八年级数学上册 14.2 乘法公式 平方差公式教案 (新版)新人教版
八年级数学上册 14.2 乘法公式教案 (新版)新人教版
14.2 乘法公式第1课时平方差公式教学目标1.经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的运算.2.理解平方差公式的结构特征,灵活应用平方差公式.教学重点平方差公式的推导和应用.教学难点理解平方差公式的结构特征,灵活应用平方差公式.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标从前,有一个狡猾的庄园主,把一块边长为x米的正方形土地租给张老汉种植,第二年,他对张老汉说:“我把这块地的一边增加5米,另一边减少5米,继续租给你,租金不变,你也没有吃亏,你看如何?”张老汉一听觉得好像没有吃亏,就答应了,回到家中,把这事和邻居们一讲,都说:“张老汉,你吃亏了!”张老汉非常吃惊.同学们,你知道张老汉为什么吃亏吗?通过本节课的学习,你将能解释这其中的原因!二、自主学习,指向目标自学教材第107页至108页,思考下列问题:1.根据条件列式:(1)a、b两数的平方差可以表示为________;(2) a、b两数差的平方可以表示为________;2.平方差公式的推导依据是________________________________________________________________________.3.平方差公式(乘法)的特征是:左边是__________________,右边是__________________.三、合作探究,达成目标探究点一探索平方差公式活动一:1.填写教材P107三个计算结果,展示点评:(1)二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(二项)(2)观察上列算式的左边的两个二项式,有什么异同?运算出结果后的二项式与等式左边的二项式有什么关系?(等号的左边是两数的和乘以这两数的差,等号的右边是这两数的平方差.)2.归纳:两个数的________与这两个数的差的积,等于这两数的________.用公式表示上述规律为:(a+b)(a-b) =________这就是平方差公式.3.观察教材图14.2-1,请你用两种方法计算图形中阴影部分的面积,得到什么结果?(a+b)(a-b)=a2-b24.观察教材P108例1中的两个算式,能否用平方差公式进行计算?若能用,公式中a,b分别代表什么?例1运用平方差公式计算(1)(3x+2)(3x-2);(2)(-x+2y)(-x-2y).思考:确定能否应用平方差公式进行运算的关键是什么?展示点评:观察算式:①是不是两个二项式相乘;②是不是两数的和乘以两数的差;③若作为因式的二项式的首项是负号的,可以连同符号一起看作为一项,也可以把一个因式里的两项颠倒位置观察思考.关键就是确定是不是两数的和乘以两数的差.解答过程见课本P108例1小组讨论:能运用平方差公式计算的式子有何特征?【反思小结】能运用平方差公式进行计算的式子特征:①二项式与二项式的积;②把两个二项式进行对比:有一项相同,另一项互为相反数.针对训练:1.计算(2a+5)(2a-5)等于( A )A.4a2-25 B.4a2-5 C.2a2-25 D.2a2-52.计算(1-m)(-m-1),结果正确的是( B )A.m2-2m-1 B.m2-1 C.1-m2 D.m2-2m+1探究点二平方差公式的综合应用活动二:计算:(1)102×98;(2)(y+2)(y-2)-(y-1)(y+5).展示点评:(1)例1是数的计算,观察其特征,把两个因数如何变形能够运用平方差公式进行计算?(2)例2中有整式的简单的混合运算,在进行运算时要注意什么?展示点评:第1题可以变为100与2的和乘以100与2的差;第(2)题中多项式的乘法,能运用平方差公式的一定要运用平方差公式进行运算.解答过程见课本P108例2小组讨论:平方差公式与整式乘法有什么关系?在运用时应注意什么问题?【反思小结】(1)可运用平方差公式运算的式子,也属于我们前面所学的多项式乘以多项式的运算,所以说平方差公式适用于特殊形式的该类运算.(2)有些不能直接用平方差公式的题目可向公式形式转化,写成两数和与两数差乘积的形式,再运用公式.(3)在运用平方差公式运算时,一要注意确定好公式中的“a”项,“b”项;二要注意对两个数整体平方,而不是部分平方.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.平方差公式的特征,公式中的字母a和b既可以表示数,也可表示字母,还可以表示多项式;2.能应用平方差公式进行乘法运算,并能进行简单变形应用.3.平方差公式与多项式乘法之间的关系.五、达标检测,反思目标1.下列多项式乘法,能用平方差公式进行计算的是( C )A.(x+y)(-x-y) B.(2x+3y)(2x-3z)C.(-a-b)(a-b) D.(m-n)(n-m)2.下列各式运算结果是x2-25y2的是( B )A.(x+5y)(-x+5y) B.(-x-5y)(-x+5y)C.(x-y)(x+25y) D.(x-5y)(5y-x)3.两个连续奇数的平方差是( B )A.6的倍数B.8的倍数C.12的倍数D.16的倍数4.计算:(2+3x)(-2+3x)=__9x2-4__.5.已知(x-ay)(x+ay)=x2-16y2,那么a=__±4__.6.计算:(1)a(a-5)-(a+6)(a-6)解:原式=a2-5a-(a2-36)=36-5a(2)(x+y)(x-y)(x2+y2)解:原式=(x2-y2)(x2+y2)=x4-y4(3)9982-4解:原式=(998+2)(998-2)=1000×996=996000●布置作业,巩固目标教学难点1.上交作业:课本P112第1题.2.课后作业:见《学生用书》.第2课时完全平方公式教学目标1.理解完全平方公式,掌握两个公式的结构特征.2.熟练应用公式进行计算.教学重点完全平方公式的推导过程、结构特点以及几何解释,并能灵活应用.教学难点理解完全平方方式的结构特征,并能灵活应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.多项式乘以多项式的法则是什么?(多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)2.观察下列计算过程及结果:(1)(p+q)(p+q)=________________=________________;(2)(x-y)(x-y)=________________=________________.展示点评:怎样快速的计算形如(2x+y)2的运算,这就是我们今天所要学习的主要内容.二、自主学习,指向目标自学教材第109页至110页,思考下列问题:1.完全平方公式的推导的依据多项式乘以多项式的乘法法则2.完全平方公式的特征是:左边是两数和(或差)的平方,右边是这两数的平方和,加上(或减去)这两数积的2倍;与平方差公式的区别是平方差公式是两数的和乘以两数的差,等于这两数的平方差,其结果是一个二项式.3.从几何的角度去理解完全平方公式,观察下图,可以得到:(1)(a+b)2=________;(2)(a-b)2=________.三、合作探究,达成目标 探究点一 完全平方公式活动一:1.根据条件列式:(1)a ,b 两数和的平方可以表示为________; (2)a ,b 两数平方的和可以表示为________. 2.填写教材P 109四个计算结果. 展示点评:(1)一个多项式的平方运算可以看做哪种形式的运算(两个相同的多项式的乘法运算) (2)课本中的二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(三项)(3)上列算式运算的依据是什么? (依据是多项式乘以多项式的乘法法则) (4)观察上列算式,运算出结果后的三项式与等式左边的二项式有什么关系?(等号的左边是两数的和或差的平方;等号的右边是这两数的平方和,加上或减去这两数积的2倍.)3.归纳:由上述规律可得到公式:(a +b)2=________;(a -b)2=________. 完全平方公式:两数和(或差)的平方等于这两个数的______加上(或减去)这两个数积的______倍.可记作:首平方,尾平方,二倍乘积放中央.4.观察教材图14 .2-2及14 .2-3你通过图形中的面积,得到什么结果?(a +b)2=a 2+ab +b 2+ab =a 2+2ab +b 2;(a -b)2=a 2-ab -ab +b 2=a 2-2ab +b 2; 5.观察教材P 110例3中的两个算式,能否用完全平方公式进行计算?若能用,公式中a ,b 分别代表什么?例1 运用完全平方公式计算:(1)(4m +n)2(2)⎝ ⎛⎭⎪⎫y -122(3)(-2a -3b)2展示点评:从平方的意义看,⎝ ⎛⎭⎪⎫y -122与⎝ ⎛⎭⎪⎫12-y 2的结果一样吗?(-2a -3b)2与(-3b -2a)2的结果相同吗?而(4m +n)2与(4m -n)2的结果呢?展示点评:互为相反数的平方结果相等,因此(y -12)2与(12-y)2的结果一样;而4m +n与4m -n 不一定相等或是相反数,因此其平方的结果不一定相等.小组讨论:应用完全平方公式计算应注意什么? 解答过程见课本P 110例3反思小结:1.应用公式时,可以先确定两数的平方和,再加上(或减去)两数积的2倍;切记不要漏掉两数积的2倍;2.互为相反数的两个多项式的平方相等.针对训练:见《学生用书》相应部分 探究点二 完全平方公式的综合应用 活动二:运用完全平方公式计算:(1)1022 (2)992小组讨论:一个较大或较小数的平方运算,如何巧妙地进行变形,应用完全平方公式,快速的进行计算呢?展示点评:把102或99写成两数和或差的形式,再进行计算.反思小结:对于较大数的平方可以转化成两整数和(或差)的平方,再运用完全平方公式进行计算比较简便.针对训练:见《学生用书》相应部分 四、总结梳理,内化目标1.完全平方公式的推导及其几何意义;2.完全平方公式里的字母可以表示一个数,表示一个单项式,也可以表示一个多项式; 3.应用完全平方公式进行计算,有关数字计算题应用完全平方公式可以使计算简便. 4.数学思想:类比、数形结合. 五、达标检测,反思目标1.( x +3y )2=x 2+6xy +__9y 2__.2.a 2-kab +9b 2是完全平方式,则k =__±6__.3.计算(-a -b)2结果是( B )A .a 2-2ab +b 2B .a 2+2ab +b 2C .a 2+b 2D .a 2-b 24.运用乘法公式计算(1)⎝ ⎛⎭⎪⎫12x -12; (2)1052; 解:(1)原式=14x 2-x +1(2)原式=(100+5)2=1002+2×100×5+25 =10000+1025 =11025(3)(a -b -3)(a -b +3).解:原式=[(a -b )-3][(a -3)+3]=(a -b )2-9 =a 2-2ab +b 2-95.已知x +y =9,xy =20,求(x -y)2的值.解:(x -y )2=(x +y )2-4xy =81-80=1 ●布置作业,巩固目标教学难点1.上交作业:课本第112页2、3(2)(3)、7. 2.课后作业:见《学生用书》.第3课时 乘法公式的拓展教学目标1.了解添括号法则.2.能应用添括号法则,结合乘法公式,对项数是三项或三项以上的多项式乘法进行运算.教学重点应用添括号法则及乘法公式进行运算.教学难点正确的添加括号后,应用公式进行计算.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.去括号法则是什么?(如果括号前面是正号,去掉括号后,括号里的各项不变号;如果括号前面是负号,去掉括号后,括号里的各项都要变号.)2.我们学过的乘法公式有哪些,你能完整的叙述出来吗?(平方差公式,完全平方公式)3.对于形如(x+2y-3)(x-2y+3)的乘法可以怎样运算呢?你能运用比较简便的方法运算吗?这就是我们这节课主要学习的内容.二、自主学习,指向目标1.添括号的法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.它和去括号的联系是互逆变形.2.试一试,在括号内添加适当的项:(1) (x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)](2)x-2y-4x=x-2(y+2x)三、合作探究,达成目标探究点一添括号法则活动一:去括号:a+(b+c)=________;a-(b-c)=________反过来,你能给下列多项式添括号吗:a+b+c=a+(b+c) a-b-c=a-(b+c)展示点评:添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.小组讨论:添括号法则与去括号法则有什么关系?反思小结:添括号法则与去括号法则是互逆变形的过程,其符号变化与去括号法则变化一样.针对训练:见《学生用书》相应部分探究点二乘法公式的推广活动二:平方差公式:(a+b)(a-b)=________完全平方公式:(a±b)2=________公式中的a 和b是一个字母,可以是一个多项式吗?如果a或b是一个多项式,如何运算?(a和b可以代替一个多项式,计算时可以看作一个整体先按照乘法公式进行计算,然后再根据相应的法则,再进行运算.)例1运用乘法公式计算:(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2思考:第(1)题首先要应用添括号法则进行变形,需要应用几次公式,应用的公式相同吗?第(2)题与第(1)题的形式、运算过程和方法有何区别?展示点评:第1小题中先应用添括号法则把两个因式内互为相反数的两项结合变成两数的和乘以两数差的形式,先进行运算,再运用完全平方公式乘开,能合并同类项的一定要合并同类项;第2小题中应用加法交换与结合律,任意结合其中两项,应用两次完全平方公式即可.解答过程见课本P 111例5小组讨论:第(1)(2)题在添括号时,有什么相同点和不同点?【反思小结】两个多项式相乘,若两个多项式中既有相同的项,又有互为相反数的项,且没有其它的项,则要运用添括号法则把相同的项或互为相反数的项,分别括起来,把添到括号内的多项式当做一个整体,再进行计算.针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.添括号法则;2.乘法公式里的字母可以表示一个数,表示一个单项式,也可以表示一个多项式;因此对于项数是三项或三项以上的多项式乘法,根据乘法的形式,添加适当的括号,再运用乘法公式运算.五、达标检测,反思目标 1. 判断下列变形是否正确.(1)2a -b -c 2=2a -(b -c2)(2)m -3n +2a -b =m +(3n +2a -b)(3)2x -3y +2=-(2x +3y -2)(4)a -2b -4c +5=(a -4c)-(2b -5) 解:(1)(2)(3)都错误,(4)正确2.下列式子:①(3x+1)(3x -1)=(3x -1)2;②(x-3y)2=x 2-3xy +9y 2;③(1-2xy 2)2=1-4x 2y 4;④(a +1a )2=a 2+2+1a2;其中正确的是( D )A .①B .①②C .①②③D .④3.如果x +y =-7,xy =12, 那么x 2-xy +y 2的值为( C ) A .61 B .37 C .13 D .11 4.运用乘法公式计算(1)(a -b -3)(a -b +3) (2)(a +2b -1)2解:(1)原式=[(a -b )-3][(a -b )+3]=(a -b )2-9 =a 2-2ab +b 2-9 解:原式=[(a +2b )-1]2=(a +2b )2-2(a +2b )+1 =a 2+4ab +4b 2-2a -4b +15.求证:无论x ,y 为何值时,多项式x 2+y 2-2x +6y +10的值恒大于负数.解: x 2+y 2-2x +6y +10 =x 2-2x +1+y 2+6y +9=(x -1)2+(y +3)2∵(x -1)2≥0, (y +3)2≥0 ∴x 2+y 2-2x +6y +10≥0即无论x ,y 为何值时,多项式x 2+y 2-2x +6y +10的值恒为非负数.。
人教版八年级数学上册14.2.1《平方差公式》说课稿
(二)媒体资源
我将使用以下教具、多媒体资源或技术工具辅助教学:
1.教具:平方差公式推导过程中,我将使用实物模型、卡片等教具,帮助学生直观地理解平方差公式的推导过程。
2.引发疑问:提出问题“如何简便地计算两个数的平方差?”让学生产生求知欲望,为新课的学习做好铺垫。
3.游戏互动:设计一个简单的数学游戏,让学生在游戏中体验平方差的概念,为新课的学习营造轻松愉快的氛围。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.平方差公式推导:通过实物模型、动画演示等方式,让学生直观地理解平方差公式的推导过程,掌握其内涵。
2.小组讨论:组织学生进行小组讨论,共同解决实际问题,培养学生的合作意识和解决问题的能力。
3.竞赛活动:开展数学竞赛,激发学生的学习积极性,提高他们运用平方差公式解决问题的速度和准确度。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生对自己的学习过程和成果进行评价,反思在学习过程中遇到的问题和解决方法。
2.知识点讲解:结合具体实例,讲解平方差公式的表达形式和应用方法,让学生明白如何运用公式解决实际问题。
3.互动提问:在讲解过程中,适时提问,了解学生对知识点的掌握情况,并及时解答学生的疑问。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.课堂练习:设计不同难度的练习题,让学生独立完成,检验他们对平方差公式的掌握程度。
1.启发式教学:这种方法能够激发学生的思维,引导学生主动探究问题,培养学生的创新意识。依据建构主义学习理论,学生通过自主探究和思考,能够更好地理解和掌握知识。
人教版八年级上册数学教案14.2 乘法公式(3课时)
14.2乘法公式14.2.1平方差公式(第1课时)一、基本目标【知识与技能】掌握平方差公式,会用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性,感受数学知识的实际价值.二、重难点目标【教学重点】平方差公式.【教学难点】理解平方差公式的结构特征,灵活应用平方差公式.环节1自学提纲,生成问题【5 min阅读】阅读教材P107~P108的内容,完成下面练习.【3 min反馈】1.根据条件列代数式:(1)a、b两数的平方差可以表示为a2-b2;(2)a、b两数差的平方可以表示为(a-b)2.2.(1)(x+2)(x-2)=x2-4;(1+3a)(1-3a)=1-9a2;(x+5y)(x-5y)=x2-25y2.观察以上算式及其运算结果填空:上面三个算式中的每个因式都是多项式;等式的左边都是两个数的和与两个数的差的乘积,等式的右边是这两个数的平方的差.(2)平方差公式:(a +b )(a -b )=a 2-b 2.也就是说,两个数的和与这两个数的差的积,等于这两个数的平方差.3.已知a +b =10,a -b =8,则a 2-b 2=80. 4.计算(3-x )(3+x )的结果是9-x 2. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】运用平方差公式计算: (1)(3x -5)(3x +5); (2)(-2a -b )(b -2a ); (3)(x -2)(x +2)(x 2+4).【互动探索】(引发学生思考)观察各式子的特点,确定用什么公式计算? 【解答】(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25. (2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2. (3)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.【互动总结】(学生总结,老师点评)运用平方差公式计算时,要注意以下几点:(1)左边是两个二项式相乘,并且这两个二项式中一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【例2】计算:10015×9945.【互动探索】(引发学生思考)观察式子特点,直接计算比较难,将原式转化为⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15,用平方差公式计算.【解答】原式=⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15=10 000-125=99992425. 【互动总结】(学生总结,老师点评)可将两个因数写成相同的两个数的和与差,形成平方差公式结构.活动2 巩固练习(学生独学)1.下列运算中,可用平方差公式计算的是( C ) A .(x +y )(x +y )B .(-x +y )(x -y )C .(-x -y )(y -x )D .(x +y )(-x -y )2.如图1,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图2),利用这两幅图形的面积,可以验证的乘法公式是(a +b )(a -b )=a 2-b 2.3.长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为4a 2-9b 2. 4.若(m +3x )(m -3x )=16-nx 2,则mn 的值为±36. 5.计算:(1)⎝⎛⎭⎫34y +212x ⎝⎛⎭⎫212x -34y ; (2)⎝⎛⎭⎫-56x -0.7a 2b ⎝⎛⎭⎫56x -0.7a 2b ; (3)(2a -3b )(2a +3b )(4a 2+9b 2)(16a 4+81b 4).解:(1)254x 2-916y 2. (2)0.49a 4b 2-2536x 2. (3)256a 8-6561b 8.6.运用平方差公式简算: (1)2013×1923; (2)13.2×12.8.解:(1)原式=⎝⎛⎭⎫20+13×⎝⎛⎭⎫20-13=400-19=39989. (2)原式=(13+0.2)×(13-0.2)=169-0.04=168.96. 活动3 拓展延伸(学生对学)【例3】对于任意的正整数n ,整式(3n +1)(3n -1)-(3-n )(3+n )的值一定是10的倍数吗?【互动探索】要判断整式是否为10的倍数→需化简代数式→化简结果是否是10的倍数→做出判断.【解答】原式=9n 2-1-(9-n 2)=10n 2-10=10(n +1)(n -1). ∵n 为正整数,∴(n -1)(n +1)为整数,即(3n +1)(3n -1)-(3-n )(3+n )的值是10的倍数.【互动总结】(学生总结,老师点评)平方差公式中的a 和b 可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.环节3课堂小结,当堂达标(学生总结,老师点评)平方差公式:(a+b)(a-b)=a2-b2.请完成本课时对应练习!14.2.2完全平方公式第2课时完全平方公式一、基本目标【知识与技能】1.掌握完全平方公式及其结构特征.2.会用完全平方公式进行简单计算.【过程与方法】利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感态度与价值观】培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.二、重难点目标【教学重点】完全平方公式及其结构特征.【教学难点】灵活应用完全平方公式进行计算.环节1自学提纲,生成问题【5 min阅读】阅读教材P109~P110的内容,完成下面练习.【3 min反馈】1.按要求列代数式:(1)a、b两数和的平方可以表示为(a+b)2;(2)a、b两数平方的和可以表示为a2+b2.2.计算下列各式:(a+1)2=(a+1)(a+1)=a2+2a+1;(a-1)2=(a-1)(a-1)=a2-2a+1;(m-3)2=(m-3)(m-3)=m2-6m+9.3.完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.如图1可以用来解释(a+b)2-(a-b)2=4ab,那么通过图2面积的计算,验证了一个恒等式,此等式是(a-b)2=a2-2ab+b2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】运用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2; (4)(a+b+c)2.【互动探索】(引发学生思考)观察式子的特点,怎样运用完全平方公式进行计算?【解答】(1)(5-a)2=52-2·5·a+a2=25-10a+a2.(2)(-3m-4n)2=(-3m)2-2·(-3m)·4n+(4n)2=9m2+24mn+16n2.(3)(-3a+b)2=(-3a)2+2·(-3a)·b+b2=9a2-6ab+b2.(4)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2.【互动总结】(学生总结,老师点评)完全平方公式:(a±b)2=a2±2ab+b2,可巧记为“首平方,尾平方,积的2倍在中央,符号确定看前方”.【例2】计算:(1)9982;(2)(2)20182-2018×4034+20172.【互动探索】(引发学生思考)(1)直接计算9982比较复杂,考虑将998转化为1000-2,再利用完全平方公式计算.(2)逆用完全平方公式即可.【解答】(1)原式=(1000-2)2=1 000 000-4000+4=996 004.(2)原式=20182-2×2018×2017+20172=(2018-2017)2=1.【互动总结】(学生总结,老师点评)(1)中可将该式变形为(1000-2)2,再运用完全平方公式可简便运算.活动2巩固练习(学生独学)1.运算结果是x4y2-2x2y+1的是(C)A.(-1+x2y2)2B.(1+x2y2)2C.(-1+x2y)2D.(-1-x2y)22.若|a-b|=1,则b2-2ab+a2的值为(A)A.1B.-1C.±1D.无法确定3.下列关于962的计算方法正确的是(D)A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92164.运用完全平方公式计算:(1)(-3a+2b)2;(2)(a+2b-1)2;(3)50.012; (4)49.92.解:(1)4b2-12ab+9a2.(2)a2+4ab+4b2-2a-4b+1.(3)2501.0001.(4)2490.01.活动3拓展延伸(学生对学)【例3】如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.【互动探索】根据完全平方公式的结构特点→确定(m+1)xy的值→建立方程→确定m 的值.【解答】∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61.【互动总结】(学生总结,老师点评)两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【例4】已知a+b=4,ab=-5,求下列各式的值.(1)a 2+b 2; (2)(a -b )2.【互动探索】由已知等式联想到什么乘法公式?所求代数式与已知等式有什么关系?怎样求解?【解答】(1)a 2+b 2=(a +b )2-2ab .把a +b =4,ab =-5代入,得a 2+b 2=42-2×(-5)=16+10=26. (2)(a -b )2=(a +b )2-4ab .把a +b =4,ab =-5代入,得(a -b )2=42-4×(-5)=16+20=36. 【互动总结】(学生总结,老师点评)完全平方公式的常用变形: (1)a 2+b 2=(a +b )2-2ab =(a -b )2-2ab ; (2)ab =12[(a +b )2-(a 2+b 2)];(3)(a -b )2+(a +b )2=2(a 2+b 2); (4)(a +b )2+(a -b )2=4ab ; (5)(a +b )2=(a -b )2+4ab ; (6)(a -b )2=(a +b )2-4ab ; (7)ab =⎝⎛⎭⎪⎫a +b 22-⎝ ⎛⎭⎪⎫a -b 22; (8)a 2+b 2+c 2+ab +ac +bc =12[(a +b )2+(b +c )2+(a +c )2];(9)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc . 环节3 课堂小结,当堂达标 (学生总结,老师点评) 完全平方公式两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 字母表示:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2.请完成本课时对应练习!第3课时 添括号法则一、基本目标【知识与技能】理解并掌握添括号法则,综合运用乘法公式进行计算.【过程与方法】经历类比去括号法则,推出添括号法则的过程,发展学生的知识迁移能力,使学生逐渐掌握添括号法则.【情感态度与价值观】通过类比学习,掌握添括号法则,培养学生的归纳概括能力和发散思维.二、重难点目标【教学重点】添括号法则的推导和运用.【教学难点】添括号法则的运用.环节1自学提纲,生成问题【5 min阅读】阅读教材P111的内容,完成下面练习.【3 min反馈】1.去括号法则:a+(b+c)=a+b+c;a-(b+c)=a-b-c.2.反过来,就得到添括号法则:a+b+c=a+(b+c);a-b-c=a-(b+c).3.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.4.在括号内填入适当的项:(1)x2-2x+y=x2-(2x-y);(2)a-2b+3c=-(-a+2b-3c).5.根据添括号法则完成变形:(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)].环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按下列要求,给多项式3x3-5x2-3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“-”号;(3)把多项式后三项括起来,括号前面带有“-”号;(4)把多项式中间的两项括起来,括号前面“-”号.【互动探索】(引发学生思考)根据添括号法则,联系题目要求多项式的各项的符号变化进行添加.【解答】(1)3x3+(-5x2-3x+4).(2)-(-3x3+5x2)-3x+4.(3)3x3-(5x2+3x-4).(4)3x3-(5x2+3x)+4.【互动总结】(学生总结,老师点评)添括号时,明确括号前的符号以及括到的项.无论怎样添括号,原式的值都不能改变,可以用去括号法则检验是否正确.【例2】计算:(1)(a-m+2n)2;(2)(x-y-m+n)(x-y+m-n);(3)(2x-y-3)(2x-y+3);(4)(x-2y-z)2.【互动探索】(引发学生思考)利用添括号法则对原式添加括号→变为乘法公示结构→利用乘法计算公式进行计算.【解答】(1)原式=[(a-m)+2n]2=(a-m)2+4n(a-m)+4n2=a2-2am+m2+4an-4mn+4n2.(2)原式=[(x-y)-(m-n)][(x-y)+(m-n)]=(x-y)2-(m-n)2=x2-2xy+y2-(m2-2mn+n2)=x2-2xy+y2-m2+2mn-n2.(3)原式=[(2x-y)-3][(2x-y)+3]=(2x-y)2-9=4x2-4xy+y2-9;(4)原式=[(x-2y)-z]2=(x-2y)2-2z(x-2y)+z2=x2-4xy+4y2-2xz+4yz+z2.【互动总结】(学生总结,老师点评)此式需添括号变形成公式结构,再运用公式使计算简便.活动2巩固练习(学生独学)1.下列去(添)括号做法正确的有(C)A.x-(y-z)=x-y-zB.-(x-y+z)=-x-y-zC.x+2y-2z=x-2(z-y)D.-a+c+d+b=-(a+b)+(c+d)2.在横线上填入“+”或“-”号,使等式成立.(1)a-b=-(b-a);(2)a+b=+(b+a);(3)(a-b)2=+(b-a)2(4)(a-b)3=-(b-a)3.3.在括号内填上恰当的项:ax-bx-ay+by=(ax-bx)-(ay-by).环节3课堂小结,当堂达标(学生总结,老师点评)添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.简记:遇“加”不变,遇“减”都变.字母表示:a+b+c=a+(b+c);a-b-c=a-(b+c).请完成本课时对应练习!。
八年级数学上册 14.2 乘法公式 14.2.1 平方差公式教学设计 (新版)新人教版
八年级数学上册 14.2 乘法公式 14.2.1 平方差公式教学设计(新版)新人教版一. 教材分析1.内容概述:本节课的主要内容是平方差公式。
平方差公式是初中数学中的一个重要公式,也是解决一些特定类型代数问题的重要工具。
本节课将通过具体的例子,引导学生探究并总结出平方差公式,进而学会运用该公式解决实际问题。
2.教材结构:本节课的教学内容主要包括平方差公式的探究、理解和运用。
教材首先通过具体的例子,引发学生的思考,接着引导学生进行探究,发现并总结出平方差公式,然后通过大量的练习,让学生巩固所学知识,最后通过一些拓展问题,激发学生的学习兴趣,提高学生的数学思维能力。
二. 学情分析1.学生已有知识:学生在学习本节课之前,已经学习了有理数的乘法、平方等基础知识,对于这些知识有一定的掌握程度。
同时,学生也有一定的探究能力和思维能力,能够通过观察、操作、思考等方式,发现并理解平方差公式。
2.学生可能存在的问题:学生在学习本节课的过程中,可能会对平方差公式的理解存在一定的困难,尤其是对于公式的推导过程和应用方法。
同时,学生可能对于一些拓展问题感到困惑,需要教师进行引导和启发。
三. 教学目标1.知识与技能目标:使学生理解和掌握平方差公式,能够运用平方差公式解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考等方式,培养学生的探究能力和思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.重点:平方差公式的理解和运用。
2.难点:平方差公式的推导过程和拓展问题的解决。
五. 教学方法1.引导探究法:教师通过提出问题,引导学生进行观察、思考,进而发现和总结出平方差公式。
2.实例讲解法:教师通过具体的例子,讲解并引导学生理解平方差公式的应用。
3.练习巩固法:教师通过布置练习题,让学生巩固所学知识。
4.拓展提升法:教师通过提出一些拓展问题,激发学生的学习兴趣,提高学生的数学思维能力。
八年级数学上册 14.2 乘法公式 平方差公式教学设计 (新版)新人教版
平方差公式一、教材分析本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法.因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一.二、学情分析1.学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感.经过一个学期的培养,学生已经具备了小组合作、交流的能力.学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能.通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯.2.学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性.三、教学目标1.知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用.2.能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力.3.情感目标:让学生经历“特殊到一般再到特殊”(即:特例─归纳─猜想─验证─用数学符号表示—解决问题)这一数学活动过程,积累数学活动的经验,体会数学的简洁美和数形结合的思想方法.培养他们合情推理和归纳的能力以及在解决问题过程中与他人合作交流的意识.通过几方面的合力,提高学生归纳概括、逻辑推理等核心素养水平.四、教学重难点教学重点:体会公式的发现和推导过程,理解公式的本质和结构特征,能用自己的语言说明公式及其特点;并会运用公式进行简单的计算.教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算.五、信息技术应用思路1.本课运用了信息技术辅助教学,主要使用的技术有:PPT课件、几何画板.2.使用几何画板技术,演示利用动态绘图软件研究周期性快速切换、更改周期,形象演示图形变化,利用面积法推导平方差公式;在导入、难点突破、练习巩固等环节使用信息技术.3.预期效果:激发学生学习兴趣;找准并突破难点;提高课堂学习效率.整个教学过程用PPT节约了时间,使课容量适中;多媒体更能吸引学生的注意力,更利于课堂的完整.六、教学过程设计(一)创设情境,导入课题问题1:美丽壮观的城市广场,是人们休闲旅游的地方,已经成为现代化城市的一道风景线.某城市广场呈长方形,长为1003米,宽997米.你能用简便的方法计算出它的面积吗?看谁算得快:师生活动:学生欣赏图片,感受生活中的数学问题,并进行生活中的数学向数学模型转换.信息技术支持:PPT演示由现实中的实际问题入手,创设情境,从中挖掘蕴含的数学问题.(二)探索新知,尝试发现问题2:时代中学计划将一个边长为m米的正方形花坛改造成长(m+1)米,宽为(m-1)米的长方形花坛.你会计算改造后的花坛的面积吗?计算下列多项式的积,你能发现什么规律?(1)(m+1)(m-1)= ;(2)(5+x)(5-x)= ;(3)(2x+1)(2x-1)= .师生活动:学生在教师的引导下,通过小组讨论探究,进行多项式的乘法,计算出结论.信息技术支持:PPT动画演示.结论是一个平方减去另一个平方的形式,效果十分鲜明.(三)总结归纳,发现新知问题3:依照以上三道题的计算回答下列问题:(1)式子的左边具有什么共同特征?(2)它们的结果有什么特征?(3)能不能用字母表示你的发现?问题4:你能用文字语言表示所发现的规律吗?教师提问,学生通过自主探究、合作交流,发现规律:两个数的和与这两个数的差的积,等于这两个数的平方差.师生活动:学生在教师的引导下,通过小组讨论探究,归纳平方差公式的语言叙述.式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,信息技术支持:PPT和几何画板演示,培养了学生的探究意识和合情推理的能力以及概括总结知识的能力.(四)数形结合,几何说理问题5:在边长为a的正方形中剪去一个边长为b的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?提示:a2-b2与(a+b)(a-b)都可表示该图形的面积.师生活动:通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想.信息技术支持:PPT演示,进一步利用动画的演示巩固对平方差公式的理解程度,培养了学生的应用意识.(五)剖析公式,发现本质1.左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即(a+b)(a-b)=a2-b2.2.让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:a和b可能数或代表式.师生活动:在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住概念的核心.信息技术支持:通过PPT练习实现了知识向能力的转化,让学生主动尝试运用所学知识寻求解决问题.(六)巩固运用,内化新知问题6:判断下列算式能否运用平方差公式计算:(1)(2x+3a)(2x–3b);(2)(-m+n)(m-n).问题7:利用平方差公式计算:(1)(3x +2y)(3x-2y);(2)(-7+2m2)(-7-2m2).师生活动:学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.信息技术支持:PPT展示书写步骤,有利于节省时间,提高效率,规范学生书写.(七)拓展应用,强化思维问题8:利用平方差公式计算情景导航中提出的问题:即:1003×997=(1000+3)(1000-3)=10002-32=1000000-9=999991.问题9:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.师生活动:设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时训练了学生逆向思维能力.信息技术支持:PPT展示书写步骤,有利于节省时间.(八)总结概括,自我评价问题10:这节课你有哪些收获?还有什么困惑?提示:从知识和情感态度两个方面加以小结.师生活动:使学生对本节课的知识有一个系统全面的认识,分组讨论后交流.信息技术支持:PPT演示,复习、巩固本节课的知识,在掌握基础知识的前提下,增加提高练习,适当增加灵活度,进一步深化对知识的理解.(九)课后作业1.必做题:课本P36习题2.1A组1、2.2.选做题:课本P36习题2.1B组1、2.作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异.七、教学反思1.本节课通过与学生生活紧密联系问题及多媒体图画设计引入,激发了学生学习兴趣,同时在教学中以学生自主探究为主,为不同学生设计练习,有利于提升了学生的自信心.2.多媒体的应用能使学生充分体验到教育信息技术的优点,在操作过程中体会学习的快乐,特别是操作简单,学习效率大大提升,在学习过程中使教学软件与本节课的教学内容紧密结合在一起,使学生的思维始终关注学科本质.3.信息技术的应用,便于及时发现问题,反馈教学,使教与学更有层次性、针对性、实效性.教师要善于抓住这个契机,充分利用多媒体技术,利用图形结合功能,降低难度,增强直观性.信息技术的应用大大提高了课堂效率.。
人教版八年级数学上册14.2.1《平方差公式》一等奖优秀教学设计
人教版义务教育课程标准实验教科书八年级上册
14.2.1平方差公式教学设计
一、教材分析
1、地位作用:乘法公式是《整式运算》中的重要一节,是对整式乘法的概括与综合运用,是今后因式分解、分式运算、二次方程求解等后续学习的基础。
它对培养学生符号感和抽象概括能力有着重要的作用。
同时,在利用公式过程中,所反映出的转化思想、整体化思想以及应用意识,都将对学生产生潜移默化的影响,对提高学生的数学素养有着积极的作用。
2、教学目标:
(1)会推导平方差公式,理解平方差公式的结构特征。
(2)能够运用平方差公式进行整式乘法的运算。
3、教学重、难点
教学重点:掌握平方差公式的结构特点及正确运用公式。
教学难点:理解公式推导的过程及字母的广泛含义。
突破难点的方法:通过让学生观察算式,运算出结果后,总结平方差公式的结构特征。
二、教学准备:多媒体课件、导学案、
三、教学过程
四、反思小结布置作业
谈一谈:这节课我们主要学习了什么内容?你有哪些收获?
作业布置、课后延伸。
人教版八年级数学上册教学设计14.2 乘法公式
人教版八年级数学上册教学设计14.2 乘法公式一. 教材分析人教版八年级数学上册的教学内容涉及平面几何、立体几何、代数、概率等多个方面,其中第14章“整式乘法”是基础也是重点。
本节课的内容“乘法公式”是整式乘法中的一个重要部分,主要包括平方差公式和完全平方公式的探究和应用。
平方差公式和完全平方公式在解决实际问题中有着广泛的应用,是学生必须掌握的基础知识。
二. 学情分析学生在七年级时已经学习了有理数的乘法、幂的运算等基础知识,对整式的乘法有了一定的了解。
但平方差公式和完全平方公式的推导和应用还需要通过实例和练习来加深理解。
此外,学生可能对公式的记忆和应用存在困难,需要通过反复练习和实际问题来提高应用能力。
三. 教学目标1.知识与技能:掌握平方差公式和完全平方公式的推导过程和应用方法。
2.过程与方法:通过探究、合作、交流的方式,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:平方差公式和完全平方公式的推导和应用。
2.难点:对平方差公式和完全平方公式的理解和灵活应用。
五. 教学方法采用探究式教学法、合作学习法和案例教学法。
通过引导学生自主探究、合作交流,以实际问题为载体,让学生在实践中理解和掌握平方差公式和完全平方公式。
六. 教学准备1.准备相关的基础知识和例题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和测试题,以检验学生的学习效果。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题:已知正方形的面积是20,求这个正方形的边长。
让学生思考如何解决这个问题,从而引出平方公式。
呈现(10分钟)1.平方差公式:a² - b² = (a + b)(a - b)2.完全平方公式:a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²通过讲解和示例,让学生理解平方差公式和完全平方公式的推导过程和应用方法。
八年级数学上册 第十四章《整式的乘法与因式分解》平方差公式教案 (新版)新人教版-(新版)新人教版初
第十四章《整式的乘法与因式分解》平方差公式注意:结构特征 (a+b )(a-b ) = a 2- b 2相同项 相反项 相同项2- 相反项25.运用上面的规律直接写出下列乘法的运算结果: 1.课本P108页练习题1,2.2.填空:(3a -2b)(____+2b)=9a 2-4b 2.3.计算:(1)(-a +b)(a +b);(2)(-13x -y)(13x -y)6.平方差公式:()()22b a b a b a -=-+例1.运用平方差公式计算:(1) ()()2323-+x x ; (2)()b a a b -+2)2( (2) ()224)2)(2(2)2(b a b a b a b a a b -=-+=-+ 【解析】⑴中,要把x 3和2分别看成公式中的a 和b ,即:(2) ()224)2)(2(2)2(b a b a b a b a a b -=-+=-+ 第(2)题表面上看不符合公式特征,但实质上是符合公式特征的. 三、课堂训练1.若M·(2x-3y)=9y 2-4x 2,则M =-2x -3y . 2.计算:(1)(2+1)(22+1)(24+1)(28+1); (2)(3a -b)(3b +a)-(a -b)(a +b). 3.计算:(1)102×98;(2)39.8×40.2.4.已知a -b =40,b -c =50,a +c =20,求a 2-c 2的值. 四、小结归纳小结:1.通过本节课的学习我有哪些收获? 2.通过本节课的学习我有哪些疑惑?部分学生板书解题,完成后,师生纠错。
学生先自主辨析,再交流互补,不断完善。
在交流中让学生归纳平方差公式的特征:(1)左边为两个数的和与差的积;(2)右边为两个数的平方差.学生回答,教师点拨。
学生发现技巧,灵活应用公式。
目间的共性发现规律,举三反一,猜想公式,让学生经历从一般到特殊,从具体到抽象的过程,体会归纳这一数学思想方法.揭示公式的结构特征,是学生理解公式、进而灵活运用公式解决问题的前提条件.让学生自主辨析、合作交流、共同总结得以明晰,既体现了学生学习的主动性,又为学生学习公式进行了学法指导,。
最新人教版八年级数学上册《14.2.1 平方差公式》优质教学课件
14.2 乘法公式
14.2.1 平方差公式
导入新知
观察与思考
某同学在计算97×103时将其变成(100–3)(100+3) 并很快得出结果,你知道他运用了什么知识吗?这 节课,我们就来一起探讨上述计算的规律.
素养目标
2. 了解平方差公式的几何意义,体会数 形结合的思想方法. 1. 掌握平方差公式的推导及应用.
1.(a – b ) ( a + b) = a2 – b2 2.(b + a )( –b + a ) = a2 – b2
探究新知
平方差公式
相同为a
适当交换 (a+b)(a–b)=(a)2–(b)2
合理加括号 相反为b,–b 注:这里的两数可以是两个单项式也可以是两个多项式等.
探究新知
温馨提示
(a+b)(a– b)= a2– b2.
素养考点 2 利用平方差公式简便运算
例2 计算:
(1) 102×98;
(2) (y+2) (y–2) – (y–1) (y+5) .
解: (1) 102×98
(2)(y+2)(y–2)– (y–1)(y+5)
=(100+2)(100–2) = 1002–22
= y2–22–(y2+4y–5)
不符合平方差公式运
解:原式=9n2–1–(9–n2) =10n2–10. ∵(10n2–10)÷10=n2–1. n为正整数, ∴n2–1为整数
即(3n+1)(3n–1)–(3–n)(3+n)的值是10的倍数.
探究新知
归纳总结 对于平方差中的a和b可以是具体的数, 也可以是单项式或多项式.在探究整除性或 倍数问题时,一般先将代数式化为最简, 然后根据结果的特征,判断其是否具有整 除性或倍数关系.
人教版八年级数学上册(教案):14.2 乘法公式
乘法公式一、说教材1、教材所处的地位及前后联系本节课是《整式的乘除》的内容,是在学习了多项式和多项式相乘和平方差公式之后引入的又一种比较特殊多项式乘以多项式,即完全平方公式。
它和平方差公式一样,也是数学中最基本的一个公式,理解和运用完全平方公式,对于以后学习因式分解,解一元二次方程都具有举足轻重的作用。
2、教学目标:1)通过合作学习探索得到完全平方公式,培养学生认识由一般法则到特殊法则的能力。
2)通过体念、观察并发现完全平方公式的结构特征,并能从广义上理解公式中字母的含义。
3)初步学会运用完全平方公式进行计算。
3、教材的重点难点:本节课的重点是理解完全平方公式,运用公式进行计算。
难点是从广泛意义上理解公式中的字母,判明要计算的代数式是哪两个数的和(差)的平方。
二、说教法针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。
同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。
边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。
另外本节课采用计算机辅助教学,利用多彩的图形世界引导学生完全平方公式的发现和推导,使代数教学不再枯燥。
三、说学法在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。
四、说教学程序(一)合作学习,探求新知用投影片显示:1、如图所示,你能用不同的方法表示下面图形的面积吗?2、把学生回答的结果的不同形式板书在黑板上,提问这些表示的结果都相等吗?3、指出:即完全平方和公式。
4、模仿练习:(用两数和的完全平方公式计算(填空))1)=2)=5、换元拓展提问:等于什么?是否可以写成?你能继续做下去吗?通过讨论,尝试得到(二)探求规律,巩固练习1、探求规律在模仿运用公式的基础上,结合两个公式的特征,可用一句顺口溜来强化记忆:“首平方,尾平方,首尾两倍中间放。
人教版数学八年级上册-14.2.1平方差公式-教案
——以初中数学《平方差公式》一课为例本节内容主要研究的是平方差公式的推导和应用。
平方差公式是学生学习了整式的加减及整式乘法等知识的基础上,在已经掌握了单项式乘法、多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为完全平方公式的学习提供了方法,同时也为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础。
因此,平方差公式在初中阶段的教学中具有承上启下的作用,是最基本、用途最广泛的公式之一。
教学目标1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;2、掌握平方差公式的结构特征,能运用公式进行简单的运算;3、会用几何图形说明公式的意义,体会数形结合的思想方法。
教学重点1、学会平方差公式的推导和应用;2、理解和掌握平方差公式,并能灵活运用公式进行简单运算。
教学难点能灵活运用公式进行运算。
教学用具PPT课件教学过程一、创设情景,发现新知:师:周末小明去商店买了单价是9.8元/千克的桔子10.2千克,售货员刚拿起计算器,小明就说应付"99.96元,不用算啦,不会错的”;售货员还是算了一遍,结果与小明说出的结果相同。
售货员惊讶地说:“你好像是个神童,怎么算得这么快?”小明说:“过奖了,我只不过是利用了在数学上刚学过的一个公式而已。
”你知道小明用的是一个什么样的公式吗?设计意图:从生活中的实例引出新课,可以让学生感受“数学源于生活,用于生活”,不仅激发学生的求知兴趣,又为平方差公式的引入服务,刺激学生主动思考,提出问题。
二、合作探究,获得新知:1、发现规律:师:计算下列各式,观察计算结果,你能发现什么规律?(x+1)(x-1) = (m+2)(m-2) = (2x+1)(2x-1) =设计意图:通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式。
人教版数学八年级上册-14.2.1平方差公式-教案(5)
课题:14.2 乘法公式14.2.1 平方差公式教学目标:1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解.2.掌握平方差公式的应用.教学重点:平方差公式的推导和运用教学难点:掌握平方差公式的应用教学过程:一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】 判断能否应用平方差公式进行计算下列运算中,可用平方差公式计算的是( )A .(x +y )(x +y )B .(-x +y )(x -y )C .(-x -y )(y -x )D .(x +y )(-x -y )方法总结:对于平方差公式,注意两个多项式均为二项式且两个二项式中有一项完全相同,另一项互为相反数.【类型二】 直接应用平方差公式进行计算利用平方差公式计算:(1)(3x -5)(3x +5); (2)(-2a -b )(b -2a );(3)(-7m +8n )(-8n -7m ); (4)(x -2)(x +2)(x 2+4).方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【类型三】 平方差公式的连续使用求2(3+1)(32+1)(34+1)(38+1)的值.方法总结:连续使用平方差公式,直到不能使用为止.【类型四】 应用平方差公式进行简便运算利用平方差公式简算:(1)2013×1923; (2)13.2×12.8. 【类型五】 化简求值先化简,再求值:(2x -y )(y +2x )-(2y +x )(2y -x ),其中x =1,y =2.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算【类型六】利用平方差公式探究整式的整除性问题对于任意的正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的倍数吗?方法总结:对于平方差中的a和b可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.【类型七】平方差公式的实际应用王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?【类型八】平方差公式的几何背景如图①,在边长为a的正方形中剪去一个边长为b的小正方形(a >b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.方法总结:通过几何图形之间的数量关系可对平方差公式做出几何解释.三、板书设计平方差公式文字语言:两数和与这两数差的积,等于它们的平方差符号语言:(a+b)(a-b)=a2-b2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是a,什么是b.?
教师最后板书运算过程。学生再修改自已的运算过程。
学生独立思考后再小组讨论。小组代表发言。小组间评析。教师参与评析。关注学生对(5)能否正确运用平方差公式进行计算。
完成后,教师引导学生总结:运用平方差公式解决问题时应注意什么?(1)在运用平方差公式之前,一定要看是否具备公式
乘法公式平方差公式
教学目标:
1理解平方差公式,能运用平方差公式进行计算。
2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,从利用图形验证平方差公式的过程中,感知数形结合的思想。
教学重点:
探究乘的平方差公式及运用乘法的平方差公式进行运算。
教学难点:
平方差公式的变式运用
课前准备:
课件
教学过程:
一,引入新知三,运用新知
例1运用平方差公式计算:
例2计算:
二,探究平方差公式四,随堂练习
问题情境
师生行为
设计意图
[活动1]引入新知
问题:比一比看谁算的快
2002×1998=
教师出示问题,要求学生口答。针对学生有困难,教师引入本节课的学习。
激发学生的求知欲。
[活动2]探究平方差公式
1探究:计算下列多项式的积,你能发现什么规律?
(1)=;
(2)=;
(3)=.
2问题:已知四边形ABCD是边长a为的正方形,四边形EFNC是边长为b正方形,你能根据图中图形的面积说明平方差公式吗?
的结构特征;
(2)一定要找准哪个数或式相当于公式中的a,哪个
数或式相当于公式中的b;
(3)一般地,“第一个数”a的符号相同,“第二个数”b的符号相反;
(4)公式中的字母a,b可以是具体的数、单项式、多
项式等;
(5)不能忘记写公式中的“平方
解决开始的引出问题
[活动3]课堂小结
(1)通过本节课的学习你知道了什么?会做什么?
(2)平方差公式的结构特征是什么?
(3)应用平方差公式时要注意什么
学生先自已整理,再小组交流。小组代表发言。教师评价,总结。
[活动4]作业布置
必做题:教科书习题14.2第1题
选做题:.1计算:2009×2007-20082
2化简:(x-y)(x+y)(x2+y2)(x4+y4)
板书设计:
14.2乘法公式——平方差公式
(1)(-a+b)(a-b);(2)(x2-y)(x+y2);
(3)(-a-b)(a-b);(4)(c2-d2)(d2+c2).
例2计算:
(1)(-1-2y)(1-2y)-(y+1)(4y-3)
(2)2002×1998.
学生先观察式子,偿试独立计算。教师了解学生的计算过程,对有困难的学生可采取如下的引导:
让学生经历探究的过程,从中
感悟从具体到抽象地研究问题的方法
让学生感知数形结合的思想。
[活动3]运用新知
例1运用平方差公式计算:
(1)(3x+2)(3x-2)
(2)(-x+2y)(-x-2y)
练习1:下面各式的计算对不对?如果不对,应当怎样改正?
(1)
(2)
(3)
(4)
(5)
。
练习2:下列多项式乘法中,能用平方差公式计算的是
a b
学生计算填空后,教师关注学生能否发现平方差公式。对有困难的同学可采取如下方式引导:
上面各等式中等号的左边都可看作:
右边都是:
学生分组讨论总结规律:两个数的和与这两个数的差的积,等于这两个数的平方差。
让学生运用公式表示规律:
学生观察图形,先独立思考,代表发言。师生共同评价分析。
教师总结;从图形也能得到平方差公式