三角形时,其形状可能是钝角三角形②在一定条件下,液面的形状可能是正五边形③当液面形状是三角形时,液体体积与长方体体积之比的范围是150,,166⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭④当液面形状是六边形时,液体体积与长方体体积之比的范围是13,44⎛⎫ ⎪⎝⎭A .1个B .2个C .3个D .4个二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列关于空间向量的命题中,正确的是A .若空间向量,a b ,满足a b =r r ,则a b= B .若非零向量,,a b c ,满足,a b b c ⊥⊥ ,则有a c∥ C .若,,OA OB OC 是空间的一组基底,且111333OD OA OB OC =++ ,则,,,A B C D 四点共面D .若向量,,a b b c c a +++ 是空间的一组基底,则,,a b c 也是空间的一组基底10.如图,若正方体的棱长为1,点M 是正方体1111ABCD A B C D -的侧面11ADD A上的一个动点(含边界),P 是棱1CC 的中点,则下列结论正确的是A .沿正方体的表面从点A 到点P 的最短路程为132B .若保持2PM =,则点M 在侧面内运动路径的长度为π3C .三棱锥1B C MD -的体积最大值为16D .若M 在平面11ADD A 内运动,且111MD B B D B ∠=∠,点M 的轨迹为线段11.已知a ,b ,c 为三条不同的直线,α,β,γ为三个不同的平面,则下列说法错误的是A .若a b ∥,b α⊂,则a αP B .若a αβ⋂=,b βγ= ,c αγ⋂=,a b ∥,则b c ∥C .若b β⊂,c β⊂,a b ⊥r r ,a c ⊥,则a β⊥D .若a α⊂,b β⊂,a b ∥,则αβ∥12.如图,已知二面角l αβ--的棱l 上有A ,B 两点,C α∈,AC l ⊥,D β∈,BD l ⊥,若2AC AB BD ===,22CD =,则A .直线AB 与CD 所成角的大小为45°B .二面角l αβ--的大小为60°C .三棱锥A BCD -的体积为23D .直线CD 与平面β所成角的正弦值为64三、填空题:本题共4小题,每小题5分,共20分.13.在空间直角坐标系中,已知()3,2,1OA = ,()1,0,5OB = ,()1,2,1OC =-- ,点M 为线段AB 的中点,则CM = .14.用一个平面将圆柱切割成如图的两部分.将下半部分几何体的侧面展开,平面与圆柱侧面所形成的交线在侧面展开图中对应的函数表达式为 1.52cos y x =+.则平面与圆柱底面所形成的二面角的正弦值是.15.“云南十八怪”描述的是由云南独特的地理位置、民风民俗所产生的一些特有的现象或生活方式,是云南多元民族文化的写照.“云南十八怪”中有一怪“摘下草帽当锅盖”所指的锅盖是用秸秆或山茅草编织成的,因其形状酷似草帽而传为佳话.一种草帽锅盖呈圆锥形,其母线长为6dm ,侧面积为2183dm π,若此圆锥的顶点和底面圆都在同一个球面上,则该球体的表面积等于2dm .16.在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,122AA AB ==.点P 在侧面11BCC B 内,满足1A C ⊥平面BDP ,设点P 到平面ABCD 的距离为1h ,到CD 的距离为2h ,则12h h +的最小值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图所示,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4,PA PD PB ==,点E 在线段PA 上,3,PE EA BE AD =⊥,点,F G 分别是线段,BC CD 的中点.(1)证明:PA ⊥平面ABCD ;(2)求三棱锥P EFG -的体积.18.三棱锥P ABC -中,PA PB PC BC a ====,且PB 与底面ABC 成60°角.(1)设点P 在底面ABC 的投影为H ,求BH 的长;(2)求证:ABC △是直角三角形;(3)求该三棱锥体积的最大值.19.故宫太和殿是中国形制最高的宫殿,其建筑采用了重檐庑殿顶的屋顶样式,庑殿顶是“四出水”的五脊四坡式,由一条正脊和四条垂脊组成,因此又称五脊殿.由于屋顶有四面斜坡,故又称四阿顶.如图,某几何体ABCDEF 有五个面,其形状与四阿顶相类似.已知底面ABCD 为矩形,AB =2AD =2EF =8,EF ∥底面ABCD ,EA =ED =FB =FC ,M ,N 分别为AD ,BC 的中点.(1)证明:EF ∥AB 且BC ⊥平面EFNM .(2)若二面角E AD B --为4π,求CF 与平面ABF 所成角的正弦值.20.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.21.《瀑布》(图1)是埃舍尔最为人所知的作品之一,图中的瀑布会源源不断地落下,落下的水又逆流而上,荒唐至极,但又会让你百看不腻.画面下方还有一位饶有兴致的观察者,似乎他没发现什么不对劲.此时,他既是画外的观看者,也是埃舍尔自己.画面两座高塔各有一个几何体,左塔上方是著名的“三立方体合体”由三个正方体构成,右塔上的几何体是首次出现,后称“埃舍尔多面体”(图2)埃舍尔多面体可以用两两垂直且中心重合的三个正方形构造,设边长均为2,定义正方形,1,2,3n n n n A B C D n =的顶点为“框架点”,定义两正方形交线为“极轴”,其端点为“极点”,记为,n n P Q ,将极点11,P Q ,分别与正方形2222A B C D 的顶点连线,取其中点记为,,,1,2,3,4m m E F m =,如(图3).埃舍尔多面体可视部分是由12个四棱锥构成,这些四棱锥顶点均为“框架点”,底面四边形由两个“极点”与两个“中点”构成,为了便于理解,图4我们构造了其中两个四棱锥11122A PE P E -与22131A P E P F -.(1)求异面直线12P A 与12Q B 成角余弦值(2)求平面111PA E 与平面122AE P 的夹角余弦值(3)若埃舍尔体的表面积与体积(直接写出答案)22.在长方体1111ABCD A B C D -中,(1)已知P 、Q 分别为棱AB 、1CC 的中点(如图1),做出过点1D ,P ,Q 的平面与长方体的截面.保留作图痕迹,不必说明理由;(2)如图2,已知13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,求这两个球的半径之和的最大值.。

2023年新高考数学大一轮复习专题23 立体几何中的压轴小题(原卷版)

2023年新高考数学大一轮复习专题23 立体几何中的压轴小题(原卷版)

专题23 立体几何中的压轴小题【题型归纳目录】 题型一:球与截面面积问题题型二:体积、面积、周长、角度、距离定值问题 题型三:体积、面积、周长、距离最值与范围问题 题型四:立体几何中的交线问题 题型五:空间线段以及线段之和最值问题 题型六:空间角问题 题型七:立体几何装液体问题 【典例例题】题型一:球与截面面积问题例1.(2022·河南安阳·模拟预测(文))已知球O 的体积为125π6,高为1的圆锥内接于球O ,经过圆锥顶点的平面α截球O 和圆锥所得的截面面积分别为12,S S ,若125π8S =,则2S =( )A.2 B C D .例2.(2022·广西·南宁二中高三阶段练习(理))已知正四棱柱1111ABCD A B C D -中,122CC AB ==,E 为1CC 的中点,P 为棱1AA 上的动点,平面α过B ,E ,P 三点,有如下四个命题: ①平面α⊥平面11A B E ;①平面α与正四棱柱表面的交线围成的图形一定是四边形; ①当P 与A 重合时,α截此四棱柱的外接球所得的截面面积为11π8; ①存在点P ,使得AD 与平面α所成角的大小为π3.则正确的命题个数为( ). A .1 B .2 C .3 D .4例3.(2022·四川资阳·高二期末(理))如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2BD =,1DE =,点P 在线段EF 上.给出下列命题:①存在点P ,使得直线//DP 平面ACF ; ①存在点P ,使得直线DP ⊥平面ACF ;①直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦;①三棱锥A CDE -的外接球被平面ACF 所截得的截面面积是9π8. 其中所有真命题的序号( ) A .①① B .①①C .①①①D .①①①例4.(2022·全国·高三专题练习)如图所示,圆锥的轴截面PAB △是以P 为直角顶点的等腰直角三角形,2PA =,C 为PA 中点.若底面O 所在平面上有一个动点M ,且始终保持0MA MP ⋅=,过点O 作PM 的垂线,垂足为H .当点M 运动时,①点H 在空间形成的轨迹为圆 ①三棱锥O HBC -的体积最大值为112①AH HO +的最大值为2①BH 与平面PAB 上述结论中正确的序号为( ). A .①① B .①①C .①①①D .①①①例5.(2022·安徽省舒城中学一模(理))已知正三棱锥A BCD -的高为3,侧棱AB 与底面BCD 所成的角为3π,E 为棱BD 上一点,且12BE =,过点E 作正三棱锥A BCD -的外接球的截面,则截面面积S 的最小值为( )A .54π B .34π C .4π D .4π例6.(2022·全国·高三专题练习)已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( ) A .128π B .132π C .144π D .156π例7.(2022·全国·高三专题练习)已知直四棱柱1111ABCD A B C D -,其底面ABCD 是平行四边形,外接球体积为36π,若1AC BD ⊥,则其外接球被平面11AB D 截得图形面积的最小值为( ) A .8π B .24310π C .8110π D .6π例8.(2022·全国·高三专题练习(文))已知正三棱锥A BCD -的外接球是球O ,正三棱锥底边3BC =,侧棱AB =点E 在线段BD 上,且BE DE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是( ) A .9,34ππ⎡⎤⎢⎥⎣⎦B .[]2,3ππC .11,44ππ⎡⎤⎢⎥⎣⎦ D .9,44ππ⎡⎤⎢⎥⎣⎦例9.(2022·浙江省江山中学模拟预测)如图,在单位正方体1111ABCD A B C D -中,点P 是线段1AD 上的动点,给出以下四个命题:①异面直线1PC 与直线1B C 所成角的大小为定值; ①二面角1P BC D --的大小为定值;①若Q 是对角线1AC 上一点,则PQ QC +长度的最小值为43; ①若R 是线段BD 上一动点,则直线PR 与直线1A C 不可能平行.其中真命题有( ) A .1个 B .2个C .3个D .4个例10.(2022·北京·人大附中模拟预测)已知正方体1111,ABCD A B C D O -为对角线1AC 上一点(不与点1,A C 重合),过点O 作垂直于直线1AC 的平面α,平面α与正方体表面相交形成的多边形记为M ,下列结论不正确的是( )A .M 只可能为三角形或六边形B .平面ABCD 与平面α的夹角为定值C .当且仅当O 为对角线1AC 中点时,M 的周长最大D .当且仅当O 为对角线1AC 中点时,M 的面积最大例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例12.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例13.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ①四边形1BFD E 有可能是正方形; ①平面1BFD E 有可能垂直于平面1BB D ;①设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ①四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2 B .3C .4D .5例14.(2022·陕西·西北工业大学附属中学模拟预测(理))如图,棱长为1的正方体1111ABCD A B C D -中,点P 为线段1A C 上的动点,点,M N 分别为线段111,AC CC 的中点,则下列说法错误..的是( )A .11A P AB ⊥ B .三棱锥1M B NP -的体积为定值C .[]160,120APD ∠∈︒︒ D .1AP D P +的最小值为23例15.(2022·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,点P 为线段11A C 上的动点(点P 与1A ,1C 不重合),则下列说法不正确的是( )A .BD CP ⊥B .三棱锥C BPD -的体积为定值C .过P ,C ,1D 三点作正方体的截面,截面图形为三角形或梯形 D .DP 与平面1111D C B A 所成角的正弦值最大为13例16.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -内切球的表面积为π,P 是空间中任意一点: ①若点P 在线段1AD 上运动,则始终有11C P CB ⊥; ①若M 是棱11C D 中点,则直线AM 与1CC 是相交直线; ①若点P 在线段1AD 上运动,三棱锥1D BPC -体积为定值;①E 为AD 中点,过点1B ,且与平面1A BE 以上命题为真命题的个数为( ) A .2 B .3C .4D .5例17.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) AB.1 CD.2例18.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12B .13C .14D .15例19.(2022·四川省内江市第六中学高二期中(理))已知四面体ABCD,M N 分别为棱,AD BC 的中点,F 为棱AB 上异于,A B 的动点.有下列结论: ①线段MN 的长度为1;①点C 到面MFN的距离范围为⎛ ⎝⎭; ①FMN1;①MFN ∠的余弦值的取值范围为⎡⎢⎣⎭. 其中正确结论的个数为( ) A .1 B .2 C .3 D .4例20.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例21.(2022·全国·高三专题练习(理),该几何体的表面积最小值是1S ,我们在绘画该表面积最小的几何体的直观图时所画的底面积大小是2S ,则1S 和2S 的值分别是( )A .3B .4;12C .4D .3;12例22.(2022·全国·高三专题练习)已知棱长为2的正方体1111ABCD A B C D -,棱1DD 中点为M ,动点P 、Q 、R 分别满足:点P 到异面直线BC 、11C D 的距离相等,点Q 使得异面直线1A Q 、BC 点R 使得134A RB π∠=.当动点P 、Q 两点恰好在正方体侧面11CDD C 内时,则多面体1RMPC Q 体积最小值为( )A B C D例23.(2022·全国·高三专题练习)在棱长为2的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的点(点M 与1A C 、不重合),有以下四个结论:①存在点M ,使得平面1A DM ⊥平面1BC D ; ①存在点M ,使得//DM 平面11B D C ;①若1A DM 的周长为L ,则L①若1A DM 的面积为S ,则S ∈⎝. 则正确的结论为( ) A .①① B .①①①C .①①①D .①①例24.(2022·河南·模拟预测(文))已知四面体ABCD ,M 、N 分别为棱AD 、BC 的中点,F 为棱AB 上异于A 、B 的动点.有下列结论: ①线段MN 的长度为1;①存在点F ,满足CD ⊥平面FMN ;①MFN ∠的余弦值的取值范围为⎡⎢⎣⎭; ①FMN1. 其中所有正确结论的编号为( ) A .①① B .①① C .①①① D .①①①例25.(2022·全国·高三专题练习)在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D例26.(2022·四川省成都市新都一中高二期中(文))如图,正方形EFGH 的中心为正方形ABCD 的中心,AB =截去如图所示的阴影部分后,翻折得到正四棱锥P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A B C .43D例27.(2022·青海·大通回族土族自治县教学研究室二模(理))在棱长为3的正方体1111ABCD A B C D -中,P 为1ACD △内一点,若1PB D 1DD AP 体积的最大值为( )A BC D例28.(2022·四川省宜宾市第四中学校三模(理))函数()sin 2sin 2π0e 2x x f x x ⎛⎫=<< ⎪⎝⎭,设球O 的半径为()cos 4f x x π⎛⎫- ⎪⎝⎭,则( )A .球O 的表面积随x 增大而增大B .球O 的体积随x 增大而减小C .球O 的表面积最小值为24e π D .球O 的体积最大值为343e π题型四:立体几何中的交线问题例29.(2022·全国·高三专题练习(理))已知正方体ABCD A B C D ''''-的棱长为4,E ,F 分别为BB ',C D ''的中点,点P 在平面ABB A ''中,=PF N 在线段AE 上,则下列结论正确的个数是( )①点P 的轨迹长度为2π;①线段FP 的轨迹与平面A B CD ''的交线为圆弧;①NP ;①过A 、E 、F 作正方体的截面,则该截面的周长为103A .4 B .3C .2D .1例30.(2022·全国·高三专题练习)在正四棱锥P ABCD -中,已知2PA AB ==,O 为底面ABCD 的中心,以点O PCD 的交线长度为( )A B C D例31.(2022·全国·高三专题练习)已知正四面体的中心与球心O 重合,正四面体的棱长为A.4π B .C .D .12π例32.(2022·四川成都·模拟预测(理))如图,①ABC 为等腰直角三角形,斜边上的中线AD =3,E 为线段BD 中点,将①ABC 沿AD 折成大小为2π的二面角,连接BC ,形成四面体C -ABD ,若P 是该四面体表面或内部一点,则下列说法错误的是( )A .点P 落在三棱锥E -ABC 内部的概率为12B .若直线PE 与平面ABC 没有交点,则点P 的轨迹与平面ADCC .若点P 在平面ACD 上,且满足P A =2PD ,则点P 的轨迹长度为23π D .若点P 在平面ACD 上,且满足P A =2PD ,则线段PB 长度为定值例33.(2022·江苏徐州·高二期中)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE △沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例34.(2022·河南·模拟预测(理))已知正方体1111ABCD A B C D -的棱长是2,E ,F 分别是棱11B C 和1CC 的中点,点P 在正方形11BCC B (包括边界)内,当//AP 平面1A EF 时,AP 长度的最大值为a .以A 为球心,a 为半径的球面与底面1111D C B A 的交线长为( )A .2πB .πC D例35.(2022·湖南·临澧县第一中学高二阶段练习)已知正四棱柱1111ABCD A B C D -中,122CC AB ==,E 为1CC 的中点,P 为棱1AA 上的动点,平面α过B ,E ,P 三点,则( )A .平面α⊥平面11AB EB .平面α与正四棱柱表面的交线围成的图形一定是四边形C .当P 与A 重合时,α截此四棱柱的外接球所得的截面面积为11π8D .存在点P ,使得AD 与平面α所成角的大小为π3例36.(2022·江苏·南京师大附中模拟预测)如图,圆柱的底面半径和高均为1,线段AB 是圆柱下底面的直径,点O 是下底面的圆心.线段EF 是圆柱的一条母线,且EO AB ⊥.已知平面α经过A ,B ,F 三点,将平面α截这个圆柱所得到的较小部分称为“马蹄体”.记平面α与圆柱侧面的交线为曲线C .则( )A .曲线C 是椭圆的一部分B .曲线C 是抛物线的一部分C .二面角F AB E --的大小为4πD .马蹄体的体积为V 满足134V π<<例37.(2022·江苏·南京外国语学校模拟预测)如图,正方形ABCD -A 1B 1C 1D 1边长为1,P 是1A D 上的一个动点,下列结论中正确的是( )A .BPB .PA PC + C .当P 在直线1AD 上运动时,三棱锥1A B PC - 的体积不变D .以点B 1AB C例38.(2022·全国·高三专题练习)已知正四棱柱1111ABCD A B C D -的底面边为1,侧棱长为a ,M 是1CC 的中点,则( ) A .任意0a >,1A M BD ⊥B .存在0a >,直线11AC 与直线BM 相交C .平面1A BM 与底面1111D C B AD .当2a =时,三棱锥11B A BM -外接球表面积为3π题型五:空间线段以及线段之和最值问题例39.(2022·山东·高一阶段练习)已知三棱锥P ABC -三条侧棱PA ,PB ,PC 两两互相垂直,且6PA PB PC ===,M 、N 分别为该三棱锥的内切球和外接球上的动点,则线段MN 的长度的最小值为( )A .3B .6C .6-D .例40.(2022·全国·高三专题练习)已知正三棱锥S ABC -外接球表面积为3π,SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( )A B C D例41.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A B .6 C D .7例42.(2022·全国·高一专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A B C .1D .3例43.(2022·湖北·高一阶段练习)已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+,其中,[0,1]λμ∈,则下列选项正确的是( )A .12μ=时,11A P ED ⊥ B .14λ=时,1B P PD +C .1λμ+=时,直线1A P 与面11BDE D .1λμ+=时,正方体被平面1PAD 截的图形最大面积是例44.(2022·湖南岳阳·三模)如图,在直棱柱1111ABCD A B C D -中,各棱长均为2,π3ABC ∠=,则下列说法正确的是( )A .三棱锥1A ABC -B .异面直线1AB 与1BCC .当点M 在棱1BB 上运动时,1MD MA +最小值为D .N 是ABCD 所在平面上一动点,若N 到直线1AA 与BC 的距离相等,则N 的轨迹为抛物线例45.(2022·全国·高三专题练习)在棱长为1的正方体1111ABCD A B C D -中,点P 满足1DP DD DA λμ=+,[0,1]λ∈,[0,1]μ∈,则以下说法正确的是( )A .当λμ=时,//BP 平面11CB D B .当12μ=时,存在唯一点P 使得DP 与直线1CB 的夹角为3πC .当1λμ+=时,CPD .当1λμ+=时,CP 与平面11BCC B 所成的角不可能为3π例46.(2022·全国·模拟预测)如图,点M 是棱长为1的正方体1111ABCD A B C D -中的侧面11ADD A 上的一个动点(包含边界),则下列结论正确的是( )A .存在无数个点M 满足1CM AD ⊥B .当点M 在棱1DD 上运动时,1||MA MB +1C .在线段1AD 上存在点M ,使异面直线1B M 与CD 所成的角是30 D .满足1||2MD MD =的点M 的轨迹是一段圆弧例47.(2022·浙江绍兴·模拟预测)如图,斜三棱柱111ABC A B C -中,底面ABC 是正三角形,,,E F G 分别是侧棱111,,AA BB CC 上的点,且AE CG BF >>,设直线,CA CB 与平面EFG 所成的角分别为,αβ,平面EFG 与底面ABC 所成的锐二面角为θ,则( )A .sin sin sin ,cos cos cos θαβθαβ<+≤+B .sin sin sin ,cos cos cos θαβθαβ≥+<+C .sin sin sin ,cos cos cos θαβθαβ<+>+D .sin sin sin ,cos cos cos θαβθαβ≥+≥+例48.(2022·浙江·高三专题练习)在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( ) A .若12θθ=,则AC BC = B .若12θθ≠,则121tan tan 2θθ⋅=C .θ可能值为6πD .当θ取值最大时,12θθ=例49.(2022·全国·高三专题练习)在三棱台111BCD B C D -中,1CC ⊥底面BCD ,BC CD ⊥,12BC CD CC ===,111B C =.若A 是BD 中点,点P 在侧面11BDD B 内,则直线1DC 与AP 夹角的正弦值的最小值是( )A .16B C D例50.(2022·浙江台州·高三期末)已知在正方体1111ABCD A B C D -中,点E 为棱BC 的中点,直线l 在平面1111D C B A 内.若二面角A l E --的平面角为θ,则cos θ的最小值为( )A B .1121C D .35例51.(2021·全国·高二课时练习)已知正方体ABCD A B C D ''''-的棱长为3,E 为棱AB 上的靠近点B 的三等分点,点P 在侧面CC D D ''上运动,当平面B EP '与平面ABCD 和平面CC D D ''所成的角相等时,则D P '的最小值为( )A B C D例52.(2021·浙江·瑞安中学模拟预测)已知点P 是正方体ABCD A B C D ''''-上底面A B C D ''''上的一个动点,记面ADP 与面BCP 所成的锐二面角为α,面ABP 与面CDP 所成的锐二面角为β,若αβ>,则下列叙述正确的是( ) A .APC BPD ∠>∠B .APC BPD ∠<∠C .{}{}max ,max ,APD BPC APB CPD ∠∠>∠∠ D .{}{}min ,min ,APD BPC APB CPD ∠∠>∠∠例53.(2022·全国·高三专题练习)如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+> D .2αβθ+>例54.(2022·全国·高三专题练习)如图,在正方体ABCD EFGH -中,P 在棱BC 上,BP x =,平行于BD 的直线l 在正方形EFGH 内,点E 到直线l 的距离记为d ,记二面角为A l P --为θ,已知初始状态下0x =,0d =,则( )A .当x 增大时,θ先增大后减小B .当x 增大时,θ先减小后增大C .当d 增大时,θ先增大后减小D .当d 增大时,θ先减小后增大题型七:立体几何装液体问题例55.(2022·全国·高二期中)如图,水平桌面上放置一个棱长为4的正方体水槽,水面高度恰为正方体棱长的一半,在该正方体侧面11CDD C 上有一个小孔E ,E 点到CD 的距离为3,若该正方体水槽绕CD 倾斜(CD 始终在桌面上),则当水恰好流出时,侧面11CDD C 与桌面所成角的正切值为( )A B .12C D .2例56.(2022·全国·高一课时练习)一个封闭的正三棱柱容器,高为3,内装水若干(如图甲,底面处于水平状态),将容器放倒(如图乙,一个侧面处于水平状态),这时水面与各棱交点11,,,E F F E 分别为所在棱的中点,则图甲中水面的高度为( )A .32B .74C .2D .94例57.(2022·湖北宜昌·一模(文))已知一个放置在水平桌面上的密闭直三棱柱111ABC A B C -容器,如图1,ABC ∆为正三角形,2AB =,13AA =,里面装有体积为BC 旋转至图2.在旋转过程中,以下命题中正确的个数是( )①液面刚好同时经过A ,1B ,1C 三点;①当平面ABC 1; ①当液面与水平桌面的距离为32时,AB 与液面所成角的正弦值为34.A .0B .1C .2D .3例58.(2022·全国·高一课时练习)一个密闭且透明的正方体容器中装有部分液体,已知该正方体的棱长为1,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围为( )A .15,66⎡⎤⎢⎥⎣⎦B .15,66⎛⎫ ⎪⎝⎭C .12,63⎡⎤⎢⎥⎣⎦D .12,63⎛⎫ ⎪⎝⎭例59.(2022·全国·高一课时练习)一个密闭且透明的正方体容器中装有部分液体,已知该正方体的棱长为2,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体的体积的取值范围为( ) A .202,3⎛⎫ ⎪⎝⎭B .417,33⎛⎫ ⎪⎝⎭C .172,3⎛⎫ ⎪⎝⎭D .420,33⎛⎫ ⎪⎝⎭例60.(2022·重庆·高二期末(文))已知某圆柱形容器的轴截面是边长为2的正方形,容器中装满液体,现向此容器中放入一个实心小球,使得小球完全被液体淹没,则此时容器中所余液体的最小容量为( ) A .π3B .2π3C .πD .4π3例61.(2022·福建厦门·高一期末)如图(1)平行六面体容器1111ABCD A B C D -盛有高度为h 的水,12AB AD AA ===,1A AB ∠=160A AD BAD ∠=∠=︒.固定容器底而一边BC 于地面上,将容器倾斜到图(2)时,水面恰好过A ,1B ,1C ,D 四点,则h 的值为( )A B C D 例62.(2022·福建·厦门市湖滨中学高一期中)如图,透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的命题是( )A .水面EFGH 所在四边形的面积为定值B .随着容器倾斜度的不同,11AC 始终与水面所在平面平行C .没有水的部分有时呈棱柱形有时呈棱锥形D .当容器倾斜如图(3)所示时,AE AH ⋅为定值例63.(2022·山东·高三专题练习)一个透明封闭的正四面体容器中,恰好盛有该容器一半容积的水,任意转动这个正四面体,则水面在容器中的形状可能是:①正三角形①直角三形①正方形①梯形,其中正确的个数有( )A .1个B .2个C .3个D .4个。

专题8.8 立体几何综合问题(精练)-2021年新高考数学一轮复习学与练(解析版)

专题8.8   立体几何综合问题(精练)-2021年新高考数学一轮复习学与练(解析版)

专题8.8 立体几何综合问题一、选择题1.(2020·浙江高三月考)“直线l与平面α内无数条直线垂直”是“直线l与平面α垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要也不充分条件【答案】B【解析】设命题p:直线l与平面α内无数条直线垂直,命题q:直线l与平面α垂直,⇒,所以p是q的必要不充分条件.则p q,但q p故选:B、是空间两个不同的平面,则“平面α上存在不共线的三点到2.(2020·上海市建平中学月考)已知αβαβ”的()平面β的距离相等”是“//A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】B【解析】、是空间两个不同的平面,若平面α内存在不共线的三点到平面β的距离相等,已知αβαβ或相交,可得//αβ,则平面α上存在不共线的三点到平面β的距离相等;反之,若//αβ”的必要不充分条件.所以“平面α上存在不共线的三点到平面β的距离相等”是“//故选:B.3.(2020·浙江高三月考)设m,n是空间两条不同直线,α,β是空间两个不同平面,则下列选项中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件⊥”的充分不必要条件B.当时,“m⊥β”是“αβC.当时,“n//α”是“”必要不充分条件D .当时,“”是“”的充分不必要条件【答案】C 【解析】A,B,D 正确;C 错误.,////m n m n m n αα⊂⇒或与异面;,////;m n m n n ααα⊂⇒⊂或所以当m α⊂时,//n α是//m n 的既不充分又不必要条件.故选C3.(2020·河北新华·石家庄二中高三月考(理))如图,正方体1111ABCD A BC D -中,P 为底面ABCD 上的动点,1PE A C ⊥于E ,且,PA PE =则点P 的轨迹是( )A .线段B .圆C .椭圆的一部分D .抛物线的一部分【答案】A【解析】 连结1AP ,可证11A AP A EP ≌,即11A A A E =,即点E 是体对角线1AC 上的定点,直线AE 也是定直线.PA PE =,∴动点P 必定在线段AE 的中垂面α上,则中垂面α与底面ABCD 的交线就是动点P 的轨迹,所以动点P 的轨迹是线段.故选:A5.(2020·河南月考(理))3D 打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知利用3D 打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为31 g/cm,不考虑打印损耗,制作该模型所需原料的质量约为()(取π 3.14=,精确到0.1)A.609.4g B.447.3g C.398.3g D.357.3g【答案】C【解析】如图,是几何体的轴截面,因为圆锥底面直径为,所以半径为OB=.因为母线与底面所成角的正切值为tan B,所以圆锥的高为10cmPO=.设正方体的棱长为a,DE=1010a-=,解得5a=.所以该模型的体积为(()2331500ππ105125cm33V=⨯⨯-=-.所以制作该模型所需原料的质量为()500π500π1251125398.3g33⎛⎫-⨯=-≈⎪⎝⎭.故选:C.6.(2020·上海浦东新·华师大二附中月考)运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆221916x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .64πB .48πC .16πD .32π【答案】B【解析】 构造一个底面半径为3,高为4的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为(04)h h 时,小圆锥的底面半径为r ,则43h r =, 34r h ∴=, 故截面面积为26991h ππ-,把y h =代入椭圆221916x y +=可得x =, ∴橄榄球形几何体的截面面积为221699h x πππ=-, 由祖暅原理可得橄榄球形几何体的体积()1229494483V V V πππ⎛⎫=-=⨯-⨯⨯= ⎪⎝⎭圆柱圆锥. 故选:B .7.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( )A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤【答案】D【解析】 设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO 、SN 、OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此123,,,SEN SEO SMO θθθ∠=∠=∠= 从而123tan ,tan ,tan ,SN SN SO SO EN OM EO OMθθθ==== 因为SN SO EO OM ≥≥,,所以132tan tan tan ,θθθ≥≥即132θθθ≥≥,选D.8.(2019·山西高二期中(理))如图,在Rt ABC ∆中,D ,E 分别为AB ,AC 边上的中点,且4AB =,2BC =.现将ABC ∆沿DE 折起,使得A 到达1A 的位置,且二面角1A DE B --为60︒,则1AC =( )A .B .3CD .【答案】A【解析】 ,D E 分别为,AB AC 中点 //DE BC ∴ DE BD ∴⊥,1DE A D ⊥又1,BD A D ⊂平面1A BD ,1BD A D D = DE ∴⊥平面1A BD二面角1A DE B --的平面角为1A DB ∠ 160A DB ∴∠=12A D BD == 12A B ∴=//BC DE BC ∴⊥平面1A BD ,又1A B ⊂平面1A BD 1BC A B ∴⊥1AC ∴===故选:A9.(2020·浙江诸暨·)正方体1111ABCD A BC D -中,在111A B D ∆内部(不含边界)存在点P ,满足点P 到平面11ACC A 的距离等于点P 到棱1BB 的距离.分别记二面角P AD B --为α,P AC B --为β,P BC A --为γ,则下列说法正确的是( )A .αβγ>>B .αγβ<<C .αβγ<<D .以上说法均不正确【答案】C【解析】如图所示,作PQ ⊥面ABCD 于Q ,作QE AD ⊥于E ,QF BC ⊥于F ,QG AC ⊥于G ,连PE ,PF ,PG , 则PEQ α=∠,PGQ β=∠,PFQ γ=∠. 因此tan PQ QE α=,tan PQ QG β=,tan PQ QFγ=, 作111PE A D ⊥于1E ,111PF B C ⊥于1F ,111PG AC ⊥于1G ,1PG 即点P 到平面11ACC A 的距离,1PB 即点P 到棱1BB 的距离,因此11PB PG =,因为111QF PF PB PG QG =<==,因此tan tan βγ<,因为11QG PG PE QE =<=,因此tan tan αβ<综上有:tan tan tan αβγ<<,即αβγ<<,故选:C10.(2020·安徽合肥·高三三模(理))在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的面11DCC D 的交线长等于()A .23πB .πC .43πD【答案】A【解析】如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ;又APD MPC ∠=∠, 在Rt PDA △与Rt PCM 中,∵6AD =,则3MC =, ∴tan tan AD MC APD MPC PD PC ∠==∠=,则63PD PC =, 即2PD PC =.在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系, 则()3,0D -,()3,0C ,设(),P x y , 由2PD PC ==整理得:221090x x y -++=,即()22516x y -+=.∴点P 的轨迹是以()5,0F 为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,则21sin 42EK EFK EF ∠===; ∴6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=. 故选:A .二、多选题 11.(2020·广东宝安·高三开学考试)如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是( )A .AC BE ⊥B .//EF 平面ABCDC .AEF 的面积与BEF 的面积相等D .三棱锥A BEF -的体积为定值【答案】ABD【解析】可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确;由11//B D 平面ABCD ,可知//EF 平面ABCD ,B 也正确;连结BD 交AC 于O ,则AO 为三棱锥A BEF -的高,1111224BEF S =⨯⨯=△,三棱锥A BEF -的体积为1134224⨯⨯=为定值,D 正确;很显然,点A 和点B 到的EF 距离是不相等的,C 错误. 故选:ABD 12.(2020·江苏赣榆一中高一月考)已知在矩形ABCD 中,4AB =,3BC =,将矩形ABCD 沿对角线AC 折成大小为θ的二面角B AC D --,若折成的四面体ABCD 内接于球O ,则下列说法正确的是( ) A .四面体ABCD 的体积的最大值是245 B .球的体积随θ的变化而变化C .球心O 为原矩形的两条对角线的交点D .球O 的表面积为定值25π 【答案】ACD【解析】如图,(1)当面ACD ⊥面ABC 时,四面体ABCD 的体积最大,此时,如图,过点D 作AC 的垂线,交AC 于点E ,则DE 即为四面体ABCD 的高,由等面积法得:AC DE AD DC ⨯=⨯,∴ 125DE = , ∴四面体ABCD 的最大值为11112243433255ABC V S h =⋅=⨯⨯⨯⨯=, 故A 选项正确; (2)在四面体ABCD 内,AC 的中点O 到点,,,A B C D 的距离相等,∴点O 为外接球的球心,此时球的半径522AC R ==,球的体积242533V R ππ== ,为定值,球的表面积2425S R ππ== ,为定制,故B 选项错误,,C D 正确,故选,,A C D 13.(2020·湖北江岸·期末)向体积为1的正方体密闭容器内注入体积为x (01x <<)的液体,旋转容器,下列说法正确的是( )A .当12x =时,容器被液面分割而成的两个几何体完全相同 B .不管注入多少液体,液面都可以成正三角形形状CD 【答案】AC【解析】对于A ,当12x =时,题目等价于过正方体中心的平面截正方体为两部分, 根据对称性知两部分完全相同,所以A 正确; 对于B ,取12x =,此时液面过正方体中心,截面不可能为三角形,所以B 错误; 对于C ,当液面与正方体的体对角线垂直时,液面为如图所示正六边形时面积最大,其中正六边形的顶点均为对应棱的中点,所以液面面积的最大值为162S ==,C 正确; 对于D ,当液面过1DB 时,截面为1B NDG ,将1111D C B A 绕11C D 旋转2π,如图所示;则111DN B N DN B N DB ''+=+≥= 当D 、N 、1B '三点共线时等号成立,所以液面周长最小值为D 错误. 故选:AC.14.(2020·广东深圳·高二月考)(多选题)如图,在直三棱柱111ABC A B C -中,1223AA AC AB ===,AB AC ⊥,点D ,E 分别是线段BC ,1BC 上的动点(不含端点),且1EC DC B C BC=.则下列说法正确的是( )A .//ED 平面1ACCB .该三棱柱的外接球的表面积为68πC .异面直线1BC 与1AA 所成角的正切值为32 D .二面角A EC D --的余弦值为413【答案】AD【解析】在直三棱柱111ABC A B C -中,四边形11BCC B 是矩形, 因为1EC DC B C BC=,所以11////ED BB AA ,ED 不在平面1ACC 内,1AA ⊂平面1ACC , 所以//ED 平面1ACC ,A 项正确; 因为1223AA AC AB ===,所以3AB =, 因为AB AC ⊥,所以BC ==1BC 易知1BC 是三棱柱外接球的直径,所以三棱柱外接球的表面积为22417πππ=⨯=⎝⎭,所以B 项错误; 因为11//AA BB ,所以异面直线1BC 与1AA 所成角为1BB C ∠.在1Rt B BC 中,12BB =,BC =,所以11tan BC BB C BB ∠==C 项错误; 二面角A EC D --即二面角1A B C B --,以A 为坐标原点,以AB ,AC ,1AA 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图则1(0,0,0),(3,0,0),(0,2,0),(3,0,2)A B C B ,1(3,0,2)AB ∴=,(3,2,0)BC =-,1(3,2,2)BC =--, 设平面1ABC 的法向量(,,)n x y z =,则1100n AB n B C ⎧⋅=⎪∴⎨⋅=⎪⎩,即3203220x z x y z +=⎧⎨-+-=⎩,令2x =可得(2,0,3)n =-, 设平面1BB C 的一个法向量为(,,)m x y z =,则100m BC m B C ⎧⋅=⎪⎨⋅=⎪⎩,即3203220x y x y z -+=⎧⎨-+-=⎩,令2x =可得(2,3,0)m = 故二面角A EC D --413=,所以D 项正确. 故选:AD.三、填空题15.(2020·浙江高三月考)在2000多年前,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究圆锥曲线:用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线.已知一个圆锥的高和底面半径都为2,则用与底面呈45的平面截这个圆锥,得到的曲线是___________.【答案】抛物线【解析】因为圆锥的高和底面半径都为2,因此有, ︒tan 145OS SAO SAO AO︒∠==⇒∠=所以母线SA 与底面所成的角为45,因为用与底面呈45的平面截这个圆锥,所以该平面一定会与圆锥的某条母线(如SA )平行,由题中所给的结论可知:用与底面呈45的平面截这个圆锥,得到的曲线是抛物线.故答案为:抛物线16.(2020·江西其他(文))《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).己知弦尺,弓形高寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,,答案四舍五入,只取整数...........)【答案】317 【解析】如图,设圆半径为寸(下面长度单位都是寸),连接,已知,, 在中,,即,解得, ︒︒︒1AB =1CD =53.14,sin 22.513π≈≈r ,OA OD 152AD AB ==1OD OC CD r =-=-Rt ADO 222AD OD OA 2225(1)r r +-=13r =由得,所以, 图中阴影部分面积为扇形(平方寸), 镶嵌在墙体中木材是以阴影部分为底面,以锯刀长为高的柱体,所以其体积为(立方寸)故答案为:317.17.(2020·河北新华·石家庄二中高二月考)如图,在四棱锥中,四边形为菱形,且是等边三角形,点是侧面内的一个动点,且满足,则点所形成的轨迹长度是_______.【解析】根据题意,连接AC ,BD ,记其交点为O ,取PC 上一点为M ,连接MB ,MD ,作图如下:5sin 13AD AOD AO ∠==22.5AOD ∠=︒45AOB ∠=︒S S =214131012 6.332522AOB S πππ-=⨯⨯-⨯⨯≈△6.332550317V Sh =≈⨯≈P ABCD -ABCD 2,60,AB DAB PAD =∠=∆PB Q =PBC DQ AC ⊥Q若满足题意,又,故平面DBQ ,则点Q 只要在平面DBQ 与平面PBC 的交线上即可.假设如图所示:平面DBM 与平面DBQ 是同一个平面,则Q 点的轨迹就是线段BM.根据假设,此时直线平面DBM ,则.故三角形MOC 为直角三角形.因为三角形PAD 是等边三角形,三角形BAD 也是等边三角形,故AD ,又因为BC //AD ,故BC PB ,故三角形PBC 为直角三角形,故故在三角形PAC 中,由余弦定理可得:故在直角三角形MOC 中, 在直角三角形PBC 中, 在三角形BCM 中: 故可得:. DQ AC ⊥AC BD ⊥AC ⊥AC ⊥AC MO ⊥PB ⊥⊥2210PC PB BC +2,23,10PA AC PC ===33021023cos PCA ∠==⨯210OC MC cos PCA ==∠BC cos PCB PC ∠=1010=2222829BM BC CM BC CM cos PCB =+-⨯⨯⨯∠=27BM =故答案为. 18.(2021·福建其他)《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑中,平面,,,,为中点,为内的动点(含边界),且.①当在上时,______;②点的轨迹的长度为______.【答案】【解析】 (1)当在上时,因为平面,故,又,故平面.故.又,为中点,故所以为中点.故. (2)取中点则由(1)有平面,故,又,设平面则有平面.故点的轨迹为.又此时,,故. 所以3P ABC -PA ⊥ABC 90ACB ∠=︒4CA =2PA =D AB E PAC ∆PC DE ⊥E AC AE =E E AC PA ⊥ABC PA DE ⊥PC DE ⊥DE ⊥PAC DE AC ⊥90ACB ∠=︒D AB //DE BC E AC 122AE AC ==AC F DF ⊥PAC PC DF ⊥PC DE ⊥DEF PC G ⋂=PC ⊥DGF E FG 2CF =1tan 2PA PCA AC ∠==sin PCA ∠==sin 5FG CF PCA =⋅∠==故答案为:19.(2020·全国高三专题练习(文))现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.【答案】12 90【解析】足球每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其他白色皮子的边缝在一起.所以设这个足球有x 块正五边形,一共有5x 条边,其中白皮三条边和黑皮相连,又足球表面中的正六边形的面为20个,根据题意可得方程:,解得,该足球表面中的正五边形的面为12个;因为任何相邻两个面的公共边叫做足球的棱,所以每条棱由两条边组成,该足球表面的棱为:条.故答案为:12;90.20.如图在三棱锥S ABC -中,SA SB SC ==,且2ASB BSC CSA π∠=∠=∠=,M N 、分别是AB 和SC 的中点.则异面直线SM 与BN 所成的角的余弦值为______,直线SM 与面SAC 所成角大小为5203x =⨯12x =()125+206290⨯⨯÷=_________.4π 【解析】 因为2ASB BSC CSA π∠=∠=∠=,所以以S 为坐标原点,SA,SB,SC 为x,y,z 轴建立空间直角坐标系.设2SA SB SC ===,则(1,1,0),(0,2,0),(0,0,1),(2,0,0),(0,0,2).M B N A C因为2(1,1,0),(0,2,1),cos ,2SM BNSM BN -==-==,所以异面直线SM 与BN 所成的角的余弦值为5,面SAC 一个法向量为(0,2,0),SB =则由2cos ,22SM SB ==得π,4SM SB =,即直线SM 与面SAC 所成角大小为π4. 21.(2020·包头市第九中学高一期末)设三棱锥的底面和侧面都是全等的正三角形,是棱的中点.记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则,,中最大的是_________,最小的是________.【答案】【解析】S ABC -P SA PB AC αPB ABC βP AC B --γαβγαβ作交于,由于,, 所以为正三棱锥,由对称性知,取中点,连接,作平面,交平面于,连接, 作平面,交平面于,连接,作,交于,连接,所以, 由于,所以,由于平面,所以,由于,平面,所以,, 因为,在上,平面于,平面于, 所以.所以.所以, 由于都是锐角,所以, 由于在上,由对称性,而,则,由于也是锐角,所以,由,,所以 综上所述,三个角中的最小角是,最大角是.故答案为:①;②.四、解答题//PD CA SC D AB BC CA ==SA SB SC ==S ABC -BD PB =PD E BE EH ⊥ABC ABC H BH PF ⊥ABC ABC F BF PG AC ⊥AC G GF BE PD ⊥//PD AC BPD α=∠PF ⊥ABC PBF β=∠PG AC ⊥PF ⊥ABC PGF γ=∠sin BE EH BP BP BP BPα==>=//PD CA E PD EH ⊥ABC H PF ⊥ABC F EH PF =sin PF EH BP BPβ==sin sin αβ>,αβαβ>P SA PB CP =CP PG >sin sin PF PF PF PG CP BP γβ=>==γγβ>PB BG<sin BE EH PF BP BP BP α==>==sin PF PGγ>=αγβααβ22.(2019·北京西城·高三三模)如图,在正四棱柱1111ABCD A BC D -中,1AB =,13AA =,过顶点A ,1C 的平面与棱1BB ,1DD 分别交于M ,N 两点(不在棱的端点处).(1)求证:四边形1AMC N 是平行四边形;(2)求证:AM 与AN 不垂直;(3)若平面1AMC N 与棱BC 所在直线交于点P ,当四边形1AMC N 为菱形时,求PC 长.【答案】(1)证明见解析;(2)证明见解析;(3)=2PC .【解析】(1)依题意1AM C N ,,,都在平面1AC 上, 因此AM ⊆平面1AC ,1NC ⊆平面1AC ,又AM ⊆平面11ABB A ,1NC ⊆平面11DCC D ,平面11ABB A 与平面11DCC D 平行,即两个平面没有交点,则AM 与1NC 不相交,又AM 与1NC 共面,所以//AM 1NC ,同理可证//AN 1MC ,所以四边形1AMC N 是平行四边形;(2)因为M ,N 两点不在棱的端点处,所以11MN BD AC <=,又四边形1AMC N 是平行四边形,1MN AC ≠,则1AMC N 不可能是矩形,所以AM 与AN 不垂直;(3)如图,延长1C M 交CB 的延长线于点P ,若四边形1AMC N 为菱形,则1AM MC =,易证11Rt ABM Rt C B M ≅,所以1BM B M =,即M 为1BB 的中点, 因此112BM CC =,且1//BM CC ,所以BM 是1PCC 的中位线, 则B 是PC 的中点,所以22PC BC ==.23.(2019·全国高三专题练习)如图,正△ABC 的边长为4,CD 为AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP DE ⊥?如果存在,求出BP BC 的值;如果不存在,请说明理由. 【答案】(1)//AB 平面DEF ,理由见解析;(2)13. 【解析】(1)AB∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF∥AB.又因为AB ⊄平面DEF ,EF ⊂平面DEF ,所以AB∥平面DEF.(2)以点D 为坐标原点,直线DB ,DC ,DA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则A(0,0,2),B(2,0,0),C(0,0),E(01),故DE =(01).假设存在点P(x ,y ,0)满足条件,则AP =(x ,y ,-2),AP ·DE 20-=,所以y =.又BP =(x 2-,y ,0),PC =(-x ,y ,0),BP ∥PC ,所以(x 2-)(y )=xy -y +=把y =代入上式得4x 3=,所以BP =1BC 3, 所以在线段BC 上存在点P 使AP⊥DE,此时BP 1BC 3=. 24.(2019·上海市金山中学高二月考)几何特征与圆柱类似,底面为椭圆面的几何体叫做“椭圆柱”,如图所示的“椭圆柱”中,A B ''、AB 和O '、O 分别是上下底面两椭圆的长轴和中心,1F 、2F 是下底面椭圆的焦点,其中长轴的长度为2,两中心O '、O M 、N 分别是上、下底面椭圆的短轴端点,且位于平面AA B B ''的两侧.(1)求证:OM ∥平面A B N '';(2)求点M 到平面A B N ''的距离;(3)若点Q 是下底面椭圆上的动点,Q '是点Q 在上底面的投影,且1Q F '、2Q F '与下底面所成的角分别为α、β,试求出tan()αβ+的取值范围.【答案】(1)证明见解析;(2(3)tan()[5αβ+∈-. 【解析】(1)连接,,O M O N ON '',M N 分别为上下椭圆的短轴端点 //O M ON '∴∴四边形O MPN '为平行四边形 //OM O N '∴O N '⊂平面A B N '',OM ⊄平面A B N '' //OM ∴平面A B N ''(2)连接OO '由“椭圆柱”定义可知OO '⊥平面12F NFON ⊂平面12F NF OO ON '∴⊥ O N '∴==由对称性可知:A N B N ''= O N A B '''∴⊥1122A B N S A B O N ''∆'''∴=⋅=⨯=又12A B M S A B O M ''∆'''=⨯⋅=,OO '1133N A B M A B M V S OO ''''-∆'∴=⋅==设点M 到平面A B N ''的距离为d ,则13M A B N N A B M A B N V V S d ''''''--∆==⋅==解得:7d =,即点M 到平面A B N ''的距离为7(3)连接12,QF QF由题意知:QQ '⊥平面12F F Q,QQ '=1Q FQ '∴∠即为1Q F'与下底面所成角;2Q F Q '∠即为2Q F '与下底面所成角 即1Q FQ α'∠=,2Q F Q β'∠= 设1QF m =,由椭圆定义知:2QF m =1tan QQ QF α'∴==,2tan QQ QF β'== ()tan tan tan 1tan tan 1αβαβαβ+∴+===-21m ⎡⎤∈⎣⎦[]265,4m∴-+-∈-- ()tan 5αβ⎡∴+∈-⎢⎣⎦25.(2016·天津高考真题(理))如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.(Ⅰ)求证:EG∥平面ADF ;(Ⅱ)求二面角O −EF −C 的正弦值;(Ⅲ)设H 为线段AF 上的点,且AH=23HF ,求直线BH 和平面CEF 所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)√33;(Ⅲ)√721.【解析】依题意,OF ⊥平面ABCD ,如图,以O 为点,分别以AD ⃗⃗⃗⃗⃗ ,BA⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(−1,1,0),B(−1,−1,0),C(1,−1,0),D(1,1,0),E(−1,−1,2),F(0,0,2),G(−1,0,0).(Ⅰ)证明:依题意,AD ⃗⃗⃗⃗⃗ =(2,0,0),AF⃗⃗⃗⃗⃗ =(1,−1,2). 设n 1=(x,y,z)为平面ADF 的法向量,则{n 1⋅AD ⃗⃗⃗⃗⃗ =0n 1⋅AF⃗⃗⃗⃗⃗ =0 ,即{2x =0x −y +2z =0 . 不妨设z =1,可得n 1=(0,2,1),又EG ⃗⃗⃗⃗⃗ =(0,1,−2),可得EG⃗⃗⃗⃗⃗ ⋅n 1=0, 又因为直线EG ⊄平面ADF ,所以EG//平面ADF .(Ⅱ)解:易证,OA⃗⃗⃗⃗⃗ =(−1,1,0)为平面OEF 的一个法向量. 依题意,EF⃗⃗⃗⃗⃗ =(1,1,0),CF ⃗⃗⃗⃗⃗ =(−1,1,2).设n 2=(x,y,z)为平面CEF 的法向量,则{n 2⋅EF ⃗⃗⃗⃗⃗ =0n 2⋅CF⃗⃗⃗⃗⃗ =0 ,即{x +y =0−x +y +2z =0 . 不妨设x =1,可得n 2=(1,−1,1).因此有cos <OA ⃗⃗⃗⃗⃗ ,n 2>=OA⃗⃗⃗⃗⃗⃗ ⋅n 2|OA ⃗⃗⃗⃗⃗⃗ |⋅|n 2|=−√63,于是sin <OA ⃗⃗⃗⃗⃗ ,n 2>=√33, 所以,二面角O −EF −C 的正弦值为√33.(Ⅲ)解:由AH =23HF ,得AH =25AF .因为,所以AH ⃗⃗⃗⃗⃗⃗ =25AF ⃗⃗⃗⃗⃗ =(25,−25,45),进而有H(−35,35,45),从而BH⃗⃗⃗⃗⃗⃗=(25,85,45),因此cos <BH ⃗⃗⃗⃗⃗⃗ ,n 2>=BH⃗⃗⃗⃗⃗⃗ ⋅n 2|BH ⃗⃗⃗⃗⃗⃗ |⋅|n 2|=−√721. 所以,直线BH 和平面CEF 所成角的正弦值为√721.26.(2018·天津高考真题(理))如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),//AD BC AD CD ⊥//EG AD //CD FG DG ABCD ⊥平面MN CDE 平面E BC F --103DA DC DGE (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则 即不妨令z =–1,可得n 0=(1,0,–1).又=(1,,1),可得,又因为直线MN 平面CDE ,所以MN ∥平面CDE .(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n =(x ,y ,z )为平面BCE 的法向量,则 即 不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则 即不妨令z =1,可得m =(0,2,1).因此有cos <m ,n>=,于是sin <m ,n.所以,二面角E –BC–F . 32DC DE 0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 20220y x z ,,=⎧⎨+=⎩MN 32-00MN n ⋅=⊄BC ()122BE =-,,CF 00n BC n BE ,,⎧⋅=⎨⋅=⎩0220x x y z -=⎧⎨-+=⎩,,00m BC m CF ⎧⋅=⎨⋅=⎩,,020x y z -=⎧⎨-+=⎩,,10⋅=m nm n(Ⅲ)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得. 易知,=(0,2,0)为平面ADGE 的一个法向量,故=sinh0,2].所以线段27.(2020届浙江省宁波市余姚中学高考模拟)如图,ABC 为正三角形,且2BC CD ==,CD BC ⊥,将ABC 沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD 中,且直线AB 与平面ACD ,求AD 的长. 【答案】(1)2 (2【解析】(1)过A 作AE BD ⊥交BD 于E ,则AE ⊥平面BCD .取BC 中点O ,连接AO ,OE ,∵AE ⊥平面BCD ,BC ⊂平面BCD ,∴AE BC ⊥,又ABC 是正三角形,∴BC AO ⊥,又AE AO A =,AE ,AO ⊂平面AOE ,∴BC ⊥平面AOE ,∴BC OE ⊥.又BC CD ⊥,O 为BC 的中点,∴E 为BD 的中点.()12BP h =--,,DC BP DCcos BP DC BP DC h ⋅⋅==DP∵2BC CD ==,∴112OE CD ==,AO =BD =∴DE =AE =∴2AD =;(2)取BC 中点为,O 过点A 作平面BCD 的垂线,垂足为E ,连接AO ,因为,AB AC OE BC =∴⊥.以O 为原点,以BC 为x 轴,以OE 为y 轴,以平面BCD 的过O 的垂线为z 轴建立空间直角坐标系,如图所示:设二面角D BC A --为θ,因为AE ⊥平面BCD ,与(1)同理可证BC ⊥平面AOE ,OE BC ⊥,AOE θ∴∠=,AO则)A θθ,(1,0,0)B -,(1,0,0)C ,(1,2,0)D .∴(1,)BA θθ=,(0,2,0)CD =,(1)CA θθ=-,设平面ACD 的法向量为(,,)n x yz =,则200n CD y n CA x y z θθ⎧⋅==⎪⎨⋅=-⋅+⋅=⎪⎩, 令1z =,得(3sin ,0,1)n θ=.∴cos ,n BA <>==解得sin 6θ=. ∴1(0,,22A ,又(1,2,0)D ,∴AD ==。

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。

解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。

高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理

高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理

高考专题突破四 高考中的立体几何问题空间角的求法命题点1 求线线角例1 (2019·安徽知名示范高中联合质检)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________. 答案 24解析 方法一 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形,所以BM ⊥AC , 同理,A 1M ⊥AC ,因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1,因为A 1M ⊂平面A 1ACC 1,所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为原点,MA →,MB →,MA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系. 设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3),所以AC 1→=(-3,0,3),A 1B →=(0,3,-3), 所以cos 〈AC 1→,A 1B →〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24.方法二 如图,在平面ABC ,平面A 1B 1C 1中分别取点D ,D 1,连接BD ,CD ,B 1D 1,C 1D 1,使得四边形ABDC ,A 1B 1D 1C 1为平行四边形,连接DD 1,BD 1,则AB =C 1D 1,且AB ∥C 1D 1,所以AC 1∥BD 1,故∠A 1BD 1或其补角为异面直线AC 1与A 1B 所成的角.连接A 1D 1,过点A 1作A 1M ⊥AC 于点M ,连接BM ,设AA 1=2,由∠A 1AM =∠BAC =60°,得AM =1,BM =3,A 1M =3, 因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,A 1M ⊂平面A 1ACC 1,所以A 1M ⊥平面ABC ,又BM ⊂平面ABC , 所以A 1M ⊥BM ,所以A 1B =6,在菱形A 1ACC 1中,可求得AC 1=23=BD 1, 同理,在菱形A 1B 1D 1C 1中,求得A 1D 1=23,所以cos∠A 1BD 1=A 1B 2+BD 21-A 1D 212A 1B ·BD 1=6+12-1226×23=24,所以异面直线AC 1与A 1B 所成角的余弦值为24.思维升华 (1)求异面直线所成角的思路: ①选好基底或建立空间直角坐标系. ②求出两直线的方向向量v 1,v 2.③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.(2)两异面直线所成角的关注点: 两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.跟踪训练1 (2019·龙岩月考)若正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,则直线AB 1与CD 1所成的角为( ) A .30°B.45°C.60°D.90° 答案 C解析 ∵正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,∴AA 1=3, 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,则A (1,0,0),B 1(1,1,3),C (0,1,0),D 1(0,0,3), AB1→=(0,1,3),CD 1→=(0,-1,3), 设直线AB 1与CD 1所成的角为θ, 则cos θ=|AB 1→·CD 1→||AB 1→|·|CD 1→|=24·4=12,又0°<θ≤90°,∴θ=60°,∴直线AB 1与CD 1所成的角为60°.故选C. 命题点2 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,所以A 1B 21+AB 21=AA 21, 故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13, 所以AB 21+B 1C 21=AC 21, 故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D , 连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1.所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos∠C 1A 1B 1=427,sin∠C 1A 1B 1=77, 所以C 1D =3,故sin∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系.由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1——→=(1,3,-2),A 1C 1——→=(0,23,-3).由AB 1→·A 1B 1——→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1——→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎨⎧n ·AB →=0,n ·BB1→=0,得⎩⎪⎨⎪⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.思维升华 (1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 如图,已知三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.方法一 (1)证明 如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F , 又A 1E ,A 1F ⊂平面A 1EF ,A 1E ∩A 1F =A 1, 所以BC ⊥平面A 1EF .又EF ⊂平面A 1EF ,因此EF ⊥BC .(2)解 取BC 的中点G ,连接EG ,GF , 则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt△A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G2=152,所以cos∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二 (1)证明 连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系.不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎪⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0得EF ⊥BC . (2)解 设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎨⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF→·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.命题点3 求二面角例3 如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值.(1)证明 在△ACB 中,由余弦定理得cos∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC ,所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C ,所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32.在Rt△EFG 中,由勾股定理,得EG =EF 2+FG 2=72,所以cos∠EGF =FG EG =217, 所以二面角E -AB -C 的余弦值为217.方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系,则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ),则⎩⎨⎧BA →·m =0,BE →·m =0,即⎩⎪⎨⎪⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE→|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角,所以二面角E -AB -C 的余弦值为217.思维升华 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量.②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解. 跟踪训练3 (2020·湖北宜昌一中模拟)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥PD ;(2)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -D 的余弦值.解 依题意,以点A 为原点,以AB ,AD ,AP 为轴建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),PD →=(0,2,-2), 故BE →·PD →=0,所以BE →⊥PD →,所以BE ⊥PD .(2)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ), 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,λ=34,即BF →=⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎨⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0,不妨令z =-1,可得n 1=(0,3,-1)为平面FAB 的一个法向量, 取平面ABD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-110=-1010,又因为二面角F -AB -D 为锐二面角,所以二面角F-AB-D的余弦值为10 10.立体几何中的探索性问题例4 (2019·淄博模拟)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,且直线MF与由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线上(如图所示),因为AO∥BF,M为AB的中点,所以△OAM≌△FBM,所以OM=MF,AO=BF,所以点O在EA的延长线上,且AO=2,连接DF交EC于N,因为四边形CDEF为矩形,所以N是EC的中点,连接MN,因为MN为△DOF的中位线,所以MN∥OD,又因为MN⊂平面EMC,OD⊄平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,AE∩DE=E,所以EF⊥平面ADE,所以平面ABFE⊥平面ADE,取AE的中点H为坐标原点,以AH,DH所在直线分别为x轴,z轴,建立如图所示的空间直角坐标系,所以E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0), 所以ED →=(1,0,3),EC →=(1,4,3), 设M (1,t,0)(0≤t ≤4),则EM →=(2,t,0), 设平面EMC 的法向量m =(x ,y ,z ), 则⎩⎨⎧m ·EM →=0,m ·EC→=0⇒⎩⎪⎨⎪⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎪⎫t ,-2,8-t 3, 因为DE 与平面EMC 所成的角为60°, 所以82t 2+4+8-t 23=32, 所以23t 2-4t +19=32,所以t 2-4t +3=0,解得t =1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°, 取ED 的中点Q ,因为EF ⊥平面ADE ,AQ ⊂平面ADE , 所以AQ ⊥EF ,又因为AQ ⊥DE ,DE ∩EF =E ,DE ,EF ⊂平面CEF , 所以AQ ⊥平面CEF ,则QA →为平面CEF 的法向量,因为Q ⎝⎛⎭⎪⎪⎫-12,0,32,A (1,0,0), 所以QA →=⎝ ⎛⎭⎪⎪⎫32,0,-32,m =⎝⎛⎭⎪⎪⎫t ,-2,8-t 3, 设二面角M -EC -F 的大小为θ,所以|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+8-t23=|t -2|t 2-4t +19,因为当t =2时,cos θ=0,平面EMC ⊥平面CDEF , 所以当t =1时,θ为钝角,所以cos θ=-14.当t =3时,θ为锐角,所以cos θ=14.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.跟踪训练4 (2019·天津市南开区南开中学月考)如图1,在边长为2的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥BE ,如图2. (1)求证:A 1E ⊥平面BCDE ;(2)求二面角E -A 1D -B 的余弦值;(3)在线段BD 上是否存在点P ,使平面A 1EP ⊥平面A 1BD ?若存在,求BPBD的值;若不存在,说明理由. (1)证明 因为A 1D ⊥BE ,DE ⊥BE ,A 1D ∩DE =D ,A 1D ,DE ⊂平面A 1DE ,所以BE ⊥平面A 1DE ,因为A 1E ⊂平面A 1DE , 所以A 1E ⊥BE ,又因为A 1E ⊥DE ,BE ∩DE =E ,BE ,DE ⊂平面BCDE , 所以A 1E ⊥平面BCDE .(2)解 以E 为原点,分别以EB ,ED ,EA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则B (1,0,0),D (0,3,0),A 1(0,0,1), 所以BA 1→=(-1,0,1),BD →=(-1,3,0), 设平面A 1BD 的法向量n =(x ,y ,z ), 由⎩⎨⎧n ·BA 1→=-x +z =0,n ·BD→=-x +3y =0得⎩⎪⎨⎪⎧x =z ,x =3y ,令y =1,得n =(3,1,3), 因为BE ⊥平面A 1DE ,所以平面A 1DE 的法向量EB→=(1,0,0),cos 〈n ,EB →〉=n ·EB→|n |·|EB →|=37=217,因为所求二面角为锐角,所以二面角E -A 1D -B 的余弦值为217. (3)解 假设在线段BD 上存在一点P ,使得平面A 1EP ⊥平面A 1BD , 设P (x ,y ,z ),BP →=λBD→(0≤λ≤1),则(x -1,y ,z )=λ(-1,3,0),所以P (1-λ,3λ,0), 所以EA 1→=(0,0,1),EP →=(1-λ,3λ,0),设平面A 1EP 的法向量m =(x 1,y 1,z 1), 由⎩⎨⎧m ·EA1→=z 1=0,m ·EP→=1-λx 1+3λy 1=0,得⎩⎪⎨⎪⎧z 1=0,1-λx 1=-3λy 1,令x 1=3λ,得m =(3λ,λ-1,0), 因为平面A 1EP ⊥平面A 1BD ,所以m ·n =3λ+λ-1=0,解得λ=14∈[0,1],所以在线段BD 上存在点P ,使得平面A 1EP ⊥平面A 1BD ,且BP BD =14.例 (12分)(2019·全国Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值. (1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .[1分]又因为N 为A 1D 的中点,所以ND =12A 1D .[2分]由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,[3分] 所以MN ∥ED .[4分]又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,[5分] 所以MN ∥平面C 1DE .[6分](2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,[7分]则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).[8分]设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎨⎧ m ·A 1M →=0,m ·A 1A →=0,所以⎩⎪⎨⎪⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).[9分]设n =(p ,q ,r )为平面A 1MN 的一个法向量,则⎩⎨⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎪⎨⎪⎧-3q =0,-p -2r =0,可取n =(2,0,-1).[10分]于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,[11分]所以二面角A -MA 1-N 的正弦值为105.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.(2019·大连模拟)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A 1O ⊥平面ABC ;(2)求直线AB 与平面A 1BC 1所成角的正弦值. (1)证明 ∵AA 1=A 1C ,且O 为AC 的中点, ∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3),∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1——→=(0,2,0), 设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎪⎨⎪⎧2y =0,3x -3z =0,∴平面A 1BC 1的一个法向量为n =(1,0,1), 设直线AB 与平面A 1BC 1所成的角为α, 则sin α=|cos 〈AB →,n 〉|,又∵cos〈AB →,n 〉=AB →·n|AB →||n |=322=64,∴AB 与平面A 1BC 1所成角的正弦值为64.2.如图1,在△ABC 中,BC =3,AC =6,∠C =90°,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2. (1)求证:BC ⊥平面A 1DC ;(2)若CD =2,求BE 与平面A 1BC 所成角的正弦值. (1)证明 ∵DE ⊥A 1D ,DE ∥BC ,∴BC ⊥A 1D , 又∵BC ⊥CD ,A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD , ∴BC ⊥平面A 1DC ,(2)解 以D 为原点,分别以DE →,DA 1→,CD →为x ,y ,z 轴的正方向,建立空间直角坐标系,在直角梯形CDEB 中,过E 作EF ⊥BC ,EF =2,BF =1,BC =3, ∴B (3,0,-2),E (2,0,0),C (0,0,-2),A 1(0,4,0), BE →=(-1,0,2),CA1→=(0,4,2),BA 1→=(-3,4,2),设平面A 1BC 的法向量为m =(x ,y ,z ), ⎩⎨⎧CA 1→·m =0,BA1→·m =0,⎩⎪⎨⎪⎧4y +2z =0,-3x +4y +2z =0,⎩⎪⎨⎪⎧z =-2y ,x =0,令y =1,∴m =(0,1,-2), 设BE 与平面A 1BC 所成角为θ,∴sin θ=|cos 〈BE →,m 〉|=|BE →·m ||BE →||m |=45·5=45.3.(2020·成都诊断)如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置得到四面体P -ABC ,如图2所示.已知PB =4 2. (1)求证:平面PAC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值.(1)证明 取AC 的中点O ,连接PO ,BO 得到△PBO . ∵四边形ABCD 是菱形,∴PA =PC ,PO ⊥AC . ∵DC =5,AC =6,∴OC =3,PO =OB =4, ∵PB =42,∴PO 2+OB 2=PB 2, ∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC . ∵PO ⊂平面PAC ,∴平面PAC ⊥平面ABC . (2)解 ∵AB =BC ,∴BO ⊥AC . 易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0). 设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎪⎫0,-2,43.∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎪⎫-4,-2,43.设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量.由⎩⎨⎧n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0,解得⎩⎪⎨⎪⎧x 1=34y 1,y 1=415z 1,取z 1=15,则n 1=(3,4,15).取平面ABC 的一个法向量n 2=(0,0,1).∵cos〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1532+42+152=31010, 由图可知二面角Q -BC -A 为锐角, ∴二面角Q -BC -A 的余弦值为31010.4.如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E 为PD 上的点,且PB ∥平面EAC ,试确定E 点的位置; (2)在(1)的条件下,在线段PA 上是否存在点F ,使平面AEC 和平面BDF 所成的锐二面角的余弦值为114,若存在,求线段PF 的长度,若不存在,请说明理由.解 (1)设BD 交AC 于点O ,连接OE , ∵PB ∥平面AEC ,平面AEC ∩平面BDP =OE , ∴PB ∥OE .又O 为BD 的中点,∴E 为PD 的中点.(2)连接OP ,由题意知PO ⊥平面ABCD ,且AC ⊥BD ,∴以O 为坐标原点,OC →,OD →,OP →所在直线分别为x ,y ,z 轴建立直角坐标系,如图所示.OP =PD 2-OD 2=6,∴O (0,0,0),A (-2,0,0),B (0,-2,0),C (2,0,0),D (0,2,0),P (0,0,6),则E ⎝⎛⎭⎪⎪⎫0,22,62,OC →=(2,0,0),OE →=⎝⎛⎭⎪⎪⎫0,22,62,OD →=(0,2,0).设平面AEC 的法向量为m =(x 1,y 1,z 1), 则⎩⎨⎧m ·OC→=0,m ·OE→=0,即⎩⎪⎨⎪⎧2x 1=0,22y 1+62z 1=0,令z 1=1,得平面AEC 的一个法向量m =(0,-3,1),假设在线段PA 上存在点F ,满足题设条件,不妨设PF →=λPA →(0≤λ≤1).则F (-2λ,0,6-6λ),OF →=(-2λ,0,6-6λ). 设平面BDF 的法向量n =(x 2,y 2,z 2), ∴⎩⎨⎧n ·OD →=0,n ·OF→=0,即⎩⎪⎨⎪⎧2y 2=0,-2λx 2+1-λr(6z 2=0.)令z 2=1得平面BDF的一个法向量n =⎝⎛⎭⎪⎪⎫31-λλ,0,1.由平面AEC 与平面BDF 所成锐二面角的余弦值为114,则cos 〈m ,n 〉=m ·n|m ||n |=12·1+3⎝ ⎛⎭⎪⎫1λ-12=114,解得λ=15(负值舍去).∴|PF →|=15|PA →|=225. 故在线段PA 上存在点F ,当PF =225时,使得平面AEC 和平面BDF所成的锐二面角的余弦值为114.5.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.(1)证明 如图,连接AC ,交BD 于点O ,连接EO , ∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC , 易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,EC ,AC ⊂平面AEC , ∴BD ⊥平面AEC ,又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt△ADC 中,由AD =3,CD =1, 可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32,易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°, 即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O , ∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°, 即∠DAB =60°, ∴△ABD 为正三角形, ∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC , ∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫32,0,0,B ⎝ ⎛⎭⎪⎪⎫0,32,0,E ⎝⎛⎭⎪⎪⎫0,0,32, M ⎝⎛⎭⎪⎪⎫34,0,34,D ⎝ ⎛⎭⎪⎪⎫0,-32,0,N ⎝ ⎛⎭⎪⎪⎫34,34,0, ∴AB →=⎝ ⎛⎭⎪⎪⎫-32,32,0,AE →=⎝ ⎛⎭⎪⎪⎫-32,0,32, DM →=⎝ ⎛⎭⎪⎪⎫34,32,34,MN →=⎝⎛⎭⎪⎪⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎨⎧AB →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝ ⎛⎭⎪⎪⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427.故直线DP 与平面ABE 所成角的正弦值的最大值为427.。

高三数学高考一本通立体几何第一轮复习教案 正多面体、欧拉公式和球

高三数学高考一本通立体几何第一轮复习教案 正多面体、欧拉公式和球

正多面体、欧拉公式和球[考点诠释]了解正多面体的概念,了解多面体的欧拉公式。

了解球的概念,掌握球的性质,掌握球的表面积、体积公式。

1、 高考对简单多面体,球的考查要求不高,以考查基础知识为主,简单多面体的性质,球面距离与球有关的组合体是主要考查对象。

2、 球的体积和表面积是高考中年年出现的题型,但不是单一知识,往往是与其他多面体综合的试题,如正方体的外接球、内切球、球内接正三棱锥、正四面体、正三棱柱、长方体等等,形成了组合体的问题,估计高考试题中还会出现。

[知识整合]1、 多面体若干个平面多边形围成的几何体叫做多面体。

它的基本元素有:面、棱、顶点。

特别地,把多面体的任何一个面伸展为平面,如果所有其它各面都在这个平面的同侧,这样的多面体叫做凸多面体;而表面能经过连续变形为球面的多面体,叫做简单多面体。

棱柱、棱锥、正多面体及凸多面体,叫做简单多面体。

棱柱、正多面体及凸多面体都是简单多面体。

2、正多面体每个面都是相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫做正多面体。

正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体,其中正四面体、正八面体、正二十面体的面是正三角形;正六面体的面是正方形,正十二面体的面是正五边形。

3、欧拉公式如果简单多面体的顶点数为V ,面数为F ,棱数为E ,那么V+F-E=2,这个公式叫做欧拉公式。

注:(1)欧拉公式的适用范围为简单多面体。

(3)对于简单多面体来说最少的顶点数,最少的面数,最少的棱数分别是:4,4,64、球的概念与定点的距离等于或小于定长的点的集合,叫做球体,简称为球,这里应注意球面与球体是两个不同的概念。

其中,定点叫球的球心,定长称为球的半径。

5、球的截面性质(1)球的截面是圆面,球面被经过球心的平面截得的圆叫做大圆,不经过球心的截面截得的圆叫小圆。

(2)球心和截面圆心的连线垂直于截面。

(3)球心到截面的距离d 与球半径R 及截面圆半径r 的关系是22d R r -=。

高考数学大一轮复习 高考专题突破四 高考中的立体几何问题 文 新人教版-新人教版高三全册数学试题

高考数学大一轮复习 高考专题突破四 高考中的立体几何问题 文 新人教版-新人教版高三全册数学试题

2018版高考数学大一轮复习高考专题突破四高考中的立体几何问题文新人教版1.正三棱柱ABC-A1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为( )A.相交 B.平行C.垂直相交 D.不确定答案 B解析如图取B1C1中点为F,连接EF,DF,DE,则EF∥A1B1,DF∥B1B,∴平面EFD∥平面A1B1BA,∴DE∥平面A1B1BA.2.设x、y、z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的是( )A.③④ B.①③ C.②③ D.①②答案 C解析由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.3.(2016·某某模拟)如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B.24+3π C .20+4π D.24+4π 答案 A解析 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中正方体的棱长为2,半圆柱的底面半径为1,母线长为2,故该几何体的表面积为4×5+2×π+2×12π=20+3π.4.如图,在四棱锥V -ABCD 中,底面ABCD 为正方形,E 、F 分别为侧棱VC 、VB 上的点,且满足VC =3EC ,AF ∥平面BDE ,则VB FB=________.答案 2解析 连接AC 交BD 于点O ,连接EO ,取VE 的中点M ,连接AM ,MF ,∵VC =3EC ,∴VM =ME =EC , 又AO =CO ,∴AM ∥EO , 又EO ⊂平面BDE , ∴AM ∥平面BDE ,又AF ∥平面BDE ,AM ∩AF =A ,∴平面AMF ∥平面BDE ,又MF ⊂平面AMF ,∴MF ∥平面BDE , 又MF ⊂平面VBC ,平面VBC ∩平面BDE =BE , ∴MF ∥BE ,∴VF =FB ,∴VB FB=2.5.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.若PA ⊥AC ,PA =6,BC =8,DF =5.则直线PA 与平面DEF 的位置关系是________;平面BDE 与平面ABC 的位置关系是________.(填“平行”或“垂直”)答案 平行 垂直解析 ①因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA .又因为PA ⊄平面DEF ,DE ⊂平面DEF , 所以直线PA ∥平面DEF .②因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8, 所以DE ∥PA ,DE =12PA =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC ,又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .题型一 求空间几何体的表面积与体积例1 (2016·全国甲卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4, 所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解 (1)底面正三角形中心到一边的距离为13×32×26=2,则正棱锥侧面的斜高为12+22= 3.∴S 侧=3×12×26×3=9 2.∴S 表=S 侧+S 底=92+12×32×(26)2=92+6 3.(2)设正三棱锥P -ABC 的内切球球心为O ,连接OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .∴V P -ABC =V O -PAB +V O -PBC +V O -PAC +V O -ABC =13S 侧·r +13S △ABC ·r =13S 表·r =(32+23)r .又V P -ABC =13×12×32×(26)2×1=23,∴(32+23)r =23,得r =2332+23=2332-2318-12=6-2.∴S 内切球=4π(6-2)2=(40-166)π.V 内切球=43π(6-2)3=83(96-22)π.题型二 空间点、线、面的位置关系例2 (2016·某某模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC . 因为AB ⊂平面ABC , 所以BB 1⊥AB .又因为AB ⊥BC ,BC ∩BB 1=B , 所以AB ⊥平面B 1BCC 1. 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)证明 方法一 如图1,取AB 中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .方法二 如图2,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB , 又因为E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33. 思维升华 (1)①证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.②证明C 1F ∥平面ABE :(ⅰ)利用判定定理,关键是在平面ABE 中找(作)出直线EG ,且满足C 1F ∥EG .(ⅱ)利用面面平行的性质定理证明线面平行,则先要确定一个平面C 1HF 满足面面平行,实施线面平行与面面平行的转化.(2)计算几何体的体积时,能直接用公式时,关键是确定几何体的高,不能直接用公式时,注意进行体积的转化.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.\求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .证明 (1)由AS =AB ,AF ⊥SB 知F 为SB 中点, 则EF ∥AB ,FG ∥BC ,又EF ∩FG =F ,AB ∩BC =B , 因此平面EFG ∥平面ABC .(2)由平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =SB ,AF ⊂平面SAB ,AF ⊥SB , 所以AF ⊥平面SBC ,则AF ⊥BC .又BC ⊥AB ,AF ∩AB =A ,则BC ⊥平面SAB , 又SA ⊂平面SAB ,因此BC ⊥SA . 题型三 平面图形的翻折问题例3 (2015·某某)如图1,在直角梯形 ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值. (1)证明 在题图1中,连接EC , 因为AB =BC =12AD =a ,∠BAD =π2,AD ∥BC ,E 为AD 中点,所以BC 綊ED ,BC 綊AE ,所以四边形BCDE 为平行四边形,故有CD ∥BE , 所以四边形ABCE 为正方形,所以BE ⊥AC , 即在题图2中,BE ⊥A 1O ,BE ⊥OC ,且A 1O ∩OC =O , 从而BE ⊥平面A 1OC ,又CD ∥BE , 所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1-BCDE 的高, 由题图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 从而四棱锥A 1-BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3, 由26a 3=362,得a =6. 思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.(2017·某某月考)如图(1),四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC=PC =2,作如图(2)折叠,折痕EF ∥DC .其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M -CDE 的体积.(1)证明 因为PD ⊥平面ABCD ,AD ⊂平面ABCD , 所以PD ⊥AD .又因为ABCD 是矩形,CD ⊥AD ,PD 与CD 交于点D , 所以AD ⊥平面PCD .又CF ⊂平面PCD ,所以AD ⊥CF ,即MD ⊥CF . 又MF ⊥CF ,MD ∩MF =M ,所以CF ⊥平面MDF .(2)解 因为PD ⊥DC ,PC =2,CD =1,∠PCD =60°, 所以PD =3,由(1)知FD ⊥CF , 在直角三角形DCF 中,CF =12CD =12.如图,过点F 作FG ⊥CD 交CD 于点G ,得FG =FC sin 60°=12×32=34,所以DE =FG =34,故ME =PE =3-34=334, 所以MD =ME 2-DE 2=3342-342=62. S △CDE =12DE ·DC =12×34×1=38. 故V M -CDE =13MD ·S △CDE =13×62×38=216.题型四 立体几何中的存在性问题例4 (2016·某某双流中学月考)如图,在长方体ABCD -A 1B 1C 1D 1中,平面BMD 1N 与棱CC 1,AA 1分别交于点M ,N ,且M ,N 均为中点.(1)求证:AC ∥平面BMD 1N .(2)若AD =CD =2,DD 1=22,O 为AC 的中点.BD 1上是否存在动点F ,使得OF ⊥平面BMD 1N ?若存在,求出点F 的位置,并加以证明;若不存在,请说明理由. (1)证明 连接MN .因为M ,N 分别为CC 1,AA 1的中点,所以AN =12AA 1,CM =12CC 1.又因为AA 1∥CC 1,且AA 1=CC 1, 所以AN ∥CM ,且AN =CM ,所以四边形ACMN 为平行四边形,所以AC ∥MN . 因为MN ⊂平面BMD 1N ,AC ⊄平面BMD 1N , 所以AC ∥平面BMD 1N .(2)解 当点F 满足D 1F =3BF 时,OF ⊥平面BMD 1N ,证明如下: 连接BD ,则BD 经过点O ,取BD 1的中点G ,连接OF ,DG , 又D 1F =3BF ,所以OF 为三角形BDG 的中位线, 所以OF ∥DG .因为BD =22=DD 1,且G 为BD 1的中点, 所以BD 1⊥DG ,所以BD 1⊥OF .因为底面ABCD 为正方形,所以AC ⊥BD . 又DD 1⊥底面ABCD ,所以AC ⊥DD 1, 又BD ∩DD 1=D ,所以AC ⊥平面BDD 1, 又OF ⊂平面BDD 1,所以AC ⊥OF . 由(1)知AC ∥MN ,所以MN ⊥OF .又MN ,BD 1是平面四边形BMD 1N 的对角线,所以它们必相交, 所以OF ⊥平面BMD 1N .思维升华 对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC .(1)求证:D1C⊥AC1;(2)问在棱CD上是否存在点E,使D1E∥平面A1BD.若存在,确定点E位置;若不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D 1E ∥平面A 1BD , 可使MN ∥D 1E ,又M 是AD 1的中点,则N 是AE 的中点. 又易知△ABN ≌△EDN ,∴AB =DE . 即E 是DC 的中点.综上所述,当E 是DC 的中点时, 可使D 1E ∥平面A 1BD .1.(2016·顺义区一模)如图所示,已知平面α∩平面β=l ,α⊥β.A ,B 是直线l 上的两点,C ,D 是平面β内的两点,且AD ⊥l ,CB ⊥l ,DA =4,AB =6,CB =8.P 是平面α上的一动点,且有∠APD =∠BPC ,则四棱锥P -ABCD 体积的最大值是( )A .48B .16C .24 3D .144 答案 C解析 由题意知,△PAD ,△PBC 是直角三角形, 又∠APD =∠BPC ,所以△PAD ∽△PBC . 因为DA =4,CB =8,所以PB =2PA . 作PM ⊥AB 于点M ,由题意知,PM ⊥β. 令AM =t (0<t <6),则PA 2-t 2=4PA 2-(6-t )2, 所以PA 2=12-4t .所以PM =12-4t -t 2,即为四棱锥P -ABCD 的高, 又底面ABCD 为直角梯形,S =12×(4+8)×6=36.所以V =13×36×12-4t -t 2=12-t +22+16≤12×12=24 3.2.(2016·某某赣中南五校第一次联考)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α答案 C解析对于A,若α⊥γ,α⊥β,则γ∥β或相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或相交;对于D,若m∥n,m∥α,则n∥α或n⊂α.故选C.3.(2016·某某模拟)如图,ABCD-A1B1C1D1为正方体,连接BD,AC1,B1D1,CD1,B1C,现有以下几个结论:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③CB1与BD为异面直线.其中所有正确结论的序号为________.答案①②③解析由题意可知,BD∥B1D1,又B1D1⊂平面CB1D1,BD⊄平面CB1D1,所以BD∥平面CB1D1,①正确;易知AC1⊥B1D1,AC1⊥B1C,又B1D1∩B1C=B1,所以AC1⊥平面CB1D1,②正确;由异面直线的定义可知③正确.4.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E、F分别是AB、CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折过程中,可能成立的结论是________.(填写结论序号)答案②③解析因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故答案为②③.5.如图,在正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点,当CFFD=______时,D1E⊥平面AB1F.答案 1解析如图,连接A1B,则A1B是D1E在平面ABB1A1内的射影.∵AB1⊥A1B,∴D1E⊥AB1,又∵D1E⊥平面AB1F⇒D1E⊥AF.连接DE,则DE是D1E在底面ABCD内的射影,∴D1E⊥AF⇒DE⊥AF.∵ABCD是正方形,E是BC的中点,∴当且仅当F是CD的中点时,DE⊥AF,即当点F 是CD 的中点时,D 1E ⊥平面AB 1F , ∴CF FD=1时,D 1E ⊥平面AB 1F .6.(2016·某某模拟)如图,梯形ABEF 中,AF ∥BE ,AB ⊥AF ,且AB =BC =AD =DF =2CE =2,沿DC 将梯形CDFE 折起,使得平面CDFE ⊥平面ABCD .(1)证明:AC ∥平面BEF ; (2)求三棱锥D -BEF 的体积.(1)证明 如图,取BF 的中点M ,设AC 与BD 交点为O ,连接MO ,ME .由题设知,CE 綊12DF ,MO 綊12DF ,∴CE 綊MO ,故四边形OCEM 为平行四边形, ∴EM ∥CO ,即EM ∥AC .又AC ⊄平面BEF ,EM ⊂平面BEF , ∴AC ∥平面BEF .(2)解 ∵平面CDFE ⊥平面ABCD ,平面CDFE ∩平面ABCD =DC ,BC ⊥DC , ∴BC ⊥平面DEF .∴三棱锥D -BEF 的体积为V D -BEF =V B -DEF =13S △DEF ·BC =13×12×2×2×2=43.7.(2016·某某牟平一中期末)如图,在四棱柱ABCD -A 1B 1C 1D 1中,AC ⊥B 1D ,BB 1⊥底面ABCD ,E ,F ,H 分别为AD ,CD ,DD 1的中点,EF 与BD 交于点G .(1)证明:平面ACD1⊥平面BB1D;(2)证明:GH∥平面ACD1.证明(1)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1.又AC⊥B1D,BB1∩B1D=B1,∴AC⊥平面BB1D.∵AC⊂平面ACD1,∴平面ACD1⊥平面BB1D.(2)设AC∩BD=O,连接OD1.∵E,F分别为AD,CD的中点,EF∩OD=G,∴G为OD的中点.∵H为DD1的中点,∴HG∥OD1.∵GH⊄平面ACD1,OD1⊂平面ACD1,∴GH∥平面ACD1.8.(2016·东城区一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.(1)求证:OM∥平面PAB;(2)求证:平面PBD ⊥平面PAC . (3)当三棱锥C -PBD 的体积等于32时,求PA 的长. (1)证明 因为在△PBD 中,O ,M 分别是BD ,PD 的中点, 所以OM ∥PB .又OM ⊄平面PAB ,PB ⊂平面PAB , 所以OM ∥平面PAB .(2)证明 因为底面ABCD 是菱形,所以BD ⊥AC . 因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD .又AC ∩PA =A ,所以BD ⊥平面PAC . 又BD ⊂平面PBD , 所以平面PBD ⊥平面PAC .(3)解 因为底面ABCD 是菱形,且AB =2, ∠BAD =60°, 所以S △BCD = 3.又V C -PBD =V P -BCD ,三棱锥P -BCD 的高为PA , 所以13×3×PA =32,解得PA =32.9.(2016·某某测试)如图,已知三棱柱ABC -A ′B ′C ′中,平面BCC ′B ′⊥底面ABC ,BB ′⊥AC ,底面ABC 是边长为2的等边三角形,AA ′=3,E ,F 分别在棱AA ′,CC ′上,且AE =C ′F =2.(1)求证:BB ′⊥底面ABC ;(2)在棱A ′B ′上找一点M ,使得C ′M ∥平面BEF ,并给出证明. (1)证明 如图,取BC 的中点O ,连接AO ,∵三角形ABC是等边三角形,∴AO⊥BC.∵平面BCC′B′⊥底面ABC,AO⊂平面ABC,平面BCC′B′∩平面ABC=BC,∴AO⊥平面BCC′B′.又BB′⊂平面BCC′B′,∴AO⊥BB′.又BB′⊥AC,AO∩AC=A,AO⊂平面ABC,AC⊂平面ABC,∴BB′⊥底面ABC.(2)解显然点M不是点A′,B′,若棱A′B′上存在一点M,使得C′M∥平面BEF,过点M作MN∥AA′交BE于N,连接FN,MC′,如图,∴MN∥C′F,即C′M和FN共面,又平面MNFC′∩平面BEF=FN,∴C′M∥FN,∴四边形C′MNF为平行四边形,∴MN=2,∴MN是梯形A′B′BE的中位线,M为A′B′的中点.故当M为A′B′的中点时,C′M∥平面BEF.。

高考数学一轮复习立体几何多选题知识点总结及解析

高考数学一轮复习立体几何多选题知识点总结及解析

高考数学一轮复习立体几何多选题知识点总结及解析一、立体几何多选题1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由11110m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而332333322288A S ⎛⎫=⨯⨯=> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系. 设(),,M x y z ,则(),,AM x y z =,222AM x y z =++,(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.3.如图所示,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=8,把△ADE 沿着DE翻折至A'DE位置,使得二面角A'-DE-B为60°,则下列选项中正确的是()A.点A'到平面BCED的距离为3B.直线A'D与直线CE所成的角的余弦值为5 8C.A'D⊥BDD.四棱锥A'-BCED237【答案】ABD【分析】作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.利用线面垂直的判定定理判定CD⊥平面A'MN,利用面面垂直的判定定理与性质定理得到'A到平面面BCED的高A'H,并根据二面角的平面角,在直角三角形中计算求得A'H的值,从而判定A;根据异面直线所成角的定义找到∠A'DN就是直线A'D与CE所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N,在利用外接球的球心的性质进行得到四棱锥A'-BCED的外接球的球心为O,则ON⊥平面BCED,且OA'=OC,经过计算求解可得半径从而判定D.【详解】如图所示,作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.则A'M⊥DE,MN⊥DE, ,∵'A M∩MN=M,∴CD⊥平面A'MN,又∵CD⊂平面ABDC,∴平面A'MN⊥平面ABDC,在平面A'MN中作A'H⊥MN,则A'H⊥平面BCED,∵二面角A'-DE-B为60°,∴∠A'EF=60°,∵正三角形ABC中,AB=8,∴AN=43∴A'M3,∴A'H=A'M sin60°=3,故A正确;连接DN,易得DN‖EC,DN=EC=4,∠A'DN就是直线A'D与CE所成的角,DN=DA'=4,A'N=A'M3,cos∠A'DN=22441252448+-=⨯⨯,故B正确;A'D =DB =4,A'B=22121627A N BN +=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,237R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.4.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P P 点有且只有一个 B .若12A P ,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 2D .若12A P 且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 2P 与B 或D 重合,利用12sin 60A P r =︒,求出6r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =P 在以1A 3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.5.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCD 的距离为3C .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD ,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径, 因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即OF AO =所以四面体ABCD 的外接球体积334433V R OA ππ===,故C 正确;建系如图:0,0,,0,,033A C ⎛⎛⎫⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则,,AP x y AC →→⎛⎛== ⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=24192y +=,即833y +,平方化简可得:2240039y x y ---,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.6.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,NQ=2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==,G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==,四边形EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯=,四边形面积是22242=,故截面面积是52 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确.故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.7.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值,此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.8.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 【答案】BD 【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可. 【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确. 故选:BD. 【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.9.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD 【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =∈,,则12PD =,即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=,可判断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.10.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D D B .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2 D .过点1A 与异面直线AD 与1CB 成60角的直线有2条 【答案】ABD 【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D . 【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥, 由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确;对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA m DA m DA my z ⋅<>===⋅++, 1122111cos ,221CB m zCB m CB my z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =± 因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确. 故选:ABD. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。

高考数学一轮复习《空间几何体》练习题(含答案)

高考数学一轮复习《空间几何体》练习题(含答案)

高考数学一轮复习《空间几何体》练习题(含答案)一、单选题1.降水量(precipitation[amount]):从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度.降水量以mm 为单位,气象观测中一般取一位小数,现某地10分钟的降雨量为13.1mm ,小王在此地此时间段内用口径为10cm 的圆柱型量筒收集的雨水体积约为( )(其中π 3.14≈)A .331.0210mm ⨯B .331.0310mm ⨯C .531.0210mm ⨯D .531.0310mm ⨯2.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )是( )A .()256122cm +B .()248162cm + C .()280122cm + D .()272162cm + 3.阿基米德(Archimedes ,公元前287年-公元前212年)是古希腊伟大的数学家,物理学家和天文学家,在他墓碑上刻着的一个圆柱容器里放了一个球,该球与圆柱的两个底面及侧面均相切,如图所示,则在该几何体中,圆柱表面积与球表面积的比值为( )A .32B .43C .32或23D .234.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )A .33πB .2πC .3πD .4π5.某圆锥的母线长为2,高为423,其三视图如下图所示,圆锥表面上的点M 在正视图上的对应点为A ,圆锥表面上的点N 在侧视图上的对应点为B ,则在此圆锥侧面上,从M 到N 的路径中,最短路径的长度为A .2B .22C .823+D .223- 6.已知某空间几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .323B .163C .4D .87.已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为( )A .12B .13C .16D .1128.某几何体的三视图如图所示,则该几何体的表面积为( )A .810+16B .40C .810++24D .489.棱长为1的正方体1111ABCD A B C D -中,点E 是侧面11CC B B 上的一个动点(包含边界),则下面结论正确的有( )①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;③在线段1BC 上存在点E ,使直线1A E 与CD .所成的角为30;④当E 在棱1BB 上移动时,1EC ED +的最小值是352+. A .1个 B .2个 C .3个 D .4个10.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为A .4πB .12C .1D .211.已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于443+,则球O 的体积等于( )A .3223πB .1623πC .823πD .423π 12.一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为A .36B .48C .64D .72二、填空题13.如果用半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高等于____. 14.点A ,B ,C ,D 在同一个球的球面上,3AB BC AC ==,若四面体ABCD 体积的3________.15.“方锥”,在《九章算术》卷商功中解释为正四棱锥.现有“方锥”S ABCD -,其中4AB =,SA 与平面ABCD 32,则此“方锥”的外接球表面积为________. 16.棱长为6的正方体内有一个棱长为x 的正四面体,正四面体的中心(正四面体的中心就是该四面体外接球的球心)与正方体的中心重合,且该四面体可以在正方体内任意转动,则x 的最大值为______.三、解答题17.如图,已知直三棱柱111ABC A B C ,其底面是等腰直角三角形,且22AB BC ==14AC AA ==.(1)求该几何体的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求拼得的棱柱表面积的最小值.18.如图是一个以111A B C为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知11112A B B C==,11190A B C∠=︒,14AA=,13BB=,12CC=,求该几何体的体积.19.如图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.(单位:cm)20.如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是矩形,2PA AB ==,2AD =,过点B 作BE ⊥AC ,交AD 于点E ,点F ,G 分别为线段PD ,DC 的中点.(1)证明:AC ⊥平面BEF ;(2)求三棱锥F -BGE 的体积.21.如图,多面体ABCDEF 中,四边形ABCD 是边长为2的菱形,AC =23,△ADE 为等腰直角三角形,∠AED =90°,平面ADE ⊥平面ABCD ,且EF //AB ,EF =1.(1)证明:AC ⊥平面BDF ;(2)若G 为棱BF 的中点,求三棱锥G —DEF 的体积.22.如图,在三棱锥-P ABC 中,2AB BC ==,22PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.23.如图,在三棱锥S -ABC 中,SA =SC ,D 为AC 的中点,SD ⊥AB .(1)证明:平面SAC ⊥平面ABC ;(2)若△BCD 是边长为3的等边三角形,点P 在棱SC 上,PC =2SP ,且932S ABC V -=,求三棱锥A -PBC 的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,60DAB ∠=︒,7PA PD ==,O F 、分别为AD AB 、的中点,PF AC ⊥.(1)求证:面POF ⊥面ABCD ;(2)求三棱锥B PCF -的体积。

高考数学一轮总复习 第八章 立体几何初步 第48讲 立体几何中的有关计算课件 文 新人教A版

高考数学一轮总复习 第八章 立体几何初步 第48讲 立体几何中的有关计算课件 文 新人教A版

【知识要点】 1.点面距离的定义 从平面外一点引一个平面的垂线,这个点和_垂_ 足_间_ 的距离叫这个点到这个平面的距离. 2.组合体是几个简单几何体组合而成,处理组合体 问题主要是要弄清组合体的结构特征.在折叠问题中充 分发挥空间想象能力,重点抓住不变的位置和数量关 系,借助模型图形得出结论,并进行计算与证明.在平 面图形翻折成空间图形的这类折叠问题中,一般来说, 位于同一平面内的几何元素的相对位置和数量关系不 变;位于两个不同平面内的元素,位置和数量关系要发 生变化.
13(R+
R2-1
)=
2 3
,解得R=
5 4
,故这个球的表面积为
4π542=254π.
3.如图,斜线段AB与平面α所成的角为60°,B为斜 足,平面α上的动点P满足∠PAB=30°,则点P的轨 迹是( C )
A.直线 B.抛物线 C.椭圆 D.双曲线的一支
【解析】利用平面截圆锥面直接得轨迹. 因为∠PAB=30°,所以点P的轨迹为以AB为轴 线,PA为母线的圆锥面与平面α的交线,且平面α与 圆锥的轴线斜交,故点P的轨迹为椭圆.
即A1O是四棱锥A1­BCDE的高.
由图(1)知,A1O=
2 2
AB=
2 2
a,平行四边形
BCDE的面积S=BC·AB=a2,
从而四棱锥A1­BCDE的体积为
V=13S·A1O=13×a2× 22a= 62a3.
由 62a3=36 2,得a=6.
三、切接问题 例4(1)已知正六棱柱的12个顶点都在一个半径为3 的球面上,当正六棱柱的体积最大时,其高的值为
①A′C⊥BD; ②A′D⊥CO; ③A′到平面BCD的距离为 6; ④三棱锥A′-BDC为正三棱锥. 其中正确命题的序号为 ①③ .

2025年高考数学一轮复习-立体几何中的动点及其轨迹问题-专项训练【含答案】

2025年高考数学一轮复习-立体几何中的动点及其轨迹问题-专项训练【含答案】

2025年高考数学一轮复习-立体几何中的动点及其轨迹问题-专项训练一、基本技能练1.如图,在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹为()A.直线B.圆C.双曲线D.抛物线2.如图,正方体ABCD -A 1B 1C 1D 1中,P 为底面ABCD 上的动点.PE ⊥A 1C 于E ,且PA =PE ,则点P 的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是()A.13B.7C.433D.3324.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为()A.4πB.2πC.πD.π25.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为()A.-12,0 B.-34,0C.-12,1 D.-34,16.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为()A.πB.2πC.4πD.25π7.已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为()A.3π4 B.πC.2πD.3π8.如图,三角形PAB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是()A.2 B.233C.62 D.110.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为()A.2π3B.3π3C.π3D.3π611.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).12.如图,P 是棱长为1的正方体ABCD -A 1B 1C 1D 1表面上的动点,且AP =2,则动点P 的轨迹的长度为________.二、创新拓展练13.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,E 是AA 1的中点,P 是底面ABCD 所在平面内一动点,设PD 1,PE 与底面ABCD 所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P -BB 1C 1体积的最小值是()A.92B.52C.32D.5414.(多选)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则()A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.参考答案与解析一、基本技能练1.答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.答案A解析由题意知,△A1AP≌△A1EP,则点P 为在线段AE 的中垂面上运动,从而与底面ABCD 的交线为线段.3.答案B 解析在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23,所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7,所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.答案D 解析易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2.5.答案B 解析根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O ,则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合.则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈12,1,即|PO →|2∈14,1,所以|PO →|2-1∈-34,0,即PM →·PN →∈-34,0.6.答案C 解析根据题意知,该正方体的内切球半径为r =5,如图,取BB 1的中点N ,连接CN ,则CN ⊥BM ,在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线,∵正方体ABCD -A 1B 1C 1D 1的棱长为25,∴O 到过D ,C ,N 的平面的距离为1,∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.答案B 解析设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心,且BO =23×6×32=23,故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部,故其面积为π.8.答案A 解析由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8,可得tan ∠APD =AD PA =CB PB =tan ∠CPB ,即PB P A =CB AD=2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0),设P (x ,y ),则有PB PA =(x -3)2+y 2(x +3)2+y 2=2,整理可得x 2+y 2+10x +9=0(x ≠0).由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.答案B 解析A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.答案B 解析如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ),由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33,所以O ′G =O ′O ·sin ∠GOF =32,所以△O ′GF 是等边三角形,即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.答案DM ⊥PC (或BM ⊥PC )解析连接AC ,BD ,则AC ⊥BD ,因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .又PA ∩AC =A ,所以BD ⊥平面PAC ,PC ⊂平面PAC ,所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD ⊥平面PCD .12.答案3π2解析由已知AC =AB 1=AD 1=2,在平面BC 1,平面A 1C 1中,BP =A 1P =DP =1,所以动点P 的轨迹是在平面BC 1,平面A 1C 1,平面DC 1内分别以B ,D ,A 1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.答案C 解析以D 为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3,则3,0,32D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →3-x ,-y ,32,PD 1→=(-x ,-y ,3).因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1),所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0,即(x -4)2+y 2=4(0≤y ≤2),则动点P 的轨迹为圆的一部分,所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.答案BCD 解析如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M ,则平面α由平面AEF 扩展为平面APM .由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]),DA →=(2,0,0),AM →=(-2,t ,0),PA →=(2,0,-4),则可知点P 到直线AM 的距离为d =|P A →|2-|PA →·AM →|AM →||2=20t 2+644+t 2,S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4,设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2,由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.答案323+32解析依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S -ABC 的体积为13×3×32=32.如图,取AC 边上靠近点A 的四等分点G ,取BA 的中点为H ,连接EH ,EG ,GH ,故点F 的轨迹长度即为△EHG 的周长,又EG =GH =32,EH =12SB =32,故点F 的轨迹长度为3+32.16.答案6π12解析设P 到直线MN 的距离为d ,由题易得d =66,易知H 为△ABC 的中心,又MN ⊥平面ABC ,当点P 在平面ABC 内时,其轨迹是以H 为圆心,66.∵△ABC 内切圆的半径为36,∴圆H 的一部分位于△ABC 外,结合题意得,点P 的轨迹为圆H 位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H 有一部分在△ABC 外,才能正确得到点P 的轨迹),如图,过点H 作HO ⊥AC ,垂足为O ,则HO =36,记圆H 与线段OC 的交点为K ,连接HK ,可得HK =66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何的综合问题●知识梳理1.线与线、线与面、面与面间的平行、垂直关系.2.空间角与空间距离.3.柱、锥、球的面积与体积.4.平面图形的翻折,空间向量的应用. ●点击双基1.若Rt △ABC 的斜边BC 在平面α内,顶点A 在α外,则△ABC 在α上的射影是 A.锐角三角形 B.钝角三角形 C.直角三角形 D.一条线段或一钝角三角形 解析:当平面ABC ⊥α时,为一条线段,结合选择肢,知选D. 答案:D2.长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为AC 1+3 +10 2 3解析:求表面上最短距离常把图形展成平面图形.答案:C3.设长方体的对角线长为4,过每个顶点的三条棱中总有两条棱与对角线的夹角为60°,则长方体的体积是2 2 3解析:先求出长方体的两条棱长为2、2,设第三条棱长为x ,由22+22+x 2=42⇒x =22,∴V =2×2×22=82.答案:B4.棱长为a 的正方体的各个顶点都在一个球面上,则这个球的体积是_____________. 解析:易知球的直径2R =3a .所以R =23a .所以V =3π4R 3=2π3 a 3. 答案:2π3a 35.已知△ABC 的顶点坐标为A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积是_____________.解析:AB =(1,1,1),=(2,1,3),cos 〈AB ,〉=1436⋅=742,∴sin A =77.∴S ABC ∆=21|AB ||AC |sin A =213·14·77= 26. 答案:26●典例剖析【例1】 在直角坐标系O —xyz 中,=(0,1,0),=(1,0,0),=(2,0,0),OS =(0,0,1).(1)求SC 与OB 的夹角α的大小;(2)设n =(1,p ,q ),且n ⊥平面SBC ,求n ;(3)求OA 与平面SBC 的夹角; (4)求点O 到平面SBC 的距离; (5)求异面直线SC 与OB 间的距离.解:(1)如图,= -=(2,0,-1),= + =(1,1,0),则||=222)1(02-++=5,||=222011++=2.Cxyzcos α=cos 〈,〉25002⋅++=510,α=arccos 510. n ·=0,n ·=0.∵SC =(2,0,-1),= OC -OB =(1,-1,0), 2-q =0, p =1,1-p =0. q =2,(3)OA 与平面SBC 所成的角θ和OA 与平面SBC 的法线所夹角互余,故可先求与n 所成的角.OA =(0,1,0),|OA |=1,|n |=222211++=6.∴cos 〈,n 〉|||OA |n n⋅611⋅=66, ∴ (2)∵n ⊥平面SBC ,∴n ⊥且n ⊥BC ,即∴ 即n =(1,1,2).即〈OA ,n 〉=arccos66.∴θ=2π-arccos 66. (4)点O 到平面SBC 的距离即为OC 在n 上的投影的绝对值, ∴d =|OC ·|n |n |=62= 36.(5)OC 在异面直线SC 、OB 的公垂线方向上的投影的绝对值即为两条异面直线间的距离,故先求与SC 、OB 均垂直的向量m .设m =(x ,y ,1),m ⊥SC 且m ⊥OB , 则m ·SC =0,且m ·OB =0.2x -1=0, x =21, x +y =0, y =-21.∴m =(21,-21,1),d ′=|OC ·||m m |= 62=36.特别提示借助于平面的法向量,可以求斜线与平面所成的角,求点到平面的距离,类似地可以求异面直线间的距离.本题选题的目的是复习如何求平面的法向量,以及如何由法向量求角、求距离.【例2】 如图,已知一个等腰三角形ABC 的顶角B =120°,过AC 的一个平面α与顶点B 的距离为1,根据已知条件,你能求出AB 在平面α上的射影AB 1的长吗如果不能,那么需要增加什么条件,可以使AB 1=2ABB C1解:在条件“等腰△ABC 的顶角B =120°”下,△ABC 是不能唯一确定的,这样线段AB 1也是不能确定的,需要增加下列条件之一,可使AB 1=2:①CB 1=2;②CB =5或AB =5;③直线AB 与平面α所成的角∠BAB 1=arcsin 55;④∠ABB 1=arctan2;⑤∠B 1AC =arccos415;⑥∠AB 1C =π-arccos 87;⑦AC =15;⑧B 1到AC 的距离为21;⑨B 到AC 的距离为25;⑩二面角B —AC —B 1为arctan2等等.思考讨论本题是一个开放型题目,做这类题的思维是逆向的,即若AB 1=2,那么能够推出什么结果,再回过来考虑根据这一结果能否推出AB 1=2.【例3】 (2004年春季北京)如图,四棱锥S —ABCD 的底面是边长为1的正方形,∴即SD垂直于底面ABCD,SB=3,(1)求证:BC⊥SC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.剖析:本题主要考查直线与平面的位置关系等基本知识,考查空间想象能力、逻辑思维能力和运算能力.(1)证法一:∵底面ABCD是正方形,∴BC⊥DC.∵SD⊥底面ABCD,∴DC是SC在平面ABCD上的射影.由三垂线定理得BC⊥SC.证法二:∵底面ABCD是正方形,∴BC⊥DC.∵SD⊥底面ABCD,∴SD⊥BC.又DC∩SD=D,∴BC⊥平面SDC.∴BC⊥SC.(2)解法一:∵SD⊥底面ABCD,且ABCD为正方形,A1∴可以把四棱锥S—ABCD,如上图,面ASD与面BSC所成的二面角就是面ADSA1与面BCSA1所成的二面角,∵SC⊥BC,BC∥A1S,∴SC⊥A1 S.又SD⊥A1S,∴∠CSD为所求二面角的平面角. 在Rt△SCB中,由勾股定理得SC=2,在Rt△SDC中,由勾股定理得SD=1.∴∠CSD=45°,即面ASD与面BSC所成的二面角为45°.解法二:如下图,过点S作直线l∥AD,∴l在面ASD上.∵底面ABCD为正方形,∴l∥AD∥BC.∴l 在面BSC 上.∴l 为面ASD 与面BSC 的交线.∵SD ⊥AD ,BC ⊥SC ,∴l ⊥SD ,l ⊥SC .∴∠CSD 为面ASD 与面BSC 所成二面角的平面角. (以下同解法一).(3)解法一:如上图,∵SD =AD =1,∠SDA =90°, ∴△SDA 是等腰直角三角形. 又M 是斜边SA 的中点, ∴DM ⊥SA .∵BA ⊥AD ,BA ⊥SD ,AD ∩SD =D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影. 由三垂线定理得DM ⊥SB .∴异面直线DM 与SB 所成的角为90°.解法二:如下图,取AB 的中点P ,连结MP 、DP .在△ABS 中,由中位线定理得PM ∴DM 与SB 所成的角即为∠DMP .又PM 2=43,DP 2=45,DM 2=42. ∴DP 2=PM 2+DM 2.∴∠DMP =90°.∴异面直线DM 与SB 所成的角为90°. ●闯关训练 夯实基础1.下图是一个无盖的正方体盒子展开后的平面图,A 、B 、C 是展开图上的三点,则在正方体盒子中,∠ABC 的值为ABC° ° ° ° 答案:C2.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角为1A23 10105352 解法一:∵AM =1AA +M A 1,= +, ∴AM ·CN =(1AA +M A 1)·(CB +BN )=1AA ·BN = 21. 而|AM|=== 411+= 25.同理,||=25. 如令α为所求之角,则cos α=4521=52,∴α=arccos 52.应选D.解法二:建立如图所示的空间直角坐标系,把D 点视作原点O ,分别以DA 、DC 、1DD 的方向为x 轴、y 轴、z 轴的正方向,则A (1,0,0)、M (1,21,1)、C (0,1,0)、N (1,1,21).1A y z ∴AM =(0,21,1),CN =(1,0,2). 故AM ·CN =0×1+21×0+1×21=21,|AM |=2221)21(0++=25,||=222)21(01++=25.∴cos α=252521⋅=52. ∴α=arccos 52. 答案:D3.图甲是一个正三棱柱形的容器,高为2a ,内装水若干.现将容器放倒,把一个侧面作为底面,如图乙所示,这时水面恰好为中截面,则图甲中水面的高度为_____________.111A A 1乙丙解析:设正三棱柱的底面积为S V 水=V 柱-V 111F E A AEF =S ·2a -(41S )·2a =23aS .设图甲中水面的高度为x ,则S ·x =23aS ,得x =23a . 答案:23a4.在三棱锥P —ABC 中,底面是边长为2 cm 的正三角形,P A =PB =3 cm ,转动点P 时,三棱锥的最大体积为.解析:点P 到面ABC 距离最大时体积最大,此时面P AB ⊥面ABC ,高PD =22.CV =31×43×4×22= 362.答案:362 cm 35.把长、宽各为4、3的长方形ABCD ,沿对角线AC 折成直二面角,求顶点B 和顶点D 的距离.解:如图,作BE ⊥AC 于E ,D∵二面角B —AC —D 为直二面角,BE ⊥AC , ∴BE ⊥平面ADC ,DE ⊂平面ADC ,BE ⊥DE .在Rt △ABC 中,可得BE =512,AE =59,在△ADE 中,DE 2=AE 2+AD 2-2AD ·AE · cos ∠EAD =2581+16-2·59·4·54=25193.在Rt △BDE 中,BD =BE 2+ED 2=5337.培养能力6.已知正方形ABCD 的边长为1,分别取边BC 、CD 的中点E 、F ,连结AE 、EF 、AF ,以AE 、EF 、F A 为折痕,折叠使点B 、C 、D 重合于一点P .(1)求证:AP ⊥EF ;(2)求证:平面APE ⊥平面APF ; (3)求异面直线P A 和EF 的距离.(1)证明:如下图,∵∠APE =∠APF =90°,PE ∩PF =P ,∴P A ⊥平面PEF . ∵EF ⊂平面PEF ,∴P A ⊥EF.ABCFD(2)证明:∵∠APE =∠EPF =90°,AP ∩PF =P PE ⊂平面P AE ,∴平面APE ⊥平面APF .(3)解:在面PEF 中,作PG ⊥EF ,垂足为G ,∵AP 与面PEF 垂直,PG ⊂平面PEF ,∴AP ⊥PG ,PG ⊥EF ,PG 是AP 与EF 的公垂线.在等腰Rt △PEF 中,PE =PF =21,∠EPF =90°,∴PG =EG =42. 7.(文)如图,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,P A ⊥底面ABCD ,PD 与底面成30°角.x y(1)若AE ⊥PD ,E (2)求异面直线AE 与CD 所成的角.(1)证明:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则A (0,0,0),B (a ,0,0),D (0,2a ,0),P (0,0,33a ),· =(a ,0,0)·(0,2a ,-33a )=0,又AE ·PD =0, ∴⊥,⊥.∴PD ⊥BE .(2)解:∵P A ⊥面ABCD ,PD 与底面成30°角,∴∠PDA =30°. 过E 作EF ⊥AD ,垂足为F ,则AE =a ,∠EAF =60°,AF =21a ,EF =23a ,∴E (0,21a ,23a ).于是=(0,21a ,23a ).又C (a ,a ,0),D (0,2a ,0),∴CD =(-a ,a ,0).cos 〈,CD 〉a a a2212⋅=42,∴异面直线AE 与CD 所成的角是arccos42. (理)四棱锥P —ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,CD ∥AB ,AB =4,CD =1,点M 在PB 上,且MB =3PM ,PB 与平面ABC 成30°角,(1)求证:CM ∥面P AD ; (2)求证:面P AB ⊥面P AD ; (3)求点C 到平面P AD 的距离. 分析:本题主要考查空间直角坐标系的概念、空间点和向量的坐标表示以及用向量法证明平行关系,同时考查向量研究空间图形的数学思想方法.如下图,建立空间直角坐标系O —xyz ,C 为坐标原点O ,突破点在于求出相关的向量所对应的坐标.(1)证明:如图,建立空间直角坐标系.O ()P z ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABC 所成的角,即∠PBC =30°.∵|PC |=2,∴|BC |=23,|PB |=4.得D (1,0,0)、B (0,23,0)、A (4,23,0)、P (0,0,2). ∵|MB |=3|PM |, ∴|PM |=1,M (0,23,23), CM =(0,23,23),DP =(-1,0,2),DA =(3,23,0).设CM =x +y (x 、y ∈R ),则(0,23,23)=x (-1,0,2)+y (3,23,0)⇒x =43且y =41, ∴CM = 43DP + 41DA .∴CM 、DP 、DA 共面.又∵C ∉平面P AD ,故CM ∥平面P AD . (2)证明:过B 作BE ⊥P A ,E 为垂足.∵|PB |=|AB |=4,∴E 为P A 的中点.∴E (2,3,1),=(2,-3,1).又∵·=(2,-3,1)·(3,23,0)=0, ∴BE ⊥DA ,即BE ⊥DA . 而BE ⊥P A ,∴BE ⊥面P AD .∵BE ⊂面P AB ,∴面P AB ⊥面P AD .(3)解:由BE ⊥面P AD 知,平面P AD 的单位向量n 0||BE =221(2,-3,1).∴CD =(1,0,0)的点C 到平面P AD 的距离 d =|n 0·CD |=|221(2,-3,1)·(1,0,0)|=22. 探究创新8.(2003年北京宣武区二模题)如图,AB 为圆柱OO 1的母线,BD 为圆柱OO 1下底面直径,AB =BD =2,点C 为下底面圆周⊙O 上的一点,CD=1.(1)求三棱锥C —ABD 的体积;(2)求面BAD 与面CAD 所成二面角的大小; (3)求BC 与AD 所成角的大小.分析:本题主要考查直线、平面的位置关系,考查圆柱的有关概念,考查直线、平面所成角的概念及求法,考查空间想象能力和推理能力.解:(1)∵AB 为圆柱OO 1的母线,∴AB ⊥下底面.∴AB 为棱锥A —BCD 的高.而点C 在⊙O 上,∴△BCD 为直角三角形,∠BCD =90°.∵BD =2,CD =1,∴BC =3.∴V 三棱锥C —ABD =V 三棱锥A —BCD =31×21×1×3×2=33.(2)过B 作BE ⊥AD ,垂足为E ,过点B 作BF ⊥AC ,垂足为点F ,连结EF .由BD 为底面圆的直径,得BC ⊥CD .∵AB ⊥平面BCD ,BC ⊥CD ,∴AC ⊥CD .而AC ∩BC =C , ∴CD ⊥平面ABC . 而CD ⊂平面ADC ,∴平面ABC ⊥平面ADC ,且它们的交线为AC . ∵BF ⊂平面ABC ,BF ⊥AC ,垂足为点F , ∴BF ⊥平面ACD .而BE ⊥AD ,AD ⊂平面ACD ,∴EF ⊥AD .平面ABD ∩平面ACD =AD ,∴∠BEF 是面ABD 与面ACD 所成的二面角的平面角. 由BE =21AD =2,AC =7,AB =2,可求出BF =7212.∴sin ∠BEF =BE BF=27212=742.∵∠BEF 为锐角,∴∠BEF =arcsin 742. 故所求二面角的大小为arcsin742. (3)过点D 在下底面作DG ∥BC 交⊙O 于点G ,则∠GDA 为BC 与AD 所成的角.连结BG 、AG ,由BD 是⊙O 的直径,得GD ⊥BG ,则AG ⊥DG ,BC =GD.∴cos ∠GDA =AD GD =223=46.∴∠GDA =arccos46. ∴所求BC 与AD 所成的角的大小为arccos46. ●思悟小结1.利用向量解立体几何问题,要仔细分析问题特点,把已知条件用向量表示,把一些待求的量用基向量或其他向量表示,将几何的位置关系的证明问题或数量关系的运算问题转化为典型的向量运算,以算代证,以值定形.这种方法可减少复杂的空间结构分析,使得思路简捷、方法清晰、运算直接,能迅速准确地解决问题.2.线线垂直、两异面直线的夹角、两点间的距离等问题的解决往往借助于向量坐标.正方体、长方体、底面有一角为直角的直棱柱、底面为菱形的直四棱柱、四棱锥等凡能出现三条两两垂直直线的图形,常常考虑空间直角坐标系.3.在综合问题中,首先要注意是否构建直角坐标系,能较易建立直角坐标系的,尽量建立直角坐标系.其次要注意向量运算与基本性质相结合的论述,这是今后的方向,可以“形到形”,可以“数到形”,注意数形结合,向量方法与传统方法各有千秋,相得益彰.必须熟练掌握向量的基本知识和技能,尤其提出如下几点:(1)怎样选择应用基底(不设直角坐标系)和建立直角坐标系及坐标系建立技巧; (2)法向量的应用对处理角和距离的重要性; (3)怎样用向量解决立体几何中的几大常见题型;(4)准确判断是否选用向量处理问题,明确向量解题的缺点; (5)空间向量是怎样由平面向量拓展而来的. ●教师下载中心 教学点睛要给学生归纳、总结,使学生系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质,通过对照,深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角,理解点到面的距离、异面直线的距离.通过解题总结证明立体几何问题的常见方法,注意培养学生的空间想象能力.拓展题例【例1】 已知直线a ∥α,且a 与α间的距离为d ,a 在α内的射影为a ′,l 为平面α内与a ′平行的任一直线,则a 与l 之间的距离的取值范围是A.[d ,+∞)B.(d ,+∞)C.(0,d ]D.{d }解析:如图,在a 上任取一点P 作PO ⊥a ′,垂足为O ,过O 作OA ⊥l ,垂足为A ,连结P A .则P A ⊥l ,P A ⊥a ,故P A 就是a 与l 之间的距离.在Rt △POA 中,P A >PO =d ,选B.答案:B【例2】 如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是__________.a解析:两个相同的几何体倒立一个,对应合缝,恰好形成一个圆柱体.答案:21πr 2(a +b) 【例3】 (2003年北京西城区一模题)如图,正三棱柱ABC —A 1B 1C 1的所有棱长均为2,P 是侧棱AA 1上任意一点.A 1(1)求证:B 1P 不可能与平面ACC 1A 1垂直; (2)当BC 1⊥B 1P 时,求线段AP 的长;(3)在(2)的条件下,求二面角C —B 1P —C 1的大小.(1)证明:连结B 1P ,假设B 1P ⊥平面ACC 1A 1,则B 1P ⊥A 1C 1. 由于三棱柱ABC —A 1B 1C 1为正三棱柱,A1P∴AA 1⊥A 1C 1.∴A 1C 1⊥侧面ABB 1A 1. ∴A 1C 1⊥A 1B 1, 即∠B 1A 1C 1=90°.这与△A 1B 1C 1是等边三角形矛盾. ∴B 1P 不可能与平面ACC 1A 1垂直.(2)解:取A 1B 1的中点D ,连结C 1D 、BD 、BC 1, 则C 1D ⊥A 1B 1,又∵AA 1⊥平面A 1B 1C 1, ∴AA 1⊥C 1D .∴C 1D ⊥平面ABB 1A 1. ∴BD 是BC 1在平面ABB 1A 1上的射影.∵BC 1⊥B 1P ,∴BD ⊥B 1P .∴∠B 1BD =90°-∠BB 1P =∠A 1B 1P . 又A 1B 1=B 1B =2,∴△BB 1D ≌△B 1A 1P ,A 1P =B 1D =1.∴AP =1.(3)解:连结B 1C ,交BC 1于点O ,则BC 1⊥B 1C .又BC 1⊥B 1P ,∴BC 1⊥平面B 1CP . 过O 在平面CPB 1上作OE ⊥B 1P ,交B 1P 于点E ,连结C 1E ,则B 1P ⊥C 1E , ∴∠OEC 1是二面角C —B 1P —C 1的平面角. 由于CP =B 1P =5,O 为B 1C 的中点,连结OP ,∴PO ⊥B 1C ,OP ·OB 1=OE ·B 1P .∴OE =530.∴tan ∠OEC 1=OEOC 1=315. ∴∠OEC 1=arctan315. 故二面角C —B 1P —C 1的大小为arctan 315.。

相关文档
最新文档