板式塔

合集下载

板式塔的分类及应用

板式塔的分类及应用

板式塔的分类及应用板式塔是一种常见的化工设备,主要用于气体和液体之间的质量传递。

它采用分层堆填法,在塔内设置大量的填料来增加气体与液体之间的接触面积,从而提高质量传递效率。

板式塔广泛应用于石油化工、化学工程、环保等领域。

根据不同的应用需求,板式塔可以分为几种不同的类型。

一、按照结构形式分类1. 雨淋板式塔:雨淋板式塔是最基本的板式塔结构,由一个整体的塔壳和内部的填料层构成。

不同层次之间通过在塔壳内设置的雨淋板与管束连接,以保证液体沿着填料层均匀分布,提高气液质量传递效率。

这种类型的板式塔结构简单,容易开拆和清洗,被广泛应用于一些气体的吸收和除尘过程中。

2. 板板式塔:板板式塔是一种比较常见的板式塔结构,它是由多个密封的板层堆叠在一起构成的。

其中每层板之间间隔一定的距离,形成了多个小的塔室。

气体从底部进入第一个塔室,然后逐渐向上流动,最终通过板层间的孔洞进入到塔顶,而液体则从塔顶通过喷淋装置均匀地洒在每个板层上,形成均匀的液膜,气液之间进行传质。

这种结构的板式塔具有较高的传质效率和较大的处理量,可应用于气体的吸收、脱硫等工艺中。

3. 蜂窝式板式塔:蜂窝式板式塔是将多个蜂窝状的填料垂直堆放在塔内,形成了多个小的蜂窝室。

气体从塔底部进入,通过蜂窝室之间的孔洞,在不同的填料层之间进行传质。

与其他类型的板式塔相比,蜂窝式板式塔具有较大的表面积和较低的压降,适用于一些对压降要求较高的气液传质过程中。

二、按照填料特征分类1. 海绵板式塔:海绵板式塔是利用聚合物海绵作为填料,采用海绵精细结构特点以及高比表面积,实现气液分离传质的设备。

海绵板式塔具有体积小、重量轻、透气性好等特点,广泛应用于炼油、化工等领域。

2. 金属填料板式塔:金属填料板式塔是利用金属丝网编织成的填料来提高板式塔的传质效率。

金属填料板式塔具有良好的耐腐蚀性、机械强度高等特点,适用于对腐蚀性介质进行处理的工艺。

3. 塑料填料板式塔:塑料填料板式塔是利用塑料制成的填料来代替传统的金属填料,具有较低的成本和优异的化学稳定性,广泛应用于石油化工、环保等领域。

板式塔

板式塔
特点:在筛板塔基础上,在每个筛孔处 安置一个可上下移动的阀片。当筛孔气速 高时,阀片被顶起、上升,孔速低时,阀 片因自重而下降。阀片升降位置随气流量 大小作自动调节,从而使进入液层的气速 基本稳定。又因气体在阀片下测水平方向 进入液层,既减少液沫夹带量,又延长气 液接触时间,故收到很好的传质效果。
3 浮阀塔的优点
阀片容易卡住,
影响其自由开启
2
浮阀塔的缺点
THANKS
泡罩塔
筛板塔
筛板塔又称泡沫塔,该除尘器具有结构 简单、维护工作量小、净化效率高、耗水 量大、防腐蚀性能好等特点, 常用于气体 污染物的吸收,对颗粒污染物也具有很好 的捕集效果。它适用于净化亲水性不强的 粉尘,如硅石、黠土等,但不能用于石灰、 白云石、熟料等水硬性粉尘的净化,以免 堵塞筛孔。
筛板塔
1 操作 "弹性 "大
由于浮阀可以根据气速大小自由升降、
关闭或开启,当气速变化时,开度大
小可以自动调节
2
塔生产能力较大
比泡罩塔约提高20%~40%;
3
与筛板塔相近
塔板效率较高
蒸汽沿着上升蒸汽孔的周 围喷出,仍然有液体的逆
1 向混合,因而会降低传质
效率
浮阀塔气液两相接触充分
4
清洗容易
浮阀塔因浮阀不断上下运动,阀孔 不易被脏物或黏性物料堵塞
板式塔的分类
2
工业上较早出现
1.泡罩塔 2.筛板塔 3.浮阀塔效率高、操Biblioteka 弹性大3PA R T
板式塔的分类介绍
泡罩塔
泡罩塔是指以泡罩作为塔盘上气液 接触元件的一种板式塔。塔盘主要由带 有若干个泡罩和升气管的塔板、溢流堰、 受液盘及降液管组成。液体由上层塔盘 通过降液管,经泡罩横流过塔盘,由溢 流堰进入降液管。蒸汽自下而上进入泡 罩的升气管中,经泡罩的齿缝分散到泡 罩间的液层中去,与液体充分接触。

板式塔基本知识

板式塔基本知识
方法。
板式塔的焊接技术
01
02
03
04
焊接设备
选择合适的焊接设备和焊接工 艺,确保焊接质量和效率。
焊接材料
选择符合要求的焊接材料,包 括焊条、焊丝、焊剂等。
焊接顺序
制定合理的焊接顺序,确保焊 接变形和应力控制在允许范围
内。
焊接检验
对焊接过程和焊接结果进行检 验,确保焊接质量和安全性。
板式塔的检测与试验
安装内部构件
在塔体内安装内部构件,如填 料、支撑板、分布器等,确保 流体力学性能良好。
准备基础
根据塔体尺寸和重量,设计并 准备基础,要求基础承载能力 足够且稳定。
安装支撑和固定件
在塔体上安装支撑和固定件, 确保塔体的稳定性和承重能力 。
安装附件
如楼梯、平台、栏杆等,确保 人员和设备安全。
板式塔的调试与运行
的抗堵塞性能。可以通过优化塔板结构、选择合适的材料等方式来提高
抗堵塞性能。
板式塔的工艺设计
流程方案
设计板式塔的工艺流程方案需要考虑物料的性质、处理量、分离要求等因素。 根据这些因素选择合适的流程方案,包括流程的复杂程度度、气液流量比、操作压力等。这些参数需 要根据工艺要求和实际情况进行选择和调整。在设计时需要考虑到这些参数对 塔性能的影响。
板式塔的基本结构
塔体
通常由碳钢或不锈钢制成,用来支撑塔板和 内部件。
塔板
是板式塔的核心部件,由平整的金属板构成, 板上开有许多孔,以便液体通过。
降液管
位于塔板的下方,将液体从塔板上引到下一层塔 板。
溢流堰
位于降液管的上方,用于保持液面高度和防止液体 从塔板上的孔溢出。
支承板
用于支撑上一层塔板的重量,并防止塔板变形。

板式塔知识点总结

板式塔知识点总结

板式塔知识点总结一、板式塔的定义板式塔是一种结构设计较为简单、造型独特的建筑物,通常用于提供通讯、电视信号传输或风力发电等用途。

它由一系列横向和纵向的钢板构成,通过捆绑或焊接在一起形成一个整体。

二、板式塔的结构1. 基础结构:板式塔的基础结构通常是混凝土浇筑的抗震支撑基座,用于支撑塔体,使其稳定立于地面。

2. 主体结构:板式塔的主体结构通常是由角钢、横向钢板和纵向钢板构成的,通过螺栓、焊接或捆绑在一起形成一个稳定的整体。

3. 附件结构:板式塔的附件结构包括横梁、支撑杆、拉索等,用于增强塔体的稳定性和承载能力。

三、板式塔的分类1. 通讯塔:通讯塔通常用于支撑通讯天线、微波天线等设备,为无线通讯提供信号传输服务。

2. 电视塔:电视塔用于支撑电视信号发射天线,为广播电视信号的传输提供服务。

3. 风力发电塔:风力发电塔用于支撑风力发电机组,将风能转化为电能。

4. 观光塔:观光塔通常建造在风景名胜区,供游客观光娱乐之用。

四、板式塔的优点1. 结构简单:板式塔采用钢板构成,结构简单,安装方便快捷。

2. 空间利用率高:板式塔的结构设计紧凑,能够在较小的基地面积上提供较大的通讯或发电服务范围。

3. 耐风抗震性能优异:板式塔能够在恶劣天气条件下保持稳定,具有良好的抗风抗震性能。

4. 维护成本低:板式塔不需要经常性的维护,使用寿命长,维护成本低。

5. 美学性好:板式塔的造型独特,可以成为城市的地标建筑,具有一定的美学价值。

五、板式塔的应用领域1. 通讯行业:板式塔被广泛应用于通讯行业,用于支撑通讯天线、微波天线等设备,提供信号传输服务。

2. 电力行业:板式塔作为高压输电线路的一种支撑结构,被广泛应用于电力行业,用于支撑输电线路。

3. 新能源领域:板式塔被用于支撑风力发电机组,将风能转化为电能。

4. 观光旅游业:板式塔可以建造在风景名胜区,成为一种观光旅游设施。

六、板式塔的设计与施工1. 设计:板式塔的设计首先要考虑塔体的高度、承载能力、抗风抗震性能等因素,然后进行结构设计和材料选型。

板式塔介绍

板式塔介绍
1、塔盘 是板式塔完成传质、传热过程的主要部分。 如溢流式塔盘:由泡罩和浮阀或开有筛孔和网孔的
塔盘板、降液管、受液盘、溢流堰、支撑圈以及支 撑梁等组成。
2、降液管
作用:将进入其内的含有气泡的液体进行 气液分离,使清液进入下一层塔盘。见图 10-13.
圆形降液管常用于小塔,负荷小的场合。 弓形降液管用于大液量及大直径的塔。 整块式塔盘的小直径塔,可采用固定在塔
盘板上的弓形降液管。
3、受液盘
作用:保证降液管出口处的液封,受 液盘有平形和凹形两种。 (1)平行受液盘 特点:结构简单,便于制造与 安装,适用于易结焦和易聚合 的物料,可避免塔盘上形成死角。
3、受液盘
(2)凹行受液盘 特点:具有缓冲液体冲击, 防止液体飞溅,液封效果好, 能使液体均匀流过塔盘的鼓 泡区。
泡罩塔的组成:泡罩、升气管的塔板、降 液管和溢流堰。
泡罩塔的工作原理: 蒸气从下层塔盘上升 进入泡罩的升气
管 通过环形通道 再经过泡罩的齿缝 分散到泡罩间的液层中 搅拌塔盘上的液 体 液层上部变成泡沫层,蒸气与液体充 分接触,达到传质的目的。
圆形泡罩
泡罩的结构
矩形齿缝 连接螺栓 泡罩
升气管
丝网除沫器
结构:若干层 丝网被夹于上 下格栅之间。
特点:自由体 积大,单位体 积小,使用方 便,除沫效率 高,流体阻力 小。丝网除沫 器不适用于处 理不洁净的气 体。
四、化工生产常用的板式塔
1、泡罩塔
4
2
3
1
5
6
1,6-清液 2-降液管 3-降液挡板 4-气液接触区 5-充气液体
泡罩塔的组成与工作原理
泡罩塔的优点:
气液接触充分;操作弹性大,即气液比变 化范围大;适用于多种介质;有较高的生 产能力,适用于大型生产。

化工原理第六章第六节 板式塔

化工原理第六章第六节 板式塔

2013-1-7
2.塔板上的液面落差
液面落差:塔板进出口清液层高度差 减少液面落差的措施: 多溢流。
2013-1-7
当液体横向流过塔板时,为克服板上的摩擦阻力和板
上部件(如泡罩、浮阀等)的局部阻力,需要一定的液位
差,则在板上形成由液体进入板面到离开板面的液面落差。 液面落差也是影响板式塔操作特性的重要因素,液面落差 将导致气流分布不均,从而造成漏液现象,使塔板的效率 下降。因此,在塔板设计中应尽量减小液面落差。
2013-1-7
3.筛孔塔板
2013-1-7
筛孔塔板简称筛板,其结构如图所示。塔板上开有许多均
匀的小孔,孔径一般为3~8mm。筛孔在塔板上为正三角形排
列。塔板上设置溢流堰,使板上能保持一定厚度的液层。 操作时,气体经筛孔分散成小股气流,鼓泡通过液层, 气液间密切接触而进行传热和传质。在正常的操作条件下, 通过筛孔上升的气流,应能阻止液体经筛孔向下泄漏。 筛板的优点是结构简单、造价低,板上液面落差小,气 体压降低,生产能力大,传质效率高。其缺点是筛孔易堵塞, 不宜处理易结焦、粘度大的物料。 应予指出,筛板塔的设计和操作精度要求较高,过去工业 上应用较为谨慎。近年来,由于设计和控制水平的不断提高, 可使筛板塔的操作非常精确,故应用日趋广泛。
2013-1-7
奥康内尔收集了
几十个工业塔的塔板
效率数据,认为对于 蒸馏塔,可用相对挥 发度与进料液体黏度 的乘积αμL作为参数来
表示全塔效率,关联
曲线见图6-56。
图6-56 精馏塔效率关联曲线
2013-1-7
(二)单板效率(莫弗里板效率)
单板效率又称莫弗里(Murphree)板效率。它用汽相(或液相)经过 一实际塔板时组成变化与经过一理论板时组成变化的比值来表示。

(完整)板式塔

(完整)板式塔

板式塔一、板式塔的概念、用途、示意图板式塔是一类用于气液或液液系统的分级接触传质设备,由圆筒形塔体和按一定间距水平装置在塔内的若干塔板组成。

用途:广泛应用于精馏和吸收,有些类型(如筛板塔)也用于萃取,还可作为反应器用于气液相反应过程.操作时(以气液系统为例),液体在重力作用下,自上而下依次流过各层塔板,至塔底排出;气体在压力差推动下,自下而上依次穿过各层塔板,至塔顶排出。

每块塔板上保持着一定深度的液层,气体通过塔板分散到液层中去,进行相际接触传质。

板式塔结构示意图如右图:塔板又称塔盘,是板式塔中气液两相接触传质的部位,塔板决定了塔的操作性能,一般由以下三个部分组成:1 气体通道为保证气液两相充分接触2 溢流堰为保证气液两相在塔板上形成足够的相际传质表面3 降液管使液体有足够的停留时间二、各类型塔板的结构及其特点:按照塔内气、液流动方式,可将塔板分为错流塔板与逆流塔板两类。

错流塔板为塔内气、液两相成错流流动,即液体横向流过塔板,而气体垂直穿过液层,错流塔板广泛用于蒸馏、吸收等传质操作中。

逆流塔板亦称穿流板,板上不设降液管,气、液两相同时由板上孔道逆向穿流而过。

这种塔板结构虽简单,板面利用率也高,但需要较高的气速才能维持板上液层,操作范围较小,分离效率也低,工业上应用较少.常见塔板泡罩塔板 Bubble-cap tray泡罩塔塔板上的主要部件是泡罩。

罩内覆盖着一段很短的升气管,升气管的上口高于罩下沿的小孔或齿缝。

塔下方的气体经升气管进入罩内之后,折向下到达罩与管之间的环形空隙,然后从罩下沿的小孔或齿 缝分散气泡而进入板上的液层。

优点:弹性大、操作稳定可靠。

缺点:结构复杂,成本高,压降大.对于大直径塔,塔板液面落差大,导致塔板操作不均匀。

现状:近二、三十年来已趋于淘汰三、板式塔的工艺设计筛板塔化工设计计算 (1)塔的有效高度 Z已知:实际塔板数 N P ; 塔板间距 H T ;有效塔高:塔体高度=有效高+顶部+底部+其他塔板间距和塔径的经验关系:(2)塔径确定原则: 防止过量液沫夹带液泛 步骤: 先确定液泛气速 uf (m/s ); 然后选设计气速 u ; 最后计算塔径 D.① 液泛气速pT N H Z ⋅=VVLf C u ρρρ-=2.02020⎪⎭⎫⎝⎛=σC CC :气体负荷因子,与 HT 、 液体表面张力和两相接触状况有关. 两相流动参数 FLV :② 选取设计气速 u 选取泛点率: u / u f一般液体, 0.6 ~0。

第六节 板式塔

第六节 板式塔

第六节 板式塔一、塔板的结构型式板式塔的壳体通常为圆筒形,里面沿塔高装有若干块水平的塔板。

传质机理:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。

溢流堰的作用是使塔板上保持一定厚度的液层。

气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。

在塔板上,气液两相密切接触,进行热量和质量的交换。

在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。

为有效地实现气液两相之间的传质,板式塔应具有以下两方面的功能: ①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。

由吸收章可知,当气液两相进、出塔设备的浓度一定时,两相逆流接触时的平均传质推动力最大。

在板式塔内,各块塔板正是按两相逆流的原则组合起来的。

但是,在每块塔板上,由于气液两相的剧烈搅动,是不可能达到充分的逆流流动的。

为获得尽可能大的传质推动力,目前在塔板设计中只能采用错流流动的方式,即液体横向流过塔板,而气体垂直穿过液层。

由此可见,除保证气液两相在塔板上有充分的接触之外,板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。

板式塔的结构1-塔壳体;2-塔板;3-溢流堰;4-受液盘;5-降液管 1 2 3 5 4塔板是板式塔的核心构件,其功能是使气、液两相保持充分的接触,使之能在良好的条件下进行传质和传热传递过程。

塔板上的气液两相流动方式有错、逆流两种,如图5—4所示。

错流塔板在板间设有专供液体流通的降液管(又称溢流管)。

从降液管出来的液体横过塔板,然后再溢流进入另一降液管而到达下一层塔板;气体则经过板上的孔道上升,在每一层塔板上气、液两相呈错流方式接触。

板式塔

板式塔

液流型式选取参考表
塔径 m 1.0 1.4 2.0 3.0 4.0 5.0 6.0 适用场合 液 体 流 量 m3/h U 型流型 单流型 双流型 阶梯流型 <7 <9 <11 <11 <11 <11 <11 较低 液气比 <45 <70 <90 <110 <110 <110 <110
一般场 合
90-160 110-200 200-300 110-230 230-350 110-250 250-400 110-250 250-450
液流
(a)斜台装置
林德筛板
(b)导向孔
(7)无溢流塔板
有溢流塔板:有降液管的塔板; 无溢流塔板:无降液管的塔板;
形式:无溢流栅板和无溢流筛板;
特点:生产能力大,结构简单,塔板阻力小; 但操作弹性小,塔板效率低。
冲制栅板
由金属条组成 的栅板
无溢流筛板
层出不穷的新型塔板结构各具特点,应根据不同的工艺及生 产要求来选择塔型。
FLV qVL qVV
0.07 0.1
0.2
0.3 0.4
0.7 1.0
L V
筛板塔泛点关联图
对于物系表面张力为其他数值时: C C20 20
0 .2
L V uf C V
② 选取设计气速 u
选取泛点率: u / uf
一般液体, 0.6 ~0.8 易起泡液体,0.5 ~ 0.6 设计气速 u = 泛点率 ×uf 所需气体流通截面积
四、板式塔性能要求 ① 生产能力大; ② 塔板效率高; ③ 具有适当的操作弹性;
④ 塔板阻力小;
⑤ 塔结构简单,易于加工制造,维修保养。 五、设计的基本任务

板式塔的结构范文

板式塔的结构范文

板式塔的结构范文板式塔是一种常见的结构类型,广泛应用于石化、化工、环保等行业的装置中。

它具有结构简单、自重轻、抗风抗震能力强等特点,因此在实际工程中被广泛采用。

1.板式塔的基本概念和特点板式塔是一种由平行板组成的塔结构,其中的平行板称为板架,通过螺栓连接并形成一个整体。

每根板子上都设有横向杆束以增加结构强度。

板架上的板子可以是圆形、方形、三角形等形状,具体根据工艺要求和使用环境而定。

板式塔的特点主要有以下几个方面:1.1结构简单:由于主要由平板构成,在制造和安装过程中比较简单。

而且板式塔的每个单元都相对独立,可以根据需要进行灵活组合。

1.2质量轻:板架由轻钢材料制成,板子的材质通常是塑料、铝合金等轻质材料,所以整体结构比较轻巧。

1.3抗风能力强:板式塔可以通过合理的设计和加固措施来提高其抗风能力,减小其在风力作用下的变形和破坏风险。

1.4提高传质效率:板式塔内每一层板子的密度较大,通过板子的阻力增加了气体与液体的接触面积,从而提高了传质效率。

2.板式塔的结构设计2.1塔顶塔顶是板式塔的一个重要组成部分,主要包括排气管、下部挡雨帽和上部挡水帽等。

排气管的作用是将内部的气体排出,并防止外部异物进入。

挡雨帽用来防止雨水进入塔内,挡水帽用来防止水进入塔内,一般应具有良好的密封性能。

2.2横梁和纵梁横梁和纵梁是连接塔板的重要部件,用于增加结构的稳定性和强度。

横梁一般位于塔板的下方,纵梁则位于塔板的两侧,它们通过螺栓连接起来,形成一个整体。

2.3板子的选择和安装板子通常由塑料、铝合金或玻璃钢等材料制成。

选择具体板子的形状和材质,应根据工艺要求、介质性质和使用环境等因素综合考虑。

板子的安装一般是通过螺栓紧固于梁上,需要注意安装的准确度和平整度,以确保整个结构的稳定性。

3.板式塔的安装与维护3.1安装板式塔的安装一般分为塔身和塔盘的安装过程。

首先,根据设计要求将塔架立起来,然后将板子一层一层地按照设计顺序安装在横梁和纵梁上,通过螺栓进行连接紧固。

板式塔 (Plate Column)

板式塔 (Plate Column)

1.1 塔板类型
四、喷射型塔板(Spraying Plate)
舌型
1.1 塔板类型
浮舌型
1.1 塔板类型
《化工原理》
1.2 板式塔的流体力学性能
一、气体通过塔板的压降
在保证较高效率的前提下,力求减小压降以降低能 耗和改善塔的操作。
总压降 =干板压降+液层阻力+表面张力引起的阻力 p p pc pl p
液面落差的大小也与塔径或流 量有关。对于直径较大的塔,设 计中常采用双溢流或阶梯流
1.2 板式塔的流体力学性能
三、塔板上的异常操作现象
1. 漏液(Disengage/Leakage)
1.2 板式塔的流体力学性能
造成漏液的主要原因是气速太小和板面上液面落差 所引起的气流分布不均匀。 漏液量达到10%的气体速度为操作气速的下限。 在塔板入口处留出一条不开孔的区域,称为安定区。
1.2 板式塔的流体力学性能
1-雾沫夹带线 ev=0.1kg液沫/kg干气
2-液泛线 Hd = φ(HT + hw)
3-液相负荷上限线 液体在降液管内停留5s
4-漏液线(汽相负荷下限线)
5-液相负荷下限线 how = 6mm
化工原理
1.2 板式塔的流体力学性能
2. 雾(液)沫夹带 (Priming/Puking)
当上升气流穿过塔板上液层时,将该板上的液体 带入上层塔板的现象
一般允许液沫夹带量为eV<0.1kg(液)/ kg(气) 影响液沫夹带最主要的是空塔气速和塔板间距
1.2 板式塔的流体力学性能
1.2 板式塔的流体力学性能
3.液泛(Flood)
由于某种原因,导致液体充满塔板之间的空间,使 塔的正常操作受到破坏的现象。

板式塔分类及应用

板式塔分类及应用

板式塔分类及应用板式塔,又称泡沫板塔,是一种常用的气液分离设备。

其工作原理是将气体和液体通过塔板来实现相互接触与分离。

板式塔结构简单、操作便捷,广泛应用于化工、石油、冶金、环保等领域。

根据不同的工艺要求和分离效果,板式塔可分为多种类型。

以下将从结构分类和应用领域两个方面详细介绍板式塔的分类及应用。

1. 结构分类:(1)重力流板式塔:重力流板式塔是最常见的板式塔类型。

其特点是气体与液体在板上的接触是靠重力引起的,通过自然下落实现传质和分离。

在重力流板式塔中,板上呈现大量的层板结构,通过改变板数和安装方式,可调节气液分离效果。

重力流板式塔被广泛应用于气体分离、脱硫、脱盐、除尘等工艺中。

(2)气体增强型板式塔:气体增强型板式塔是在重力流板式塔的基础上改良而来的一种形式。

其主要特点是在板上安装了增强器,能够提高气体速度和传质效果。

气体增强型板式塔广泛应用于污水处理、废气处理等工艺中。

(3)气液混合型板式塔:气液混合型板式塔的主要区别在于板上设置了气液混合装置,实现了气液的混合和均匀分布,提高了传质效果。

气液混合型板式塔常用于吸收液的添加,提高吸收效果。

(4)湿式板式塔:湿式板式塔又称湿式洗涤塔,是一种以水为媒介进行气体净化处理的设备。

湿式板式塔主要利用水对气体含有的有害物质进行吸收、净化和处理。

常见的湿式板式塔有喷雾塔和冷凝塔等。

2. 应用领域:(1)化工领域:板式塔在化工领域的应用非常广泛。

例如,重力流板式塔可用于分离空气中的氮、氧、氩等气体;同时,重力流板式塔也可用于各种化学反应的物料分离和提纯。

(2)石油领域:在石油炼制过程中,板式塔常被用于原油分馏、汽油净化、脱硫、脱盐等环节。

通过合理设置板数和板间装置,可以实现原油的分级筛选和各种石油产品的提纯。

(3)冶金领域:冶金工业中也广泛应用板式塔,特别是重力流板式塔。

例如,在炼铁过程中,板式塔用于去除高炉煤气中的硫化氢、氨等有害气体,净化煤气以提高冶炼效率。

板式塔基本知识

板式塔基本知识

根据实际需要,选择不同结构形式的塔盘, 如泡罩式、筛板式、浮阀式等。
塔盘开孔率
支撑结构
开孔率要适宜,以保证液体和气体在塔盘上 有足够的流通面积,同时防止溢流液泛。
塔盘需要可靠的支撑结构,以保证其稳定性 和刚度。
溢流装置的选用与设计
溢流装置的功能
溢流装置主要用来使液体在塔盘上 均匀分布,同时防止液泛现象的发 生。
受液盘的选用与设计
受液盘的功能
受液盘主要用来收集从降液管流出 的液体,同时防止气体进入受液盘 内。
受液盘的类型
受液盘有多种类型,如平板型、槽 型等,应根据工艺条件和物料性质 选择合适的受液盘。
受液盘的尺寸
受液盘的尺寸要与降液管相适应, 以保证液体能够均匀地流入到受液 盘中。
受液盘的材料
受液盘的材料应耐腐蚀、耐高温, 根据工艺条件可选用不同的材料。
溢流装置的结构与类型
溢流装置结构
溢流装置主要由溢流堰、受液盘和降液管组成,用于控制液 体流动。
溢流装置类型
溢流装置可分为固定式溢流装置和可调式溢流装置两种,其 中可调式溢流装置又可分为旋转式和升降式。
降液管的结构与类型
降液管结构
降液管是连接溢流装置和受液盘的管道,用于输送液体。
降液管类型
降液管可分为直型降液管、斜型降液管和多级降液管等。
溢流装置的类型
溢流装置有多种类型,如堰式、槽 式等,应根据工艺条件和物料性质 选择合适的溢流装置。
溢流装置的尺寸
溢流装置的尺寸要与塔盘相适应, 以保证液体能够均匀地分布在塔盘 上。
溢流装置的材料
溢流装置的材料应耐腐蚀、耐高温 ,根据工艺条件可选用不同的材料 。
降液管的选用与设计
降液管的功能

板式塔

板式塔

• 3. 浮阀塔板 • 浮阀塔板具有泡罩塔板和筛孔塔板的优点,应 用广泛。浮阀的类型很多,国内常用的有如图 示的F1型、V-4型及T型等。 • 浮阀塔板的结构特点是在塔板上开有若干个阀 孔,每个阀孔装有一个可上下浮动的阀片,阀 片本身连有几个阀腿,插入阀孔后将阀腿底脚 拨转90°,以限制阀片升起的最大高度,并防 止阀片被气体吹走。阀片周边冲出几个略向下 弯的定距片,当气速很低时,由于定距片的作 用,阀片与塔板呈点接触而坐落在阀孔上,在 一定程度上可防止阀片与板面的粘结。
• 如上所述,泡沫接触状态和喷射状态均是优良的塔板接触状 态。因喷射接触状态的气速高于泡沫接触状态,故喷射接触状 态有较大的生产能力,但喷射状态液沫夹带较多,若控制不好, 会破坏传质过程,所以多数塔均控制在泡沫接触状态下工作。
2、气体通过塔板的压降
干板压降
塔板压降 液层阻力 液体的表面张力 板上充气液层的静压力
舌型塔板的优点是:生产能力大,塔板压降低,传质效率较高;缺 点是:操作弹性较小,气体喷射作用易使降液管中的液体夹带气泡 流到下层塔板,从而降低塔板效率。
• (2)浮舌塔板 • 如图所示,与舌型塔 板相比,浮舌塔板的 结构特点是其舌片可 上下浮动。因此,浮 舌塔板兼有浮阀塔板 和固定舌型塔板的特 点,具有处理能力大、 压降低、操作弹性大 等优点,特别适宜于 热敏性物系的减压分 离过程。
9.8.3塔板的结构
• 9.8.3.1塔板结构参数 一、鼓泡区 二、溢流区 三、安定区 四、无效区
俯视图 安定区
开孔区
受 液 区
降 液 管
溢流堰
• 9.8.3.2塔板的溢流装置 一、降液管的类型及溢流方式 (一)降液管的类型 (二)降液管溢流方式 (a)U形流 (b)单溢流 (c)双溢流 (d)阶梯式双溢流 二、溢流装置的结构参数

第九节:板式塔

第九节:板式塔
主要元件是升气 管和泡罩
优点:操作稳定 ,弹性大
缺点:结构复 杂,塔板压降大, 生产强度低。
2019/9/21
2019/9/21
(2)筛孔塔板 筛孔塔板出现较早( 1830年),是结构最简 单的一种板型。 1950 年 后逐渐成为应用最广的 塔板类型之一。
优点:结构简单,造价低;气体压降小,液面落差小;生 产能力及板效率比泡罩塔高。
一般液体, 0.6-0.8; 易起泡液体,0.5-0.6
A
D
Af
设计气速 u = 泛点率 ×uf
③ :计算塔径D
计算气体流通截面积A,(液层上部的空间)
A VV u
A AT Af
D 4AT

2019/9/21
常用的标准塔径为 600、700、800、1000、1200、1400、 1600、1800、2000、2200、…、4200.
iv 喷射接触状态 当气速增大到一定程度时,由于气相动能很大,气流以 喷射状态穿过板上液层,将液体分散成许多大小不等的液滴 ,并随气流抛向塔板上方,然后,由于重力作用,液滴落下 ,又形成很薄的液膜,再与喷射气流接触,破碎成液滴抛出 。在此状态下,液滴数量多且不断更新。气相为连续相,液 相为分散相。传质面积大,效率高。
缺点:浮阀易脱落或损坏,且不宜处理易结焦或黏度大
的物系。
(4)喷射型塔板
= 200
50
按一定排列的
气相
舌形孔,舌片张 R25
角约20°左右为宜

2019/9/21
优点:气液并流避免了返混和液面落差,塔板上液层较 低,塔板压降较小;液沫夹带量较小,故可达较高的生产 能力。
缺点:操作弹性小;液体在板上的停留时间太短、液层 太薄,板效率降低。

板式塔基本结构

板式塔基本结构

板式塔基本结构
板式塔是一种常见的结构塔之一,主要由以下几个基本部分组成:
1. 主体框架:板式塔的主体框架一般由四根立柱和连接这些立柱的水平横梁组成,形成一个四边形或多边形的框架结构。

立柱和水平横梁一般由钢材制成,具有较高的强度和刚度。

2. 斜撑系统:为了提高板式塔的稳定性和抗风性能,通常会在主体框架的四个角上设置斜撑系统。

斜撑系统由斜撑和对角线组成,能够有效地将水平荷载和垂直荷载传递到地基,保证塔的稳定性。

3. 平台系统:板式塔一般需要设置多个平台,方便人员进行巡视和维护。

平台一般位于塔的不同高度上,通过扶手和防护栏围绕,以确保人员的安全。

平台通常由钢材制成,具有足够的强度和稳定性。

4. 灯具和设备安装:板式塔上通常安装有灯具和设备,如信号灯、天线、雷达等。

这些设备需要通过支架或吊臂等方式进行安装,以确保设备的稳固性和安全性。

总的来说,板式塔的基本结构主要包括主体框架、斜撑系统、平台系统和灯具设备安装等部分。

这些部分相互配合,能够提供足够的强度和稳定性,适用于各种塔的应用场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.3~ 0.6 ~ 200~ 350 ~
气液传质设备
9/12
板式塔 四、塔板负荷性能图
操作弹性=气量上限 气量下限 操作弹性 气量上限/气量下限 气量上限
操作弹性要求大于 2~3 ~
正常操作区
VG
过量液沫夹带线
4
液泛线 5
1
液相下限线
2
——液相上限线
3
O
化学化工学院 化工基础
漏液线
气液传质设备
VL
有溢流塔板
7.液体在降液管内的停留时间 .
3~5s
化学化工学院 化工基础 气液传质设备
8/12
板式塔 三、 塔径和塔高的估算
D=
4VG πu
u = ( 0. 6 ~ 0. 8 ) u F
气速上限为泛点气 表示, 速,用 uF 表示,由经 验式计算或图查取。 验式计算或图查取。
Z = N e ⋅ HT
气-液传质设备 液传质设备
板式塔 一、板式塔类型、结构及特点: 板式塔类型、结构及特点:
板式塔 塔设备 填料塔
用率高、 无溢流塔板:结构简单 、压降小、塔板面积利 用率高、 无溢流塔板: 压降小、 弹性小、 弹性小、效率低 有溢流塔板: 气液两相在设备中要有良好的接触: 有溢流塔板: 气液两相在设备中要有良好的接触: 无溢流塔板 接触充分,接触面大, 接触充分,接触面大,相界面不断更新
4、塔板上的液面落差
产生原因: 产生原因:液体在塔板上横向流动时要克服流动阻力 摩擦阻力、形体阻力) (摩擦阻力、形体阻力) 。 不良后果: 不良后果:液面落差会导致气流分布不均
有溢流塔板
化学化工学院 化工基础 气液传质设备
7/12
板式塔
5、 上液体的返混 、
减少返混对传质是有利的
6、 体通过塔板的压降-------单板压降 、
化学化工学院 化工基础
气液传质设备
有溢流塔板
6/12
板式塔 3. 液泛(淹塔)
不良后果:塔压力降急剧增大、板效急剧减小、 不良后果 :塔压力降急剧增大、板效急剧减小、 是不正常操作现象之一 产生原因: 产生原因: (1)气体流量过大,产生了过量的液沫夹带, 气体流量过大, 气体流量过大 产生了过量的液沫夹带, (2)液体负荷过大,降液管的截面积不够, 液体负荷过大, 液体负荷过大 降液管的截面积不够,
2. 过量的液沫夹带 .
不良后果: 1) 降低板效 、 ( 不良后果 : ) 降低板效、 ( 2)将不挥发性物质逐板送至塔顶造成产品污染, )将不挥发性物质逐板送至塔顶造成产品污染, ( 3) 严重时造成液泛 。 ) 严重时造成液泛。 产生的原因: 产生的原因 : 气体输送夹带 飞溅夹带
液体/kg 干气体 夹带量通常 eG<0.1kg 液体
降液管 溢流装置 溢流堰 平顶堰
齿形堰溢流塔板
气液传质设备
1/12
板式塔
单流型 多流型 液流形式 受液盘 U型流 阶梯型流
单流型
双流型
受液盘
受液盘
U 流型
化学化工学院 化工基础 气液传质设备
阶梯型流
2/12
板式塔 有溢流塔板又分为:
若流体力学性能不好, 若流体力学性能不好,则调整相应结构参数
化学化工学院 化工基础
气液传质设备
3/12
板式塔
鼓泡接触状态 气液接触方式有三种: 气液接触方式有三种: 泡沫接触状态 喷雾接触状态
气液两相在设备中要有良好的接触: 气液两相在设备中要有良好的接触: 接触充分,接触面要大, 接触充分,接触面要大,相界面不断更新
化学化工学院 化工基础
气液传质设备
产生原因: 产生原因: 加和模型) h p = 干板压降 + 液层压降 = hc + hl (加和模型) 不良后果: 不良后果: (1)单板压降大,气体流动阻力大,对输送要求较高。 )单板压降大,气体流动阻力大,对输送要求较高。 (2)过高的单板压降会使塔顶与塔底的压差较大,从而 )过高的单板压降会使塔顶与塔底的压差较大, 影响体系的相平衡关系以及气液流动情况, 影响体系的相平衡关系以及气液流动情况,这对真空操作 尤为重要。 尤为重要。 一般,常压塔: 一般,常压塔:单板压降 40~65mmH2O 减压塔:单板压降 10~35mmH2O 减压塔:
4/12
板式塔
二、塔板的流体力学性能
1.严重漏液 . 2.过量的液沫夹带 . 3.液泛 . 4.塔板上的液面落差 . 5.塔板上液体的返混 . 6.气体通过塔板的压降 . 7.液体停留时间 .
化学化工学院 化工基础
气液传质设备
5/12
板式塔
1. 严重漏液 .
不良后果:降低板效,严重时使板上不能积液, 不良后果 :降低板效 ,严重时使板上不能积液,是塔 不良的操作现象之一。 不良的操作现象之一。 产生的原因: 气速过小, 或气体分布严重不均、 产生的原因 : 气速过小, 或气体分布严重不均 、 液体 分布严重不均。 分布严重不均 。
10/12
§10.1 板式塔
五、塔板设计要点
安定区
设计内容:板型:筛板、 设计内容:板型:筛板、浮阀等 受液盘 板上液流型式:单流、 板上液流型式:单流、双流等 板间距 HT 塔径 D 板上结构:开孔情况、 板上结构:开孔情况、溢流装置结构 单流型 设计方法: 设计方法: 根据经验选定一些结构参数→设计其他参数→校核各项流体力学性能→ 根据经验选定一些结构参数→设计其他参数→校核各项流体力学性能→画负荷性能 图
关联图( ′ 全塔效率估算用 O′connell 关联图(参见教材 P211) )
H T 与塔径之间的关系如表 1 所示 : 所示:
表1 塔径 D(m) 板间距 HT(mm)
化学化工学院 化工基础
板间距参考数值 0.6~ 1.0 ~ 250~ 400 ~ 1.0~ 2.0 ~ 250~ 600 ~ 2.0~ 4.0 ~ 300~ 600 ~ 4.0~ 6.0 ~ 400~ 800 ~
特点:弹性大、操作稳定可靠等优点。 泡罩型 特点:弹性大、操作稳定可靠等优点。但结构复 制造成本高,压降大,液泛气速低, 杂 , 制造成本高 , 压降大 , 液泛气速低 , 故生产 能力较小。 能力较小。 筛孔型 特点:结构简单、造价低、压降小、 特点:结构简单、造价低、压降小、生产 能力大、操作弹性可达2~3、 能力大、操作弹性可达 、 浮阀型 特点:结构上较泡罩简单,比筛板复杂, 特点:结构上较泡罩简单,比筛板复杂, 操作弹性大、生产能力大。 操作弹性大、生产能力大。 其它型: 其它型: 导向筛板 旋流塔板
相关文档
最新文档