三角形的内角和与外角的性质(含答案)

合集下载

三角形的内角和与外角性质

三角形的内角和与外角性质

三角形的内角和与外角性质三角形是初中数学中非常重要的一个概念,它具有许多有趣的性质和特点。

其中,三角形的内角和与外角性质是我们需要重点关注和理解的内容。

在本文中,我将详细介绍三角形的内角和与外角的性质,并通过具体的例子和分析来说明这些性质的应用和重要性。

一、三角形的内角和性质在任意一个三角形ABC中,我们可以发现一个重要的性质:三角形的内角和等于180度。

这个性质是三角形的基本性质,也是我们研究三角形的起点。

具体来说,三角形的内角和等于180度可以通过以下两种方法来证明:方法一:直接相加法我们可以将三角形ABC的三个内角分别记为∠A、∠B、∠C。

根据角度的定义,我们知道∠A、∠B、∠C的度数之和等于180度。

因此,三角形的内角和等于180度。

方法二:三角形内角和定理三角形内角和定理是数学中一个非常重要的定理,它表明任意一个三角形的三个内角之和等于180度。

这个定理可以通过数学推导和证明得到,是数学中的一个基本定理。

通过这个性质,我们可以应用到许多问题中。

例如,当我们知道一个三角形的两个内角的度数时,可以通过计算得到第三个内角的度数。

这对于解决三角形的相关问题非常有帮助。

二、三角形的外角性质除了内角和性质外,三角形的外角性质也是我们需要了解的内容。

在任意一个三角形ABC中,我们可以发现一个重要的性质:三角形的一个内角与其相邻的两个外角之和等于180度。

具体来说,我们可以将三角形ABC的一个内角记为∠A,与其相邻的两个外角分别记为∠B'和∠C'。

根据外角的定义,我们知道∠B'和∠C'的度数之和等于360度。

根据三角形的内角和性质,∠A的度数与∠B'和∠C'的度数之和等于180度。

因此,三角形的一个内角与其相邻的两个外角之和等于180度。

通过这个性质,我们可以应用到许多问题中。

例如,当我们知道一个三角形的一个内角的度数时,可以通过计算得到其相邻的两个外角的度数。

三角形内角和、外角定理(含详细解答)

三角形内角和、外角定理(含详细解答)

三角形内角和、外角和定理一.选择题(共10小题)1.(2013•泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形3.(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△AB C沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A.40°B.45°C.50°D.55°5.(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°6.(2012•梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A.10°B.12°C.15°D.18°7.(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°8.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5= 360°9.(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A.36B.72C.108D.14410.(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A.37B.57C.77D.97二.填空题(共4小题)11.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=_________ 度.12.(2013•河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________ .13.(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=_________ 度.14.(2003•金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=_________ 度.三.解答题(共16小题)15.(2014•六盘水)(1)三角形内角和等于_________ .(2)请证明以上命题.16.(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.17.(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.18.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:_________ .19.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD 之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.20.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:_________ .21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠D AC的度数.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.三角形内角和、外角和定理参考答案与试题解析一.选择题(共10小题)1.(2013•泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形内角和定理.分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解答:解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.2.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形考点:三角形内角和定理.专题:方程思想.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.点评:本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.3.(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A.40°B.45°C.50°D.55°考点:三角形内角和定理.分析:首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.解答:解:∵∠B=67°,∠C=33°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.点评:本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.5.(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°考点:三角形内角和定理;多边形内角与外角.分析:先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.解答:解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.点评:此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.6.(2012•梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A.10°B.12°C.15°D.18°考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE ﹣∠CAD,代入数据进行计算即可得解.解答:解:∵AD⊥BC,∠C=36°,∴∠CAD=90°﹣36°=54°,∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故选A.点评:本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.7.(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.8.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5= 360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.9.(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A.36B.72C.108D.144考点:三角形内角和定理;解二元一次方程组;对顶角、邻补角.专题:计算题.分析:由∠A+∠B+∠C=180°,得到2(∠A+∠C)+2∠B=360°,求出∠B=72°,根据∠B的外角度数=180°﹣∠B即可求出答案.解答:解:∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,∴∠B的外角度数是180°﹣∠B=108°,故选C.点评:本题主要考查对二元一次方程组,三角形的内角和定理,邻补角等知识点的理解和掌握,能根据三角形的内角和定理求出∠B的度数是解此题的关键.10.(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A.37B.57C.77D.97考点:三角形内角和定理.专题:推理填空题.分析:根据钝角三角形有一内角大于90°且三角形内角和为180°,①∠C>90°,②∠B>90°,分类讨论解答.解答:解:∵钝角三角形△ABC中,∠A=27°,∴∠B+∠C=180°﹣27°=153°,又∵△ABC为钝角三角形,有两种可能情形如下:①∠C>90°,∴∠B<153°﹣90°=63°,∴选项A、B合理;②∠B>90°,∴选项D合理,∴∠B不可能为77°.故选C.点评:本题考查了钝角三角形的定义及三角形的内角和定理,体现了分类讨论思想.二.填空题(共4小题)11.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70 度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108° ①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.12.(2013•河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.13.(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70 度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.解答:解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又a∥b,∴∠3=∠ABC=70°.点评:本题考查了平行线与三角形的相关知识.14.(2003•金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=30 度.考点:三角形内角和定理;角平分线的定义.专题:压轴题.分析:因为入射角等于反射角,所以∠1=∠2=(180°﹣120°)÷2.解答:解:如图所示,作出入射光线的法线,根据“入射角等于反射角”可知∠1=∠3,∠2=∠4,∵∠1=∠2,∠AOB=120°,∴1=∠2=(180°﹣120°)÷2=30°.故答案为:30°.点评:此题由题意得出“入射角等于反射角”是关键.三.解答题(共16小题)15.(2014•六盘水)(1)三角形内角和等于180°.(2)请证明以上命题.考点:三角形内角和定理;平行线的性质.专题:证明题.分析:(1)直接根据三角形内角和定理得出结论即可;(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.解答:解:(1)三角形内角和等于180°.故答案为:180°;(2)已知:如图所示的△ABC,求证:∠A+∠B+∠C=180°.证明:过点C作CF∥AB,∵CF∥AB,∴∠2=∠A,∠B+∠BCF=180°,∵∠1+∠2=∠BCF,∴∠B+∠1+∠2=180°,∴∠B+∠1+∠A=180°,即三角形内角和等于180°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.16.(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.考点:三角形内角和定理;三角形的外角性质;等腰三角形的性质.分析:要求∠BAD的度数,只要求出∠C的度数就行了,根据三角形内角和为180°,求出∠BAD的度数,根据三角形内角和外角关系及等腰三角形性质,易求∠C的度数.解答:解:∵∠ACB=80°∴∠ACD=180°﹣∠ACB=180°﹣80°=100°又∵CD=CA∴∠CAD=∠D∵∠ACD+∠CAD+∠D=180°∴∠CAD=∠D=40°在△ABC内∴∠BAD=180°﹣∠ABC﹣∠D=180°﹣46°﹣40°=94°.点评:此题主要考三角形内角与外角的关系及等腰三角形的性质;找出角之间的关系利用内角和求解是正确解答本题的关键.17.(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.考点:三角形内角和定理.专题:数形结合.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.点评:此题主要是三角形内角和定理的运用.三角形的内角和是180°.18.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:∠BOC=90°﹣∠A.考点:三角形的外角性质;三角形内角和定理.专题:压轴题.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.19.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD 之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;平行线的性质;三角形内角和定理.专题:综合题;压轴题.分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.解答:解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.点评:本题是信息给予题,利用平行线的性质和三角形的一个外角等于和它不相邻的两个内角的和解答.20.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:∠P=(∠A+∠B+∠E+∠F)﹣180°.考点:三角形的外角性质;三角形内角和定理.专题:探究型.分析:探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.解答:解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠ADC和∠ACD,∴∠P=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.点评:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和定理和三角形的外角性质即可解决.解答:解:∵∠BAC=120°,∴∠2+∠3=60°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=60°,∠2=20°.∴∠DAC=120°﹣20°=100°.点评:注意三角形的内角和定理以及推论的运用,还要注意角之间的等量代换.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.解答:解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∠B+∠E+∠4=180°,即∠B+∠E+∠A+∠D+∠C=180°.点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,和三角形的一个外角等于与它不相邻的两个内角的和,可求∠1=39°,∠3=78°,所以∠DAC=24°,∠ADC=∠3=78°.解答:解:∵∠1=∠2,∴∠3=∠1+∠2=2∠1=∠4,∴2∠3+∠CAD=2∠1+2∠2+∠BAC﹣∠1=4∠1+63°﹣∠1=3∠1+63°=180°,∴∠1=39°=∠2,∠3=∠4=78°,∴∠DAC=63°﹣∠1=63°﹣39°=24°,∠ADC=∠3=78°.点评:本题考查三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;以及三角形的一个外角等于与它不相邻的两个内角的和.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.解答:解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.点评:本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.考点:三角形的外角性质;三角形内角和定理.专题:计算题.分析:先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.解答:解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°∴∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.点评:本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.考点:三角形的外角性质.分析:根据三角形外角的性质求出∠BDC的度数,与测量所得的度数对比即可得出结论.解答:解:如图,∠CDE是△ADC的外角,∠BDE是△ABD的外角,∵∠CDE=∠C+∠CAD,∠BDE=∠B+∠DAB,∴∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠DAB,即∠BDC=∠B+∠C+∠A=25°+25°+90°=140°.检验已量得∠BDC=150°,就判断这个零件不合格.点评:考查了三角形的外角性质,三角形的外角等于和它不相邻的两个内角的和.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?考点:三角形的外角性质.分析:连接AD并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠1=∠B+∠BAD,∠2=∠C+∠CAD,然后求出∠1+∠2的度数,根据零件规定数据,只有140°才是合格产品.解答:解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=30°,∠C=20°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=30°+90°+20°,=140°,∵140°≠142°,∴这个零件不合格.点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;三角形内角和定理.分析:连接BE,由三角形内角和外角的关系可知∠C+∠D=∠CBE+∠DEB,由四边形内角和是360°,即可求∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.解答:解:如图连接BE.∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F.又∵∠A+∠ABE+∠BEF+∠F=360°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.点评:本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和是180°,可分别求出∠1+∠2=∠3+∠4=145°,即可求出∠1+∠2+∠3+∠4的度数和.解答:解:∵∠A=35°,在△ABC中,∠A+∠1+∠2=180°,∴∠1+∠2=180°﹣∠A=145°,同理可证∠3+∠4=145°,∴∠1+∠2+∠3+∠4=290°.点评:本题考查了三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.。

三角形的内角和与外角的关系

三角形的内角和与外角的关系

三角形的内角和与外角的关系三角形是几何学中最基本的形状之一,它由三条边和三个角组成。

在研究三角形时,我们经常会遇到内角和与外角的关系。

本文将探讨三角形的内角和与外角的相关性并展示其数学性质。

1. 内角和的定义与性质首先,我们来定义三角形的内角和。

对于任意一个三角形,它的三个内角分别记作∠A、∠B和∠C。

那么该三角形的内角和即为∠A+∠B+∠C。

在欧几里得几何中,我们知道三角形的内角和总是等于180度(或π弧度)。

这个性质可以通过如下证明得到:在平面上取一个固定点O作为原点,以OX和OY两条坐标轴分别表示水平和垂直方向。

我们设三角形的三个顶点分别为A(XA, YA)、B(XB, YB)和C(XC, YC)。

从点O引出三条射线OA、OB和OC,分别与三角形的边AB、BC 和CA相交。

设射线OA与边AB的交点为D,射线OB与边BC的交点为E,射线OC与边CA的交点为F。

根据向量的性质,我们可以得到向量AD、BE和CF分别表示边AB、BC和CA的方向和长度。

因此,我们可以得到:AD = (XB - XA, YB - YA)BE = (XC - XB, YC - YB)CF = (XA - XC, YA - YC)两个向量的和为:AD + BE + CF = (XB - XA, YB - YA) + (XC - XB, YC - YB) + (XA - XC, YA - YC)= (0, 0)根据向量的性质,向量的和为零意味着它们共线。

因此,射线OA、OB和OC共线,即三角形的三个顶点A、B和C共线。

根据平面几何的基本原理,三点共线意味着它们形成的线段或射线之间相交时,内角和等于180度(或π弧度)。

2. 内角和与外角的关系现在我们来探讨三角形的内角和与外角的关系。

在三角形ABC中,我们可以通过将三个内角的补角与三个外角进行比较来研究它们之间的关系。

首先,我们定义三角形的外角。

对于三角形ABC的内角∠A,如果我们在角A的延长线上选择一个点D,使得D与边BC相交,那么∠ADC即为角A的外角。

三角形的外角与内角

三角形的外角与内角

三角形的外角与内角三角形是几何学中最基本的图形之一。

在三角形中,我们可以通过角度来描述其形状和特性。

其中,外角和内角是我们常常研究和讨论的两个角度。

本文将介绍三角形的外角和内角的概念、性质以及它们之间的关系。

一、三角形的外角1. 外角的定义在任意三角形ABC中,我们可以通过延长其中一条边(比如边AB)来得到一个外角。

外角定义为该外角和与之相邻的内角的和。

2. 外角的性质(1)任何一个三角形的外角都小于360度。

这是因为在三角形中,所有的内角的和已经等于180度,如果再加上外角,总和将超过360度,这是不可能的。

(2)三角形的相邻外角互补。

这是因为相邻两个外角加上与之相邻的内角,总和等于180度。

3. 外角与其他角度的关系(1)外角与内角的关系:一个外角等于与之相邻的两个内角的和。

即外角A等于内角B和内角C的和,外角B等于内角A和内角C的和,外角C等于内角A和内角B的和。

(2)外角与对应内角的关系:对于一个三角形的任意一对对应内角和外角来说,它们的度数之和等于180度。

即外角A等于内角C的度数,外角B等于内角A的度数,外角C等于内角B的度数。

二、三角形的内角1. 内角的定义在任意三角形ABC中,我们可以通过三个顶点来确定三个内角,分别为角A、角B、角C。

2. 内角的性质(1)三个内角的和等于180度。

这是因为三个内角加起来就是三角形所有内角的总和,而任何一个三角形的所有内角总和都等于180度。

(2)任意两个内角的和大于第三个内角。

这被称为三角形的内角和定理。

例如,在三角形ABC中,角A + 角B大于角C,角A + 角C 大于角B,角B + 角C大于角A。

三、三角形的外角与内角之间的关系根据前文提到的性质可知,一个三角形的外角与其对应的内角之间存在以下关系:(1)外角等于与之相邻的两个内角的和。

(2)外角与对应内角的度数之和等于180度。

(3)三个内角与三个外角的对应关系:外角等于相应内角的度数。

综上所述,三角形的外角与内角之间有着密切的关系。

三角形的内角和外角三角形的内角和外角的性质

三角形的内角和外角三角形的内角和外角的性质

三角形的内角和外角三角形的内角和外角的性质三角形的内角和外角是三角形的基本性质之一,它们的和有着固定的关系。

本文将探讨三角形的内角和外角的性质以及相关的数学定理。

一、三角形的内角和外角的定义三角形由三条边和三个角组成。

其中每个角都有对应的内角和外角。

内角是指位于三角形内部的角,即由两条边组成的夹角。

外角是指位于三角形外部的角,即由一条边和与其相邻的内角组成的夹角。

二、三角形的内角和外角的关系1. 内角和定理对于任意三角形,其内角的和等于180度。

即三个内角的度数之和为180度。

若设三角形的三个内角分别为∠A、∠B、∠C,则有∠A + ∠B + ∠C = 180度。

2. 外角和定理对于任意三角形,其外角的和也等于180度。

即三个外角的度数之和为180度。

若设三角形的三个外角分别为∠A'、∠B'、∠C',则有∠A' +∠B' + ∠C' = 180度。

3. 内角和与外角和的关系对应一个内角和一个外角,它们的度数之和为180度。

即对于三角形的任意一组内角和外角,有∠A + ∠A' = 180度;∠B + ∠B' = 180度;∠C + ∠C' = 180度。

三、三角形的内角和外角的性质1. 三角形的内角性质a. 锐角三角形:三个内角都小于90度。

b. 直角三角形:一个内角为90度。

c. 钝角三角形:一个内角大于90度。

2. 三角形的外角性质a. 锐角三角形:三个外角都大于0度且小于180度。

b. 直角三角形:一个外角为90度。

c. 钝角三角形:两个外角大于90度且小于180度,一个外角为0度。

3. 三角形的内角和外角关系a. 两个内角的和大于第三个内角。

即∠A + ∠B > ∠C,∠A +∠C > ∠B,∠B + ∠C > ∠A。

b. 两个外角的和等于第三个外角。

即∠A' + ∠B' = ∠C',∠A' +∠C' = ∠B',∠B' + ∠C' = ∠A'。

三角形的内角和与外角和

三角形的内角和与外角和

三角形的内角和与外角和三角形是几何学中最基本的图形之一,它由三条线段组成,每两条线段之间的夹角称为三角形的内角。

而与每个内角相对的外角则是与之相补的角度。

本文将探讨三角形的内角和与外角和的相关性质。

一、三角形的内角和在一个三角形中,三个内角的和总是等于180度。

这个性质被称为三角形内角和定理。

假设三角形的三个内角分别为A、B、C,则有以下关系成立:A +B +C = 180度这个定理有时也可以通过三角形内角和的定义来理解。

根据定义,三角形的每个内角都是由两个边所形成的夹角。

因此,三角形的三个内角将形成一条直线,而直线角度总和为180度。

二、三角形的外角和在三角形中,每个内角的补角称为外角。

即与内角相对的直线之间的夹角。

我们可以推论出,三角形的三个外角的和总是等于360度。

这个性质被称为三角形外角和定理。

三、内角和与外角和的关系我们可以通过三角形的内角和与外角和的关系来推导出三角形的外角和定理。

我们知道三角形的三个内角和为180度。

以一个内角为例,假设该内角的度数为x度,则其补角的度数为180减去x度。

由于三角形的三个内角的补角的度数总和等于360度,因此有:(180 - A) + (180 - B) + (180 - C) = 360度化简得:540 - (A + B + C) = 360度由于A + B + C = 180度,代入上式得:540 - 180 = 360度因此,我们可以得出结论,三角形的外角和总是等于360度。

这一结论也可以通过实际验证来证明。

我们可以通过绘制一张三角形的示意图,并在每个内角旁边标记其补角的度数。

通过测量这些度数,我们可以发现三个补角的度数总和为360度。

总结:三角形的内角和与外角和的关系是:1. 三角形的内角和等于180度。

2. 三角形的外角和等于360度。

这些性质在解决三角形相关问题时非常有用。

对于任意的三角形,我们都可以利用这些性质计算其内角和与外角和,从而帮助我们更好地理解和分析三角形的特性和性质。

三角形的内角和与外角性质

三角形的内角和与外角性质

三角形的内角和与外角性质三角形是几何学中最基本的形状之一,由三条边和三个内角组成。

本文将探讨三角形的内角和与外角性质。

一、三角形的内角和性质三角形的内角和指的是三个内角的度数之和。

根据平面几何的基本原理,任何三角形的内角和都等于180度,即∠A + ∠B + ∠C = 180°。

根据三角形的内角和定理,我们可以得出以下结论:1. 锐角三角形:三个内角都小于90度的三角形属于锐角三角形。

对于锐角三角形,∠A + ∠B + ∠C = 180°,且三个内角的度数之和小于180度。

2. 直角三角形:直角三角形的其中一个内角是90度,剩余两个内角的度数之和等于90度。

即∠A + ∠B + ∠C = 180°,其中∠C = 90°。

3. 钝角三角形:三个内角中至少有一个大于90度的三角形属于钝角三角形。

对于钝角三角形,∠A + ∠B + ∠C = 180°,且三个内角的度数之和大于180度。

以上是关于三角形的内角和性质的基本原理。

接下来,我们将讨论与之相对应的三角形的外角性质。

二、三角形的外角性质三角形的外角是指一个三角形的任意一个内角的补角。

根据三角形的内角和性质,我们可以得出如下结论:1. 锐角三角形的外角性质:对于锐角三角形ABC,三个外角的度数之和等于360度,即∠D + ∠E + ∠F = 360°。

其中∠D = 180° - ∠A,∠E = 180° - ∠B,∠F = 180° - ∠C。

2. 直角三角形的外角性质:对于直角三角形ABC,三个外角的度数之和等于360度,即∠D + ∠E + ∠F = 360°。

其中∠D = 90° - ∠A,∠E = 90° - ∠B,∠F = 90° - ∠C。

3. 钝角三角形的外角性质:对于钝角三角形ABC,三个外角的度数之和等于360度,即∠D + ∠E + ∠F = 360°。

三角形的内角和与外角性质

三角形的内角和与外角性质

三角形的内角和与外角性质三角形是平面几何中最基本的形状之一,它由三条边和三个角组成。

在研究三角形时,我们常常涉及到三角形的内角和外角的性质。

本文将深入探讨这些性质,并通过具体的例子加以说明。

一、三角形的内角和三角形的内角和是指三个内角的和。

根据欧拉公式,在二维平面上的任何一个多边形,无论是几边形还是多边形,其内角和都等于180°。

因此,对于三角形而言,其三个内角的和也必然等于180°。

这一性质被称为三角形内角和定理。

可以用以下方式表示三角形的内角和定理:设三角形ABC的三个内角分别为∠A、∠B和∠C,则有:∠A + ∠B + ∠C = 180°除了可以通过欧拉公式来证明三角形的内角和定理,我们还可以通过数学推理来理解它的原理。

举例说明,假设我们有一个三角形ABC,我们可以通过将其顶点A 点移动到线段BC的延长线上,形成一个四边形ABCD。

由于四边形的内角和是360°,根据四边形的性质,我们可以得出∠A + ∠B + ∠C +∠D = 360°。

然而,由于顶点A在移动过程中始终保持在线段BC的延长线上,因此∠D等于180°。

再根据三角形ABC是四边形ABCD的一部分,我们可以得出∠A + ∠B + ∠C = 180°。

这就证明了三角形的内角和定理。

二、三角形的外角和三角形的外角是指与三角形的一条边相邻且不共线的角。

对于每个三角形而言,它的三个外角的和等于360°。

这一性质被称为三角形外角和定理。

我们可以通过以下方式来表示三角形的外角和定理:设三角形ABC的三个外角分别为∠DAB、∠EBC和∠FCA,则有:∠DAB + ∠EBC + ∠FCA = 360°三角形的外角和定理可以通过数学推理来证明。

举例说明,我们仍然假设有一个三角形ABC,并在其边AB的延长线上选取一个点D。

考虑∠DAB、∠EBC和∠FCA这三个外角。

三角形的内角与外角

三角形的内角与外角

三角形的内角与外角三角形是几何学中最基本的形状之一,由三条边和三个内角组成。

本文将讨论三角形的内角与外角的特性和性质。

一、三角形内角的定义与性质三角形的内角是指三角形内部的角,共有三个内角,分别记作∠A、∠B、∠C。

根据几何学的基本原理,三角形的内角和为180度,即∠A + ∠B + ∠C = 180°。

1. 三角形的内角之间的关系由于三角形的内角和为180度,所以三角形内角之间存在一定的关系。

根据三角形的性质,如下所示:- 如果一个内角是直角(90°),则另外两个内角的和也是90°。

这种三角形被称为直角三角形。

- 如果一个内角大于90°,则另外两个内角的和小于90°。

这种三角形被称为钝角三角形。

- 如果一个内角小于90°,则另外两个内角的和大于90°。

这种三角形被称为锐角三角形。

2. 等腰三角形的内角性质等腰三角形是指具有两条边相等的三角形。

在等腰三角形中,两个底角(底边上的两个角)一定相等,而顶角(顶点的角)一定小于两个底角。

3. 等边三角形的内角性质等边三角形是指具有三条边相等的三角形。

在等边三角形中,三个内角均相等,每个角都是60°。

二、三角形的外角的定义与性质三角形的外角是指从三角形的一个内角延长线上取得的角,它与相对的内角之间有一定的关系。

1. 外角和内角之间的关系在任意三角形中,一个外角等于其非相邻内角的和。

例如,在三角形ABC中,设一个外角为∠DAB,相对的内角为∠C,则有∠DAB = ∠C + ∠D。

2. 外角的性质外角与三角形的三个内角之间还有一些其他的性质。

如下所示:- 一个三角形的三个外角之和等于360°。

- 任意一个三角形的外角大于任意一个内角。

也就是说,对于三角形ABC来说,∠DAB > ∠A, ∠EBC > ∠B, ∠FCA > ∠C。

三、内角与外角的应用在实际应用中,三角形的内角与外角的性质有着广泛的应用。

三角形的内角和与外角性质

三角形的内角和与外角性质

三角形的内角和与外角性质三角形是几何学中最基本的形状之一,它的内角和与外角性质是研究三角形性质的重要内容之一。

本文将详细介绍三角形的内角和与外角性质,以及它们之间的关系。

一、三角形的内角和性质在一个三角形中,三个内角的和始终等于180度。

这一性质称为三角形的内角和性质。

以三角形ABC为例,角A、角B、角C分别表示三角形的三个内角。

则有以下等式成立:角A + 角B + 角C = 180°这一性质可以通过以下推论得到进一步的认识。

1. 正三角形的内角和性质正三角形是指三个内角均相等的三角形。

在一个正三角形中,每个内角都是60度,所以三个内角的和为:60° + 60° + 60° = 180°2. 直角三角形的内角和性质直角三角形是指其中一个内角为90度的三角形。

在直角三角形中,另外两个内角的和为:90° + 角B + 角C = 180°∴角B + 角C = 90°3. 钝角三角形的内角和性质钝角三角形是指其中一个内角大于90度的三角形。

在钝角三角形中,另外两个内角的和为:角A + 钝角 + 角C = 180°∴角A + 角C = 钝角二、三角形的外角性质在一个三角形中,每个内角的补角称为该内角的外角。

根据三个内角和性质,可以得知:三角形的外角和等于360度。

以三角形ABC为例,角A、角B、角C的外角分别为角A'、角B'、角C'。

则有以下等式成立:角A + 角A' = 180°角B + 角B' = 180°角C + 角C' = 180°由此可知,角A' + 角B' + 角C' = 360°。

三、内角和与外角性质的关系三角形的三个内角与对应的外角之间存在着一定的关系。

1. 内角和与外角和的关系三角形的三个内角和等于三个外角和。

三角形的内角和定理与外角性质

三角形的内角和定理与外角性质

三角形的内角和定理与外角性质三角形是几何学中最基本的图形之一,其内角和定理与外角性质是我们在学习三角形时必须了解和掌握的重要概念。

本文将详细介绍三角形的内角和定理以及外角性质,帮助读者建立对三角形性质的深入理解。

一、三角形的内角和定理在讨论三角形的内角和定理之前,首先需要了解一个基本概念,即内角。

三角形的内角是指三条边所夹的角,分别记为角A、角B和角C,对应三条边分别为边a、边b和边c。

根据三角形的定义,三个内角的和总是等于180度,即有以下内角和定理:角A + 角B + 角C = 180度这一定理是三角形性质的基础,通过它我们可以推导出其他三角形性质和定理。

二、三角形的外角性质除了内角和定理,三角形还具有一些重要的外角性质。

三角形的外角是指一个三角形的一个内角的补角,即与之相邻的两个内角的和等于180度。

下面我们将介绍三角形外角性质的几个重要定理:1. 外角定理三角形的任一外角等于其不相邻的两个内角的和。

设三角形的一个外角为角D,则有以下等式成立:角D = 角A + 角B 或角D = 角A + 角C 或角D = 角B + 角C通过外角定理,我们可以通过已知的内角信息推导出三角形的外角。

2. 外角和定理三角形的三个外角的和等于360度。

设三角形的外角分别为角D、角E和角F,则有以下等式成立:角D + 角E + 角F = 360度外角和定理是三角形外角性质的一个重要推论,通过它我们可以验证一个三角形是否是合理的。

三、应用举例为了更好地理解三角形的内角和定理与外角性质,下面我们来应用这些概念解决一个具体问题。

假设有一个三角形ABC,其角A为90度,角B为30度,我们需要求解角C和角D的度数。

根据内角和定理,我们知道角A + 角B + 角C = 180度,可以得出:90度 + 30度 + 角C = 180度,进一步计算可得角C = 60度。

接下来,我们根据外角和定理计算角D的度数。

由于三角形的三个外角的和等于360度,我们可以得出:角D + 90度 + 30度 = 360度,进一步计算可得角D = 240度。

三角形的内角和与外角性质解析

三角形的内角和与外角性质解析

三角形的内角和与外角性质解析三角形是几何学中一种基本的图形,由三条边和三个内角组成。

在研究三角形的性质时,了解和理解三角形的内角和外角之间的关系非常重要。

本文将对三角形的内角和外角进行详细解析。

一、三角形的内角和任意一个三角形,其三个内角的和始终为180度。

这一性质也被称为三角形内角和定理。

无论三角形的形状如何变化,其内角的和始终保持不变。

证明一:假设三角形的三个内角分别为∠A、∠B、∠C,那么根据角度的定义,可知∠A + ∠B + ∠C = 180度。

二、三角形的外角和三角形的外角是指与三角形的一个内角相邻且不在三角形内部的角。

三角形的每个内角都对应一个外角,它们组成的和也是一个定值,恒为360度。

证明二:以三角形的一个内角为例,假设三角形内角为∠A,那么与∠A相邻的外角为∠A'。

根据相邻外角定义可知,∠A + ∠A' = 180度。

此外,外角∠A'与三角形的其他两个内角也满足同样的关系,即外角与其相邻的内角之和为180度。

因此,三角形的三个外角的和即为360度。

三、内角和与外角和的关系三角形的内角和与外角和之间存在一个特定的关系,即内角和与外角和的差为180度。

这一性质可以通过上述证明过程中的方程得到。

证明三:三角形的内角和记为∠A + ∠B + ∠C = 180度,外角和记为∠A' + ∠B' + ∠C' = 360度。

由于外角与其相邻的内角之和为180度,即∠A + ∠A' = 180度,同理可得∠B + ∠B' = 180度,∠C + ∠C' =180度。

将这三个等式相加,可得:∠A + ∠A' + ∠B + ∠B' + ∠C + ∠C' = 180度 + 180度 + 180度即 (∠A + ∠B + ∠C) + (∠A' + ∠B' + ∠C') = 180度 + 180度 + 180度根据内角和与外角和的定义可知 (∠A + ∠B + ∠C) = 180度,(∠A' + ∠B' + ∠C') = 360度,将其代入上式得:180度 + 360度 = 180度 + 180度 + 180度540度 = 540度由此可见,三角形内角和与外角和的差恒为180度。

三角形的内角和与外角性质

三角形的内角和与外角性质

三角形的内角和与外角性质三角形是平面几何中最基本的图形之一,它具有许多独特的性质和特点。

其中,三角形的内角和与外角性质是我们在研究三角形时非常重要的一个方面。

本文将探讨三角形的内角和与外角的性质及其应用。

一、三角形的内角和性质1. 定理1:三角形的内角和等于180度三角形的内角和是指三个内角的度数总和。

不论三角形的形状和大小如何,其三个内角的度数总和始终等于180度。

这是三角形的基本性质之一。

例如,对于任意一个三角形ABC,∠A + ∠B + ∠C = 180°。

2. 定理2:等腰三角形的内角和性质等腰三角形是指具有两条边长度相等的三角形。

在等腰三角形中,两个底角的度数相等,且和顶角的度数之和等于180度。

设等腰三角形的两个底角为∠A,顶角为∠B,则∠A + ∠A + ∠B = 180°,即2∠A + ∠B = 180°。

3. 定理3:等边三角形的内角和性质等边三角形是指具有三条边长度相等的三角形。

在等边三角形中,三个内角的度数都相等且等于60度。

设等边三角形的三个内角都为∠A,则∠A + ∠A + ∠A = 180°,即3∠A = 180°,∠A = 60°。

二、三角形的外角性质1. 定理4:三角形的外角性质三角形的每个外角等于它不相邻的两个内角的和。

设三角形的三个内角为∠A、∠B、∠C,对应的三个外角为∠D、∠E、∠F,则有∠D = ∠B + ∠C,∠E = ∠A + ∠C,∠F = ∠A + ∠B。

2. 定理5:三角形的外角和等于360度三角形的三个外角的度数总和始终等于360度。

不论三角形的形状和大小如何,其三个外角的度数总和始终等于360度。

这是三角形的另一个基本性质。

例如,对于任意一个三角形ABC,∠D + ∠E + ∠F= 360°。

三、三角形内角和与外角的应用1. 内角和与三角形类型的关系根据三角形的内角和性质,我们可以通过观察三个内角的度数总和来确定三角形的类型。

三角形内角和与外角性质知识点

三角形内角和与外角性质知识点

三角形内角和与外角性质知识点三角形是几何学中一个基本的概念,研究三角形的性质对于几何学的学习至关重要。

本文将介绍三角形内角和与外角的性质知识点,帮助读者更好地理解和运用这些概念。

一、三角形内角和与外角的定义1. 三角形内角和:三角形的内角和是指三角形内部各角度之和。

对于任意三角形ABC,其内角和记作∠A+∠B+∠C=180°。

2. 三角形外角:三角形的外角是指与三角形内角相对应的角,位于三角形外部。

对于任意三角形ABC,∠D、∠E、∠F分别为内角∠A、∠B、∠C的对应外角。

二、三角形内角和与外角的性质1. 内角和与三角形类型的关系:(1) 锐角三角形:锐角三角形的内角和小于180°。

例如,对于锐角三角形ABC,有∠A+∠B+∠C=180°,且∠A<90°,∠B<90°,∠C<90°。

(2) 直角三角形:直角三角形的内角和等于180°。

例如,对于直角三角形ABC,有∠A+∠B+∠C=180°,且其中之一角等于90°。

(3) 钝角三角形:钝角三角形的内角和大于180°。

例如,对于钝角三角形ABC,有∠A+∠B+∠C=180°,且其中之一角大于90°。

2. 内角和的计算:内角和可以通过已知的角度进行计算。

例如,已知∠A=30°,∠B=50°,则∠C=180°-∠A-∠B=100°。

3. 外角与其对应内角的关系:(1) 外角与内角的和为180°:对于任意三角形ABC,三个外角∠D、∠E、∠F 与对应的内角∠A、∠B、∠C的和分别满足∠A+∠D=180°,∠B+∠E=180°,∠C+∠F=180°。

(2) 外角与对应内角的关系:对于任意三角形ABC,有∠D=180°-∠A,∠E=180°-∠B,∠F=180°-∠C。

三角形的内角和与外角的性质(含答案)

三角形的内角和与外角的性质(含答案)

1、(2011•昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A、45°B、60°C、75°D、85°2、(2011•义乌市)如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于()A、60°B、25°C、35°D、45°3、(2011•XX)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A、∠2=∠4+∠7B、∠3=∠1+∠6C、∠1+∠4+∠6=180°D、∠2+∠3+∠5=360°4、(2011•XX)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A、36B、72C、108D、1445、(2011•XX)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A、37B、57C、77D、976、(2011•宁波)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A、57°B、60°C、63°D、123°7、直角三角形中两锐角平分线所交成的角的度数是()A、45°B、135°C、45°或135°D、都不对8、(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A、40°B、30°C、20°D、10°9、关于三角形的内角,下列判断不正确的是()A、至少有两个锐角B、最多有一个直角C、必有一个角大于60°D、至少有一个角不小于60°10、如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A、50°B、40°C、70°D、35°11、如图,将等边三角形ABC剪去一个角后,则∠1+∠2的大小为()A、120°B、180°C、200°D、240°12、在三角形的三个外角中,钝角的个数最多有()A、3个B、2个C、1个D、0个13、如图在△ABC中,∠ABC=50°,∠ACB=80°,BP 平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A、100°B、110°C、115°D、120°14、以下说法中,正确的个数有()(1)三角形的内角平分线、中线、高都是线段;(2)三角形的三条高一定都在三角形的内部;(3)三角形的一条中线将此三角形分成两个面积相等的小三角形;(4)三角形的3个内角中,至少有2个角是锐角.A、1B、2C、3D、415、若一个三角形的两个内角的平分线所成的钝角为145°,则这个三角形的形状为()A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形16、已知:△ABC,现将∠A的度数增加1倍,∠B的度数增加2倍,刚好使∠C是直角,则∠A的度数可能是()A、75°B、60°C、30°D、45°17、如图,BE、CF是△ABC的角平分线,且∠A=70°,那么∠BDC的度数是()A、70°B、115°C、125°D、145°18、如图,∠ABC=31°,又∠BAC的平分线与∠FCB 的平分线CE相交于E点,则∠AEC为()A、14.5°B、15.5°C、16.5°D、20°19、(2010•武汉)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是()A、100°B、80°C、70°D、50°20、(2010•聊城)如图,l∥m,∠1=115°,∠2=95°,则∠3=()A、120°B、130°C、140°D、150°21、(2009•湘西州)如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A、20°B、40°C、50°D、60°22、(2007•临沂)如图,△A BC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为()A、130°B、230°C、180°D、310°23、(2005•XX)如图,在Rt△ADB中,∠D=90°,C 为AD上一点,则x可能是()A、10°B、20°C、30°D、40°24、(2003•XX)如图是A、B两片木板放在地面上的情形.图中∠1、∠2分别为A、B两木板与地面的夹角,∠3是两木板问的夹角.若∠3=110°,则∠2﹣∠1=()A、55°B、70°C、90°D、l10°25、(2002•烟台)如图所示,在△ABC中,∠ABC和∠ACB的外角平分线交于点O,设∠BOC=a,则∠A等于()A、90°﹣2αB、90°﹣C、180°﹣2αD、180°﹣26、如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的内部,则()A、∠A=∠1+∠2B、2∠A=∠1+∠2C、3∠A=2∠1+∠2D、3∠A=2(∠1+∠2)27、如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A、15°B、20°C、25°D、30°28、(2006•XX)如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为_________ 度.29、如图所示,△ABC中,BD,CD分别平分∠ABC 和外角∠ACE,若∠D﹦24°,则∠A﹦_________ 度.30、如图,∠A+∠B+∠C+∠D+∠E的度数为_________ 度.答案与评分标准一、选择题(共27小题)1、(2011•昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A、45°B、60°C、75°D、85°考点:三角形内角和定理。

三角形的内角和与外角和

三角形的内角和与外角和

三角形的内角和与外角和在几何学中,三角形是研究的基本形状之一。

一个三角形由三条边和三个内角组成。

本文将介绍三角形的内角和与外角和的性质及相关定理。

一、三角形的内角和一个三角形的内角和是指三个内角的总和。

设三角形的三个内角分别为A、B、C,它们的度数分别为α、β、γ,则有以下定理:定理1:一个三角形的内角和等于180度。

证明:假设三角形的三个内角分别为A、B、C,它们的度数分别为α、β、γ。

根据角度的定义可知,α+β+γ=180度。

定理2:等边三角形的三个内角都是60度。

证明:设等边三角形的三个内角的度数分别为α、β、γ。

由于三角形的三边相等,根据三角形内角和的定理可得:α+α+α=180度,解方程得α=60度。

同理可得β=60度,γ=60度。

定理3:直角三角形的两个锐角之和等于90度。

证明:设直角三角形的一个锐角的度数为α,另一个锐角的度数为β。

根据三角形的内角和的定理可得:α+β+90度=180度,化简得α+β=90度。

二、三角形的外角和一个三角形的外角是指三个内角的补角。

设三角形的三个内角分别为A、B、C,它们的补角分别为α、β、γ,则有以下定理:定理4:一个三角形的外角和等于360度。

证明:设三角形的三个内角分别为A、B、C,它们的补角分别为α、β、γ。

根据角度的定义可知,α+β+γ=360度。

定理5:三角形的一个内角等于其与相对外角的补角。

证明:设三角形的一个内角的度数为α,其相对外角的度数为β。

根据角度的定义可知,α+β=180度。

综上所述,三角形的内角和等于180度,外角和等于360度。

三角形是几何学中非常重要的概念,它具有丰富的性质和定理,对于解题和理解空间关系具有重要作用。

通过研究三角形的内角和与外角和,我们可以深入理解三角形的性质及其应用。

三角形的内角和与外角性质

三角形的内角和与外角性质

三角形的内角和与外角性质三角形是几何学中最基本的图形之一,它具有许多特殊性质和性质。

其中一个重要的性质是三角形的内角和与外角之间的关系。

本文将探讨三角形的内角和与外角性质,分析其数学原理,并举例说明。

一、三角形的内角和性质在一般情况下,三角形的内角和等于180度。

这个性质被称为三角形的内角和定理。

可以通过以下证明来理解这个性质:设三角形ABC的三个内角分别为∠A、∠B和∠C。

我们可以将三角形ABC沿着边AB和边AC折叠,使角A与角B重合,形成一个平行四边形ABCD。

在平行四边形ABCD中,相邻的两个内角之和等于180度。

因为三角形ABC与平行四边形ABCD具有相同的角A和角B,所以∠A+∠B=180度。

另外,∠C是三角形ABC的第三个内角,所以∠A+∠B+∠C=180度。

因此,三角形的内角和等于180度。

除了这个基本性质,三角形的内角和还有其他一些特殊性质。

例如,等边三角形的每个内角都是60度,等腰三角形的两个底角相等,直角三角形的一个内角是90度。

二、三角形的外角性质与内角和有关的是三角形的外角。

三角形的外角是指三角形的一个内角的补角。

换句话说,外角等于与其相邻的两个内角的和。

设三角形ABC的三个内角分别为∠A、∠B和∠C,则三角形ABC的三个外角分别为∠D、∠E和∠F。

我们可以得到以下性质:∠D=180度-∠A∠E=180度-∠B∠F=180度-∠C这些性质可以通过三角形内角和定理进行证明。

因为∠A+∠D=180度(补角关系),∠B+∠E=180度,∠C+∠F=180度。

所以,∠D=180度-∠A,∠E=180度-∠B,∠F=180度-∠C。

三、例题分析让我们来看两个例题,以加深对于三角形的内角和与外角性质的理解。

例题1:已知三角形ABC,∠A=30度,∠B=45度,求∠C的度数。

解析:利用三角形的内角和性质,可以得到∠A+∠B+∠C=180度。

将已知的∠A和∠B的度数代入,得到30度+45度+∠C=180度。

三角形的内角和与外角

三角形的内角和与外角

三角形的内角和与外角三角形是几何学中的基本图形之一,它由三条边和三个角组成。

在三角形中,内角和与外角是两个重要的概念。

本文将探讨三角形的内角和与外角的性质和关系。

一、三角形的内角和首先,我们来讨论三角形的内角和。

三角形的内角和是指三角形内部三个角的角度之和。

对于任意一个三角形,其内角和都是180度(°)。

设三角形的三个角分别为A、B、C,根据三角形内角和的性质,我们可以得出如下等式:A +B +C = 180°这个等式适用于任何类型的三角形,无论是等边三角形、等腰三角形还是普通三角形,它们的内角和都等于180°。

这是三角形的基本性质之一。

二、三角形的外角接下来,我们来讨论三角形的外角。

三角形的外角是指三角形的一个角与其相邻的内角所成的角。

对于任意一个三角形,它的外角和等于360度(°)。

设三角形的三个内角分别为A、B、C,对应的外角分别为α、β、γ。

根据外角和的性质,我们可以得出如下等式:α + A = β + B = γ + C = 360°三角形的外角和等于360°的性质对于任何类型的三角形都成立。

这个性质在解三角形问题、计算角度等方面具有重要作用。

三、内角和与外角的关系通过观察三角形的内角和和外角的性质,我们可以得出一条重要的结论:任意一个三角形的内角和等于其对应外角的补角。

设三角形的一个内角为A,对应的外角为α。

根据外角和的性质可知,α + A = 360°。

而根据内角和的性质可知,A + B + C = 180°。

将这两个等式结合起来,可得:360° - α + B + C = 180°化简上述等式,可得:B +C = α这说明了任意一个三角形的内角和等于其对应外角的补角。

这个结论对于解三角形问题、证明三角形的性质等具有重要意义。

综上所述,三角形的内角和与外角是三角形中的两个重要概念。

三角形的内角和等于180°,外角和等于360°。

三角形的内角和与外角

三角形的内角和与外角

三角形的内角和与外角三角形是几何学中基础的图形,它有许多有趣的性质和特点。

其中之一就是三角形的内角和与外角之间的关系。

本文将探讨三角形的内角和与外角的性质和计算方法。

一、三角形的内角和在任意三角形ABC中,内角和的总和等于180度。

这个结论可以通过以下证明得到:假设在三角形ABC中,内角A的度数为a,内角B的度数为b,内角C的度数为c。

根据几何学的基本原理,我们知道直线上的内角之和为180度。

在三角形ABC中,我们可以假设AB为直线,那么内角A和内角B可以看作是在直线上的两个内角。

所以,内角A和内角B的和等于180度。

同理,我们可以得出内角A和内角C的和、以及内角B和内角C的和都等于180度。

因此,三角形ABC的内角和等于180度,即a + b + c = 180。

二、三角形的外角所谓三角形的外角,指的是三角形的一个内角的补角。

也就是说,外角等于与之相对的内角的补角。

在三角形ABC中,对应于内角A的外角记为α,对应于内角B的外角记为β,对应于内角C的外角记为γ。

根据外角和内角的性质,我们可以得出以下结论:1. 任意三角形的外角之和等于360度。

也就是说,α + β + γ = 360。

这是因为三角形的三个外角,可以构成完整的一圈,即360度。

2. 三角形的外角和内角之间存在关系:内角等于外角的补角。

例如,在三角形ABC中,对应于内角A的外角α,α = 180 - a。

同理,对应于内角B的外角β,β = 180 - b;对应于内角C的外角γ,γ = 180 - c。

三、三角形内角和与外角之间的关系接下来,我们将探讨三角形的内角和与外角之间的关系。

以三角形ABC为例。

根据定义,内角和的总和等于180度,即a + b + c = 180。

而三角形的外角和等于360度,即α + β + γ = 360。

根据三角形的外角与内角的关系,我们可以得到以下结论:1. 内角和与外角和之间存在补角关系。

即内角和加上外角和等于180度,即(a + b + c) + (α + β + γ) = 180。

三角形的内角和与外角

三角形的内角和与外角

三角形的内角和与外角三角形是几何学中最基本的图形之一,其特点是由三条边和三个角确定。

掌握了三角形的基本性质对于解决相关问题至关重要。

本文将重点探讨三角形的内角和与外角的关系。

一、三角形的内角和每个三角形都有三个内角,它们的和总是等于180度。

这个性质可以用数学公式表示如下:α + β + γ = 180°其中,α、β、γ分别表示三角形的三个内角的度数。

无论是等边三角形、等腰三角形还是一般三角形,这个性质都是成立的。

举例来说,对于一个等边三角形,其三个内角都是60度,三个角的和等于180度;对于一个等腰三角形,其两个底角相等,而底角的角度与顶角之和也为180度。

通过计算三角形的内角和,我们可以根据已知角度求出未知角度,或者判断一个三角形的类型。

二、三角形的外角和三角形的每个内角都对应一个外角,外角定义为与该内角相邻而不共线的角。

与内角和类似,三角形的外角和也有一个固定的值,即360度。

这个性质可以用以下公式表示:α' + β' + γ' = 360°其中,α'、β'、γ'分别表示三角形的三个外角的度数。

三角形的外角和的这个性质可以用于解决一些几何问题。

例如,若一个内角为90度,则它对应的外角为270度;若一个内角大于180度,则它对应的外角小于180度。

三、内角和与外角的关系内角和与外角和之间有一个简单的关系:一个内角的度数与其对应的外角的度数之和总是等于180度。

这可以通过以下公式表示:α + α' = 180°β + β' = 180°γ + γ' = 180°换句话说,每一个内角加上其对应的外角结果都等于180度。

这个关系也可以从一个三角形的外角和等于360度以及内角和等于180度推导出来。

我们可以通过这一关系,通过已知的内角求解其对应的外角,或者通过已知的外角求解其对应的内角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个零件的形状如图所示,按规定∠BAC=90°, ∠B=21°, ∠C=20°,检验工人量得∠BDC=130°,就断定这个零件不合格,你能运用所学的知识说出其中的道理吗?CDA B2、将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A、45°B、60°C、75°D、85°3、如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E 等于()A、60°B、25°C、35°D、45°4、如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB 的度数为()A、57°B、60°C、63°D、123°5、直角三角形中两锐角平分线所交成的角的度数是()A、45°B、135°C、45°或135°D、都不对6、如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A、40°B、30°C、20°D、10°7、如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A、50°B、40°C、70°D、35°8、如图,将等边三角形ABC剪去一个角后,则∠1+∠2的大小为()A、120°B、180°C、200°D、240°13、如图在△ABC中,∠ABC=50°,∠ACB=80°,BP 平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A、100°B、110°C、115°D、120°18、如图,∠ABC=31°,又∠BAC的平分线与∠FCB 的平分线CE相交于E点,则∠AEC为()A、14.5°B、15.5°C、16.5°D、20°20、(2010•聊城)如图,l∥m,∠1=115°,∠2=95°,则∠3=()A、120°B、130°C、140°D、150°21、,l1∥l2,∠1=120°,∠2=100°,则∠3=()A、20°B、40°C、50°D、60°22、如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为()A、130°B、230°C、180°D、310°25、如图所示,在△ABC中,∠ABC和∠ACB的外角平分线交于点O,设∠BOC=a,则∠A等于()A、90°﹣2αB、90°﹣C、180°﹣2αD、180°﹣26、如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的内部,则()A、∠A=∠1+∠2B、2∠A=∠1+∠2C、3∠A=2∠1+∠2D、3∠A=2(∠1+∠2)29、如图所示,△ABC中,BD,CD分别平分∠ABC 和外角∠ACE,若∠D﹦24°,则∠A﹦_________ 度.30、如图,∠A+∠B+∠C+∠D+∠E的度数为_________ 度.答案与评分标准一、选择题(共27小题)1、(2011•昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A、45°B、60°C、75°D、85°考点:三角形内角和定理。

专题:计算题。

分析:根据三角形三内角之和等于180°求解.解答:解:如图.∵∠2=60°,∠3=45°,∴∠1=180°﹣∠2﹣∠3=75°.故选C.点评:考查三角形内角之和等于180°.2、(2011•义乌市)如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于()A、60°B、25°C、35°D、45°考点:三角形内角和定理;平行线的性质。

专题:几何图形问题。

分析:由已知可以推出∠A的同旁内角的度数为120°,根据三角形内角和定理得∠E=35°解答:解:设AE和CD相交于O点∵AB∥CD,∠A=60°∴∠AOD=120°∴∠COE=120°∵∠C=25°∴∠E=35°故选C.点评:本题主要考查平行线的性质、三角新股内角和定理,关键看出∠A的同旁内角的对顶角是三角形的一个内角3、(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A、∠2=∠4+∠7B、∠3=∠1+∠6C、∠1+∠4+∠6=180°D、∠2+∠3+∠5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质。

分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.4、(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A、36B、72C、108D、144考点:三角形内角和定理;解二元一次方程组;对顶角、邻补角。

专题:计算题。

分析:由∠A+∠B+∠C=180°,得到2(∠A+∠C)+2∠B=360°,求出∠B=72°,根据∠B的外角度数=180°﹣∠B即可求出答案.解答:解:∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,∴∠B的外角度数是180°﹣∠B=108°,故选C.点评:本题主要考查对二元一次方程组,三角形的内角和定理,邻补角等知识点的理解和掌握,能根据三角形的内角和定理求出∠B的度数是解此题的关键.5、(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A、37B、57C、77D、97考点:三角形内角和定理。

专题:推理填空题。

分析:根据钝角三角形有一内角大于90°且三角形内角和为180°,①∠C>90°,②∠B>90°,分类讨论解答.解答:解:∵钝角三角形△ABC中,∠A=27°,∴∠B+∠C=180°﹣27°=153°,又∵△ABC为钝角三角形,有两种可能情形如下:①∠C>90°,∴∠B<153°﹣90°=63°,∴选项A、B合理;②∠B>90°,∴选项D合理,∴∠B不可能为77°.故选C.点评:本题考查了钝角三角形的定义及三角形的内角和定理,体现了分类讨论思想.6、(2011•宁波)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A、57°B、60°C、63°D、123°考点:三角形内角和定理;对顶角、邻补角;平行线的性质。

分析:根据三角形内角和为180°,以及对顶角相等,再根据两直线平行同旁内角互补即可得出∠EAB的度数.解答:解:∵AB∥CD,∴∠A=∠C+∠E,∵∠E=37°,∠C=20°,∴∠A=57°,故选A.点评:本题考查了三角形内角和为180°,对顶角相等,以及两直线平行同旁内角互补,难度适中.7、直角三角形中两锐角平分线所交成的角的度数是()A、45°B、135°C、45°或135°D、都不对考点:三角形内角和定理;角平分线的定义。

分析:利用三角形的内角和定理以及角平分线的定义计算.解答:解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个交互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选C.点评:①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;③三角形的外角通常情况下是转化为内角来解决.8、(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A、40°B、30°C、20°D、10°考点:三角形内角和定理;三角形的外角性质;翻折变换(折叠问题)。

分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.解答:解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选D.点评:本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.9、关于三角形的内角,下列判断不正确的是()A、至少有两个锐角B、最多有一个直角C、必有一个角大于60°D、至少有一个角不小于60°考点:三角形内角和定理。

相关文档
最新文档