初中数学格点与面积(B)同步练习及答案

合集下载

平面直角坐标系中点的面积问题专项训练(30道)(举一反三)(浙教版)(解析版)

平面直角坐标系中点的面积问题专项训练(30道)(举一反三)(浙教版)(解析版)

专题4.2 平面直角坐标系中点的面积问题专项训练(30道)【浙教版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,涵盖了平面直角坐标系中的规律问题所有类型!一.选择题(共10小题)1.(2022春•龙泉驿区期末)如图,在平面直角坐标系中,将折线AEB 向右平移得到折线CFD ,则折线AEB 在平移过程中扫过的面积是( )A .15B .20C .24D .25【分析】折线AEB 在平移过程中扫过的面积=S ▱ACFE +S ▱BDFE ,再根据平行四边形的面积公式求解即可.【解答】解:折线AEB 在平移过程中扫过的面积=S ▱ACFE +S ▱BDFE=5×3+5×2=15+10=25,故选:D .2.(2022春•商南县期末)已知点A 的坐标为(0,0),点B 的坐标为(4,0),点C 在y 轴上,△ABC的面积是10,则点C 的坐标可能是( )A .(0,10)B .(5,0)C .(0,﹣5)D .(0,4)【分析】首先求得AB 的长,根据三角形的面积公式,即可求得C 的纵坐标,进而得到C 的坐标.【解答】解:设点C 坐标是(0,y )根据题意得,12AB ×AC =10即12×4×|y |=10,解得y =±5.所以点C 坐标是:(0,5)或(0,﹣5).故选:C .3.(2022•市中区二模)平面直角坐标系中,P (x ,y )的横坐标与纵坐标的绝对值之和叫做P (x ,y )的勾股值,记为「P」,即「P」=|x|+|y|.若点B在第一象限且满足「B」=4,则满足条件的所有B点与坐标轴围成的图形的面积为()A.2B.4C.6D.8【分析】由勾股值的定义可得方程x+y=4(x>0,y>0),变形得y=﹣x+4,求出此函数与坐标轴的交点坐标即可求面积.【解答】解:设点P坐标为(x,y),由点B在第一象限且满足「B」=4,∴x+y=4(x>0,y>0).即y=﹣x+4,∵y=﹣x+4与x轴交点为(4,0),与y轴交点为(0,4),∴满足条件的所有B点与坐标轴围成的图形的面积为12×4×4=8.故选:D.4.(2022春•江夏区校级月考)如图所示,直角坐标系中四边形的面积是()A.15.5B.20.5C.26D.31【分析】图中四边形可以视为由两个直角三角形和一个梯形构成,分别计算其面积并求和即可.【解答】解:图中四边形可以视为由两个直角三角形和一个梯形构成,则其面积为:1 2×2×3+12(3+4)×3+12×1×4=3+212+2=15.5.故选:A.5.(2022春•汇川区期末)如图,点A、B的坐标分别为(﹣5,6)、(3,2),则三角形ABO的面积为()A.12B.14C.16D.18【分析】作AC⊥x轴、BD⊥x轴,根据A、B坐标得出AC、BD及CD的长,根据S△AOB=S梯形ABDC﹣S△AOC﹣S△BOD可得答案.【解答】解:如图,作AC⊥x轴于点C,作BD⊥x轴于点D,∵A(﹣5,6)、B(3,2),∴AC=6、OC=5,BD=2、OD=3,则CD=OC+OD=8,∴S△AOB=S梯形ABDC﹣S△AOC﹣S△BOD=12×(2+6)×8−12×5×6−12×2×3=32﹣15﹣3=14,故选:B.6.(2022春•沙河市期中)在网格图中有一个面积为10的△ABC,△ABC的三个顶点均在网格的格点上,墨墨在网格图中建立了适当的直角坐标系,并知道点A的坐标为(2,3),点B的坐标为(﹣3,﹣2),后来墨墨不小心在该图洒上了墨水,如图所示,点C的坐标看不清了,但他记得线段AC与y轴平行,则点C的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(﹣1,2)【分析】根据三角形的面积公式求出AC,再根据网格结构确定出点C的坐标即可.【解答】解:∵A(2,3),B(﹣3,﹣2),线段AC与y轴平行,∴点B到AC的距离为2+3=5,∴S△ABC=12AC•5=10,解得AC=4,∴点C的纵坐标为3﹣4=﹣1,∴点C的坐标为(2,﹣1).故选:C.7.(2022春•嘉祥县期末)若△ABC三个顶点的坐标分别为A(﹣3,﹣1),B(2,﹣1),C(1,3),则△ABC的面积为()A.7.5B.10C.15D.20【分析】构造平面直角坐标系,标出点A、B、C在坐标系中的位置,过点C向AB作垂线,垂足为D,根据S△ABC=12AB×CD,即可得到答案.【解答】解:过点C向AB作垂线,垂足为D,如下图所示:则AB=2﹣(﹣3)=5,CD=3+1=4,S△ABC=12AB×CD=12×5×4=10,故选:B.8.(2022秋•历下区期中)如图,由8个边长为1的小正方形组成的图形,被线段AB平分为面积相等的两部分,已知点A的坐标是(1,0),则点B的坐标为()A.(113,3)B.(103,3)C.(154,3)D.(185,3)【分析】如图,设BC=x,根据题意列方程即可得到结论.【解答】解:如图,设BC=x,由题意得,12×3×(2+x)=12×8,解得:x=23,3+23=113,∴点B的坐标为(113,3),故选:A.9.(2022春•重庆期末)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+√b−8=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12B.14C.16D.20【分析】利用非负数的性质求出b的值,推出a=c,推出PQ=6,根据PQ向右平移a个单位长度,其扫过的面积为24,推出a=4即可解决问题.【解答】解:∵|a﹣c|+√b−8=0,又∵|a﹣c|≥0,√b−8≥0,∴a ﹣c =0,b ﹣8=0,∴a =c ,b =8,∴P (a ,8),Q (a ,2),∴PQ =6,∵线段PQ 向右平移a 个单位长度,其扫过的面积为24,∴a =4,∴a =c =4,∴a +b +c =4+8+4=16,故选:C .10.(2022春•嘉祥县期末)我们定义:过点(0,a )且平行于x 轴的直线为y =a ,若A (﹣2,0),B (1,2),点P 为直线y =4上一动点,且△P AB 的面积为6平方单位,则点P 的坐标为( )A .(﹣2,4)B .(0,4)或(10,4)C .(﹣2,4)或(10,4)D .(9,4) 【分析】设直线AB 交直线y =4于C .求出点C 坐标,设P (m ,4),构建方程即可解决问题;【解答】解:∵A (﹣2,0),B (1,2),设直线AB 交直线y =4于C .∴直线AB 的解析式为y =23x +43, ∵直线PC 的解析式为y =4,∴C (4,4),设P (m ,4),由题意:12•|4﹣m |•4−12•|4﹣m |•2=6,解得m =﹣2或10,∴P (﹣2,4)或(10,4)故选:C .二.填空题(共6小题)11.(2022春•金乡县期末)在平面直角坐标系中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S =ah.例如,三点坐标分别为A(0,3),B(﹣3,4),C(1,﹣2),则“水平底”a=4,“铅垂高”h=6,“矩面积”S=ah=24.若D(2,2),E(﹣2,﹣1),F(3,m)三点的“矩面积”为20,则m的值为3或﹣2.【分析】根据矩面积的定义表示出水平底”a和铅垂高“h,利用分类讨论对其铅垂高“h进行讨论,从而列出关于m的方程,解出方程即可求解.【解答】解:∵D(2,2),E(﹣2,﹣1),F(3,m)∴“水平底”a=3﹣(﹣2)=5“铅垂高“h=3或|1+m|或|2﹣m|①当h=3时,三点的“矩面积”S=5×3=15≠20,不合题意;②当h=|1+m|时,三点的“矩面积”S=5×|1+m|=20,解得:m=3或m=﹣5(舍去);③当h=|2﹣m|时,三点的“矩面积”S=5×|2﹣m|=20,解得:m=﹣2或m=6(舍去);综上:m=3或﹣2故答案为:3或﹣212.(2022春•平泉市期末)如图,两个形状、大小完全相同的直角三角形叠放在一起,将直角三角形ABC 沿着x轴正方向平移到直角三角形DEF的位置.已知点A(1,5),点B(1,1),DG=1,平移距离为2.(1)点G的坐标为(3,4);(2)阴影部分的面积S=7.【分析】(1)求出BE,GE的长度即可得出答案;(2)根据平移的性质得S△ABC=S△DEF,从而S△ABC﹣S△CEG=S△DEF﹣S△CEG,梯形ABEG的面积=阴影部分的面积,求梯形的面积即可得到阴影部分的面积.【解答】解:(1)∵A(1,5),点B(1,1),∴AB=4,∵平移距离为2,∴BE=2,DE=AB=4,∵DG=1,∴GE=DE﹣DG=4﹣1=3,∴G(3,4);故答案为:G(3,4);(2)∵将直角三角形ABC沿着x轴正方向平移到直角三角形DEF的位置,∴S△ABC=S△DEF,∴S△ABC﹣S△CEG=S△DEF﹣S△CEG,∴梯形ABEG的面积=阴影部分的面积,×(AB+EG)×BE∴S=12×(4+3)×2=12=7.故答案为:7.13.(2022春•仙居县期末)如图,在平面直角坐标系中,点A(1,1),点B(3,0).现将线段AB平移,使点A,B分别平移到点A′,B',其中点A′(1,4),则四边形AA'B'B的面积为6.【分析】把四边形AA′B′B的面积转化为特殊四边形的面积求解即可.【解答】解:如图,过点B′作B′E⊥AA′于点E,延长A′A交OB于点F.由题意得,AB=A′B′,AB∥A′B′,∵点A(1,1),点B(3,0),点A′(1,4),∴AA′=BB′=3,∵B′E⊥AA′,∴四边形B′EFB是长方形,∴AA′=EF=3,∴四边形AA′B′B的面积=四边形B′EFB的面积=3×2=6,故答案为:6.14.(2022春•海淀区校级期中)如图,在平面直角坐标系中,曲线f向上平移1个单位形成曲线g的过程中所扫过的面积是3.【分析】曲线f向上平移1个单位形成曲线g的过程中所扫过的面积可以看成是底为1,高为3的平行四边形的面积.【解答】解:曲线f向上平移1个单位形成曲线g的过程中所扫过的面积=1×3=3,故答案为:3.15.(2022春•昌黎县期末)如图,在直角坐标系中,A(﹣1,2),B(3,﹣2),则△AOB的面积为2.【分析】直接利用A,B点坐标,再利用△AOB所在直角三角形面积减去周围图形面积得出答案.【解答】解:△AOB的面积为:12×4×4−12×1×2﹣2−12×2×3=2.故答案为:2.16.(2022•漳州校级一模)已知:如图△ABC的顶点坐标分别为A(﹣4,﹣3),B(0,﹣3),C(﹣2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C 的面积为S2,则S1,S2的大小关系为s1=s2(填“<”、“>”、“=”).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是0,纵坐标是﹣3,向右平移2个单位后再向上平移4个单位到达B1点的横坐标是0+2=2,纵坐标为﹣3+4=1.那么原三角形的面积是:12×4×4=8,新三角形的面积为:12×4×4=8,∴两三角形的面积相等,即s1=s2.三.解答题(共14小题)17.(2022春•上蔡县月考)如图,六边形ABCDE在平面直角坐标系内.(1)写出点A、B、C、D、E、F的坐标:A(2,3)、B(﹣2,3)、C(﹣4,0)、D(3,﹣3)、E()2,﹣3);、F(3,0);;(2)六边形ABCDE的面积为34.5.【分析】(1)根据图形直接写出坐标;(2)根据点点坐标利用割补法即可求出六边形ABCDE的面积.【解答】解:(1)A(2,3)、B(﹣2,3)、C(﹣4,0)、D(﹣3,﹣3)、E(2,﹣3)、F(3,0);故答案为:(2,3)、(﹣2,3)、(﹣4,0)、(﹣3,﹣3)、(2,﹣3)、(3,0);(2)四边形ABCD的面积为:6×7−12×2×3−12×1×3−12×1×3−12×1×3=34.5故答案为:34.5.18.(2022春•莆田期末)对于平面直角坐标系中的图形M上的任意点P(x,y),给出如下定义:将点P (x,y)平移到P′(x+e,y﹣e)称为将点P进行“e型平移”,点P′称为将点P进行“e型平移”的对应点;将图形M上的所有点进行“e型平移”称为将图形M进行“e型平移”.例如,将点P(x,y)平移到P′(x+1,y﹣1)称为将点P进行“1型平移”.(1)已知点A(﹣1,2),B(2,3),将线段AB进行“1型平移”后得到对应线段A′B′.①画出线段A′B′,并直接写出A′,B′的坐标;②四边形ABB′A′的面积为4(平方单位);(2)若点A(2﹣a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,当四边形ABB′A′的面积为8平方单位,试确定a的值.【分析】(1)①根据定义平移即可;②根据平移后的图形,写出坐标即可;(2)利用割补法求四边形的面积.【解答】解:(1)①A(﹣1,2)“1型平移”后得到A'(0,1),B(2,3)“1型平移”后得到B'(3,2);②S四边形ABB′A′=S△ABB'+S△AB'A'=12×4×1+12×4×1=4,故答案为:4;(2)A(2﹣a,a+1)“2型平移”后得到A'(4﹣a,a﹣1),B(a+1,a+2)“2型平移”后得到B'(a+3,a),如图,在四边形外作矩形CDEF,∴C(2﹣a,a+2),D(2﹣a,a﹣1),E(a+3,a﹣1),F(a+3,a+2),∴BC=2a﹣1,AC=1,BF=2,B'F=2,AD=2,A'D=2,AE=2a﹣1,BE'=1,∴CF=2a+1,CD=3,∴S四边形ABB′A′=3(2a+1)−12×(2a﹣1)×1×2−12×2×2×2=4a,∵四边形ABB′A′的面积为8平方单位,∴4a=8,∴a=2.19.(2022春•雨花区校级月考)如图所示,在平面直角坐标系中,点A、B的坐标分别为A(a,0)和B (b,0),且a,b满足|a+4|+√8−b=0,点C的坐标为(0,3).(1)求a,b的值及S△ABC;S△ABC,试求点M的坐标.(2)若点M在x轴上,且S△ACM=13【分析】(1)由|a+4|+√8−b=0结合绝对值、算术平方根的非负性即可得出a、b的值,再结合三角形的面积公式即可求出S△ABC的值;S△ABC,即可得出点(2)设出点M的坐标,找出线段AM的长度,根据三角形的面积公式结合S△ACM=13M 的坐标.【解答】解:(1)由|a +4|+√8−b =0,可知,a +4=0,8﹣b =0,∴a =﹣4,b =8,∴点A (﹣4,0),点B (8,0),又∵点C (0,3),∴AB =|﹣4﹣8|=12,CO =3,∴S △ABC =12AB •CO =12×12×3=18.(2)设点M 的坐标为(x ,0),则AM =|x ﹣(﹣4)|=|x +4|,又∵S △ACM =13S △ABC , ∴12AM •OC =13×18,∴12|x +4|×3=6,∴|x +4|=4,即x +4=±4,解得:x =0或﹣8,故点M 的坐标为(0,0)或(﹣8,0).20.(2022春•长白县期中)如图,在平面直角坐标系中,点A (﹣3b ,0)为x 轴负半轴上一点,点B (0,4b )为y 轴正半轴上一点,其中b 满足方程3(b +1)=6.(1)求点A ,B 的坐标;(2)点C 为y 轴负半轴上一点,且△ABC 的面积为12,求点C 的坐标;【分析】(1)解一元一次方程,可得结论.(2)利用三角形的面积公式求出OC 的长,可得结论.【解答】解:(1)解方程3(b+1)=6,得到b=1,∴A(﹣3,0),B(0,4).(2)∵A(﹣3,0),B(0,4),∴OA=3,OB=4,•BC•OA=12,∵S△ABC=12∴BC=8,∵点C在y轴的负半轴上,∴OC=4,C(0,﹣4).21.(2022春•新市区期末)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.【分析】(1)点C的纵坐标的绝对值就是点C到x轴的距离解答;(2)根据三角形的面积公式列式进行计算即可求解;×6×|x−3|=6,(3)设点P的坐标为(0,y),根据△ABP的面积为6,A(﹣2,3)、B(4,3),所以12即|x﹣3|=2,所以x=5或x=1,即可解答.【解答】解:(1)∵C(﹣1,﹣3),∴|﹣3|=3,∴点C到x轴的距离为3;(2)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3)∴AB =4﹣(﹣2)=6,点C 到边AB 的距离为:3﹣(﹣3)=6,∴△ABC 的面积为:6×6÷2=18.(3)设点P 的坐标为(0,y ),∵△ABP 的面积为6,A (﹣2,3)、B (4,3),∴12×6×|y ﹣3|=6,∴|y ﹣3|=2,∴y =1或y =5,∴P 点的坐标为(0,1)或(0,5).22.(2022春•思明区校级期中)在平面直角坐标系中,点A ,B 在y 轴正半轴上,且点A 在B 的下方,将线段AB 进行平移得到线段CD ,点A 的对应点为点D ,点B 的对应点为点C ,(1)若点A (0,1),B (0,3),D (3,2),求点C 的坐标;(2)点E 是第二象限上的一个动点,过点E 作EF 垂直x 轴于F ,连接DF ,DE ,EC .若点A (0,12m ),B (0,b ),C (a +b +1,12m +3),D (m ,﹣2m +3),三角形DEF 的面积为S △DEF =−38a +338,点D 到直线EF 的距离为3,试问是否存在m ,使得S △BCE =13S △ACE ?若存在,请求出m 的值;若不存在,请说明理由.【分析】(1)求出AB 的长,利用平移的性质解决问题即可.(2)利用平移变换的性质构建方程组求出a ,b (用m 表示),利用三角形的面积公式构建方程求出m 即可解决问题.【解答】解:(1)∵A (0,1),B (0,3),D (3,2),∴AB =3﹣1=2=CD ,∴C (3,4).(2)由题意:{b −12m =12m +3−(−2m +3)a +b +1=m, 解得{a =−2m −1b =3m, ∴C (m ,12m +3),∵S △DEF =EF×32=−38a +338, ∴EF =−14a +114=12m +3,∴EC ⊥y 轴,∴A 到CE 的距离为:12m +3−12m =3, ∵S △BEC =13S △ACE ,∴B 到CE 的距离为:3×13=1, ∴|3m ﹣(12m +3)|=1,解得m =85或45, 故存在m ,使得S △BCE =13S △ACE ,此时m =85或45.23.(2022春•大同期末)已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.【分析】过A ,B 分别作y 轴,x 轴的垂线,则三角形ABC 的面积可以转化为梯形和三角形的面积的和差的问题解决.【解答】解:如图所示,过A ,B 分别作y 轴,x 轴的垂线,垂足为C ,E ,两线交于点D ,则C (0,3),D (3,3),E (3,0).又因为O (0,0),A (1,3),B (3,1),所以OC =3,AC =1,OE =3,BE =1,AD =DC ﹣AC =3﹣1=2,BD =DE ﹣BE =3﹣1=2,则四边形OCDE 的面积为3×3=9,△ACO和△BEO的面积都为12×3×1=32,△ABD的面积为12×2×2=2,所以△ABO的面积为9﹣2×32−2=4.24.(2022春•罗平县校级期中)在直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C (5,6)(1)求△ABC的面积.(2)在y轴上是否存在点D,使得△ABD的面积和△ABC的面积相等,若存在,求出点D的坐标.(3)除(2)中的点D,在平面直角坐标系中,还能不能找到别的点D,会满足△ABD的面积和△ABC 的面积相等,这样的点有多少个?它们的坐标有什么特点?直接写出答案.【分析】(1)由已知条件和三角形面积公式容易得出结果;(2)由三角形的面积关系得出点D的纵坐标绝对值为6,即可得出结果;(3)由题意得出满足条件的点D的纵坐标绝对值为6,即可得出结论.【解答】解:(1)∵A(0,0),B(6,0),C(5,6),∴OB=6,△ABC的面积=12×6×6=18;(2)存在,理由如下:∵△ABD的面积=△ABC的面积=12×6×6=18,∴点D的坐标为(0,6)或(0,﹣6);(3)能找到别的点D,满足△ABD的面积和△ABC的面积相等,这样的点有无数个,它们的纵坐标为±6.25.(2022春•崆峒区期末)在直角坐标系中,已知线段AB,点A的坐标为(1,﹣2),点B的坐标为(3,0),如图1所示.(1)平移线段AB到线段CD,使点A的对应点为D,点B的对应点为C,若点C的坐标为(﹣2,4),求点D的坐标;(2)平移线段AB到线段CD,使点C在y轴的正半轴上,点D在第二象限内,连接BC,BD,如图2所示.若S△BCD=7(S△BCD表示三角形BCD的面积),求点C、D的坐标.(3)在(2)的条件下,在y轴上是否存在一点P,使S△PCDS△BCD =23(S△PCD表示三角形PCD的面积)?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据S△BCD=7(S△BCD建立方程求解,即可,(3)设出点P的坐标,表示出PC用S△PCDS△BCD =23,建立方程求解即可.【解答】解:(1)∵B(3,0)平移后的对应点C(﹣2,4),∴设3+a=﹣2,0+b=4,∴a=﹣5,b=4,即:点B向左平移5个单位,再向上平移4个单位得到点C(﹣2,4),∴A点平移后的对应点D(﹣4,2),(2)∵点C 在y 轴上,点D 在第二象限,∴线段AB 向左平移3个单位,再向上平移(2+y )个单位,符合题意,∴C (0,2+y ),D (﹣2,y ),连接OD ,S △BCD =S △BOC +S △COD ﹣S △BOD=12OB ×OC +12OC ×2−12OB ×y =7,∴y =2,∴C (0,4).D (﹣2,2);(3)设点P (0,m ),∴PC =|4﹣m |,∵S △PCDS △BCD=23, ∴12|4﹣m |×2=23×7,∴|4﹣m |=143, ∴m =−23或m =263,∴存在点P ,其坐标为(0,−23)或(0,263).26.(2022春•通川区期末)已知在平面直角坐标系中,O 为坐标原点,点A 的坐标为(2,a ),点B 的坐标为(b ,2),点C 的坐标为(c ,0),其中a ,b 满足(a +b ﹣10)2+|a ﹣b +2|=0.(1)求A ,B 两点的坐标;(2)当△ABC 的面积为10时,求点C 的坐标;(3)当2≤S △ABC ≤12时,则点C 的横坐标c 的取值范围是 ﹣2≤c ≤8或12≤c ≤22 .【分析】(1)根据非负数的性质即可得到A 点的坐标(2,4),B 点的坐标(6,2);(2)求得直线AB 与x 轴的交点为D (10,0),于是得到S △ABC =S △ACD ﹣S △BCD ,列方程即可得到结论;(3)根据已知条件列方程即可得到结论.【解答】解:(1)∵(a +b ﹣10)2+|a ﹣b +2|=0,∴(a +b ﹣10)2=0,|a ﹣b +2|=0,解得:a =4,b =6,∴A 点的坐标(2,4),B 点的坐标(6,2);(2)∵A点的坐标(2,4),B点的坐标(6,2),如图,过点A作AD⊥x轴于D,∴D(2,0),AD=4,过点B作BE⊥x轴于E,∴E(6,0),BE=2,∴DE =4,设C(c,0),当c>10时,∴CE=c﹣6,CD=c﹣2∴S△ABC=S△ACD﹣S△BCE﹣S梯形ABED=12×4×(c﹣2)−12×2×(c﹣6)−12×(2+4)×4=c﹣10=10,∴c=20当c<10时,同上的方法得,c=0,∴点C的坐标(0,0)或(20,0);(3)由(2)知,①12×(10﹣c)×4−12(10﹣c)×2=2或12×(c﹣10)×4−12(c﹣10)×2=2,解得:c=8或12,②12×(10+c)×4−12(10+c)×2=12或12×(|c|﹣10)×4−12(c﹣10)×2=12,解得:c=﹣2或c=22,∴当2≤S△ABC≤12时,则点C的横坐标c的取值范围是﹣2≤c≤8或12≤c≤22,故答案为﹣2≤c≤8或12≤c≤22.27.(2022春•宁都县期末)已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).(1)求△ABC的面积是多少?(2)若点A、C的位置不变,当点P在y轴上时,且S△ACP=2S△ABC,求点P的坐标?(3)若点B、C的位置不变,当点Q在x轴上时,且S△BCQ=2S△ABC,求点Q的坐标?【分析】(1)根据点A、C的坐标求出AC的长,然后利用三角形的面积列式计算即可得解;(2)分点P在y轴正半轴和负半轴两种情况讨论求解;(3)分点Q在C的左边和右边两种情况讨论求解.【解答】解:(1)∵A(1,0),B(﹣2,3),C(﹣3,0),∴AC=1﹣(﹣3)=1+3=4,点B到AC的距离为3,×4×3=6;∴△ABC的面积=12(2)∵S△ACP=2S△ABC=12,∴以AC为底时,△ACP的高=12×2÷4=6,∴点P在y轴正半轴时,P(0,6);点P在y轴负半轴时,P(0,﹣6);(3)∵S△BCQ=2S△ABC=12,∴以CQ为底时,△BCQ的高为3,底边CQ=12×2÷3=8,∴点Q在C的左边时,Q(﹣3﹣8,0),即Q(﹣11,0);点Q在C的右边时,Q(﹣3+8,0),即Q(5,0).28.(2022春•河北期末)如图,在平面直角坐标系中,已知点A(0,4),B(8,0),C(8,6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.【分析】(1)由点的坐标得出BC =6,即可求出△ABC 的面积;(2)求出OA =4,OB =8,由S 四边形ABOP =S △AOB +S △AOP 和已知条件得出方程,解方程即可.【解答】解:(1)∵B (8,0),C (8,6),∴BC =6,∴S △ABC =12×6×8=24;(2)∵A (0,4),B (8,0),∴OA =4,OB =8,∴S 四边形ABOP =S △AOB +S △AOP=12×4×8+12×4(﹣m )=16﹣2m , 又∵S 四边形ABOP =2S △ABC =48,∴16﹣2m =48,解得:m =﹣16,∴P (﹣16,1).29.(2022春•上杭县期末)在平面直角坐标系中(单位长度为1cm ),已知点M (m ,0),N (n ,0),且√m +n −3+|2m +n |=0.(1)求m ,n 的值;(2)若点E 是第一象限内一点,且EN ⊥x 轴,点E 到x 轴的距离为4,过点E 作x 轴的平行线a ,与y 轴交于点A .点P 从点E 处出发,以每秒2cm 的速度沿直线a 向左移动,点Q 从原点O 同时出发,以每秒1cm 的速度沿x 轴向右移动.①经过几秒PQ 平行于y 轴?②若某一时刻以A ,O ,Q ,P 为顶点的四边形的面积是10cm 2,求此时点P 的坐标.【分析】(1)根据平方根和绝对值的性质得出 {m +n −3=02m +n =0,解方程组即可; (2)①设x 秒后PQ 平行于y 轴,由于AP ∥OQ ,所以当AP =OQ 时,四边形AOQP 是平行四边形,那么PQ 平行于y 轴,根据AP =OQ 列出关于x 的方程,解方程即可;②设y 秒后四边形AOQP 的面积为10cm 2,根据四边形AOQP 的面积=12(OQ +AP )•OA 列出关于y 的方程,进而求出点P 的坐标.【解答】解:(1)依题意,得 {m +n −3=02m +n =0, 解得{m =−3n =6; (2)①设经过x 秒PQ 平行于y 轴,依题意,得6﹣2x =x 解得x =2,②当点P 在y 轴右侧时,依题意,得(6−2x)+x2×4=10,解得x =1,此时点P 的坐标为(4,4),当点P 在y 轴左侧时,依题意,得(2x−6)+x 2×4=10, 解得x =113,此时点P 的坐标为(−43,4).30.(2022春•武清区期中)已知点A (a ,0)、B (b ,0),且√a +4+|b ﹣2|=0.(1)求a 、b 的值.(2)在y 轴的正半轴上找一点C ,使得三角形ABC 的面积是15,求出点C 的坐标.(3)过(2)中的点C 作直线MN ∥x 轴,在直线MN 上是否存在点D ,使得三角形ACD 的面积是三角形ABC 面积的12?若存在,求出点D 的坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质列方程即可得到结论;(2)由A (﹣4,0)、B (2,0),得到AB =6,根据三角形ABC 的面积是15列方程即可得到即可;(3)根据三角形ABC 的面积是15列方程即可得到结论.【解答】解:(1)∵(a +4)2+|b ﹣2|=0,∴a +4=0,b ﹣2=0,∴a =﹣4,b =2;(2)如图1,∵A (﹣4,0)、B (2,0),∴AB =6,∵三角形ABC 的面积是15,∴12AB •OC =15, ∴OC =5,∴C (0,5);(3)存在,如图2,∵三角形ABC 的面积是15,∴S △ACD =12CD •OC =15,∴12CD ×5=12×15,∴CD=3,∴D(3,5)或(﹣3,5).。

2023年中考数学《网格作图》真题及答案解析

2023年中考数学《网格作图》真题及答案解析

2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。

苏教版初一数学下学期期末专题《三角形格点与面积》

苏教版初一数学下学期期末专题《三角形格点与面积》

三角形格点与面积1.如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.(1)画出△A'B'C';(2)在BC上找一点P,使AP平分△ABC的面积;(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是.(3)作直线MN,将△ABC分成两个面积相等的三角形.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为.(4)若连接AA′,CC′,则这两条线段之间的关系是.4.正方形网格中的每个小正方形的边长均为1个单位长度,△ABC各顶点的位置如图所示.将△ABC平移,使点A移到点D,点E、F分别是B、C的对应点.(1)画出平移后的△DEF;(2)在AB上找一点P,使得线段CP平分△ABC的面积;(3)利用网格画△ABC的高BH;(4)连接AD、CF,AD与CF的关系是.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为A.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°6.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)若点P在格点上,且S△PBC=S△ABC(点P与点A不重合),满足这样条件的P点有个.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个.(注:格点指网格线的交点)9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有个(点P异于A).10.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:;(4)求四边形ACBB′的面积.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是,线段AC扫过的图形的面积为.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有个.13.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)若连接BB′,CC′,则这两条线段的关系是;(3)△ABC在整个平移过程中线段AB扫过的面积为.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.16.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积=;(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;(3)请在图中画出过点C且平行于AB的直线CM.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.18.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为.(4)在平移过程中线段BC所扫过的面积为.(5)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A).19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A平移到点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积=;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有个.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C;(2)画出AB边上的中线CD;(3)画出AC边上的高线BE;(4)平移过程中,线段AB扫过的面积为.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;(2)在图中找出格点D,使△ACD的面积与△ABC的面积相等.22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是(4)△ABC在整个平移过程中线段AB扫过的面积为(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个(注:格点指网格线的交点)23.如图所示,在8×8的网格中,△ABC是格点三角形(顶点是网格的交点),若点A坐标为(﹣1,3),按要求回答下列问题:(1)建立符合条件的平面直角坐标系,并写出点B和点C的坐标;(2)将△ABC先向下平移2个单位长度,再向右平移3个单位长度,得到△DEF,请在图中画出△DEF,并求出线段AC在平移过程中扫过的面积.24.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个长度单位.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是;(3)作直线l,将△ABC分成两个面积相等的三角形.【分析】(1)作出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行;(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【解答】解:(1)平移后的△A′B′C′如图所示.(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行,故答案为相等且平行.(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【点评】本题考查平移变换、平移变换的性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为3.(4)若连接AA′,CC′,则这两条线段之间的关系是AA′=CC′且AA′∥CC′.【分析】(1)根据三角形的中线和高的定义作图即可得;(2)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(3)直接利用三角形的面积公式计算可得;故答案为:AD=CF,AD∥CF.【点评】本题考查平移变换,三角形的中线,高等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为CA.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.【解答】解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为4【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是8.【分析】(1)根据平移的定义作出变换后的对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,CM即为所求;(3)△ABC的面积是×5×7﹣×2×6﹣×(2+5)×1=8,故答案为:8.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有6个.(注:格点指网格线的交点)【分析】(1)由点B及其对应点B′的位置得出平移方向和距离,据此将点A、C按照相同方式平移得到对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)根据高线的概念求解可得;(4)根据共底等高及平行线间的距离处处相等作图可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,CD即为所求;(3)如图所示,AF即为所求;(4)如图所示,中满足条件且异于点C的格点E共有6个,故答案为:6.【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及中线、高线的概念、平行线间的距离处处相等.9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为4;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有7个(点P异于A).【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据图形平移的性质可直接得出结论;(4)根据S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′即可得出结论.【解答】解:(1)如图所示;(2)如图所示;(3)由图形平移的性质可知,AA′∥BB′,AA′=BB′.故答案为:平行且相等;(4)S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′=(7+3)×6+×4×4﹣×1×7﹣×3×5=30+8﹣﹣=27.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,BD即为所求;(3)如图所示,AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10×2﹣2××4×1﹣2××6×1=10,故答案为:平行且相等、10.【点评】此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握平移的性质是解题关键.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有7个.【分析】(1)利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;(2)根据平移的性质求解;(3)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.【解答】解:(1)如图,△A′B′C′为所作;(2)BB′∥CC′,BB′=CC′;(3)线段AB扫过的面积=4×3=12.故答案为平行且相等;12.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于 3.5.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;(3)S△EFH=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣=3.5.故答案为:3.5.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.【分析】(1)根据三角形的高和中线的定义结合网格作图可得;(2)根据平移变换的定义和性质作图可得;【点评】本题考查了平移变换的作图、三角形的面积、平分三角形的面积、平行线,知道三角形的中线平分三角形的面积,并会根据一个对应点的平移规律进行作图.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是AD=CF,AD∥CF;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.【分析】(1)将三角形的三顶点分别向右平移6格、向下平移1格得到三顶点,再顺次连接可得;(2)根据平移变换的性质可得答案;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【解答】解:(1)如图所示,△DEF即为所求.(2)根据平移变换的性质知,AD=CF,AD∥CF,故答案为:AD=CF,AD∥CF;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.(1)请画出平移后的△DEF,并求△DEF的面积=7;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有4个.【分析】(1)根据平移的性质画出图象,再利用三角形的面积公式计算即可;(2)根据中线的定义画出中线即可平分三角形面积;(3)在过点A平行BC的直线上有4个格点,所以满足条件的△PCB有4个.【解答】解:(1)如图所示:△DEF即为所求,△DEF的面积为:4×4﹣×2×4﹣×2×3﹣×1×4=7;故答案为:7;(2)如图所示:点M即为所求;(3)使S△ABC=S△BCP,这样的格点P有4个.故答案为:4.【点评】本题考查平移变换、三角形的面积、三角形的中线等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C;(2)画出AB边上的中线CD;(3)画出AC边上的高线BE;(4)平移过程中,线段AB扫过的面积为8.S△A′B′C′=3×3﹣×2×1﹣×3×1﹣×2×3=9﹣1﹣﹣3=3.5;(2)如图,点D1,D2即为所求.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是BB′∥CC′,BB′=CC′(4)△ABC在整个平移过程中线段AB扫过的面积为12(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有10个(注:格点指网格线的交点)【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点找出A′C′的中点D′,然后连接B′D′即可;(3)根据平移的性质求解;(4)利用平移的性质和平行四边形的面积公式求解;(5)过点C作AB的平行线,然后找出此平行线上的格点即可.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,中线B′D′为所作;(3)BB′∥CC′,BB′=CC′;(4)△ABC在整个平移过程中线段AB扫过的面积=4×3=12;(5)满足条件且异于点C的格点E共有10个.线段AC在平移过程中扫过的面积=×2×1+2×3=7.【点评】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质及割补法求四边形的面积.24.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.【分析】(1)直接利用平移的性质得出各点位置即可;(2)利用中线的定义得出D点的位置;(3)利用高线的定义得出E点的位置(4)直接利用三角形面积求法得出答案.【解答】解:(1)(2)(3)题如图所示.(4)△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个长度单位.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是AA′∥CC′,AA′=CC′;(3)作直线l,将△ABC分成两个面积相等的三角形.【分析】(1)根据图形平移不变性的性质画出△A′B′C′即可;(2)根据图形平移的性质即可得出结论;(3)过三角形的顶点与对边的中点作直线即可.【解答】解:(1)如图所示;(2)∵△A′B′C′由△ABC平移而成,∴AA′∥CC′,AA′=CC′.故答案为:AA′∥CC′,AA′=CC′;(3)如图所示.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.。

格点与面积习题讲解1

格点与面积习题讲解1

格点与面积习题讲解1如下图,在一张由一组水平线和一组垂直线组成方格纸上,如果任意相邻平行线之间的距离都相等,我们就把这样两组平行线的交点称为格点(如下图中的红点),把图中相邻两个格点的距离看着一个单位长度,把每个小正方形的面积看作一个面积单位(如图中带阴影的方格)。

一个多边形的顶点如果全是格点,这个多边形就叫做格点多边形,本讲就,学习求格点多边形的面积问题。

这种格点多边形的面积计算起来很方便,一般有三种方法:①规则的格点多边形,可以运用多边形的面积公式求出面积;②一些简单而又特殊的格点多边形,可以通过数格子求出面积;③较复杂的不规则图形,一般用皮克公式计算。

其中数格子的方法比较原始,很少用。

任意格点多边形,只要数出多边形周界上的格点的个数及图内格点的个数,就可用下面的皮克公式算出面积:格点多边形面积=图内格点个数+周界格点数÷2-1这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理。

皮克定理的证明:将格点图中的每个点看作以这个点为圆心、以单位面积正方形的边长的一半为半径的圆。

格点多边形图内的点对应的圆的面积都是图形面积的一部分;而在多边形边界上的点对应的圆的面积只有一半属于这个多边形,且多边形每个角上的圆属于图内的面积都不到半个圆,少了其外角对应的扇形面积,因任意多边形的外角和是360度,正好是个整圆,所以周界上圆在图内的面积为:周界格点数÷2-1所以格点多边形面积为:图内格点个数+周界格点数÷2-1。

皮克定理的证明过程比较抽象,孩子难以理解。

本讲只要求孩子初步认识格点面积公式,掌握格点面积公式的应用,到初中还会进一步学习皮克定理。

【解析】:图①是个平行四边形,周界上有10个格点,图内有4个格点,根据格点面积公式,图①的面积为:4+10÷2-1=8;图②是个梯形,周界上有8个格点,图内有2个格点,根据格点面积公式,图②的面积为:2+8÷2-1=5;图③是个三角形,周界上有6个格点,图内有4个格点,根据格点面积公式,图③的面积为:4+6÷2-1=6;以上3个图形都是规则图形,但四年级学生还没有学过这3种图形的面积计算,不能用面积公式计算。

部编数学九年级下册专题14网格中画相似(解析版)含答案

部编数学九年级下册专题14网格中画相似(解析版)含答案

专题14 网格中画相似1.如图,大小为4×4的正方形方格中,能作出与△ABC 相似的格点三角形(顶点都在正方形的顶点上),其中最小的一个面积是______.【答案】12##0.5【点睛】本题考查作图﹣相似变换,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2.图①,图②,图③均是66´的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中.按下列要求作图.(不写作法,保留画图痕迹)(1)在图①中,在BC 上画一点D ,使ABD ACD S S =V V ;(2)在图②中,在BC 上画一点E ,使ABE S V :2ACE S =V :3;(3)在图③中,在ABC 内画一点F ,使ACF S △:ABF S △:2BCF S =V :3:3.(2)在图②中,点E 即为所求;点C 下移三个单位得到点连接MN ,得到CME ∽△△32CE CM BE BN ==∴,∴ABE S V :2ACE S =V :3(3)在图③中,点F 即为所求.由图可知,6AC =,AB =12ABC S =∴△,∵ACF S △:ABF S △:BCF S =V 21238ACF S =´=∴△,ABF S =△【点睛】本题考查作图-应用与设计作图,三角形相似性质,三角形的面积等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.3.(1)如图,4×4的正方形方格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上.请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在小正方形的顶点上.并将此三角形涂上阴影(2)按要求作图,不要求写作法,但要保留作图痕迹:我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图1,在平行四边形ABCD中,E为CD的中点,作BC的中点F.②如图2,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH(2)①如图1,点F 为所作;理由:因为三角形的三条中线交于同一点,四边形ABCD 是平行四边形,∴O 是BD 的中点,∵E 是CD 的中点,根据三条中线交于同一点,连接BE 交AC 于P ,则点P 为三条中线的交点,作射线DP 交DP 于点F ,则点F 为BC 的中点;②如图2,找到格点D ,过A 点作AD 垂直AB ,再平移DA 得到CE ,则CE ⊥AB ,接着作MN 垂直AC ,平移MN 得到BF ,则BF ⊥AC ,BF 与CE 的交点O 为△ABC 的垂心,所以延长AO 交BC 于H ,则AH ⊥BC ,AH 为所作.理由:∵ABG DAKV V ≌∴GAB ADKÐ=Ð90GAB DAK ADK DAK \Ð+Ð=Ð+Ð=°∴90BAD Ð=°∴BA AD^平移AD 至CJ ,并延长,交AB 于点E ,∴CE AB^同理作出BF AC ^,,BF CE 交于点O根据三角形三条高所在的直线交于同一点,延长AO 交BC 于点H ,则AH 即为所求.【点睛】本题考查了画相似三角形:根据相似三角形的判定条件作为作图的依据.比较简单的是把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,也考查了三角形的重心和平行四边形的性质.4.在4*4的方格中,ABC V 的三个顶点都在格点上.(1)在图1中画出与ABC V 成轴对称且与ABC V 有公共边的格点三角形(画出一个即可);(2)将图2中画一个与ABC V 相似的三角形.【答案】(1)见解析;(2)见解析.【分析】(1)选取AC 所在的直线为对称轴作图即可;(2)保证每条边方向一致,且边长减小为原来的一半作图即可.【详解】(1)解:如下图所示,AB C ¢V 即为所求作的三角形;(答案不唯一)(2)如下图所示,DEF V 即为所求作的三角形;【点睛】本题考查轴对称作图与作相似图形,掌握两个图形关于某条直线对称的性质与相似三角形的性质是解题的关键.5.如图,ABC D 是正方形网格中的格点三角形(顶点在格点上),请在正方形网格上按下列要求画一个格点三角形与ABC D 相似.(1)在图甲中画△111A B C ,使得△111A B C 的周长是ABC D 的周长的2倍;(2)在图乙中画出△222A B C ,使得△222A B C 的面积是ABC D 的面积的2倍.(1)A B C,即为所求;解:如图所示:△111(2)A B C,即为所求.解:如图所示:△222【点睛】此题主要考查了相似变换,正确得出对应三角形的边长是解题关键.6.如图,在8×8的正方形网格中,△ABC是格点三角形,请按以下要求作图.(1)在图1中画出格点△EDP,使得△EDP∽△ABC,且面积比为1;2(2)在图2中将△ABC绕着某格点逆向时针旋转90°得到格点△PFG,其中C与P对应.【答案】(1)见解析(2)见解析【分析】(1)直接利用位似图形的性质,结合位似中心得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.(1)如图,(案不唯一)(2)如图,【点睛】此题主要考查了位似变换以及旋转变换,根据题意得出对应点位置是解题关键.7.如图,在74´方格纸中,点A,B,C都在格点上(△ABC称为格点三角形,即格点△ABC),用无刻度直尺作图.(1)在图1中的线段AC上找一个点D,使25CD AC=;(2)在图2中作一个格点△CEF,使△CEF与△ABC相似.【答案】(1)见解析(2)见解析【分析】(1)根据“8字形”相似,可得CD:AD=2:3,从而得出点D的位置;(2)根据∠ACB=90°,AC=2BC,即可画出△CEF.【详解】(1)解:如图1所示,点D即为所求,(2)如图2所示,△CEF即为所求,【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.8.如图,在7×6的正方形网格中,点A、B、C、D在格点(小正方形的顶点)上,从点A、B、C、D四点中任取三点,两两连接,得到一个三角形,请在所得的所有三角形中,写出互为相似的两个三角形及它们的相似比.∵AB=2221+=5,AC=∴55225ADBD==,ABCD=∴52 AD AB BDBD CD BC===,∴△ABD∽△DCB,相似比9.如图,在5×5的边长为1小的正方形的网格中,如图1△ABC和△DEF都是格点三角形(即三角形的各顶点都在小正方形的顶点上).(1)判断:△ABC与△DEF是否相似?并说明理由;(2)在如图2的正方形网格中,画出与△DEF相似且面积最大的格点三角形,并直接写出其面积.【答案】(1)相似,见解析(2)图见解析,面积为5【点睛】此题考查了作图—相似变换,三角形的面积等知识,解题的关键是掌握相似变换的性质,灵活运用所学知识解决问题.10.按要求作图,无需写作法:图①图②(1)如图①,已知∠AOB,OA=OB,点E 在OB 边上,四边形AEBF 是平行四边形,只用无刻度的直尺在图中画出∠AOB 的平分线.(2)如图②,在边长为1个单位的方格纸上,有△ABC,请作一个格点△DEF,使它与△ABC相似,但相似比不能为1.Q即为所求\11.如图正方形网格中,每个小正方形的边长均为1,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中画等腰△ABC ,使得∠CAB =90°;(2)在图②中画等腰△DEF ,使△ABC ∽△DEF :1.10AB =Q ,10AC =,25BC =,5,5,10DE DF EF ===,21AB AC BC DE DF EF \===.\△ABC ∽△DEF ,且相似比为2:1.【点睛】本题考查了勾股定理,相似三角形的性质,掌握勾股定理与相似三角形的性质是解题的关12.图①、图②、图③分别是6×6的正方形网格,网格中每个小正方形的边长均为1,小正方形的顶点称为格点,点A 、B 、C 、D 、E 、P 、Q 、M 、N 均在格点上,仅用无刻度的直尺在下列网格中按要求作图,保留作图痕迹.(1)在图①中,画线段AB 的中点F .(2)在图②中,画CDE V 的中位线GH ,点G 、H 分别在线段CD 、CE 上,并直接写出CGH V 与四边形DEHG 的面积比.(3)在图③中,画PQR V ,点R 在格点上,且PQR V 被线段MN 分成的两部分图形的面积比为1:3.【答案】(1)见解析(2)见解析,面积比为1:3(3)见解析【分析】(1)根据网格的特点,找到,A B 之间单元网格的对角线,交AB 于点F ,则点F 即为所求;(2)根据(1)的方法找到,CD CE 的中点,G H ,连接GH ,根据相似三角形的性质即可求出CGH V 与四边形DEHG 的面积比;(3)根据(2)的结论,可知,只要MN 经过PQR V 的中位线,根据R 在网格上,找到符合题意的点R 即可求解.(1)如图①:13.如图,已知ABC V 和点O .(2)用无刻度的直尺,在AC边上画出点P,使23PAPC=(要求保留作图痕迹,不写作法).(2)解:如图,取网格点E、F,连接EF交AC14.如图,ABC V 是格点三角形(三角形的三个顶点都在格点上),每个小正方形的边长均为1.(1)在图(1)中将ABC V 绕点C 逆时针旋转90°,得到CDE V .(2)在图(2)中找格P ,使以格点P 、C 、B 为顶点的三角形与ABC V 相似,但不全等,请画出一个符合条件的三角形.【答案】(1)见解析(2)见解析【分析】(1)找到旋转角度、旋转中心、旋转方向后可得出各点的对应点,进而顺次连接即可得出答案;(2)可找能使PCB V 是直角三角形且2PB BC =或2PC BC =的P .(1)所作图形如下:(2)【点睛】本题考查旋转作图及相似三角形的性质,明确旋转角度、旋转中心、旋转方向是解本题的关键.15.如图是由边长为1的小正方形构成的69´网格,各个小正方形的顶点叫做格点.△ABC 的顶点在格点上,边BC 上的点D 也是一个格点.仅用无刻度的直尺在定网格中画图.画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先画出AC 的平行线DE 交AB 边于点E ,可在BC 边上画点F ,使ACF BCA ∽△△;(2)在图2中,先在边AB 找点M ,使△MDC 与△MAC 的面积相等,再在AC 上画点N ,使△CDN 的面积是△ABC 的面积的三分之一.【答案】(1)见解析(2)见解析【分析】(1)根据格点特点画出AC 的平行线即可;根据格点特点作MA ⊥AC ,连接MC ,则△AMC16.如图,在6×7的矩形网格中,我们把顶点都在格点上的多边形称为格点多边形,点A,B,C 均在格点上,按下面要求画出格点三角形.(1)在图1中,画一个△ABD,使得△ABD与△ABC全等.(2)在图2中,画一个△ACE,使得S△ABC=3S△ACE,且点E不在边BC上.注:图1,图2在答题纸上.【答案】(1)见解析(2)见解析【分析】(1)运用三角形全等判定定理SSS,在网格上构造△ABD与△ABC全等.(2)△ACE与△ABC共顶点A,因此考虑两个三角形在以A为顶点的高线相等的情况下,构造3CE=BC,从而满足S△ABC=3S△ACE.(1)解:(2)解:【点睛】本题考查三角形全等判定定理,三角形面积计算方法,找到相应的作图依据是解题关键.17.如图,在7×8的正方形网格中,点A,B,C都在格点上,用无刻度直尺完成下列作图:(1)在AC上画点E,使AE=3CE;(2)在AB上画点D,使AD=CD;(3)在BC上画点F(不与B重合),使AF^BC.(4)在AB上画点P,使tan13 ACPÐ=.(2)如图,取格点,P Q,连接PQ,交AC于点M,Q=∥,AP CQ AP CQ\APM CQM∽V VAM AP\=1=MC PQ\=AM MCM,连接根据网格的特点作正方形,同理取中点1则DM是AC的垂直平分线,\=.DA DC(3)如图,方法同(2)作正方形BXYC ,作AZ ∥(4)如图,同方法(3)作正方形,作EE AC ¢^,同方法(连接1KK 交EE ¢于点S ,作射线CS 交AB 于点13,44AE AC CE AC ==Q ,1tan 3SE ACP EC \Ð==.【点睛】本题考查了网格中无刻度直尺作图,相似三角形的性质,正方形的性质,根据相似三角形的性质确定线段的长度是解题的关键.18.如图,在6×10的方格纸ABCD中有一个格点△EFG,请按要求画线段.(1)在图1中,过点O画一条格点线段PQ(端点在格点上),使点P,Q分别落在边AD,BC上,且PQ与FG的一边垂直.(2)在图2中,仅用没有刻度的直尺找出EF上一点M,EG上一点N,连结MN,使△EMN和△EFG的相似比为2:5.(保留作图痕迹)【答案】(1)见解析(2)见解析【分析】(1)根据题意找到格点,P Q,画出线段PQ即可(1)如图所示,PQ即为所求,19.请在如图所示的网格中,运用无刻度直尺作图(保留作图痕迹)(1)在图1中画出线段AB的中垂线AC CB=.(2)如图2,在线段AB上找出点C,使:1:2\点C 即为所求,如图所示:【点睛】本题考查作图—应用与设计作图,相似三角形的应用,解题关键是学会利用数形结合的思想解决问题.20.如图在5×5的网格中,△ABC 的顶点都在格点上.(仅用无刻度的直尺在给定的网格中按要求画图,画图过程用虚线表示,画图结果用实线表示)(1)在图1中画出△ABC 的中线AD ;(2)在图2中画线段CE ,点E 在AB 上,使得ACE S V :BCE S V =2:3;(3)在图3中画出△ABC 的外心点O .【答案】(1)见解析(2)见解析(3)见解析【分析】(1)由题知BO =CO ,取两个格点F 、G 构造CFD BGD △≌△,即可得中点D .(2)由ACE S V :BCE S V =2:3得AE :BE =2∶3,取格点H 、J ,构造△∽△AHE BGE ,且相似比为2∶3,即可得到E 点.(3)由O 为△ABC 的外心知O 为AB 、AC 的中垂线的交点,作出两条中垂线,交点即为O .(1)如图1中,取格点F 、G ,连接FG 交BC 于点D ,线段AD 即为所求.(2)如图2中,取格点H 、J ,连接HJ 交AB 于点E ,线段CE 即为所求.(3)如图3中,取格点K 、L 、M 、N ,连接KL 、MN 交于点O ,则点O 为所求.【点睛】本题考查作图-应用与设计作图,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题.21.如图,在6×6的正方形网格中,每个小正方形的边长都为1,点A ,B ,C 均在格点上.请按要求在网格中画图,所画图形的顶点均需在格点上.(1)在图1中以线段AB 为边画一个ABD △,使其与ABC V 相似,但不全等.(2)在图2中画一个EFG V ,使其与ABC V 相似,且面积为8.(2)如图,△EFG 即为所求.【点睛】本题考查作图-相似变换,三角形的面积,全等三角形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.如图,在6×6的正方形网格中,每个小正方形的边长均为1,线段AB 的两个端点均在格点上,按要求完成下列画图(要求:用无刻度的直尺,保留画图痕迹,不要求写出画法).(1)在图①中,在线段AB 上找到一点E ,使AE BE=23;(2)在图②中,画出一个以A 、B 、C 为顶点的三角形,且cos ∠BAC (3)在图③中,画出一个四边形ACBD ,使其既是中心对称图形,又是轴对称图形,且邻边之比为12,C 、D 为格点.【答案】(1)见解析(2)见解析(2)V即为所求;如图所示,ABC(3)如图所示即为所求作【点睛】本题考查了作图-轴对称变换,等腰直角三角形的性质,相似三角形的判定与性质,解决本题的关键是掌握相关知识与性质.。

2019中考数学《面积的计算》专题复习考点讲解(含答案)

2019中考数学《面积的计算》专题复习考点讲解(含答案)

面积的计算考点图解技法透析面积法是一种重要方法,计算图形面积是平面几何中最常见的基本问题之一,与面积相关的知识有:(1)常见图形的面积计算公式:正方形面积=边长×边长;矩形的面积=长×宽;平行四边形面积=底×高;三角形面积=底×高÷2;梯形面积=(上底+下底)×高÷2;圆的面积=×半径的平方;扇形面积=2360n r(n为圆心角,r为半径)(2)计算面积常常用到以下结论:①等底等高的两个三角形的面积相等;②等底的两个三角形的面积比等于对应高的比;③等高的两个三角形的面积比等于对应底的比;④三角形一边上的中线平分这个三角形的面积.(3)面积计算常用到以下方法:①和差法:把所求图形的面积转化为常见图形面积的和、差表示,运用常见图形的面积公式;②等积法:找出与所求图形面积相等的或者关联的特殊图形,通过代换转化来求出图形的面积;③运动法:通过平移、旋转、割补等方式,将图形中的部分图形运动起来,把图形转化为容易观察或解决的形状;④代数法:通过寻求图形面积之间的关系列方程(组);把几何问题转化为代数问题.(4)非常规图形的面积计算往往采用“等积变换”,所谓“等积变换”就是不改变几何图形的面积,而是把它的形状改变成能够直接求出面积的图形,等积变换的主要目的,是把复杂的图形变成简单的图形,把不规则的图形变成规则的图形.(5)“等积变换”的方法①公式法,即运用某些图形的面积公式及其有关推论.②分割法,即把一个图形分割成熟知的若干部分图形.③割补法,即把一个图形的某一部分分割出来,然后用与其等积图形填补到某一位置.名题精讲考点1 用面积公式计算常规图形面积例1 如图,将直角三角形BC 沿着斜边AC 的方向平移到 △DEF 的位置(A 、D 、C 、F 四点在同一条直线上).直角边DE 交BC 于点G .如果BG =4,EF =12,△BEG 的面积等于4,那 么梯形ABGD 的面积是 ( )A .16B .20C .24D .28【切题技巧】【规范解答】 B【借题发挥】 把不能直接求出面积的图形通过转化或找出与它面积相等的特殊图形,从而能够求解.【同类拓展】 1.如图所示,A 是斜边长为m 的等腰直角三角形,B ,C ,D 都是正方形,则A ,B ,C ,D 的面积的和等于 ( )A .94m 2B .52m 2C .114m 2D .3m 2考点2 用面积的和、差计算非常规图形有面积例2 如图,P 是平行四边形ABCD 内一点,且S △PAB =5, S △PAD =2,请你求出S △PAC (即阴影部分的面积).【切题技巧】 △APC 的底与高显然无法求,则应用已知三角 形的面积的和或差来计算△APC 的面积.【规范解答】【借题发挥】 对于不能直接求的图形可以把图形进行分解和组合,通过图形的面积和或差进行计算.【同类拓展】 2.如图,长方形ABCD 中,△ABP 的面积为a , △CDG 的面积为b ,则阴影四边形的面积等于 ( )A .a +bB .a -bC .2a bD .无法确定考点3 列方程(组)求面积例3 如图所示,△ABC 的面积是1cm 2.AD =DE =EC , BG =GF =FC ,求阴影四边形的面积.【切题技巧】条件中有两组等分点,易知△BCE,△ACF的面积为13,但仍然不能求阴影部分面积,因此,只要求出△BCE中另两块面积即可,【规范解答】如图,设AG与BE交于N,AF与BE交于P,连接NC,ND,PC,PD.设△NGB的面积为x,△NDE的面积为y,则有△NCG的面积为2x,△NEA的面积为2y.因为△ABC的面积是1cm2,且AD=AE=EC,BG=GF=FC.【借题发挥】求一些关系复杂的图形面积,列方程是一个重要方法,它不但可以使我们熟悉列方程和了解方程在几何中的应用,而且能清晰地表明图形面积之间的关系,从而可以化解或降低解题的难度.【同类拓展】3.如图,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…、S8,试比较S3与S2+S7+S8的大小,并说明理由.考点4 面积比与线段比的转化例4 如图所示,凸四边形ABCD中,对角线AC、BD相交于O点,若△AOD的面积是2,△COD的面积是1,△COB的面积是4,则四边形ABCD的面积是 ( )A.16 B.15 C.14 D.13【切题技巧】分析△AOD,△DOC,△AOB,△COB四个三角形的面积,只有通过线段比联系起来,相邻两个三角形的面积都存在着一种比例关系.【规范解答】【借题发挥】 两三角形的高相等时,面积比等于对应底之比,则可以将面积比与对应线段比相互转化,这是.解答面积问题、线段比等问题的常用技巧.【同类拓展】 4.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则AGCD ABCDS S 四边形矩形等于 ( )A .56B .45C .34D .23考点5例5 如图所示,在四边形ABCD 中,AM =MN =ND , BE =EF =FC ,四边形ABEM 、MEFN 、NFCD 的面积分别记为S 1,S 2和S 3.求213?S S S =+【切题技巧】 把四边形分割成多个三角形,运用三角形等积变换定理即可求出,【规范解答】 连接A .E 、EN 、PC 和AC .【借题发挥】 等积变形的题目中,常将多边形面积转化为三角形面积,再运用等底同高来进行等积代换,因此,在转化时只要抓住题设中的等分点,就可以将多边形面积进行等积变换了.【同类拓展】 5.如图,张大爷家有一块四边形的菜地,在A 处有一口井,张大爷欲想从A 处引一条笔直的水渠,且这条笔直的水 渠将四边形菜地分成面积相等的两部分,请你为张大爷设计一种引水 渠的方案,画出图形并说明理由. 考点6 格点多边形的面积例6 如图,五边形ABCDE 的面积为多少?我们把方格纸上两组互相平行且垂直的直线的交点叫格点. 顶点在格点上的多边形叫格点多边形.可以通过图形的分割,转化为规则图形,再求面积.【规范解答】如图,标上字母F 、G 、H 、I 、J 点,使得△ABF , △BCG ,△CDH ,△DEI ,△EAJ 为直角三角形,【借题发挥】 格点多边形面积有如下计算规律:格点多边形的面积等于其所包含有格点个数,加上由其边界上的格点的个数之半,再减去1.此规律对凹多边形也适用.即:若格点多边形的面积为S ,格点多边形内部有且只有n 个格点,它各边上格点的个数和为x .则S =12x +n -1. 【同类拓展】 6.如图,在一个由4×4个小正方形组成的正方形 格中,阴影部分面积与正方形ABCD 面积的比是 ( ) A . 3:4 B .5:8 C .9:16 D .1:2 参考答案1.A 2.A 3.S 3=S 2+S 7+S 8. 4.D 5.S △ABF =S 四边形AFCD . 6.B2019-2020学年数学中考模拟试卷一、选择题1.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=32或t=72,其中正确的结论有()A.1个B.2个C.3个D.4个3.点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.4.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,AB长为半径画弧,交边AD于点F;②再分别以B,F为圆心画弧,两弧交于平行四边形ABCD内部的点G处;③连接AG并延长交BC于点E,连接BF,若3BF=, 2.5AB=,则AE的长为( )A.2B.4C.8D.55.如图,点是边长为1的菱形对角线上的一个动点,点,分别是边,的中点,则的最小值是( )A. B.1 C. D.26.方程组的解是( )A.B. C. D.7.多项式4x-x 3分解因式的结果是( ) A .()2x 4x-B .()()x 2x 2x -+C .()()x x 2x 2-+D .2x(2x)-8.一几何体的三视图如图所示,这个几何体是( )A .四棱锥B .圆锥C .三棱柱D .四棱柱9.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是( )A.B. C.D.10.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是A.12B.1C.23D.1311.分解因式3a2b﹣6ab+3b的结果是()A.3b(a2﹣2a)B.b(3a2﹣6a+1)C.3(a2b﹣2ab)D.3b(a﹣1)212.在整数范围内,有被除数=除数×商+余数,即a=bq+r(a≥b,且b≠0,0≤r<b),若被除数a和除数b确定,则商q和余数r也唯一确定,如:a=11,b=2,则11=2×5+1此时q=5,r=1.在实数范围中,也有a=bq+r(a≥b且b≠0,商q为整数,余数r满足:0≤r<b),若被除数是,除数是2,则q与r的和( )A.﹣4 B.﹣6 C.-4 D.-2二、填空题13.如图,矩形ABCD中,AB=6,AD=,点E是BC的中点,点F在AB上,FB=2,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为_____.14.计算:(﹣12)2=_____.15.如图,扇形纸扇完全打开后,∠BAC=120°,AB=AC=30厘米,则BC的长为_____厘米.(结果保留π)16.若关于x 的一元二次方程2230x x m -+-=有两个相等的实数根,则m 的值是______________.17.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.18.计算:(a+b )(2a ﹣2b )=_____. 三、解答题19.已知:△ABC 的两边AB 、BC 的长是关于x 的一元二次方程x 2﹣(2k+2)x+k 2+2k =0的两个实数根,第三边长为10.问当k 为何值时,△ABC 是等腰三角形?20.如图,已知⊙O 是等边三角形ABC 的外接圆,点D 在圆上,过A 作AE ∥BC 交CD 延长线于E.(1)求证:EA 是⊙O 的切线;(2)若BD 经过圆心O ,其它条件不变,则△ADE 与圆重合部分的面积为_____.(在备用图中画图后,用阴影标出所求面积)21.小张在网上销售一种成本为20元/件的T 恤衫,销售过程中的其他各种费用(不再含T 恤衫成本)总计40(百元),若销售价格为x(元/件),销售量为y(百件),当30≤x≤50时,y 与x 之间满足一次函数关系,且当x =30时,y =5,有关销售量y(百件)与销售价格x(元/件)的相关信息如下:(1)请在表格中直接写出当30≤x≤50时,y与x的函数关系式;(2)求销售这种T恤衫的纯利润w(百元)与销售价格x(元/件)的函数关系式;(3)销售价格定为多少元/件时,获得的利润最大?最大利润是多少?22.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2,CD留π).23.为考察甲、乙两种农作物的长势,研究人员分别抽取了6株苗,测得它们的高度(单位:cm)如下:甲:98,102,100,100,101,99;乙:100,103,101,97,100,99.(1)你认为哪种农作物长得高一些?说明理由;(2)你认为哪种农作物长得更整齐一些?说明理由.24.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.求证:(1)DE=FE;(2)四边形ADCF是菱形.25.已知,抛物线C1:y=- 12x2+mx+m+12(1)①当m=1时,抛物线与x轴的交点坐标为_______;②当m=2时,抛物线与x轴的交点坐标为________;(2)①无论m取何值,抛物线经过定点P________;②随着m的取值的变化,顶点M(x,y)随之变化,y是x的函数,记为函数C2,则函数C2的关系式为:________ ;(3)如图,若抛物线C1与x轴仅有一个公共点时,①直接写出此时抛物线C1的函数关系式;②请在图中画出顶点M满足的函数C2的大致图象,在x轴上任取一点C,过点C作平行于y轴的直线l分别交C1、C2于点A、B,若△PAB为等腰直角三角形,求点C的坐标;(4)二次函数的图象C2与y轴交于点N,连接PN,若二次函数的图象C1与线段PN有两个交点,直接写出m的取值范围.【参考答案】***一、选择题二、填空题14.415.20π16.417.4218.2a 2﹣2b 2三、解答题19.k =8或10【解析】【分析】因为方程有两个实根,所以△>0,从而用k 的式子表示方程的解,根据△ABC 是等腰三角形,分AB =AC ,BC =AC ,两种情况讨论,得出k 的值.【详解】∵△=[﹣(2k+2)]2﹣4(k 2+2k)=4k 2+8k+4﹣4k 2﹣8k=4>0,∴x =()222k --+⎡⎤⎣⎦,∴x 1=k+2,x 2=k ,设AB =k+2,BC =k ,显然AB≠BC,而△ABC 的第三边长AC 为10,(1)若AB =AC ,则k+2=10,得k =8,即k =8时,△ABC 为等腰三角形;(2)若BC =AC ,则k =10,即k =10时.△ABC 为等腰三角形.【点睛】本题考查了一元二次方程的根,公式法,解本题要充分利用条件,选择适当的方法求解k 的值,从而证得△ABC 为等腰三角形.20.(1)见解析;(2)23π.【解析】【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠O AE=90°,可得:AE 是⊙O 的切线;(2)如备用图,根据等边三角形的性质得到BD ⊥AC ,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,根据平行线的性质得到∠AED=∠BCD=90°,解直角三角形得到AD=2,连接OA ,根据扇形和三角形的面积公式即可得到结论.(1)证明:如图1,连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)如备用图,∵△ABC是等边三角形,BD经过圆心O,∴BD⊥AC,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,∵EA是⊙O的切线,∴∠EAD=30°,∵AE∥BC,∴∠AED=∠BCD=90°,∵∴AD=2,∵OA=OB ,∴∠OAB=OBA=30°,∴∠AOD=60°,∴△ADE 与圆重合部分的面积=S 扇形AOD -S △AOD=260212236023ππ⋅⨯-⨯=故答案为:23π【点睛】本题考查了作图-复杂作图,切线的判定和性质,扇形的面积计算,正确的作出图形是解题的关键.21.(1)y =﹣110x+8;(2)见解析;(3)销售价格定为60元/件时,获得的利润最大,最大利润是60百元.【解析】【分析】(1)把x =50代入y =150x得y =3,设y 与x 的函数关系式为:y =kx+b ,把x =30,y =5;x =50,y =3,代入解方程组即可得到结论;(2)根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式;(3)结合(1)中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可.【详解】(1)把x =50代入y =150x得y =3, 设y 与x 的函数关系式为:y =kx+b ,∵当x =30时,y =5,当x =50时,y =3,∴530350k b k b =+⎧⎨=+⎩, 解得:1k 10b 8⎧=-⎪⎨⎪=⎩,∴y 与x 的函数关系式为:y =﹣1x+8;故答案为:y =﹣110x+8; (2)当30≤x≤60时,w =(x ﹣20)(﹣0.1x+8)﹣40=﹣0.1x 2+10x ﹣200;当60<x≤80时,w =(x ﹣20)• 150x ﹣40=﹣3000x+110; (3)当30≤x≤60时,w =﹣0.1x 2+10x ﹣200=﹣0.1(x ﹣50)2+50,∴当x =50时,w 取得最大值50(百元);当60<x≤80时,w =﹣3000x +110, ∵﹣3000<0,∴w 随x 的增大而增大,当x =60时,w 最大=60(百元),答:销售价格定为60元/件时,获得的利润最大,最大利润是60百元.【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.22.(1)见解析;(2)23π-【解析】【分析】(1)欲证明AC 是⊙O 的切线,只要证明OD ⊥AC 即可.(2)证明△OBE 是等边三角形即可解决问题.【详解】(1)证明:连接OD ,如图,∵BD 为∠ABC 平分线,∴∠1=∠2,∵OB =OD ,∴∠1=∠3,∴∠2=∠3,∵∠C =90°,∴∠ODA =90°,∴OD ⊥AC ,∴AC 是⊙O 的切线.(2)过O 作OG ⊥BC ,连接OE ,则四边形ODCG 为矩形,∴GC =OD =OB =2,OG =CD ,在Rt △OBG 中,利用勾股定理得:BG =1,∴BE =2,则△OBE 是等边三角形,∴阴影部分面积为260?2360π⨯﹣12=23π- 【点睛】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.甲组数据的平均数为100cm ;乙组数据的平均数为100cm ;(2)甲种农作物长得比较整齐.【解析】【分析】(1)根据平均数的计算公式分别把这6株农作物的高度加起来,再除以6即可;(2)先算出甲与乙的方差,再进行比较,方差越小的,农作物长势越整齐,即可得出答案.【详解】(1)甲组数据的平均数=16×(98+102+100+100+101+99)=100(cm ); 乙组数据的平均数=16×(100+103+101+97+100+99)=100(cm ); (2)s 2甲=16×[(98﹣100)2+(102﹣100)2+…+(99﹣100)2]=53; s 2乙=16×[(100﹣100)2+(103﹣100)2+…+(100﹣99)2]=103. s 2甲<s 2乙.所以甲种农作物长得比较整齐.【点睛】本题考查了平均数与方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差大,波动性越大,反之也成立.24.(1)详见解析;(2)详见解析.【解析】【分析】(1)由“AAS ”可证AED CEF ∆≅∆,可得DE EF =;(2)由直角三角形的性质可得CD AD =,由对角线互相平分的四边形是平行四边形可证四边形ADCF 是平行四边形,即可证四边形ADCF 是菱形.【详解】(1)证明:∵CF AB ∥ ,∴DAC ACF ∠∠=,又∵AE EC AED CEF ∠∠=,= ,∴AED CEF AAS ≌(), ∴DE EF =.(2)∵90ACB ∠︒=,D 是AB 的中点,∴CD AD =∵DE EF AE EC =,=∴四边形ADCF 是平行边形又∵AD CD =∴四边形ADCF 是菱形.【点睛】本题考查了菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.25.(1)(﹣1,0)(3,0);(﹣1,0)(5,0);(2)(-1,0); y=12 (x+1);(3)点C 的坐标为(1,0)或(-3,0);(4)-12<m≤0 【解析】【分析】(1)①把m=1,y=0分别代入抛物线C1,得到一个一元二次方程,解方程即可求出交点横坐标。

小学数学《格点与面积》练习题(含答案)

小学数学《格点与面积》练习题(含答案)

小学数学《格点与面积》练习题(含答案)内容概述同学们,一看这个题目,你一定会有许多疑问:什么是格点?格点与面积之间又有什么关系等等.这一节我们就来探讨这些问题。

在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!正方形格点问题正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.【例1】判断下列图形哪些是格点多边形?【例2】如右图,计算各个格点多边形的面积.分析:本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.【例3】如右图(a),计算这个格点多边形的面积.【例4】(1998年新加坡小学数学奥林匹克竞赛)右图是一个方格网,计算阴影部分的面积.【例5】分别计算右图中两个格点多边形的面积。

【例6】用N表示多边形内部格点, L表示多边形周界上的格点,S表示多边形面积,填写下表:图形图形内的格点数(N)边界上的格点数(L)面积(S)例2图4例3例4例5(1)【例7】本讲开始提到的图“乡村小屋”的面积是多少?【例8】 (保良局亚洲区城市小学数学竞赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例9】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【例10】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.【例11】如右图(a),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC的面积.【例12】如右图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算△ABC的面积.【例13】把大正三角形每边八等份,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【例14】(第五届“华杯赛”)正六边形ABCDEF的面积是6平方厘米.M是AB中点,N是CD中点,P是EF中点.问:三角形MNP的面积是多少平方厘米?练习一1.求下列各个格点多边形的面积.2. 右图是一个8 12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.3.求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).4.右图有12个点,相邻两个点之间的距离是1厘米,这些点可以连成多少个面积为2平方厘米的三角形?5.将图中的图形分割成面积相等的三块.正方形格点问题正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.【例15】判断下列图形哪些是格点多边形?分析:根据格点多边形的定义可知,图形的边必须是直线,顶点要在格点上!所以只有(1)是格点多边形。

4-2-1_格点型面积.题库学生版.doc

4-2-1_格点型面积.题库学生版.doc

板块一正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N表示多边形内部格点,L表示多边形周界上的格点,S表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N=+-.这个规律就是毕克定理.【例 1】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?毕克定理若一个格点多边形内部有N个格点,它的边界上有L个格点,则它的面积为12LS N=+-.例题精讲格点型面积【例 2】如图,44的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【例 3】判断下列图形哪些是格点多边形?⑴⑵⑶【例 4】如图,计算各个格点多边形的面积.【例 5】如图(a),计算这个格点多边形的面积.III 【例 6】(“新加坡小学数学奥林匹克”竞赛试题)右图是一个方格网,计算阴影部分的面积.【例 7】分别计算图中两个格点多边形的面积.⑴ ⑵【巩固】求下列各个格点多边形的面积.⑵⑴⑷⑶【例 8】 我们开始提到的“乡村小屋”的面积是多少?【例 9】 右图是一个812 面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.H GFED C BA【例 10】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【例 11】 (“小学数学奥林匹克”竞赛试题)55 的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是 平方厘米.【例 12】 (“保良局亚洲区城市小学数学”竞赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例 13】 (第六届“从小爱数学”邀请赛试题)两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm ,右下角的阴影部分(线状)面积为27.4cm ,求大正方形的面积.【例 14】 (第六届“华杯赛”试题)图中正六边形ABCDEF 的面积是54,AP =2PF ,CQ =2BQ ,求阴影四边形CEPQ 的面积.AB C DFQP板块二 三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.【例 15】 如图(a ),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC 的面积.AB(a )【巩固】如图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算ABC 的面积.【例 16】求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).⑴⑵⑶⑷【例 17】 把大正三角形每边八等分,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【例 18】如图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD 的面积是多少平方厘米?【例 19】把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【例 20】将图中的图形分割成面积相等的三块.【例 21】如图涂阴影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是多少平方厘米?【例 22】 (第五届“华杯赛”试题)正六边形ABCDEF 的面积是6平方厘米.M 是AB 中点,N 是CD 中点,P 是EF 中点.问:三角形MNP 的面积是多少平方厘米?BP M F EDCBA【例 23】如果下图中任意相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC的面积是_____平方厘米.。

中考数学复习15 格点问题

中考数学复习15 格点问题

格点问题【第一部分】格点问题中的三角函数及三角形1.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=______________.2.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.3.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是_________.4.如图,在正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为.5.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.6.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为_________.7. 如图1是由边长为1的小正方形组成的网格,点A 、B 、C 、D 都在网格的格点上,AC 、BD 相交于点O .(一)探索发现(1)如图1,当AB=2时,连接AD ,则∠ADO=90°,BO=2DO ,AD=2,BO=232,tan ∠AOD=_________. 如图2,当AB=3时,画AH ⊥BD 交BD 的延长线于H ,则AH=223, BO=________,tan ∠AOD=________. 如图3,当AB=4时,tan ∠AOD=__________.(2)猜想:当AB=n (n >0)时,tan ∠AOD=______________.(结果用含n 的代数式表示),请证明你的猜想. (二)解决问题(3)如图,两个正方形的一边CD 、CG 在同一直线上,连接CF 、DE 相交于点O ,若tan ∠COE=1317,求正方形ABCD 和正方形CEFG 的边长之比.【第二部分】 格点问题中的尺规作图【找中点】例一、做出BC 中点P①根据长方形性质找中点 ②根据平行四边形性质找中点【找三等分点】例二、①在BC上找点P,使PB:PC=2:1 ②在BC上找点P,使PC:PB=2:1总结:构造线段n等分点:①在一组平行线里找到线段两端;②在平行线上找到1与(n-1)长度的线段;③连接端点与已知线段交点即为所求。

24.4 弧长和扇形面积 同步练习2024-2025学年九年级上册数学人教版

24.4 弧长和扇形面积 同步练习2024-2025学年九年级上册数学人教版

24.4 弧长和扇形面积同步练习2024-2025学年九年级上册数学人教版第一课时知识点一 弧长的有关计算1. 在半径为1的⊙O 中, 120°的圆心角所对的弧长是 ( ) A.3π B. 3π- C. π D.2π 2. 在半径为2 的⊙O 中,AB 的长为2π,则AB 所对的圆心角 为 ( ) A. 90° B. 45° C. 22.5° D. 180°3.“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”. 若等边△ABC 的边长为3,则该“莱洛三角形”的周长等于 ( ) A. π B. 3π C. 2π D.2π−√34. 如图, 四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°, 则 AĈ的长是( ) A. 2π B. π C. π/2 D. π/3 5. 如图, 在扇形AOB 中, ∠AOB=90°, 点 C 为OA 的中点, CD⊥OA 交 AB ̂于D, 若 BD ̂的长为 13π, 则⊙O 的半径为 .知识点二 扇形面积的有关计算6. 如图, 在⊙O 中, OA=2,∠C=45°, 则图中阴影部分的面积是 .7. 如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC 外接圆的一部分,小正方形的边长为1,图中阴影部分的面积为 ( )A.52π−74 B.52π−72 C.54π−74 D.54π−72 8.(1) 在扇形AOB 中, ∠AOB =75∘,AB̂的长为2.5π, 则⊙O 的半径为 ;9. 如图, AB 是半圆O的直径, 以O为圆心, OC 长为半径的半圆交AB于C, D 两点, 弦AF 切小半圆于点E.已知OA=2, OC=1, 则图中阴影部分的面积是̂所在圆相切于点A, B. 若该10.如图是某款“不倒翁”及其轴截面图, PA, PB 分别与AMB̂的长是 cm.圆半径是18 cm,∠P=50°, 则AMB11. 如图, AB 为⊙O 的直径,点C 为⊙O上一点, CD⊥AD, AD 交⊙O 于E, AC 平分∠BAD.(1) 求证: CD 是⊙O 的切线;(2) 连CE, CE∥AB,AB=4,求图中阴影部分面积.12.如图, 在Rt△ABC 中,∠C=90°, AC=BC, 点O在AB 上, 以O为圆心, OA 为半径的半圆分别交AC, BC, AB 于点 D, E, F, 且点 E 是弧 DF 的中点.(1) 求证: BC 是⊙O 的切线;(2) 若CE=√2,求图中阴影部分的面积(结果保留π).̂的中点, D、E为圆上动点, 且 D、E关于AB 对13. 如图, AB 为⊙O 的直径, 点 C 为AB̂沿AD 翻折交AE 于点F, 使点C 恰好落在直径AB 上点C'处, 若⊙O 的周长为1称,将AD̂的长.0,求AF第二课时知识点一圆锥的展开图与扇形的关系1. 圆锥的母线长为13 cm,底面半径为5cm,则此圆锥的高线为 ( )A. 6 cmB. 8cmC. 10 cmD. 12 cm2. 在半径为50cm的圆形铁皮上剪出一块扇形铁皮,用剩余部分做一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪出的扇形的圆心角度数为 ( )A. 228°B. 144°C. 72°D. 36°3. 现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 ( )A. 4 cmB. 3cmC. 2cmD. 1 cm4. 已知一个圆锥的侧面展开图是一个半径为9,圆心角为120°的扇形,则该圆锥的底面半径等于( ).A. 9B. 27C. 3D. 10知识点二圆锥的侧面积与全面积5. 已知圆锥的底面半径是3,高为4,则这个圆锥的侧面展开图的面积是 ( )A. 12πB. 15πC. 30πD. 24π6. 已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径的比是 .7. 在长方形ABCD 中, AB=16, 如图所示裁出一个扇形ABE, 将扇形围成一个圆锥 (AB 和AE 重合),则此圆锥的底面圆的半径为 ( )A. 4B. 6C. 4√2D. 88. 如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°, AB的长为12πcm, 求该圆锥的侧面积.9. 如图,一个圆锥的高为3√3 cm,侧面展开图是半圆.(1) 求∠BAC 的度数;(2) 求圆锥的侧面积(结果保留π).10. 若一个圆锥的侧面积是底面积的3 倍,则这个圆锥的侧面展开图的圆心角为 ( )A. 60°B. 90°C. 120°D. 180°11. 如图, 用一个半径为30 cm, 面积为300πcm²的扇形铁皮,制作一个无底的圆锥 (不计损耗),则圆锥的底面半径r 为 ( )A. 5cmB. 10 cmC. 20cmD. 5πcm12. 如图,圆锥的底面半径为3cm,母线长为9cm,C 为母线PB 的中点,在圆锥的侧面上, 从A 到C 的最短距离是 cm.13. 如图,已知圆锥的母线AB 长为40cm, 底面半径OB 长为 10 cm, 若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是 cm.14. 如图,有一个直径为1m的圆形铁皮,圆心为O,要从中间剪去一个圆心角为120°的扇形ABC, 且BC经过点O.(1) 求被剪掉阴影部分的面积;(2) 若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥的底面半径是多少?15. 如图1,在正方形铁皮上剪下一个扇形和一个半径为1 cm的圆形,使之恰好围成如图2所示的一个圆锥,求圆锥的高.。

初二上册数学同步练习训练题含答案

初二上册数学同步练习训练题含答案

初二上册数学同步练习训练题含答案八年级数学上册同步测试题含答案一、填空题(共13小题,每小题2分,满分26分)1.已知:2某-3y=1,若把看成的函数,则可以表示为2.已知y是某的一次函数,又表给出了部分对应值,则m的值是3.若函数y=2某+b经过点(1,3),则b=_________.4.当某=_________时,函数y=3某+1与y=2某-4的函数值相等。

5.直线y=-8某-1向上平移___________个单位,就可以得到直线y=-8某+3.6.已知直线y=2某+8与某轴和y轴的交点的坐标分别是______________;与两条坐标轴围成的三角形的面积是__________ 7一根弹簧的原长为12cm,它能挂的重量不能超过15kg并且每挂重1kg就伸长0.5cm写出挂重后的弹簧长度y(cm)与挂重某(kg)之间的函数关系式是_______________.8.写出同时具备下列两个条件的一次函数表达式:(写出一个即可)___.(1)y随着某的增大而减小;(2)图象经过点(0,-3).9.若函数是一次函数,则m=_______,且随的增大而_______.10.如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间某(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米.11.如图所示,表示的是某航空公司托运行李的费用y(元与托运行李的质量某(千克)的关系,由图中可知行李的质量只要不超过_________千克,就可以免费托运.12.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和某轴上,已知点B1(1,1),B2(3,2),B3(7,4),则Bn的坐标是______________.13.如下图所示,利用函数图象回答下列问题:(1)方程组的解为__________;(2)不等式2某>-某+3的解集为___________;二、选择题(每小题3分,满分24分)1.一次函数y=(2m+2)某+m中,y随某的增大而减小,且其图象不经过第一象限,则m的取值范围是()A.B.C.D.2.把直线y=-2某向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6则直线AB的解析式是().A、y=-2某-3B、y=-2某-6C、y=-2某+3D、y=-2某+63.下列说法中:①直线y=-2某+4与直线y=某+1的交点坐标是(1,1);②一次函数=k某+b,若k>0,b<0,那么它的图象过第一、二、三象限;③函数y=-6某是一次函数,且y随着某的增大而减小;④已知一次函数的图象与直线y=-某+1平行,且过点(8,2),那么此一次函数的解析式为y=-某+6;⑤在平面直角坐标系中,函数的图象经过一、二、四象限⑥若一次函数中,y随某的增大而减小,则m的取值范围是m>3学⑦点A的坐标为(2,0),点B在直线y=-某上运动,当线段AB最短时,点B的坐标为(-1,1);⑧直线y=某—1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有5个.正确的有()A.2个B.3个C.4个D.5个4.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3某+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1y1>y2D.y35.下列函数中,其图象同时满足两个条件①у随着χ的增大而增大;②与ỵ轴的正半轴相交,则它的解析式为()(A)у=-2χ-1(B)у=-2χ+1(C)у=2χ-1(D)у=2χ+16.已知y-2与某成正比例,且某=2时,y=4,若点(m,2m+7),在这个函数的图象上,则m的值是()A.-2B.2C.-5D.57.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是()A.310元B.300元C.290元D.280元8.已知函数y=k某+b的图象如图,则y=2k某+b的图象可能是()三、解答题(共50分)1.(10分)两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数某(个)之间的一次函数解析式(不要求写出自变量某的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度。

初中数学格点与面积(B)同步练习及答案

初中数学格点与面积(B)同步练习及答案

初中数学格点与面积(B)同步练习及答案九、格点与面积(B)年级______班_____ 姓名 _____得分_____一、填空题:1.右图是用皮筋在钉板上围成的一个三角形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).2.右图是一根用皮筋在钉板上围成的一个四边形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).3.在一个9?6的长方形内,有一个凸四边形ABCD(如右图).用毕克定理先求出它的面积来,再用拼割方法计算它的面积,看两者是否一致.4.右图中每个小正方形的面积都是4平方厘米,求图中阴影部分的面积.5.右图是一个10?10的正方形,求正方形内的四边形ABCD 的面积.6.右图是一个8?12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.7.右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?8.右图是一个5?5的方格纸,小方格的面积是1平方厘米,小方格的顶点为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用线段连结所围成的面积尽可能大,那么,所用图形的面积1是多少平方厘米?9.右图中每个小正方形的面积为1平方分米,那么阴影部分的面积是多少平方分米?10.右图中每个小平行四边形的面积是1个面积单位,求阴影部分的面积.二、解答题:1.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算ABC的面积.2.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算四边形DEFG的面积.3.把等边三角形ABC每边六等分,组成如右图的三角形网.若图中每个小三角形的面积均为12cm,试求图中三角形DEF的面积.4.把大正三角形每边八等份,组成如右图所示的三角形网.如果每个小三角形的面积都是1,求图中粗线所围成的三角形的面积.———————————————答案——————————————————————一、填空题:1. 面积单位.分析:解答这类问题可直接套用毕克定理:格点面积=内部格点数+周界上格点数÷2-1.注意:一是毕克定理只对格点凸多边形适用,二是在数格点时要细心.解: 5+3÷2-1=(面积单位).2. 5+5÷2-1=(面积单位).3. 面积单位.解: ①由毕克定理得:25+7÷2-1=(面积单位).②用拼割方法得:ABCD的面积=长方形EFGH的面积-四角上的四个三角形的面积=9?6-(6?2÷2+3?3÷2+4?3÷2+4?5÷2)=54-(6++6+10)=(面积单位).4. 48平方厘米.解: ①内部格点数为: 9个;②周界上格点数为: 8个;③阴影部分的面积是: 4?(9+8÷2-1)=48(平方厘米).。

格点面积教材答案解析

格点面积教材答案解析

利用格点求图形的面积通常有三种思路:一是通过剪拼(割补法)直接将图形拼成若干个面积单位,然后通过计算有多少个面积单位来求图形面积;二是用不规则图形所在外围长方形减去周边几个非所求面积的图形来求得(扩展法);
三是利用毕克定理(公式)来计算。

此讲是在三年级学习简单格点与面积的基础上进一步学习的。

例1:下图是一个方格图。

图中有长方形、三角形、平行四边形和梯形各一个。

请你利用方格网计算出它们的面积各是多少?(如图所示阴影部分的小正方形的面积是1平方厘米)
格点面积
知识概要
分析
方法一:
例2:计算下面多边形格点的面积。

(每相邻两个小钉之间的距离都等于1个长度单位)
例3:图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形。

试计算三角形ABC的面积?
方法二:
分析
分析
★1. 求下面格点图形的面积。

★★2. 求下面格点图形的面积。

课外作业
★★★3. 下图中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形。

试计算多边形ABCDE的面积。

★★★4. 如图,如果每一个小三角形的面积是2平方厘米,那么四边形ABCD 的面积是多少平方厘米?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九、格点与面积(B)
年级______班_____ 姓名 _____得分_____ 一、填空题:
1.右图是用皮筋在钉板上围成的一个
三角形,计算它的面积是多少.(每相邻两个
小钉之间的距离都等于1个长度单位).
2.右图是一根用皮筋在钉板上围成的一个四边形,计算它的
面积是多少.(每相邻两个小钉之间的距离都等于1个长度单
位).
3.在一个9⨯6的长方形内,有一个凸四边形
ABCD(如右图).用毕克定理先求出它的面积来,再用拼
割方法计算它的面积,看两者是否一
致.
4.右图中每个小正方形的面积都
是4平方厘米,求图中阴影部分的面
积.
5.右图是一个10⨯10的正方形,求正方形内的四边形ABCD
的面积.
6.右图是一个8⨯12面积单
位的图形.求矩形内的箭形
ABCDEFGH的面积.
7.右图中每个小正方形的面积都是1,那么图中这只
“狗”所占的面积是多少?
8.右图是一个5⨯5的方格纸,小方格的
面积是1平方厘米,小方格的顶点为格点.
请你在图上选7个格点,要求其中任意3个
格点都不在一条直线上,并且使这7个点用
线段连结所围成的面积尽可能大,那么,所
用图形的面积1是多少平方厘米?
9.右图中每个小正方形的面积为1平方分米,那么阴影
部分的面积是多少平方分米?
10.右图中每个小平行四边形
的面积是1个面积单位,求阴影部
分的面积.
二、解答题:
1.右图中有21个点,其中每相邻的
三点“∴”或“∵”所形成的三角形都是面
积为1的等边三角形,试计算ABC
∆的
面积.
2.右图中有21个点,其中每相邻的三点“∴”或“∵”所
形成的三角形都是面积为1的等边三角形,试计算四边形
DEFG的面积.
3.把等边三角形ABC每边六等分,
组成如右图的三角形网.若图中每个小
三角形的面积均为12
cm,试求图中三角
形DEF的面积.
4.把大正三角形每边八等份,组成如右图所示的三角形网.如果每个小三角形的面积都是1,求图中粗线所围成的三角形的面积.
———————————————答案——————————————————————
一、填空题:
1. 5.5面积单位.
分析:解答这类问题可直接套用毕克定理:
格点面积=内部格点数+周界上格点数÷2-1.
注意:一是毕克定理只对格点凸多边形适用,二是在数格点时要细心.
解: 5+3÷2-1=5.5(面积单位).
2. 5+5÷2-1=6.5(面积单位).
3. 27.5面积单位.
解: ①由毕克定理得:
25+7÷2-1=27.5(面积单位).
②用拼割方法得:
ABCD的面积=长方形EFGH的面积-四角上的四个三角形的面积 =9⨯6-(6⨯2÷2+3⨯3÷2+4⨯3÷2+4⨯5÷2)
=54-(6+4.5+6+10)=27.5(面积单位).
4. 48平方厘米.
解: ①内部格点数为: 9个;
②周界上格点数为: 8个;
③阴影部分的面积是: 4⨯(9+8÷2-1)=48(平方厘米).
5. 30面积单位.
解: 因为ABCD不是凸四边形,所以如在原题图上取格点E,则三角形BCE及四边形AECD都是凸的图形,故:
S=(4+6÷2-1)+(21+8÷2-1)
ABCD
=6+24=30(面积单位).
6. 46面积单位.
解: 因为ABCDEFGH不是凸多边形,所以,连结GC、MN,则ABH
∆、矩形GCNM、三角形MFE、EDN都是凸的图形.
故箭形ABCDEFGH的面积=(8+10÷2-1)+4⨯8+(4÷2-1)⨯2
=12+32+2=46(面积单位).
7. 67.5面积单位.
解: 图形内部格点数为59,图形周界上格点数为19.
所以图形的面积为:59+19÷2-1=67.5(面积单位).
8. 23.5(平方厘米).
分析与解: 这是一个5⨯5的方格纸,共有25个格点.现在要围成一个面积最大的图形,根据格点面积公式,要使图形面积最大,必须使图形包含的内部格点数和周界上格点数尽可能多.由方格纸可知,内部格点数最多为4⨯4=16,周界上格点数最多为5⨯4=20.但是,当周界上格点数为最多时,不符合题中“任意3个格点不在一条直线上”的条件,因此,适当调整图上7个格点的位置,如右上图所示,就得到了面积最大的图形.
所围成图形的最大面积为: 16+17÷2-1=23.5(平方厘米).
9. 8.5平方分米.
解:图形内部格点数为7,图形周界上格点数为 5.阴影部分的面积为:7+5÷2-1=8.5(平方分米).
10. 18.5面积单位.
解: 图形内部格点数为16,图形周界上格点数为7.
图形的面积为: 16+7÷2-1=18.5(面积单位).
二、解答题:
1. 10面积单位.
分析: 由“∵”和“∴”重合两点可拼为平行四边形 ,可以推出如下计算这类格点面积的公式:
图形面积=(内部格点数+周界上格点数÷2-1)⨯2.
解: 图形内部格点数为4,图形周界上格点数为4.
ABC S ∆=(4+4÷2-1)⨯2=10(面积单位).
2. 12面积单位.
解: DEFG S 四边形=(5+4÷2-1)⨯2=12(面积单位).
3. 11面积单位.
解: 图形内部格点数为5,图形周界上格点数为3. DEF S ∆=(5+3÷2-1)⨯2=11(2cm ).
4. 26面积单位.
解: 图形内部格点数为12,图形周界上格点数为4. 图形的面积为: (12+4÷2-1)⨯2=26(面积单位).。

相关文档
最新文档