重庆2015中考化简求值训练试题

合集下载

2015年重庆市中考数学试题(A卷)含答案(Word版)

2015年重庆市中考数学试题(A卷)含答案(Word版)

重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

若∠1=135°,则∠2的度数为( )A. 65°B. 55°C. 45°D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209, 则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==6题图9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。

2015年重庆市中考数学试题(a卷含答案)

2015年重庆市中考数学试题(a卷含答案)

重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==6题图9题图9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。

重庆市2015年初中毕业生学业暨高中招生考试数学参考试卷

重庆市2015年初中毕业生学业暨高中招生考试数学参考试卷

重庆市2015年初中毕业生学业暨高中招生考试数学参考试卷一、选择题(本大题共12小题,每小题4分共48分)1、在3,0,6,-2这四个数中,最大的数是【】A.0B.6C.-2D.32、计算(2x3y)2的结果是【】A.4x6y2B.8x6y2C.4x5y2D.8x5y23.已知∠A=650,则∠A的补角等于【】A.1250 B.1050 C.1150 D.95】4.分式方程21x2x-=-的根是【】A.x1= B.x1=-C.x2= D.x2=-5、如图,//,AB CD AD BAC∠平分,若70BAD∠=,则ACD∠的度数为【】A、40 B、45 C、50 D、556.计算6tan45°-2cos60°的结果是【】A B.4 C D.57.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.21。

则下列说法中,正确的是【】A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同 D.无法确定谁的成绩更稳定8.如图,PO 是⊙O 外一点,PA 是⊙O 的切线,PO=26cm ,PA=24 cm ,则⊙O 的周长为【 】A .18cm πB .16cm πC .20cm πD .24cm π 9.如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若AE=2ED ,CD=3cm ,则AF 的长为【 】A .5cmB .6cmC .7cmD .8cm10.下列图形都是由同样大小的矩形按一定规律组成,其中第(1)个图形的面积为22cm ,第(2)个图形的面积为82cm ,第(3)个图形的面积为182cm ,……,由第(1)个图形的面积为【 】A .1962cmB .2002cmC .2162cmD .2562cm11.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地。

中考数学化简求值题专练及参考答案

中考数学化简求值题专练及参考答案

中考数学化简求值题专练及答案共11题,一次完成,要求:不错一题,不失一分.1. 先化简,再求值:xx x x x x x x x 2444122222--÷⎪⎭⎫ ⎝⎛+----+,其中x 是小于5的非负整数.2. 先化简,再求值:()()()()y x y x y x x y x 2222-++--+,其中21,2=-=y x .3. 先化简,再求值:x x x 1112-÷⎪⎭⎫ ⎝⎛+,其中12+=x .4. 先化简,再求值:291252+-÷⎪⎭⎫ ⎝⎛-+x x x ,其中1-=x .5. 先化简,再求值:()()()()211102323-+---+x x x x x ,其中1-=x .6. 先化简,再求值:23225++÷⎪⎭⎫ ⎝⎛+-+x x x x ,其中2019=x .7. 先化简x x x x x x x x -÷⎪⎭⎫ ⎝⎛++--+-44412222,再选取一个适当的x 的值代入求值.8. 先化简a a a a -÷⎪⎭⎫⎝⎛--2211,再从2-≤2<a 中选取一个合适的整数作为a 的值代入求值.9. 先化简,再求值:()()()()22143232-+---+x x x x x ,其中2-=x .10. 先化简,再求值:a b b b a ba a-÷⎪⎭⎫ ⎝⎛+--122,其中22,2-==b a .11. 先化简,再求值:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ,其中12+=x .快速查阅答案1. 解:x x x x x x x x x 2444122222--÷⎪⎭⎫ ⎝⎛+----+ ()()()()()()()()()()()()2142244224422122242122222222-=--⋅--=--⋅-+--=--⋅----+=--÷⎥⎦⎤⎢⎣⎡----+=x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x∵x 是小于5的非负整数 ∴当1=x 时 原式1211-=-=. (或当3=x 时,原式1=) 2. 解:()()()()y x y x y x x y x 2222-++--+222222344222y xy y x xy x y xy x -=-++-++=当21,2=-=y x 时 原式()41921321242-=⎪⎭⎫⎝⎛⨯-⨯-⨯=.3. 解:x x x 1112-÷⎪⎭⎫ ⎝⎛+()()11111-=-+⋅+=x x x x x x当12+=x 时原式22211121==-+=. 4. 解:291252+-÷⎪⎭⎫ ⎝⎛-+x x x()()()()3133223233225+-=-++⋅+--=+-+÷+--=x x x x x x x x x x x 当1-=x 时 原式21311-=+--=. 5. 解:()()()()211102323-+---+x x x x x3812101049222-=+-++--=x x x x x x当1-=x 时原式()1138318-=--=--⨯=.6. 解:23225++÷⎪⎭⎫ ⎝⎛+-+x x x x ()()()()x x x x x x x x x x x x x x x -=++⋅+-+=++⋅++-=++÷+-+-=332233322452322252 当2019=x 时原式201620193-=-=.7. 解:x x x x x x x x -÷⎪⎭⎫ ⎝⎛++--+-44412222 ()()()()()()()()222222214244212242122+-=-⋅++--=-⋅+---+=-÷⎥⎦⎤⎢⎣⎡+--+-=x x xx x x x x x x x x x x x x x xx x x x x当1=x 时 原式()912112-=+-=. 8. 解:aa a a -÷⎪⎭⎫⎝⎛--2211 ()()221111211a a a a a a a a a =-⋅-=-÷-+-=∵2-≤2<a 且a 为整数 ∴当1-=a 时 原式21-=. (或当2-=a 时,原式1-=)9. 解:()()()()22143232-+---+x x x x x54444942222-=+-++--=x x x x x x当2-=x 时 原式()352522-=-=--=.10. 解:a b b b a b a a-÷⎪⎭⎫ ⎝⎛+--122 ()()()()()()ba b ab b a b a b ba b b a b a b a a a b b b a b a b a a +-=-⋅-+=-⋅-++-=-÷⎥⎦⎤⎢⎣⎡+--+=11当22,2-==b a 时 原式212221-=-+-=.11. 解:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ()()12132312-=-+⋅+-=x x x x x当12+=x 时 原式2221122==-+=.。

2015年重庆市中考数学试题及解析

2015年重庆市中考数学试题及解析

2015 年重庆市中考数学试卷( B 卷)一.选择题(本大题共 12 个小题,每题 4 分,共 48 分,每题的四个选项中只有一个是正确的)1.( 4 分)(2015?常州)﹣ 3 的绝对值是()A.3B.﹣ 3C.D.2.( 4 分)(2015?重庆)以下列图形是我国国产品牌汽车的表记,在这些汽车表记中,是中心对称图形的是()A.B.C.D.3.( 4 分)(2015?重庆)以下检查中,最合适采用全面检查方式(普查)的是()A.对重庆市中学生每天学习所用时间的检查B.对全国中学生心理健康现状的检查C.对某班学生进行 6 月 5 日是“世界环境日”认识情况的检查D.对重庆市初中学生课外阅读量的检查4.( 4 分)(2015?重庆)在平面直角坐标系中,若点P 的坐标为(﹣3, 2),则点 P 所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.( 4 分)(2015?重庆)计算3﹣的值是()A. 2B.3C.D. 26.( 4 分)(2015?重庆)某校为纪念世界反法西斯战争70 周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的 5 位参赛选手的比赛成绩(单位:分)分别为:,,,,9,则这 5 个数据的中位数是()A.B.C. 9D.7.( 4 分)(2015?重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8.( 4 分)(2015?重庆)已知一元二次方程2x2﹣ 5x+3=0,则该方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根都是自然数D.无实数根9.( 4 分)(2015?重庆)如图,AC是⊙O的切线,切点为 C,BC是⊙O的直径, AB交⊙O于点 D,连接 OD.若∠ BAC=55°,则∠ COD 的大小为()A. 70°B.60°C. 55°D. 35°10.( 4 分)(2015?重庆)以下列图形都是由几个黑色和白色的正方形按必然规律组成,图①中有 2 个黑色正方形,图②中有 5 个黑色正方形,图③中有 8 个黑色正方形,图④中有 11 个黑色正方形,,依次规律,图⑩中黑色正方形的个数是()A. 32B.29C. 28D. 2611.( 4 分)(2015?重庆)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强走开家的行程 y(公里)和所用的时间 x(分)之间的函数关系.以下说法错误的选项是()A.小强从家到公共汽车在步行了 2 公里B.小强在公共汽车站等小明用了10 分钟C.公共汽车的平均速度是 30 公里 / 小时D.小强乘公共汽车用了20 分钟12.( 4 分)( 2015?重庆)如图,在平面直角坐标系中,菱形ABOC的极点 O在坐标原点,边BO在 x 轴的负半轴上,∠ BOC=60°,极点 C 的坐标为( m,3),反比率函数 y=的图象与菱形对角线 AO交 D 点,连接 BD,当 DB⊥x轴时, k 的值是()A. 6B.﹣ 6C. 12D.﹣12二. 填空题(本大题 6 个小题,每题 4 分,共 24分)13.( 4分)(2015?重庆)据不完好统计,我国常年参加志愿者服务活动的志愿者高出人,把用科学记数法表示为.14.( 4分)(2015?重庆)已知△ ABC∽△ DEF,若△ ABC与△ DEF的相似比为2: 3,则△ ABC 与△ DEF 对应边上中线的比为.15.( 402.分)(2015?重庆)计算:(﹣)+(﹣ 3) =16.( 4 分)(2015?重庆)如图,在边长为 4 的正方形 ABCD中,先以点 A 为圆心, AD的长为半径画弧,再以 AB边的中点为圆心, AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).17.( 4 分)(2015?重庆)从﹣ 2,﹣ 1, 0,1,2 这 5 个数中,随机抽取一个数记为a,则使关于 x 的不等式组有解,且使关于 x 的一元一次方程 +1=的解为负数的概率为.18.( 4 分)(2015?重庆)如图, AC是矩形 ABCD的对角线, AB=2, BC=2,点 E, F 分别是线段 AB, AD上的点,连接 CE,CF.当∠ BCE=∠ACF,且 CE=CF时, AE+AF=.三. 解答题(本大题 2 个小题,每题7 分,共 14 分)19.( 7 分)(2015?重庆)解二元一次方程组.20.( 7 分)(2015?重庆)如图,△ ABC 和△ EFD分别在线段 AE 的两侧,点 C, D 在线段 AE 上, AC=DE,AB∥EF, AB=EF.求证: BC=FD.四. 解答题(本大题 4 个小题,每题10 分,共 40 分)21.( 10 分)(2015?重庆)化简以下各式:(1) 2( a+1)2+( a+1)(1﹣ 2a);(2)(﹣ x+1)÷.22.( 10 分)(2015?重庆)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的检查,并将检查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其他类(记为 D).依照检查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任依照检查情况把学生进行了归类,并制作了以下两幅统计图.请你结合图中所给信息解答以下问题:(1)七年级( 1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加, A 类 4 名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从 A 类 4 名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.23.( 10 分)(2015?重庆)若是把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完好相同,那么我们把这样的自然数叫做“友善数”.比方:自然数 64746 从最高位到个位排出的一串数字是6, 4, 7,4,6,从个位到最高位排出的一串数字也是:6, 4,7, 4, 6,所以 64746 是“友善数”.再如:33,181, 212,4664,,都是“友善数”.(1)请你直接写出 3 个四位“友善数”,猜想任意一个四位数“友善数”能否被11整除,并说明原由;(2)已知一个能被 11 整除的三位“友善数”,设个位上的数字为 x(1≤x≤4,x 为自然数),十位上的数字为 y,求 y 与 x 的函数关系式.24.( 10 分)(2015?重庆)某水库大坝的横截面是以下列图的四边形ABCD,其中 AB∥CD.瞭望台 PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P 处观察渔船M的俯角α=31°,观察渔船N的俯角β=45°.已知 MN所在直线与PC所在直线垂直,垂足为点E,PE长为 30米.(1)求两渔船M, N之间的距离(结果精确到 1 米);(2)已知坝高24 米,坝长 100 米,背水坡AD的坡度 i=1 :.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽 3 米,背水坡 FH 的坡度为 i=1 :.施工 12 天后,为赶忙完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前 20 天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参照数据: tan31 °≈,sin31 °≈)五. (本大题 2 个小题,每题12 分,共 24 分)25.(12 分)(2015?重庆)在△ABC中,AB=AC,∠A=60°,点 D 是线段BC的中点,∠EDF=120°,DE与线段 AB订交于点 E. DF与线段 AC(或 AC的延长线)订交于点 F.(1)如图 1,若 DF⊥AC,垂足为 F, AB=4,求 BE的长;(2)如图 2,将(1)中的∠ EDF绕点 D 顺时针旋转必然的角度, DF仍与线段 AC订交于点 F.求证: BE+CF=AB;(3)如图 3,将( 2)中的∠ EDF 连续绕点 D 顺时针旋转必然的角度,使 DF与线段 AC的延长线订交于点 F,作 DN⊥AC于点 N,若 DN⊥AC 于点 N,若 DN=FN,求证: BE+CF=( BE﹣CF).26.( 12 分)(2015?重庆)如图,抛物线 y=﹣ x2+2x+3 与 x 轴交于 A、 B 两点(点 A 在点 B 的左边),与 y 轴交于点 C,点 D 和点 C 关于抛物线的对称轴对称,直线 AD与 y 轴交于点 E.(1)求直线AD的分析式;(2)如图 1,直线 AD上方的抛物线上有一点F,过点 F 作 FG⊥AD 于点 G,作 FH 平行于 x轴交直线AD于点 H,求△ FGH周长的最大值;(3)点 M是抛物线的极点,点P 是 y 轴上一点,点Q是坐标平面内一点,以A, M, P, Q为极点的四边形是以AM为边的矩形.若点T 和点 Q关于 AM所在直线对称,求点T 的坐标.2015 年重庆市中考数学试卷( B 卷)参照答案与试题分析一.选择题(本大题共 12 个小题,每题 4 分,共 48 分,每题的四个选项中只有一个是正确的)1.( 4 分)(2015?常州)﹣ 3 的绝对值是(A.3B.﹣ 3)C.D.考点:绝对值.分析:依照一个负数的绝对值等于它的相反数得出.解答:解: | ﹣3|= ﹣(﹣ 3) =3.应选: A.谈论:观察绝对值的看法和求法.绝对值规律总结:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0.2.( 4 分)(2015?重庆)以下列图形是我国国产品牌汽车的表记,在这些汽车表记中,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:依照中心对称图形的定义和图形的特点即可求解.解答:解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,只有选项 B 是中心对称图形.应选: B.谈论:此题观察了中心对称图形的看法:若是一个图形绕某一点旋转180°后能够与自己重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.( 4 分)(2015?重庆)以下检查中,最合适采用全面检查方式(普查)的是(A.对重庆市中学生每天学习所用时间的检查B.对全国中学生心理健康现状的检查C.对某班学生进行 6 月 5 日是“世界环境日”认识情况的检查)D.对重庆市初中学生课外阅读量的检查考点:全面检查与抽样检查.分析:由普查获取的检查结果比较正确,但所费人力、物力和时间很多,而抽样检查获取的检查结果比较近似.解答:解: A、对重庆市中学生每天学习所用时间的检查,人数众多,合适采用抽样检查,故此选项错误;B、对全国中学生心理健康现状的检查,人数众多,合适采用抽样检查,故此选项错误;C、对某班学生进行 6 月 5 日是“世界环境日”认识情况的检查,人数不多,合适采用全面检查,故此选项正确;D、对重庆市初中学生课外阅读量的检查,人数众多,合适采用抽样检查,故此选项错误;应选: C.谈论:此题观察了抽样检查和全面检查的差异,选择普查还是抽样检查要依照所要观察的对象的特点灵便采用,一般来说,关于拥有破坏性的检查、无法进行普查、普查的意义或价值不大,应选择抽样检查,关于精确度要求高的检查,事关重要的检查经常采用普查.4.( 4 分)(2015?重庆)在平面直角坐标系中,若点P 的坐标为(﹣3, 2),则点P 所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:依照点在第二象限的坐标特点即可解答.解答:解:∵点的横坐标﹣3< 0,纵坐标2> 0,∴这个点在第二象限.应选: B.谈论:解决此题的要点是记住平面直角坐标系中各个象限内点的符号:第一象限(+, +);第二象限(﹣, +);第三象限(﹣,﹣);第四象限( +,﹣).5.( 4 分)(2015?重庆)计算 3﹣的值是()A. 2B.3C.D. 2考点:二次根式的加减法.专题:计算题.分析:原式合并同类二次根式即可获取结果.解答:解:原式 =2,应选 D.谈论:此题观察了二次根式的加减法,熟练掌握运算法规是解此题的要点.6.( 4 分)(2015?重庆)某校为纪念世界反法西斯战争70 周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的 5 位参赛选手的比赛成绩(单位:分)分别为:,,,,9,则这 5 个数据的中位数是()A.B.C.9D.考点:中位数.分析:依照中位数的定义解答.注意中位数需先排序,再确定.解答:解:把这组数据按从小到大排序为:,,9,,,中位数为9.应选 C.谈论:此题属于基础题,观察了确定一组数据的中位数的能力.注意找中位数的时候必然要先排好序次,尔后再依照奇数和偶数个来确定中位数,若是数据有奇数个,则正中间的数字即为所求,若是是偶数个则找中间两位数的平均数.7.( 4 分)(2015?重庆)已知一个多边形的内角和是 900°,则这个多边形是(A.五边形 B.六边形 C.七边形 D.八边形)考点:多边形内角与外角.专题:计算题.分析:设这个多边形是n 边形,内角和是( n﹣ 2)?180°,这样就获取一个关于从而求出边数n 的值.解答:解:设这个多边形是n 边形,则( n﹣2)?180°=900°,解得: n=7,即这个多边形为七边形.故此题选C.谈论:依照多边形的内角和定理,求边数的问题便能够转变成解方程的问题来解决.n 的方程组,8.( 4 分)(2015?重庆)已知一元二次方程A.有两个不相等的实数根C.两个根都是自然数2x2﹣ 5x+3=0,则该方程根的情况是(B.有两个相等的实数根D.无实数根)考点:根的鉴识式.2解答:解:∵ a=2, b=﹣5, c=3,∴△ =b 2﹣ 4ac=(﹣ 5)2﹣4×2×3=1> 0,∴方程有两个不相等的实数根.应选: A.谈论:此题主要观察了一元二次方程根的鉴识式,掌握一元二次方程根的情况与鉴识式△的关系:(1)△> 0? 方程有两个不相等的实数根;(2)△ =0 ?方程有两个相等的实数根;( 3)△< 0? 方程没有实数根,是解决问题的要点.9.( 4 分)(2015?重庆)如图,AC是⊙O的切线,切点为点 D,连接 OD.若∠ BAC=55°,则∠ COD 的大小为(C,BC是⊙O的直径,)AB交⊙O于A. 70°B.60°C. 55°D. 35°考点:切线的性质;圆周角定理.分析:由 AC是⊙O 的切线,可求得∠ C=90°,尔后由∠ BAC=55°,求得∠B的度数,再利用圆周角定理,即可求得答案.解答:解:∵ AC是⊙O的切线,∴BC⊥AC,∴∠ C=90°,∵∠ BAC=55°,∴∠ B=90°﹣∠ BAC=35°,∴∠ COD=2∠B=70°.应选 A.谈论:此题观察了切线的性质以及圆周角定理.注意掌握切线的性质:圆的切线垂直于经过切点的半径.10.( 4 分)(2015?重庆)以下列图形都是由几个黑色和白色的正方形按必然规律组成,图①中有 2 个黑色正方形,图②中有 5 个黑色正方形,图③中有 8 个黑色正方形,图④中有 11 个黑色正方形,,依次规律,图⑩中黑色正方形的个数是()A. 32B.29C. 28D. 26考点:规律型:图形的变化类.分析:仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式后代入n=11 后即可求解.解答:解:观察图形发现:图①中有 2 个黑色正方形,图②中有2+3×( 2﹣ 1) =5 个黑色正方形,图③中有2+3( 3﹣ 1) =8 个黑色正方形,图④中有2+3( 4﹣ 1) =11 个黑色正方形,,图 n 中有 2+3( n﹣ 1) =3n﹣ 1 个黑色的正方形,当 n=10 时, 2+3×( 10﹣1) =29,应选 B.n 个图形的黑色正方形谈论:此题是对图形变化规律的观察,难点在于利用求和公式求出第的数目的通项表达式.11.( 4 分)(2015?重庆)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强走开家的行程 y(公里)和所用的时间 x(分)之间的函数关系.以下说法错误的选项是()A.小强从家到公共汽车在步行了 2 公里B.小强在公共汽车站等小明用了10 分钟C.公共汽车的平均速度是30 公里 / 小时D.小强乘公共汽车用了20 分钟考点:函数的图象.分析:依照图象能够确定小强离公共汽车站 2 公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的行程,尔后确定各自的速度.解答:解: A、依题意得小强从家到公共汽车步行了 2 公里,应选项正确;B、依题意得小强在公共汽车站等小明用了10 分钟,应选项正确;C、公交车的速度为15÷=30 公里 / 小时,应选项正确.D、小强和小明一起乘公共汽车,时间为30 分钟,应选项错误;应选 D.谈论:此题观察利用函数的图象解决实责问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,便能够经过图象获取函数问题的相应解决.需注意计算单位的一致.12.( 4 分)(2015?重庆)如图,在平面直角坐标系中,菱形ABOC的极点 O在坐标原点,边BO在 x 轴的负半轴上,∠ BOC=60°,极点 C 的坐标为( m,3),反比率函数 y=的图象与菱形对角线 AO交 D 点,连接BD,当 DB⊥x轴时, k 的值是()A. 6B.﹣ 6C. 12D.﹣12考点:菱形的性质;反比率函数图象上点的坐标特点.分析:第一过点 C 作 CE⊥x轴于点 E,由∠ BOC=60°,极点 C 的坐标为( m, 3),可求得OC 的长,又由菱形ABOC的极点 O在坐标原点,边BO在 x 轴的负半轴上,可求得OB的长,且∠ AOB=30°,既而求得DB的长,则可求得点D的坐标,又由反比率函数y= 的图象与菱形对角线AO交 D点,即可求得答案.解答:解:过点 C 作 CE⊥x轴于点 E,∵极点 C 的坐标为( m, 3),∴OE=﹣ m, CE=3,∵菱形 ABOC中,∠ BOC=60°,∴OB=OC==6,∠BOD=∠BOC=30°,∵DB⊥x轴,∴D B=OB?tan30°=6×=2,∴点 D的坐标为:(﹣ 6,2),∵反比率函数y=的图象与菱形对角线AO交 D点,∴k=xy=﹣ 12.应选 D.谈论:此题观察了菱形的性质以及反比率函数图象上点的坐标特点.注意正确作出辅助线,求得点 D 的坐标是要点.二. 填空题(本大题 6 个小题,每题 4 分,共 24 分)13.( 4 分)(2015?重庆)据不完好统计,我国常年参加志愿者服务活动的志愿者高出人,把用科学记数法表示为×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10 n的形式,其中 1≤|a| < 10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点搬动了多少位, n 的绝对值与小数点搬动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答:解:将用科学记数法表示为:× 10 7.故答案为:× 107.n 的形式,其中谈论:此题观察科学记数法的表示方法.科学记数法的表示形式为a×101≤|a| < 10, n 为整数,表示时要点要正确确定 a 的值以及 n 的值.14.( 4 分)(2015?重庆)已知△ ABC∽△ DEF,若△ ABC与△ DEF的相似比为 2: 3,则△ ABC 与△ DEF 对应边上中线的比为2:3 .考点:相似三角形的性质.分析:相似三角形对应边上中线的比等于相似比,依照以上性质得出即可.解答:解:∵△ ABC∽△ DEF,△ ABC 与△ DEF的相似比为2:3,∴△ ABC与△ DEF对应边上中线的比是2: 3,故答案为: 2: 3.谈论:此题观察了相似三角形的性质的应用,能理解相似三角形的性质是解此题的要点,注意:相似三角形对应边上中线的比等于相似比.15.( 4 分)(2015?重庆)计算:(﹣)0+(﹣ 3)2=10.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用零指数幂法规计算,第二项利用乘方的意义化简,计算即可获取结果.解答:解:原式 =1+9=10.故答案为: 10谈论:此题观察了实数的运算,熟练掌握运算法规是解此题的要点.16.( 4 分)(2015?重庆)如图,在边长为 4 的正方形 ABCD中,先以点 A 为圆心, AD的长为半径画弧,再以 AB边的中点为圆心, AB长的一半为半径画弧,则两弧之间的阴影部分面积是 2π(结果保留π).考点:扇形面积的计算.分析:依照题意有S 阴影部分 =S扇形BAD﹣ S 半圆BA,尔后依照扇形的面积公式:别计算扇形和半圆的面积即可.解答:解:依照题意得,S 阴影部分 =S 扇形BAD﹣ S 半圆BA,∵S扇形 BAD==4π2S 半圆BA=?π?2 =2π,∴S阴影部分 =4π﹣ 2π=2π.故答案为2π.谈论:此题观察了扇形的面积公式:S=,其中 n 为扇形的圆心角的度数,S=lR ,l 为扇形的弧长, R为半径.S=和圆的面积公式分R为圆的半径),或17.( 4 分)(2015?重庆)从﹣ 2,﹣ 1, 0,1,2 这 5 个数中,随机抽取一个数记为a,则使关于 x 的不等式组有解,且使关于x 的一元一次方程+1=的解为负数的概率为.考点:概率公式;一元一次方程的解;解一元一次不等式组.分析:分别求得使关于x 的不等式组有解,且使关于x 的一元一次方程+1=的解为负数的a 的值满足的条件,尔后利用概率公式求解即可.解答:解:∵使关于x 的不等式组有解的 a 满足的条件是a>﹣,使关于 x 的一元一次方程+1=的解为负数的 a 的 a<,∴使关于x 的不等式组有解,且使关于x 的一元一次方程+1=的解为负数的 a 的值为﹣ 1, 0, 1,三个数,∴使关于x 的不等式组有解,且使关于x 的一元一次方程+1=的解为负数的概率为,故答案为:.谈论:此题观察了概率公式、一元一次方程的解及解一元一次不等式组的知识,解题的要点是第一确定满足条件的 a 的值,难度不大.18.( 4 分)(2015?重庆)如图, AC是矩形 ABCD的对角线, AB=2, BC=2,点 E, F 分别是线段 AB, AD上的点,连接 CE,CF.当∠ BCE=∠ACF,且 CE=CF时, AE+AF= .考点:全等三角形的判断与性质;矩形的性质;解直角三角形.分析:过点 F 作 FG⊥AC 于点 G,证明△ BCE≌△ GCF,获取C G=CB=2,依照勾股定理得AC=4,所以 AG=4﹣ 2,易证△ AGF∽△ CBA,求出AF、FG,再求出 AE,得出 AE+AF的值.解答:解:过点 F 作 FG⊥AC于点 G,以下列图,在△ BCE和△ GCF中,,∴△ BCE≌△ GCF( AAS),∴CG=BC=2,∵AC==4,∴AG=4﹣ 2,∵△ AGF∽△ CBA∴,∴AF==,FG==,∴AE=2﹣ =,∴AE+AF=+=.故答案为:.有必然的综谈论:此题主要观察了三角形全等的判断和性质以及三角形相似的判断与性质,合性,难易适中.三. 解答题(本大题 2 个小题,每题7 分,共14 分)19.( 7 分)(2015?重庆)解二元一次方程组.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:②﹣①得: 5y=5 ,即 y=1,把 y=1 代入①得: x=3,则方程组的解为.谈论:此题观察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.( 7 分)(2015?重庆)如图,△ ABC 和△ EFD分别在线段 AE 的两侧,点 C, D 在线段 AE 上, AC=DE,AB∥EF, AB=EF.求证: BC=FD.考点:全等三角形的判断与性质.专题:证明题.分析:依照已知条件得出△ ACB≌△ DEF,即可得出BC=DF.解答:证明:∵ AB∥EF,∴∠ A=∠E,在△ ABC和△ EFD中∴△ ABC≌△ EFD( SAS)∴B C=FD.谈论:此题观察了平行线的性质和三角形全等的判断方法,难度适中.四. 解答题(本大题 4 个小题,每题10 分,共 40 分)21.( 10 分)(2015?重庆)化简以下各式:(1) 2( a+1)2+( a+1)(1﹣ 2a);(2)(﹣ x+1)÷.考点:分式的混杂运算;整式的混杂运算.专题:计算题.分析:( 1)原式利用完好平方公式,以及多项式乘以多项式法规计算,去括号合并即可获取结果;(2)原式括号中两项通分并利用同分母分式的减法法规计算,同时利用除法法规变形,约分即可获取结果.解答:解:( 1)原式 =2a2+4a+2+a﹣ 2a2+1﹣ 2a=3a+3;(2)原式 =?=?=﹣ x( x+1) =﹣ x2﹣ x.谈论:此题观察了分式的混杂运算,以及整式的混杂运算,熟练掌握运算法规是解此题的要点.22.( 10 分)(2015?重庆)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的检查,并将检查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其他类(记为 D).依照检查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任依照检查情况把学生进行了归类,并制作了以下两幅统计图.请你结合图中所给信息解答以下问题:(1)七年级( 1)班学生总人数为48人,扇形统计图中 D 类所对应扇形的圆心角为105度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加, A 类 4 名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从 A 类 4 名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.考点:列表法与树状图法;扇形统计图;条形统计图.分析:( 1)由条形统计图与扇形统计图可得七年级(1)班学生总人数为:12÷25%=48(人),既而可得扇形统计图中 D类所对应扇形的圆心角为为: 360°× =105°;尔后求得 C 类的人数,则可补全统计图;(2)第一依照题意画出树状图,尔后由树状图求得所有等可能的结果与抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的情况,再利用概率公式即可求得答案.解答:解:( 1)∵七年级(1)班学生总人数为: 12÷25%=48(人),∴扇形统计图中 D 类所对应扇形的圆心角为为:360°× =105°;故答案为: 48,105;C 类人数: 48﹣ 4﹣ 12﹣ 14=18(人),如图:(2)分别用 A,B 表示两名擅长书法的学生,用 C, D表示两名擅长绘画的学生,画树状图得:∵共有 12 种等可能的结果,抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的有 8 种情况,∴抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率为: =.谈论:此题观察了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率 =所讨情况数与总情况数之比.23.( 10 分)(2015?重庆)若是把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完好相同,那么我们把这样的自然数叫做“友善数”.比方:自然数 64746 从最高位到个位排出的一串数字是6, 4, 7,4,6,从个位到最高位排出的一串数字也是:6, 4,7, 4, 6,所以 64746 是“友善数”.再如:33,181, 212,4664,,都是“友善数”.(1)请你直接写出 3 个四位“友善数”,猜想任意一个四位数“友善数”能否被11整除,并说明原由;(2)已知一个能被 11 整除的三位“友善数”,设个位上的数字为 x(1≤x≤4,x 为自然数),十位上的数字为 y,求 y 与 x 的函数关系式.考点:因式分解的应用;规律型:数字的变化类;函数关系式.专题:新定义.分析:( 1)依照“友善数”写出四个四位数的“友善数”;设任意四位数“友善数”形式32利用整数的整除获取=91a+10b,由此可判断任意四位数“友善数”都能够被11 整除;( 2)设能被11 整除的三位“友善数”为:xyx ,则这个三位数为2x?10 +y?10+x=101x+10y,由于=9x+y+,依照整数的整除性获取2x﹣ y=0,于是可得y 与 x 的关系式.解答:解:( 1)四位“友善数”:1221 , 1331, 1111, 6666;任意一个四位“友善数”都能被11 整数,原由以下:设任意四位数“友善数”形式为:abba( a、b 为自然数),则a×10 3+b×102+b×10+a=1001a+110b,∵=91a+10b∴四位数“友善数” abba能被11整数;∴任意四位数“友善数”都能够被11 整除xyx ,则x?102+y?10+x=101x+10y,( 2)设能被11 整除的三位“友善数”为:=9x+y+,。

中考复习分式化简求值练习题

中考复习分式化简求值练习题

化简求值中考数学化简求值专项训练注意:此类题目的要求,如果没有化简,直接代入求值一分不得!!考点:①分式的加减乘除运算(注意去括号,添括号时要换号,分子相减时要看做整体) ②因式分解(十字相乘法,完全平方式,平方差,提公因式)③二次根式的简单计算(分母有理化,一定要是最简根式)类型一:化简之后直接带值,有两种基本形式:1.含根式,这类带值需要对分母进行有理化,一定要保证最后算出的值是最简根式2.常规形,不含根式,化简之后直接带值1. 化简,求值: 111(11222+---÷-+-m m m m m m ), 其中m =3.2. 化简,求值:13x -·32269122x x x x x x x-+----,其中x =-6.3. 化简,求值:222211y xy x x y x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y4. 化简,求值:2222(2)42x x x x x x -÷++-+,其中12x =.5. 化简,求值:)11(x-÷11222-+-x x x ,其中x =26. 化简,求值:2224441x x x x x x x --+÷-+-,其中32x =.7. 化简,求值:62296422+-÷++-a a a a a ,其中5-=a .8. 化简,求值:232()111x x x x x x --÷+--,其中x =类型二:带值的数需要计算,含有其它的知识点,相对第一种,这类型要稍微难点1.含有三角函数的计算。

需要注意三角函数特殊角所对应的值.需要识记,熟悉三角函数例题1. 化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan4502. 先化简222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)2.带值为一个式子,注意全面性,切记不要带一半。

2015年重庆中考数学真题卷含答案解析

2015年重庆中考数学真题卷含答案解析

2015年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a ,4ac-b24a),对称轴为x=-b2a.第Ⅰ卷(选择题,共48分)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.32.下列图形是轴对称图形的是( )3.化简√12的结果是( )A.4√3B.2√3C.3√2D.2√64.计算(a2b)3的结果是( )A.a6b3B.a2b3C.a5b3D.a6b5.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为( )A.65°B.55°C.45°D.35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B.218C.216D.2098.一元二次方程x2-2x=0的根是( )A.x1=0,x2=-2B.x1=1,x2=2C.x1=1,x2=-2D.x1=0,x2=29.如图,AB是☉O的直径,点C在☉O上,AE是☉O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( )A.40°B.50°C.60°D.20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( )··A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,……,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.3012.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐的图象经过A,B两点,则菱形ABCD的面积为( )标分别为3,1,反比例函数y=3xA.2B.4C.2√2D.4√2第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为.14.计算:20150-|2|= .15.已知△ABC∽△DEF,△ABC与△DEF的相似比为4∶1,则△ABC与△DEF对应边上的高之比为.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4√2.以A为圆心,AC长为半径作弧,交AB 于点D,则图中阴影部分的面积是.(结果保留π)的解, 17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是.不等式组{2x+3<4,3x-1>-11又在函数y=1的自变量取值范围内的概率是.2x2+2x18.如图,在矩形ABCD中,AB=4√6,AD=10,连结BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC'E'.当射线BE'和射线BC'都与线段AD相交时,设交点分别F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).19.解方程组{y=2x-4,①3x+y=1.②20.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线). 21.计算:(1)y(2x-y)+(x+y)2;(2)(y -1-8y+1)÷y 2-6y+9y 2+y.22.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有小微企业按年利润w(万元)的多少分为以下四个类型:A 类(w<10),B 类(10≤w<20),C 类(20≤w<30),D 类(w ≥30),该镇政府对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B 类所对应扇形圆心角的度数为 度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.24.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC 正前方有两艘渔船M,N,观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1∶1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).25.如图1,在△ABC中,∠ACB=90°,∠BAC=60°.点E是∠BAC角平分线上一点.过点E作AE 的垂线,过点A作AB的垂线,两垂线交于点D,连结DB,点F是BD的中点.DH⊥AC,垂足为H,连结EF,HF.(1)如图1,若点H是AC的中点,AC=2√3,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连结CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.图1图226.如图1,在平面直角坐标系中,抛物线y=-√3x2+√3x+3√3交x轴于A,B两点(点A在点B的4左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE',FF'分别垂直于x轴,交抛物线于点E',F',交BC于点M,N,当ME'+NF'的值最大时,在y轴上找一点R,使|RF'-RE'|的值最大,请求出R点的坐标及|RF'-RE'|的最大值;(3)如图2,已知x轴上一点P(9,0),现以P为顶点,2√3为边长在x轴上方作等边三角形QPG,2使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q'P'G',设△Q'P'G'与△ADC的重叠部分面积为s,当点Q'到x轴的距离与点Q'到直线AW的距离相等时,求s的值.图1图2答案全解全析:一、选择题1.D3>0>-1>-4,所以最大的数是3,故选D.2.A A选项是轴对称图形,B、C、D选项都不是轴对称图形,故选A.3.B√12=√4×3=2√3,故选B.4.A(a2b)3=(a2)3·b3=a6b3,故选A.5.B A、C、D选项适合抽样调查,B选项适合普查,故选B.6.C因为AB∥CD,所以∠2=∠BGE,因为∠BGE=180°-∠1=45°,所以∠2=45°,故选C.7.C把五个数据从小到大排列为198,209,216,220,230,则中位数是216,故选C.8.D x2-2x=0,x(x-2)=0,解得x1=0,x2=2,故选D.∠AOC=40°,∴∠ADB=90°-∠B=50°,故选9.B∵AE是☉O的切线,∴∠BAE=90°,∵∠B=12B.10.C从题图可看出A选项正确;小明休息前爬山的平均速度为2 800=70米/分钟,休息后爬40山的平均速度为3 800-2 800=25米/分钟,所以小明休息前爬山的平均速度大于休息后爬山的100-60平均速度,B、D选项正确;从题图看出小明所走的总路程为3800米,所以C选项错误,故选C.11.B第①个图形中有2×3=6个小圆圈;第②个图形中有3×3=9个小圆圈;第③个图形中有3×4=12个小圆圈;……;第⑦个图形中有3×8=24个小圆圈,故选B.12.D由题意可得A(1,3),B(3,1),底边BC=AB=√(3-1)2+(1-3)2=2√2,菱形BC边上的高为3-1=2,所以菱形ABCD的面积是4√2,故选D.评析本题重点考查反比例函数的图象与性质,平面直角坐标系内线段长度的计算方法,试题新颖别致,属于中等难度题.二、填空题13.答案 3.7×104解析37000=3.7×104.14.答案-1解析20150-|2|=1-2=-1.15.答案4∶1解析两个相似三角形对应边上的高之比等于相似比,所以答案是4∶1.16.答案8-2π解析 在Rt △ABC 中,BC=AC=AB ·cos 45°=4,所以阴影部分的面积为12×4×4-45π·42360=8-2π. 17.答案 25解析 解不等式组{2x +3<4,3x -1>-11,得-103<x<12①,函数y=12x 2+2x 的自变量的取值范围是x ≠0且x ≠-1②,从-3,-2,-1,0,4这五个数中随机抽取一个数,共有5种可能,其中同时满足①②的有-3,-2,共2种可能,所以所求的概率是25. 18.答案 9817解析 过点F 作FH ∥BD 交BG 的延长线于点H,在矩形ABCD 中,BD=√(4√6)2+102=14,∵AD ∥BC,∴∠ADB=∠DBC,∵BE平分∠DBC,∴∠FBG=∠EBC=12∠DBC,∴∠FBG=12∠FDB,由题可得BF=FD,∴∠FBD=∠FDB,∴∠FBG=12∠FBD,∴∠FBG=∠GBD,∵FH ∥BD,∴∠H=∠GBD,∴∠H=∠F BG,∴FB=FH=FD,设FD=x(x>0),在Rt △ABF 中,由勾股定理得BF 2=AF 2+AB 2,即x 2=(10-x)2+(4√6)2,解得x=495,∴FB=FH=FD=495.∵FH ∥BD,∴△FHG ∽△DBG,∴FH BD =FGGD ,设GD=y(y>0),∴49514=495-y y,解得y=9817,∴GD=9817.评析 本题重点考查勾股定理,矩形的性质,相似三角形的性质与判定,方程思想等,综合性较强,属于难题.三、解答题19.解析 将①代入②,得3x+2x-4=1,(2分)解得x=1.(4分)将x=1代入①,得y=-2.(6分) 所以原方程组的解是{x =1,y =-2.(7分)20.证明 ∵BC=DE,∴BC+CD=DE+CD,即DB=CE.(3分) 又∵AB=FE,∠B=∠E,∴△ABD ≌△FEC.(6分) ∴∠ADB=∠FCE.(7分)四、解答题21.解析 (1)原式=2xy-y 2+x 2+2xy+y 2(3分) =x 2+4xy.(5分)(2)原式=[(y+1)(y -1)y+1-8y+1]÷(y -3)2y(y+1)(8分)=(y+3)(y -3)y+1·y(y+1)(y -3)2(9分)=y 2+3yy -3.(10分)22.解析 (1)25;72.补全条形统计图如下:某镇各类型小微企业个数条形统计图(6分)(2)记来自高新区的2个代表为A 1,A 2,来自开发区的2个代表为B 1,B 2,画树状图如下:(8分)或列表如下:第一个第二个A1A2B1B2A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)(8分)由树状图或列表可知,共有12种等可能情况,其中2个发言代表都来自高新区的有2种.所以,2个发言代表都来自高新区的概率P=212=16.(10分)23.解析(1)写出3个满足条件的数即可.(千位上的数字与个位上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设一个四位“和谐数”个位上的数字为a(1≤a≤9且a为自然数),十位上的数字为b(0≤b≤9且b 为自然数),则这个四位“和谐数”可表示为1000a+100b+10b+a.∵1000a+100b+10b+a=1001a+110b=11×91a+11×10b=11(91a+10b),∴1000a+100b+10b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)(2)∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵100x+10y+x=99x+11y+2x-y=11(9x+y)+(2x-y),又这个三位“和谐数”能被11整除,且x,y是自然数,∴2x -y 能被11整除.(8分) ∵1≤x ≤4,0≤y ≤9,∴2x -y=0.∴y 与x 的函数关系式为y=2x(1≤x ≤4且x 为自然数).(10分)24.解析 (1)由题意得,∠E=90°,∠PME=∠α=31°,∠PNE=∠β=45°,PE=30米. 在Rt △PEN 中,PE=NE=30(米).(2分) 在Rt △PEM 中,tan 31°=PEME , ∴ME ≈300.60=50(米).(4分)∴MN=ME -NE=50-30=20(米).答:两渔船M,N 之间的距离约为20米.(5分) (2)过点D 作DG ⊥AB 于G,坝高DG=24米.∵背水坡AD 的坡度i=1∶0.25,∴DG∶AG=1∶0.25. ∴AG=6(米).∵加固后背水坡DH 的坡度i=1∶1.75,∴DG∶GH=1∶1.75, ∴GH=42(米).∴AH=GH -GA=42-6=36(米).(6分) ∴S △ADH =12AH ·DG=12×36×24=432(平方米).∴需要填筑土石方432×100=43 200(立方米).(7分) 设施工队原计划平均每天填筑土石方x 立方米, 根据题意,得10+43 200-10x =43 200-20.(9分)解方程,得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)五、解答题25.解析(1)∵点H是AC的中点,AC=2√3,∴AH=1AC=√3.(1分)2∵∠ACB=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=4√3.(2分)∵DA⊥AB,DH⊥AC,∴∠DAB=∠DHA=90°.∴∠DAH=30°,∴AD=2.(3分)在Rt△ADB中,∵∠DAB=90°,∴BD2=AD2+AB2.∴BD=√22+(4√3)2=2√13.(4分)(2)证明:连结AF,如图.∵F是BD的中点,∠DAB=90°,∴AF=DF,∴∠FDA=∠FAD.(5分)∵DE⊥AE,∴∠DEA=90°.∵∠DHA=90°,∠DAH=30°,∴DH=1AD.∠BAC=30°.∵AE平分∠BAC,∴∠CAE=12∴∠DAE=60°,∴∠ADE=30°.∴AE=1AD,∴AE=DH.(6分)∵∠FDA=∠FAD,∠HDA=∠EAD=60°,∴∠FDA-∠HDA=∠FAD-∠EAD.∴∠FDH=∠FAE.(7分)∴△FDH≌△FAE(SAS).∴FH=FE.(8分)(3)△CEF是等边三角形.(9分)理由如下:取AB的中点G,连结FG,CG.如图.∵F 是BD 的中点,∴FG ∥DA,FG=12DA. ∴∠FGA=180°-∠DAG=90°, 又∵AE=12AD,∴AE=FG. 在Rt △ABC 中,∠ACB=90°, 点G 为AB 的中点,∴CG=AG.又∵∠CAB=60°,∴△GAC 为等边三角形.(10分) ∴AC=CG,∠ACG=∠AGC=60°. ∴∠FGC=30°,∴∠FGC=∠EAC. ∴△FGC ≌△EAC(SAS).(11分)∴CF=CE,∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG=60°. ∴△CEF 是等边三角形.(12分)26.解析 (1)∵-√34x 2+√3x+3√3=0的解为x 1=-2,x 2=6,∴抛物线y=-√34x 2+√3x+3√3与x 轴交于点A(-2,0),B(6,0).(1分)∵y=-√34x 2+√3x+3√3=-√34(x-2)2+4√3,∴顶点C(2,4√3).(2分)设直线BC 的解析式为y=kx+b(k ≠0),将点(6,0),(2,4√3)代入得,{6k +b =0,2k +b =4√3.解得{k =-√3,b =6√3.∴直线BC 的解析式为y=-√3x+6√3.(4分) (2)由已知得E'(m,-√34m 2+√3m +3√3),M(m,-√3m+6√3), F'(m +2,-√34(m +2)2+√3(m +2)+3√3),N(m+2,-√3(m+2)+6√3).ME'=-√34m 2+2√3m-3√3,NF'=-√34m 2+√3m.(5分)ME'+NF'=-√34m 2+2√3m-3√3-√34m 2+√3m=-√32(m-3)2+3√32(2<m<4). 当m=3时,ME'+NF'的值最大.(6分) 此时E'(3,15√34),F'(5,7√34),构造直角三角形可得E'F'=4,且直线E'F'的解析式为y=-√3x+27√34. 当R 是直线E'F'与y 轴交点时,|RF'-RE'|取得最大值,最大值为E'F'的长度. 因此|RF'-RE'|的最大值为4,此时点R (0,27√34).(8分)(3)由题意得Q (32,√3),设平移时间为t 秒,∴Q'(32-t,√3),P'(92-t,0).如图①,过点Q'作Q'K ∥x 轴交AW 于K,Q'H ⊥AW 交AW 于H. ∵Q'到x 轴的距离为√3,∴点Q'到直线AW 的距离Q'H=√3. 又∵A(-2,0),W(0,3√3), ∴直线AW 的解析式为y=3√3x+3√3. ∴K (-43,√3).又∵点Q'可能在点K 的左边或右边, ∴KQ'=|3-t +4|=|17-t|.在Rt △WAO 中,∠WOA=90°,AO=2,WO=3√3,∴AW=√31. 由题意易证Rt △WAO ∽Rt △Q'KH,∴Q'H Q'K =WOAW , 即√3|176-t |=√331,∴t 1=17-2√316,t 2=17+2√316.(10分)∵0≤t 1≤132,0≤t 2≤132,∴t 1,t 2符合条件. 现分两种情况讨论: ①当t 1=17-2√316时,Q'(√31-43,√3),P'(5+√313,0),∵0<√31-43<2,5+√313>2. ∴重叠部分为如图①所示的等边三角形Q'H 1I 1,图①s=12I 1H 1·Q'K 1=√33(t +12)2=√33×(17-2√316+12)2=131√3-20√9327. ②当t 2=17+2√316时,Q'(-4-√313,√3),P'(5-√313,0), ∵-4-√313<-2,-2<5-√313<0, ∴重叠部分为如图②所示的直角三角形H 2I 2P',图②∴s=12H 2I 2·I 2P'=3√38(132-t)2=3√38(132-17+2√316)2=76√3-11√9312. 综上,当点Q'到x 轴的距离与点Q'到直线AW 的距离相等时,s=131√3-20√9327或s=76√3-11√9312.(12分)。

初三中考数学先化简后求值计算题训练(含答案)

初三中考数学先化简后求值计算题训练(含答案)

先化简后求值计算题训练一、计算题(共23题;共125分)1.化简求值:;其中2.先化简,再求值:,其中a为不等式组的整数解.3.先化简,再求值:(m+ )÷(m﹣2+ ),其中m=3tan30°+(π﹣3)0.4.先化简,再求值:(﹣1),其中a=(π﹣)0+()﹣1.5. 先化简,再求值:÷(1- ),其中m=2.6.先化简,再求值:,其中,.7.先化简,再求值:,其中.8.先化简,再求代数式的值:,其中x=3cos60°.9.先化简,再求值:,其中.10.先化简,再求值:(﹣)÷ ,其中x=3+ .11.化简求值:,其中.12. 先化简,再求值:,其中.13.先化简(1- )÷ ,再将x=-1代入求值。

14.先化简,再求值:,其中.15.先化简,再求值:,其中.16.先化简,再求值,其中满足17.先化简:,再从1,2,3中选取一个适当的数代入求值.18.先化简,然后从中选出一个合适的整数作为的值代入求值.19.化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.20.先化简,再求值:,其中.21.先化简,再求值:,其中.22.先化简,再求值:,其中.23.先化简,再从中选一个适合的整数代入求值.答案解析部分一、计算题1.【答案】解:原式,当时,原式【考点】利用分式运算化简求值【解析】【分析】先将括号里的分式加减通分计算,再将分式的除法转化为乘法运算,约分化简,然后代入求值。

2.【答案】解:原式,解不等式得,∴不等式组的整数解为,当时,原式【考点】利用分式运算化简求值,一元一次不等式组的特殊解【解析】【分析】把整式看成分母为1的式子,通分计算括号内异分母分式的加法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;解出不等式组中每一个不等式的解集,根据大小小大取中间得出该不等式组的解集,求出其整数解得出a的值,将a的值代入分式化简的结果按有理数的混合运算法则即可算出答案.3.【答案】解:原式=÷=,m=3tan30°+(π﹣3)0=3× +1=,原式===【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】把整式看成分母为1的式子,通分计算异分母分式的加减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置将除法转变为乘法,然后约分化为最简形式;根据特殊锐角三角函数值、0指数的意义分别化简,再根据实数的混合运算法则算出m的值,进而将m的值代入分式化简的结果,按实数的混合运算法则算出答案.4.【答案】解:,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子与分母交换位置,将除法转变为乘法,然后约分化为最简形式;接着利用0指数的意义、负指数的意义分别化简,再根据有理数加法法则算出a的值,最后将a的值代入分式运算化简的结果按有理数的加减法法则就可算出答案.5.【答案】解:原式= ÷( - )= •= ,当m=2时,原式= =【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】把整式看成分母为1的式子,通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入m的值按有理数的混合运算法则算出答案.6.【答案】解:原式,当,时,原式【考点】利用分式运算化简求值【解析】【分析】把整式看成分母为1的式子,然后通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入a,b的值,按实数的混合运算顺序算出答案.7.【答案】解:原式当时,原式【考点】利用分式运算化简求值【解析】【分析】先计算分式的除法,将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式,然后将整式看成分母为1的式子,通分计算异分母分式的减法,最后代入x的值按实数的混合运算法则算出答案.8.【答案】解:原式===,当x=3cos60°=3× =时,原式==【考点】利用分式运算化简求值,特殊角的三角函数值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据特殊锐角三角函数值化简x的值,再将x的值代入分式化简的结果,按有理数的混合运算法则即可算出答案.9.【答案】解:原式,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据绝对值及负指数的意义将a的值进行化简,再将a的值代入分式化简的结果,按有理数的混合运算法则即可算出答案. 10.【答案】解:原式=当x=3+ 时,原式=【考点】利用分式运算化简求值【解析】【分析】将各个分式的分子分母能分解因式的分别分解因式,然后通分计算括号内异分母分式的减法,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入x的值按实数的混合运算顺序算出答案.11.【答案】解:原式,当时,原式.【考点】利用分式运算化简求值【解析】【分析】将括号内通分,进行同分母相减,然后将除法化为乘法进行约分,即化为最简,将x值代入计算即可.12.【答案】解:,当时,原式.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值先将括号内第一个分式约分,接着进行同分母分式相减,然后将除法化为乘法,进行约分即化为最简,最后将a值代入计算即可.13.【答案】解:原式==x+2当x=-1时原式=-1+2=1【考点】利用分式运算化简求值【解析】【分析】将括号里通分,进行同分母加减,然后将除法化为乘法进行约分化为最简,最后将x值代入计算即可.14.【答案】解:原式== ,当时,原式【考点】利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的加法,然后计算括号外分式的除法,将各个分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;再代入x的值按实数的运算方法即可算出答案。

重庆市2015年初中中考数学试卷含答案

重庆市2015年初中中考数学试卷含答案

重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(2015•重庆A )在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3考点:有理数大小比较.分析:先计算| ﹣4|=4 ,| ﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4 <﹣1,再根据正 数大于0,负数小于0 得到﹣4 <﹣1<0<3 . 解答:解:∵| ﹣4|=4 ,| ﹣1|=1, ∴﹣4 <﹣1,∴﹣4 ,0,﹣1,3 这四个数的大小关系为﹣4 <﹣1<0<3 . 故选D .点评:本题考查了有理数大小比较:正数大于0,负数小于0 ;负数的绝对值越大,这个数 越小.2.(2015•重庆A )下列图形是轴对称图形的是( )A .B .C . D考点:轴对称图形.分析:根据轴对称图形的概念求解. 解答:解:A 、是轴对称图形,故正确; B 、不是轴对称图形,故错误; C 、不是轴对称图形,故错误; D 、不是轴对称图形,故错误. 故选A .点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称 轴折叠后可重合.3.(2015•重庆A )化简12的结果是( )A. 43B. 23C. 32D. 26考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2 .故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(2015•重庆A)计算()32a b的结果是()A. 63a b D. 6a ba b C. 53a b B. 23考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n =a mn(m ,n 是正整数);②(ab )n =a n b n(n 是正整数);求出()32a b的结果是多少即可.解答:解:()32a b= (a 2)3•b 3= 63a b即计算()32a b的结果是63a b.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n =a mn (m ,n 是正整数);②(ab )n=a n b n.5.(2015•重庆A)下列调查中,最适合用普查方式的是()A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B 符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C 不符合题意;D 、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意;故选:B .点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对 象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义 或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用 普查.6.(2015•重庆A )如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

初三中考数学先化简后求值计算题训练(含答案)

初三中考数学先化简后求值计算题训练(含答案)

先化简后求值计算题训练一、计算题(共23题;共125分)1.化简求值:;其中2.先化简,再求值:,其中a为不等式组的整数解.3.先化简,再求值:(m+ )÷(m﹣2+ ),其中m=3tan30°+(π﹣3)0.4.先化简,再求值:(﹣1),其中a=(π﹣)0+()﹣1.5. 先化简,再求值:÷(1- ),其中m=2.6.先化简,再求值:,其中,.7.先化简,再求值:,其中.8.先化简,再求代数式的值:,其中x=3cos60°.9.先化简,再求值:,其中.10.先化简,再求值:(﹣)÷ ,其中x=3+ .11.化简求值:,其中.12. 先化简,再求值:,其中.13.先化简(1- )÷ ,再将x=-1代入求值。

14.先化简,再求值:,其中.15.先化简,再求值:,其中.16.先化简,再求值,其中满足17.先化简:,再从1,2,3中选取一个适当的数代入求值.18.先化简,然后从中选出一个合适的整数作为的值代入求值.19.化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.20.先化简,再求值:,其中.21.先化简,再求值:,其中.22.先化简,再求值:,其中.23.先化简,再从中选一个适合的整数代入求值.答案解析部分一、计算题1.【答案】解:原式,当时,原式【考点】利用分式运算化简求值【解析】【分析】先将括号里的分式加减通分计算,再将分式的除法转化为乘法运算,约分化简,然后代入求值。

2.【答案】解:原式,解不等式得,∴不等式组的整数解为,当时,原式【考点】利用分式运算化简求值,一元一次不等式组的特殊解【解析】【分析】把整式看成分母为1的式子,通分计算括号内异分母分式的加法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;解出不等式组中每一个不等式的解集,根据大小小大取中间得出该不等式组的解集,求出其整数解得出a的值,将a的值代入分式化简的结果按有理数的混合运算法则即可算出答案.3.【答案】解:原式=÷=,m=3tan30°+(π﹣3)0=3× +1=,原式===【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】把整式看成分母为1的式子,通分计算异分母分式的加减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置将除法转变为乘法,然后约分化为最简形式;根据特殊锐角三角函数值、0指数的意义分别化简,再根据实数的混合运算法则算出m的值,进而将m的值代入分式化简的结果,按实数的混合运算法则算出答案.4.【答案】解:,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子与分母交换位置,将除法转变为乘法,然后约分化为最简形式;接着利用0指数的意义、负指数的意义分别化简,再根据有理数加法法则算出a的值,最后将a的值代入分式运算化简的结果按有理数的加减法法则就可算出答案.5.【答案】解:原式= ÷( - )= •= ,当m=2时,原式= =【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】把整式看成分母为1的式子,通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入m的值按有理数的混合运算法则算出答案.6.【答案】解:原式,当,时,原式【考点】利用分式运算化简求值【解析】【分析】把整式看成分母为1的式子,然后通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入a,b的值,按实数的混合运算顺序算出答案.7.【答案】解:原式当时,原式【考点】利用分式运算化简求值【解析】【分析】先计算分式的除法,将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式,然后将整式看成分母为1的式子,通分计算异分母分式的减法,最后代入x的值按实数的混合运算法则算出答案.8.【答案】解:原式===,当x=3cos60°=3× =时,原式==【考点】利用分式运算化简求值,特殊角的三角函数值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据特殊锐角三角函数值化简x的值,再将x的值代入分式化简的结果,按有理数的混合运算法则即可算出答案.9.【答案】解:原式,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据绝对值及负指数的意义将a的值进行化简,再将a的值代入分式化简的结果,按有理数的混合运算法则即可算出答案. 10.【答案】解:原式=当x=3+ 时,原式=【考点】利用分式运算化简求值【解析】【分析】将各个分式的分子分母能分解因式的分别分解因式,然后通分计算括号内异分母分式的减法,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入x的值按实数的混合运算顺序算出答案.11.【答案】解:原式,当时,原式.【考点】利用分式运算化简求值【解析】【分析】将括号内通分,进行同分母相减,然后将除法化为乘法进行约分,即化为最简,将x值代入计算即可.12.【答案】解:,当时,原式.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值先将括号内第一个分式约分,接着进行同分母分式相减,然后将除法化为乘法,进行约分即化为最简,最后将a值代入计算即可.13.【答案】解:原式==x+2当x=-1时原式=-1+2=1【考点】利用分式运算化简求值【解析】【分析】将括号里通分,进行同分母加减,然后将除法化为乘法进行约分化为最简,最后将x值代入计算即可.14.【答案】解:原式== ,当时,原式【考点】利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的加法,然后计算括号外分式的除法,将各个分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;再代入x的值按实数的运算方法即可算出答案。

2015年重庆市中考数学试题(A卷)有答案(Word版)

2015年重庆市中考数学试题(A卷)有答案(Word版)

重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a=-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==6题图9题图9.如图,AB 是O e 的直径,点C 在O e 上,AE 是O e 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。

2015年重庆数学中考试卷+答案

2015年重庆数学中考试卷+答案

2015年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为--,对称轴为x=-.第Ⅰ卷(选择题,共48分)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.32.下列图形是轴对称图形的是( )3.化简的结果是( )A.4B.2C.3D.24.计算(a2b)3的结果是( )A.a6b3B.a2b3C.a5b3D.a6b5.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB∥CD 直线EF分别与直线AB,CD相交于点G,H.若∠ = 5° 则∠ 的度数为( )A. 5°B.55°C. 5°D. 5°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B.218C.216D.2098.一元二次方程x2-2x=0的根是( )A.x1=0,x2=-2B.x1=1,x2=2C.x1=1,x2=-2D.x1=0,x2=29.如图,AB是☉O的直径,点C在☉O上,AE是☉O的切线,A为切点,连结BC并延长交AE 于点D.若∠AOC=80° 则∠ADB的度数为( )A. 0°B.50°C. 0°D. 0°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6 600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈 …… 按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.3012.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为( )A.2B.4C.2D.4第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.我国“南仓”级远洋综合补给舰满载排水量为37 000吨,把数37 000用科学记数法表示为.14.计算:2 0150-|2|= .15.已知△ABC∽△DEF △ABC与△DEF的相似比为 ∶ 则△ABC与△DEF对应边上的高之比为.16.如图,在等腰直角三角形ABC中 ∠ACB=90° AB= .以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是.(结果保留π)的17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是.不等式组--的自变量取值范围内的概率是.解,又在函数y=x18.如图,在矩形ABCD中,AB=4,AD=10,连结BD ∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC'E'.当射线BE'和射线BC'都与线段AD 相交时,设交点分别F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).19.解方程组-①.②20.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE BC=DE ∠B=∠E.求证:∠ADB=∠FCE.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).21.计算:(1)y(2x-y)+(x+y)2;(2)--8÷-9.22.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类( 0≤w< 0) C类( 0≤w< 0) D类(w≥ 0) 该镇政府对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12 321是一个“和谐数”.再如22,545,3 883,345 5 … 都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数” 设其个位上的数字为x( ≤x≤ x为自然数),十位上的数字为y,求y与x的函数关系式.24.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N,观察员在瞭望台顶端P处观测到渔船M的俯角α为 ° 渔船N的俯角β为 5°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i= ∶0. 5.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH 的坡度i= ∶ .75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan °≈0. 0 sin °≈0.5 )五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).25.如图1,在△ABC中 ∠ACB=90° ∠BAC= 0°.点E是∠BAC角平分线上一点.过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连结DB,点F是BD的中点.DH⊥AC 垂足为H,连结EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连结CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.图1图226.如图1,在平面直角坐标系中,抛物线y=-x2+x+3交x轴于A,B两点(点A在点B 的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE',FF'分别垂直于x轴,交抛物线于点E',F',交BC于点M,N,当ME'+NF'的值最大时,在y轴上找一点R,使|RF'-RE'|的值最大,请求出R点的坐标及|RF'-RE'|的最大值;(3)如图2,已知x轴上一点P9 0,现以P为顶点,2为边长在x轴上方作等边三角形QPG,使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q'P'G' 设△Q'P'G'与△ADC的重叠部分面积为s,当点Q'到x 轴的距离与点Q'到直线AW的距离相等时,求s的值.图1图2答案全解全析:一、选择题1.D 3>0>-1>-4,所以最大的数是3,故选D.2.A A选项是轴对称图形,B、C、D选项都不是轴对称图形,故选A.3.B 故选B.4.A (a2b)3=(a2)3 b3=a6b3,故选A.5.B A、C、D选项适合抽样调查,B选项适合普查,故选B.6.C 因为AB∥CD 所以∠ =∠BGE 因为∠BGE= 80°-∠ = 5° 所以∠ = 5° 故选C.7.C 把五个数据从小到大排列为198,209,216,220,230,则中位数是216,故选C.8.D x2-2x=0,x(x-2)=0,解得x1=0,x2=2,故选D.9.B ∵AE是☉O的切线 ∴∠BAE=90° ∵∠B=∠AOC= 0° ∴∠ADB=90°-∠B=50° 故选B.10.C 从题图可看出A选项正确;小明休息前爬山的平均速度为 800=70米/分钟,休息后爬山的平均速度为 800- 80000- 0=25米/分钟,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,B、D选项正确;从题图看出小明所走的总路程为3 800米,所以C选项错误,故选C.11.B 第①个图形中有 × = 个小圆圈;第②个图形中有 × =9个小圆圈;第③个图形中有 × = 个小圆圈;……;第⑦个图形中有 ×8= 个小圆圈,故选B.12.D 由题意可得A(1,3),B(3,1),底边BC=AB=( - )( - )=2,菱形BC边上的高为3-1=2,所以菱形ABCD的面积是4故选D.评析本题重点考查反比例函数的图象与性质,平面直角坐标系内线段长度的计算方法,试题新颖别致,属于中等难度题.二、填空题13.答案 .7× 04解析 7 000= .7× 04.14.答案-1解析 2 0150-|2|=1-2=-1.15.答案 ∶解析两个相似三角形对应边上的高之比等于相似比,所以答案是 ∶ .16.答案8- π解析在Rt△ABC中 BC=AC=AB cos 5°= 所以阴影部分的面积为× × - 5π=8- π.17.答案5解析解不等式组--得- 0<x<① 函数y=x的自变量的取值范围是x≠0且x≠- ② 从-3,-2,-1,0,4这五个数中随机抽取一个数,共有5种可能,其中同时满足①②的有-3,-2,共2种可能,所以所求的概率是5.18.答案987解析过点F作FH∥BD交BG的延长线于点H,在矩形ABCD 中,BD=( 0= ∵AD∥BC ∴∠ADB=∠DBC ∵BE平分∠DBC ∴∠FBG=∠EBC=∠DBC ∴∠FBG=∠FDB 由题可得BF=FD ∴∠FBD=∠FDB ∴∠FBG=∠FBD ∴∠FBG=∠GBD ∵FH∥BD ∴∠H=∠GBD ∴∠H=∠FBG ∴FB=FH=FD 设FD=x(x>0),在Rt△ABF中,由勾股定理得BF2=AF2+AB2,即x2=(10-x)2+(4)2,解得x= 95 ∴FB=FH=FD= 95.∵FH∥BD ∴△FHG∽△DBG ∴=,设GD= ( >0) ∴ 95=95-,解得y=987∴GD=987.评析本题重点考查勾股定理,矩形的性质,相似三角形的性质与判定,方程思想等,综合性较强,属于难题.三、解答题19.解析将①代入② 得3x+2x-4=1,(2分)解得x=1.(4分)将x=1代入① 得y=-2.(6分)所以原方程组的解是- .(7分)20.证明∵BC=DE ∴BC+CD=DE+CD 即DB=CE.(3分)又∵AB=FE ∠B=∠E ∴△ABD≌△FEC.( 分)∴∠ADB=∠FCE.(7分)四、解答题21.解析(1)原式=2xy-y2+x2+2xy+y2(3分)=x2+4xy.(5分)(2)原式=( )(- )-8÷(- )( )(8分)=( )(- )( )(- )(9分)=-.(10分)22.解析(1)25;72.补全条形统计图如下:某镇各类型小微企业个数条形统计图(6分) (2)记来自高新区的2个代表为A1,A2,来自开发区的2个代表为B1,B2,画树状图如下:(8分)或列表如下:(8分)由树状图或列表可知,共有12种等可能情况,其中2个发言代表都来自高新区的有2种.所以,2个发言代表都来自高新区的概率P==.(10分)23.解析(1)写出3个满足条件的数即可.(千位上的数字与个位上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设一个四位“和谐数”个位上的数字为a( ≤a≤9且a为自然数),十位上的数字为b(0≤b≤9且b为自然数),则这个四位“和谐数”可表示为1 000a+100b+10b+a.∵ 000a+ 00b+ 0b+a= 00 a+ 0b= ×9 a+ × 0b= (9 a+ 0b)∴ 000a+ 00b+ 0b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)( )∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵ 00x+ 0 +x=99x+ + x-y=11(9x+y)+(2x-y),又这个三位“和谐数”能被11整除,且x,y是自然数,∴ x-y能被11整除.(8分)∵ ≤x≤ 0≤ ≤9 ∴ x-y=0.∴ 与x的函数关系式为 = x( ≤x≤ 且x为自然数).(10分)24.解析(1)由题意得 ∠E=90° ∠PME=∠α= ° ∠PNE=∠β= 5° PE= 0米.在Rt△PEN中,PE=NE=30(米).(2分)在Rt△PEM中 tan °=,=50(米).(4分)∴ME≈ 00. 0∴MN=ME-NE=50-30=20(米).答:两渔船M,N之间的距离约为20米.(5分)(2)过点D作DG⊥AB于G,坝高DG=24米.∵背水坡AD的坡度i= ∶0. 5 ∴DG∶AG= ∶0. 5.∴AG= (米).∵加固后背水坡DH的坡度i= ∶ .75 ∴DG∶GH= ∶ .75∴GH= (米).∴AH=GH-GA=42-6=36(米).(6分)∴S△ADH=AH DG=× × = (平方米).∴需要填筑土石方 × 00= 00(立方米).(7分)设施工队原计划平均每天填筑土石方x立方米,根据题意,得10+ 00- 0= 00-20.(9分)解方程,得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)五、解答题25.解析( )∵点H是AC的中点,AC=2,∴AH=AC=.(1分)∵∠ACB=90° ∠BAC= 0° ∴∠ABC= 0° ∴AB= AC= .(2分) ∵DA⊥AB DH⊥AC ∴∠DAB=∠DHA=90°.∴∠DAH= 0° ∴AD= .( 分)在Rt△ADB中 ∵∠DAB=90° ∴BD2=AD2+AB2.∴BD=( )=2.(4分)(2)证明:连结AF,如图.∵F是BD的中点 ∠DAB=90° ∴AF=DF ∴∠FDA=∠FAD.(5分) ∵DE⊥AE ∴∠DEA=90°.∵∠DHA=90° ∠DAH= 0°∴DH=AD.∵AE平分∠BAC ∴∠CAE=∠BAC= 0°.∴∠DAE= 0° ∴∠ADE= 0°.∴AE=AD ∴AE=DH.( 分)∵∠FDA=∠FAD ∠HDA=∠EAD= 0°∴∠FDA-∠HDA=∠FAD-∠EAD.∴∠FDH=∠FAE.(7分)∴△FDH≌△FAE(SAS).∴FH=FE.(8分)( )△CEF是等边三角形.(9分)理由如下:取AB的中点G,连结FG,CG.如图.∵F是BD的中点 ∴FG∥DA FG=DA.∴∠FGA= 80°-∠DAG=90°又∵AE=AD ∴AE=FG.在Rt△ABC中 ∠ACB=90°点G为AB的中点 ∴CG=AG.又∵∠CAB= 0° ∴△GAC为等边三角形.(10分)∴AC=CG ∠ACG=∠AGC= 0°.∴∠FGC= 0° ∴∠FGC=∠EAC.∴△FGC≌△EA C(SAS).(11分)∴CF=CE ∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG= 0°.∴△CEF是等边三角形.(12分)26.解析( )∵-x2+=0的解为x1=-2,x2=6,∴抛物线y=-x2+x+3 与x轴交于点A(-2,0),B(6,0).(1分) ∵ =-x2+=-(x-2)2+4C(2,4分)设直线BC的解析式为 =kx+b(k≠0) 将点(6,0),(2,4)代入得,0解得-.∴直线BC的解析式为y=-x+6.(4分)(2)由已知得E'-,M(m,-m+6),F'-( ) ( ),N(m+2,-(m+2)+6ME'=-m2+2,NF'=-m2+m.(5分)ME'+NF'=-m2+2m-3-m2+m=-(m-3)2+(2<m<4).当m=3时,ME'+NF'的值最大.(6分)此时E' 5,F'5 7,构造直角三角形可得E'F'=4,且直线E'F'的解析式为y=-x+ 7.当R是直线E'F'与y轴交点时,|RF'-RE'|取得最大值,最大值为E'F'的长度.因此|RF'-RE'|的最大值为4,此时点R0 7.(8分)(3)由题意得Q,设平移时间为t秒,∴Q'-t ,P'9-t 0.如图① 过点Q'作Q'K∥x轴交AW于K Q'H⊥AW交AW于H.∵Q'到x轴的距离为Q'到直线AW的距离Q'H=又∵A(-2,0),W(0,3),∴直线AW的解析式为y=x+3.∴K-.又∵点Q'可能在点K的左边或右边,∴KQ'=-t= 7-t.在Rt△WAO中 ∠WOA=90° AO= WO= ∴AW=.由题意易证Rt△WAO∽Rt△Q'KH ∴''=,即7-t=,∴t1= 7-,t2= 7.(10分)∵0≤t1≤ 0≤t2≤ ∴t1,t2符合条件.现分两种情况讨论:①当t1= 7-时,Q'-,P'5 0,∵0<-<2,5>2.∴重叠部分为如图①所示的等边三角形Q'H1I1,图①s=I1H1 Q'K1==× 7-=- 097.②当t2= 7时,Q'--,P'5- 0,∵--<-2,-2<5-<0,∴重叠部分为如图②所示的直角三角形H2I2P',图②∴s=H2I2 I2P'=8-t=8- 7=7 -9 .综上,当点Q'到x轴的距离与点Q'到直线AW的距离相等时,s=- 097或s=7 -9 .(12分)。

重庆市2015年初中毕业暨高中招生考试数学试题(附答案)

重庆市2015年初中毕业暨高中招生考试数学试题(附答案)

重庆市2015年初中毕业暨高中招生考试数学(本试卷满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴为第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在-4,0,-1,3这四个数中,最大的数是()A.-4 B.0 C.-1 D.3答案:D 【解析】本题考查有理数大小比较,难度较小.有理数比较大小,通常通过在数轴上表示出来,然后根据在数轴上的点,右边的点所表示的数较大进行判断.因为-4<-1<0<3.所以最大的数为3,故选D.2.下列图形是轴对称图形的是()A B C D答案:A 【解析】本题考查轴对称图形的识别,难度较小.轴对称图形沿某直线折叠,直线两侧的部分能重合.A是轴对称图形;B,C,D不是轴对称图形,故选A.3.化简的结果是()A.B.C.D.答案:B 【解析】本题考查二次根式的化简,难度较小.,故选B.4.计算(a2b)3的结果是()A.a6b3B.a2b3C.a5b3D.a6b答案:A 【解析】本题考查积的乘方,难度较小.积的乘方等于乘方的积,所以(a2b)3=a6b3,故选A.5.下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况答案:B 【解析】本题考查调查方式的选择,难度较小.(1)当调查的对象个数较少,调查容易进行时,一般采用全面调查的方式进行;(2)当调查的结果对调查对象具有破坏性,或者会产生一定的危害性时,通常采用抽样调查的方式进行;(3)当调查对象的个数较多,调查不易进行时,常采用抽样调查的方式进行;(4)当调查的结果有特殊要求,或调查的结果有特殊意义时,如国家的人口普查,全国经济普查,我们仍需采用全面调查的方式进行.依据以上调查方式的选择,应当选用普查方式的是调查某中学九年级一班学生的视力情况,故选B.6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65°B.55°C.45°D.35°答案:C 【解析】本题考查平行线的性质,难度较小.两直线平行,同旁内角互补,所以∠2=180°-∠1=180°-135°=45°,故选C.7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209答案:C 【解析】本题考查中位数的识别,难度中等.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.将5个数由小到大排列为198,209,216,220,230,处于中间的数为216,所以中位数为216,故选C.8.一元二次方程x 2-2x=0的根是()A.x1=0,x 2=-2 B.x1=1,x2=2C.x1=1,x2=-2 D.x1=0,x2=2答案:D 【解析】本题考查一元二次方程的解法,难度中等.解法一:采用因式分解法直接求出方程的两解:x1=0,x2=2,故选D.解法二:代入法或排除法,即把各值代入一元二次方程进行检验.9.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°答案:B 【解析】本题考查圆的切线的性质,圆周角与圆心角的关系,难度中等.由AE是切线得∠BAE=90°,由∠AOC=80°得∠B=40°,所以∠ADB=50°,故选B.10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度答案:C 【解析】本题考查数形结合思想的应用,一次函数图象的意义,难度中等.根据函数的图象对实际问题做出合理的解释,第一段40分钟前进了2800米,所以平均速度为70米/分钟,故B正确;40~60之间休息了20分钟,故A正确;小明在上述过程中所走的路程为3800米,故C错误;休息后的速度为1000÷40=25(米/分钟),所以D正确,故选C.11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,……,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30答案:B 【解析】本题考查图形的规律探究,难度中等.观察图形特征可以看出,后面每个图形比前面一个图形多三个小圆圈,所以第7个图形中的小圆圈个数为6+(7-1)×3=24,故选B.12.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4C.D.答案:D 【解析】本题考查反比例函数与菱形的综合,难度较大.根据反比例函数的解析式及A,B两点的纵坐标求得A,B两点的横坐标分别为1,3,所以点A,B的坐标分别为(1,3),(3,1).如图,作BE垂直AD于E,则AE=BE=2,由勾股定理得,所以菱形面积为,故选D.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上)13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为_________.答案:3.7×104【解析】本题考查用科学记数法表示较大数,难度较小.科学记数法是将一个数写成a×10n的形式,其中1≤|a|<10,n为整数.当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).37000=3.7×104.14.计算:20150-|2|=_________.答案:-1 【解析】本题考查实数的计算,难度较小.任何非零数的零次方等于1,正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值等于0.原式=1-2=-1.15.已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC与△DEF对应边上的高之比为_________.答案:4:1 【解析】本题考查相似三角形的性质,难度较小.相似三角形的性质:①相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方.所以两三角形对应边上的高之比等于相似比为4:1.16.如图,在等腰直角三角形ABC中,∠ACB=90°,.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是_________(结果保留π).答案:8-2π【解析】本题考查不规则图形面积的计算,难度中等.图中阴影部分的面积等于三角形面积减去扇形面积.由题意及勾股定理得AC=BC=4,所以.17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数的自变量取值范围内的概率是_________.答案:【解析】本题考查概率、不等式组的解集、函数自变量的取值范围等知识,难度较大.解不等式组得所以不等式组的解集为,函数自变量的取值范围是2x2+2x≠0,即x≠0且x≠-1.所以-3,-2,-1,0,4五个数中满足以上条件的有-3,-2两个数,所以其概率为.18.如图,在矩形ABCD中,,AD=10.连接BD,∠DBC的平分线BE交DC于点E.现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG的长为_________.答案:【解析】本题考查图形变换、勾股定理、等腰三角形的性质、相似三角形的判定及性质等知识,难度较大.如图,分别过点E,D作EH⊥BD,DM⊥BD,交BD于点H,交BG的延长线于点M,过点M作MN⊥AD,交AD于点N.由已知得BD=14,在Rt △DEH中,由勾股定理得,.∵三角形BFD为等腰三角形,∴FD=FB,∴∠1+∠FBG=∠FDB=∠DBE+∠2,∵BE平分∠DBC,∴∠DBE=∠2,又∵∠FBG=∠2,∴∠1=∠2,∵∠BDM=∠C=90°,∴△BDM∽△BCE,∴,∴,由AAS可证△DEH≌△DMN,∴DN=DH=4,,∴2S=BD·MD=DG(MN+AB),∴.△BDM三、解答题(本大题共8小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分7分)解方程组答案:本题考查二元一次方程组的解法,可以利用代入法或加减法解题,难度中等.解:将①代入②得3x+2x-4=1,(2分)解得x=1,(4分)将x=1代入①得y=-2,(6分)所以原方程组的解是(7分)20.(本小题满分7分)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.答案:本题考查三角形全等的判定与性质,难度中等.证明:∵BC=DE,∴BC+CD=DE+CD,即DB=CE.(3分)又∵AB=FE,∠B=∠E,∴△ABD≌△FEC,(6分)∴∠ADB=∠FCE.(7分)21.(本小题满分10分)计算:(1)y(2x-y)+(x+y)2;(2).答案:解:(1)本题考查整式的运算,根据运算法则、公式进行计算即可,难度中等.原式=2xy-y2+x2+2xy+y2(3分)=x2+4xy.(5分)(2)本题考查分式的化简,根据法则进行计算即可,解题关键在于分式的通分与约分的方法,难度中等.(8分)(9分).(10分)22.(本小题满分10分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D 类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:某镇各类型小微企业个数条形统计图某镇各类型小微企业个数占该镇小微企业总个数的百分比扇形统计图(1)该镇本次统计的小微企业总个数是_________,扇形统计图中B类所对应扇形圆心角的度数为_________度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计算从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.答案:本题考查统计与概率的综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题的关键,难度中等.解:(1)25,72,补全条形统计图如下:(6分)(2)记来自高新区的两个代表为A1,A2,来自开发区的两个代表为B1,B2,画树状图如下:(8分)或列表如下:(8分)由树状图或列表可知,共有12种等可能情况,其中两个发言代表都来自高新区的有2种.所以两个发言代表都来自高新区的概率.(10分)23.(本小题满分10分)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.答案:本题考查考生的归纳探究能力,为创新题,难度中等.解:(1)写出3个满足条件的数即可.(千位上的数字与个数上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设四位“和谐数”个位上的数字为a(1≤a≤9且a为自然数),十位上的数字为b(0≤6≤9且b为自然数),则四位“和谐数”可表示为1000a+100b+10b+a.∵1000a+100b+10b+a=1001a+110b=11×91a+11×10b=11(91a+10b),∴1000a+100b+10b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)(2)∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵100x+10y+x=99x+11y+2x-y=11(9x+y)+(2x-y),又∵这个三位“和谐数”能被11整除,且x,y是自然数,∴2x-y能被11整除.(8分)∵1≤x≤4,0≤y≤9,∴2x-y=0.∴y与x的函数关系式为y=2x(1≤x≤4且x为自然数).(10分)24.(本小题满分10分)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥C D.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°,已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1:1.75.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)答案:本题考查利用解直角三角形、分式方程的知识解决实际问题,难度中等.解:(1)由题意得∠E=90°,∠PME=∠α=31°,∠PNE=∠β=45°,PE=30(米).在Rt△PEN中,PE=NE=30(米).(2分)在Rt△PEM中,,∴,ME≈50(米),(4分)∴MN=ME-NE≈50-30=20(米).答:两渔船M,N间的距离约为20米.(5分)(2)过点D作DG⊥AB于点G,坝高DG=24米.∵背水坡AD的坡度i=1:0.25,∴DG:AG=1:0.25.∴AG=6(米),背水坡DH的坡度i=1:1.75,∴DG:GH=1:1.75.∴GH=42(米),∴AH=GH-GA=42-6=36(米),(6分)∴(平方米),∴需要填筑土石方为432×100=43200(立方米).(7分)设施工队原计划平均每天填筑土石方x立方米,根据题意得.(9分)解方程得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)25.(本小题满分12分)如图1,在△ABC中,∠ACB=90°,∠BAC=60°.点E是∠BAC角平分线上一点.过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点.DH ⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.答案:本题是归纳猜想类题目,涉及勾股定理、三角形全等的证明、等边三角形的判定及性质等知识,难度较大.解:(1)∵点H是AC的中点,,∴.(1分)∵∠ACB=90°,∠CAB=60°,∴∠ABC=30°,∴.(2分)∵DA⊥AB,DH⊥AC,∴∠DAB=∠DHA=90°.∴∠DAH=30°,∴AD=2.(3分)在Rt△ADB中,∵∠DAB=90°,∴BD2=AD2+AB2,(4分)∴.(4分)(2)证明:连接AF,如图1.∵F是BD的中点,∠DAB=90°,∴AF=DF,∴∠FDA=∠FAD.(5分)∵DE⊥AE,∴∠DEA=90°.∵∠DHA=90°,∠DAH=30°,∴.∵AE平分∠BAC,∴,∴∠DAE=60°,∴∠ADE=30°,∴,∴AE=DH.(6分)∵∠FDA=∠FAD,∠HDA=∠EAD=60°,∴∠FDA-∠HDA=∠FAD-∠EAD,∴∠FDH=∠FAE,(7分)∴△FDH≌△FAE(SAS),∴FH=FE.(8分)(3)△CEF是等边三角形.(9分)理由如下:取AB的中点G,连接FG,CG.如图2.∵F是BD的中点,∴FG∥DA,.∴∠FGA=180°-∠DAG=90°,又∵,∴AE=FG.在Rt△ABC中,∠ACB=90°,点G为AB的中点,∴CG=AG.又∵∠CAB=60°,∴△GAC为等边三角形,(10分)∴AC=CG,∠ACG=∠AGC=60,∴∠FGC=30°,∴∠FGC=∠EAC,∴∠FGC≌∠EAC(SAS),(11分)∴CF=CE,∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG=60°,∴△CEF是等边三角形.(12分)26.(本小题满分12分)如图1,在平面直角坐标系中,抛物线交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4.EE′,FF′分别垂直于x 轴,交抛物线于点E′,F′,交BC于点M,N.当ME′+NF′的值最大时,在y轴上找一点R,使|RF′-RE′|的值最大,请求出R点的坐标及|RF′-RE′|的最大值;(3)如图2,已知x轴上一点,现以P为顶点,为边长在x轴上方作等边三角形QPG,使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q′P′G′,设△Q′P′G′与△ADC的重叠部分面积为s.当点Q′到x轴的距离与点Q′到直线AW的距离相等时,求s的值.答案:本题考查一次函数、二次函数、图形的运动变化,涉及待定系数法求函数的解析式,二次函数最大值的确定,相似三角形的判定及性质,分类讨论等数学思想方法的运用,难度较大.解:(1)∵的解为x1=-2,x2=6,∴抛物线与x轴交于点A(-2,0),B(6,0).(1分)∵,∴顶点.(2分)设直线BC的解析式为y=kx+b(k≠0),将点B(6,0),代入得解得∴直线BC的解析式为.(4分)(2)由已知得,,,,,,(5分).当m=3时,ME′+NF′的值最大.(6分)此时,,构造直角三角形可得E′F′=4,且直线E′F′的解析式为.当R是直线E′F′与y轴交点时,|RF′-RE′|取最大值,最大值为E′F′的长度,因此|RF′-RE′|的最大值为4,此时点.(8分)(3)∵,设平移时间为t秒,∴,.如图1,过点Q′作Q′K∥x轴交AW于点K,Q′H⊥AW于点H.∵Q′到x轴的距离为,∴点Q′到直线AW的距离.又∵A(-2,0),,∴直线AW的解析式为,∴.又∵点Q′可能在点K的左边或右边,∴.在Rt△WAO中,∠WOA=90°,AO=2,,∴.由题意易证Rt△WAO∽Rt△Q′KH,∴,即,∴或.(10分)∵,,∴t1,t2符合条件.现分两种情况讨论:①当时,,,∵,,∴重叠部分如图1所示的等边三角形Q′H1I1,其面积为.②当时,,,∵,,∴重叠部分如图2所示的直角三角形H2I2P′,其面积为.综上,当点Q′到x轴的距离与点Q′到直线AW的距离相等时,或综评:本套试卷难度中等,前面的1~17题都比较容易,后面有几道难题作为压轴题,用以区分不同考生对数学知识的掌握程度,如第18,25,26题,涉及实际应用的题目,如第5,10,22,24题;新颖题,如第23题;涉及数学思想方法的题目,如第11,16,18,22,23,24,25,26题.。

重庆市2015年初中毕业暨高中招生考试

重庆市2015年初中毕业暨高中招生考试

重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3)A.B.C.D. 4.计算的结果是( )A.B. C. D. 5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况 B. 调查某中学九年级一班学生视力情况 C. 调查重庆市初中学生锻炼所用的时间情况 D. 调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

若1=135°,则2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )()32a b63a b 23a b 53a b 6a b ∠∠6题图A.220B. 218C. 216D. 209 8.一元二次方程的根是( ) A. B. C. D.9.如图,AB 是的直径,点C 在上,AE 是的切线,A 为切点,连接BC 并延长交AE 于点D , 若AOC=80°,则ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )①②③A. 21B. 24C. 27D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与轴平行,A,B 两点的纵坐标分别为3,1,反比例函数的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C.D.220x x -=120,2x x ==-121,2x x ==121,2x x ==-120,2x x ==O O O ∠∠x 3y x=9题图10题图12题图二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为。

初三数学中考专项化简求值练习题

初三数学中考专项化简求值练习题

初三数学中考化简求值专项练习题注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1、化简,求值:111(11222+---÷-+-m m m m m m ), 其中m =3. 2、先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan4503、化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x4、计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a .5、6、先化简,再求值:13x -·32269122x x x xx x x-+----,其中x =-6. 7、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.9、先化简,再求值:222211y xy x x y x y x ++÷⎪⎪⎭⎫⎝⎛++-,其中1=x ,2-=y . 10、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =. 11、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)12、先化简,再求值:22221(1)121a a a a a a +-÷+---+. 13、先化简再求值:1112421222-÷+--∙+-a a a a a a ,其中a 满足20a a -=. 14、先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。

2015年重庆市中考真题数学

2015年重庆市中考真题数学
答案:B.
4. 计算(a2b)3 的结果是( ) A.a6b3 B.a2b3 C.a5b3 D.a6b 解析:根据幂的乘方和积的乘方的运算方法:①(am)n=amn(m,n 是正整数);②(ab)n=anbn(n 是正整数);∴(a2b)3=(a2)3·b3=a6b3 答案:A.
5. 下列调查中,最适合用普查方式的是( ) A.调查一批电视机的使用寿命情况 B.调查某中学九年级一班学生的视力情况 C.调查重庆市初中学生每天锻炼所用的时间情况 D.调查重庆市初中学生利用网络媒体自主学习的情况 解析:考查全面调查与抽样调查,普查得到的调查结果比较准确,但所费人力、物力和时间 较多,而抽样调查得到的调查结果比较近似,对各个选项进行分析判断: A.调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故 A 不符合题意; B.调查某中学九年级一班学生的视力情况,适合普查,故 B 符合题意; C.调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故 C 不符合 题意; D.调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故 D 不符合题意; 答案:B.
8. 一元二次方程 x2-2x=0 的根是( ) A.x1=0,x2=-2 B.x1=1,x2=2 C.x1=1,x2=-2 D.x1=0,x2=2 解析:考查因式分解法解一元二次方程:x2-2x=0,因式分解得:x(x-2)=0,即 x=0,x-2=0, 解得:x1=0,x2=2, 答案:D.
9. 如图,AB 是⊙O 直径,点 C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接 BC 并延长交 AE 于点 D.若∠AOC=80°,则∠ADB 的度数为( )
A.40° B.50° C.60° D.20°
解析:考查切线的性质,由 AB 是⊙O 直径,AE 是⊙O 的切线,推出 AD⊥AB,∠DA50°:∵AB 是⊙O 直径,AE 是⊙O 的切线,∴∠BAD=90°,∵∠B=

重庆市2015年初中毕业暨高中招生考试

重庆市2015年初中毕业暨高中招生考试

重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==6题图9题图9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。

2015年重庆市中考数学试题(A卷)有答案(Word版)

2015年重庆市中考数学试题(A卷)有答案(Word版)

重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a=-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==6题图9题图9.如图,AB 是O e 的直径,点C 在O e 上,AE 是O e 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。

中考化简求值专项练习题

中考化简求值专项练习题

数学中考化简求值专项练习题注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1、化简,求值: 111(11222+---÷-+-m m m m m m ), 其中m =3.2. 化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x3. 先化简,再求值:13x -·32269122x x x xx x x-+----,其中x =-6.4. 先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)5. 先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.6. 先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。

7. 先化简,再把 x 取一个你最喜欢的数代入求值:2)22444(22-÷+-++--x xx x x x x8. (2011•娄底)先化简:()÷.再从1,2,3中选一个你认为合适的数作为a 的值代入求值.9. (2011•常德)先化简,再求值,(+)÷,其中x=2.10. (2011•遵义)先化简,再求值:,其中x=2,y=﹣1.11. (2011•泸州)先化简,再求值:,其中.12. (2011•曲靖)先化简,再求值:,其中a=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年重庆中考化简求值专题训练
1.先化简,再求值:
,其中x 是不等式3x+7>1的负整数解.
2、先化简,再求值:1221214
32
2+-+÷⎪⎭⎫ ⎝⎛---+x x x x x x ,其中x 是不等式组⎩
⎨⎧<+>+15204x x 的整数解。

3. 先化简,再求值:
,其中,a ,b 满足。

4.先化简,再求值:(x 2+4x -4)÷ x 2-4
x 2+2x ,其中x =-1
5.先化简,然后从﹣2≤x ≤2的范围内选择一个合适的整数作为x 的值代
入求值.
6.先化简,再求值:,其中是方程的根.
7.已知a=,求代数式的 值
8. 先化简,再求值:
,其中x 满足方程x 2
﹣x ﹣2=0.
9. 先化简,再求值:a a a a a a 4)4822(22
2-÷-+-+,其中a 满足方程0142
=++a a . 10. 先化简,再求值:1
1454)1221(22----÷----+x x x x x x x x ,其中x 满足07222
=--x x . 11. 先化简,再求值:,其中满足.
12. 先化简,再求值:2319
(
)369
x x x x x x x +---÷--+,其中x 是不等式173>+x 的负整数解. 13. 先化简,再求值:22222÷142x x x x x x --⎛⎫-+ ⎪
-+⎝⎭
,其中x 为方程()2
13(1)x x -=-的解.
14. 先化简,再求值: 1241312
3+--÷⎪⎭
⎫ ⎝⎛
--+x x x x x x ,其中2=x 15. 先化简,再求值:212311x x x x -⎛⎫--÷ ⎪--⎝⎭,其中x 满足分式方程34322
x x x
+⎧⎪⎨-⎪⎩≤<的整数解。

16.先化简,再求值:22
69491()42m m m m m m m
-+-÷-⋅--,其中m 是方程2
2410m m +-= 的解. 17. 先化简,再求值:24)2122(+-÷+-
-x x x x ,其中x 满足方程12
3
x x =+. 18. 先化简,再求值:(14++-x x x )1
4
42++-÷x x x ,其中x =—1.
19. 先化简,再求值:22
2
221(),11
a a a a a a a -+-÷-+- 其中a 是满足12≤<-a 的整数. 20. 先化简,再求值:2221121x
x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组⎪⎩⎪⎨⎧<-≤+4
2123
21x x 的整数解.
21. 先化简,再求值。

2
4)44122(
22--÷
+----+a a a a a a a a ,其中0122
=--a a 。

22. 先化简,再求值:22816121(2)224x x x x x x x -+÷---+++,其中x 为不等式组20
512(1)x x x -<⎧⎨
+-⎩
>的整数解.
23. 先化简,再求值:)3933(99622+---÷-+-x x x x x x ,其中x 是不等式组102(2)1x x x +<⎧⎨
++⎩

≥ 的整数解. 24. 先化简,再求值:14
4)113(2++-÷+-+a a a a a ,其中a 是不等式组2+315(-1)+2<12
a a ⎧⎨
⎩≥的整数解. 25. 先化简,再求值:96923232
2
+--÷⎪⎭⎫ ⎝⎛---+x x x x x x x
x ,其中032
=-+x x . 26. 先化简,再求值:
111(1
12
+---÷--m m m m m ),其中01222=--m m . 27. 先化简,再求值:22
11211
x x x x x x x +⎛⎫-÷ ⎪--+-⎝⎭,其中x 满足方程2
20x x --=。

28. 先化简,再求值:
,其中x 满足方程

29.先化简,再求值:22
2
221(),11
a a a a a a a -+-÷-+- 其中a 是方程09222=--x x 的解
30. 先化简,再求值:222
216214x x x x x x x ⎛⎫---÷ ⎪+-⎝
⎭,其中x 满足2
310x x --=. 31. 先化简,再求值:2
22141121424a a a a a a ⎛⎫
+⎛⎫-÷- ⎪ ⎪++⎝⎭⎝
⎭,其中a 是不等式4113x x -->。

32. 先化简再求值:,其中x ≠y 且x ,y 满
足(x ﹣y )(x+y ﹣12)=0.
33. 先化简,再求值:
,其中x 满足x 2
+7x=0.
34. 化简求值:⎪⎭
⎫ ⎝⎛---÷--225232a a a a a ,其中4-=a . 35. 先化简,再求值。

2
4)44122(22--÷
+----+a a a a a a a a ,其中0122
=--a a 。

36. 先化简,再求值:1
)1212(
2-÷+--+a a a a a ,其中a 是方程
12
1=--x x x 的解. 37.
先化简,再求值:
,其中为不等式组的整数
解.
38.先化简,再求值:332962252
2
-+-+-÷⎪⎭
⎫ ⎝⎛---x x x x x x x x ,其中x 是方程0322
=-+x x 的解. 39.先化简,再求值:
2
1151(2)111
a a a a a a a ++-+÷-----,其中a 是方程2
230x x --=的解。

40、(2014重B )先化简再求值:2344
(1)11
x x x x x ++--÷++,其中x 是方程12025x x ---=的解。

41.(2014重A )先化简再求值:1
1
121122++⎪⎪⎭⎫ ⎝⎛---+÷x x x x x x ,其中x 的值为方程152-=x x 的解. 42.(2013重A )先化简,再求值:222
2a 6ab 9b 5b 1a 2b a 2ab a 2b a ⎛⎫-+÷--- ⎪
--⎝⎭
,其中,a ,b 满足a b 4a b 2+=⎧⎨-=⎩。

43.(2013重B )先化简,再求值:,其中x 是不等式3x+7>1的负
整数解.
44、(2012重)先化简,再求值:1221214
32
2+-+÷⎪⎭⎫ ⎝⎛---+x x x x x x ,其中x 是不等式组⎩⎨⎧<+>+1
5204x x 的整数解
45.(2011重)先化简,再求值:22
122 121x x x x x
x x x ---⎛⎫
-÷ ⎪+++⎝⎭,其中x 满足012=--x x . 46.(2010重庆)先化简,再求值:(x 2+4x -4)÷ x 2-4
x 2+2x
,其中x =-1
47.(2014重庆育才模拟)先化简,再求值:3329
62252
2
-+-+-÷⎪⎭
⎫ ⎝⎛---x x x x x x x x ,其中x 是方程0322=-+x x 的解.
48.(2014重庆巴蜀模拟)先化简,再求值:
2
1151
(2)111
a a a a a a a ++-+÷-----,其中a 是方程2230x x --=的解
49.(2014重庆南开模拟)先化简,再求值:
22
226951222x xy y y x y x xy
x y x
⎛⎫++÷--+ ⎪++⎝⎭,其中x 、y
满足二元一次方程组3
35
x y x y +=⎧⎨
-=⎩。

50.(2014重庆中考样题)先化简,再求值。

a b a b a b ab a b ab a 1)225(29622
22----÷-+-,其中a ,b 满足⎩⎨⎧=-=+.
2,8b a b a 51、先化简,再求值:22222
4442a b b a b a a ab
⎛⎫+--÷ ⎪+⎝⎭,其中,a b 满足24,27.a b a b -=⎧⎨+=⎩ 52、先化简,再求值:22816121(2)224x x x x x x x -+÷---+++,其中x 为不等式组20
512(1)x x x -<⎧⎨
+-⎩
>的整数解.
53.已知x 是关于m 的方程2m +4=-2的解,求代数式22
2447
(1)244x x x x x x
-÷--+++的值. 54.(2014重庆江北模拟)先化简,再求值:
2221121
x
x x x x x x x -⎛⎫-÷
⎪---+⎝⎭. 其中x 是满足不等式组 251,
372
x x +>⎧⎨
-<⎩ 的整数解.。

相关文档
最新文档