高中数学必修一教案§1.2.1函数的概念

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:函数的概念

一.课题:1.2.1函数的概念.(人教版必修一).

二.教学目标

1.知识目标:

理解函数的概念,明确函数是两个变量之间的一种依赖关系;掌握求定义域、函数值的方法;理解函数的三要素及符号)

y .

f

(x

2.能力目标:

会求分式型和偶次根式型函数的定义域;通过给定的自变量x值,能求出函数值;能利用函数的思想辩证法考虑实际问题.

3.情感目标:

通过学习函数概念,培养学生观察问题、提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;通过课堂活动培养学生团队意识,明确团队的力量依赖于每一个人的智慧,揭示函数之间的依赖关系;在函数概念深化的过程中,体会数学形成和发展的一般规律,由函数所揭示的因果关系,培养学生的辨证思想.

三.教材分析

1.教学重点:正确理解函数的概念.

2.教学难点:函数定义域和值域的求法以及用区间表示.

3.关键:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言来刻画函数,函数的思想方法将贯穿于高中数学课程的始终.

四.课型与教法

1.课型:讲授课.

2.教法:通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与已知的距离,通过搭建新概念与学生原有认识结构间的桥梁,使学生心理上得到认同,建立新的认识结构.

五.教学过程

1.创设情景,揭示课题.

在初中我们已经学习过函数的概念,并且知道可以用函数描述变量之间的依赖关系.初中学过的函数的传统定义是什么?初中学过哪些函数?

设在一个变化过程中有两个变量x 和y ,如果对于每一个x 值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值范围的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.

初中已经学过的函数:正比例函数、反比例函数、一次函数、二次函数等. 2.互动交流,研讨新知.

(1)一枚炮弹发射后,经过s 26落到地面击中目标.炮弹的射高(指斜抛运动中物 体飞行轨迹最高点的高度)为m 845,且炮弹距地面的高度h (单位m )随时间t (单位

s )变化的规律是25130t t h -=.

提出问题:你能得出炮弹飞行s 5、s 10、s 20时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?

s 5时距地面高度为m 525,s 10时距地面高度为m 800,s 20时距地面高度为m 600,根据题意可知炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .

从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系

25130t t h -=,在数集B 中都有唯一确定的高度h 和它对应,满足函数定义,应为函数,

发现解析式可以用来刻画函数.

(2)近十几年来,大气层中的臭氧迅速减少,因而出现臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.

提出问题:观察分析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系.

根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .

引导学生看图启发,从图中明显得知,对于数集A 中的每一个时刻t 在数集B 中都有唯一确定的臭氧层空洞面积s 与之对应,满足函数定义,也应为函数,发现图像也可以来刻画函数.

(3)国际上常用恩格尔系数(食物支出金额/总支出金额)反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表11-中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.

表11-

提出问题:恩格尔系数与时间(年)之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.

根据上表,可知时间t 的变化范围是数集},20011991{*∈≤≤=N t t t A ,恩格尔系数

y 的变化范围是数集}8.539.37{≤≤=y y B .

引导学生探讨交流发现,对于表格中的任意一个时间t 都有唯一确定的恩格尔系数与之对应,即在数集A 中的任意一个时间t 在数集B 中都有唯一确定的恩格尔系数与之对应,满足函数定义,应为函数,发现表格也可以用来刻画函数. 3.问题探讨,归纳概括.

(1)以上三个实例有什么不同点和共同点?

归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.

其共同点是:①都有两个非空数集A ,B ;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 值和它对应. 记作B A f →:.

引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢? (2)函数的概念.

一般地,设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(.

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.显然,值域是集合B 的子集. (3)我们所熟悉的一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么?

①.一次函数b ax x f +=)()0(≠a :定义域R, 值域R ; ②.反比例函x

k

x f =

)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; ③.二次函数c bx ax x f ++=2)()0(≠a :定义域R ,

值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0

(4)设a ,b 是两个实数,而且b a <.我们规定:

①满足不等式b x a ≤≤的实数x 的集合叫做闭区间,表示为],[b a ; ②满足不等式b x a <<的实数x 的集合叫做开区间,表示为),(b a ;

③满足不等式b x a <≤或b x a ≤<的实数x 的集合叫做半开半闭区间,表示为),[b a ,

],(b a .

这里的实数a 与b 都叫做相应区间的端点.

相关文档
最新文档