1997年复旦大学数学分析考研试题
1997年全国硕士研究生入学考试数学二真题及答案
则
()
(A) f (x0 ) 是 f (x) 的极大值
(B) f (x0 ) 是 f (x) 的极小值
(C) (x0, f (x0 )) 是曲线 y f (x) 的拐点
(D) f (x0 ) 不是 f (x) 的极值, (x0, f (x0 )) 也不是曲线 y f (x) 的拐点
(4) 设F (x) x2 esint sin tdt, 则 F (x) x
1997 年全国硕士研究生入学统一考试数学二试题
一、填空题(本题共 5 分,每小题 3 分,满分 15 分.把答案填在题中横线上.)
(1)
已知
f
(
x)
(cos
x)
x2
,
x 0, 在 x 0 处连续,则 a
.
a,
x0
(2) 设 y ln
1 x 1 x2
,则
y x0
.
(3)
dx x(4 x)
x0
x0
x0
x0
lim e e e lncosx x2
lim ln cos x 洛必达 x0 x2
1 (sin x)
lim cos x
x0
2x
x0
lim sin x
1
e e x0 2xcos x
2
【相关知识点】1.函数 y f (x) 在点 x0 连续:
设函数
f
(
x)
在点
x0
的某一邻域内有定义,如果
程组1T x1 2T x2 3T x3 BX 0 有非零解,因
1 2 0
B
1T
,
T 2
,
T 3
2
1
0 t
1997年考研数学试题详解及评分参考
(A)为正常数
(B)为负常数
(C)恒为零
(D)不为常数
【答】 应选(A).
【解】 因函数 e sin t s in t 是以 2p 为周期的周期函数,故
ò ò ò ò F (x) = x+2p esint sin tdt = 2p esint sin tdt = - 2p esint d cos t = 0 + 2p cos2 t esint dt > 0.
郝海龙:考研数学复习大全·配套光盘·1997 年数学试题详解及评分参考
【解】由题意, f (x) 在 x 轴的上方、单调下降且是上凹的,
(如右图所示),设 S1 、S2 、S3 分别为图中所示区域的面积, 显然有 S1 < S2 < S3 . 故选(B).
ò (3) 设 F (x) = x + 2p e sin t s in td t ,则 F (x) x
(B) 连续, 偏导数不存在.
(C) 不连续, 偏导数存在.
(D) 不连续, 偏导数不存在.
【答】 应选(C).
【解】
令y
= kx ,则 lim x®0 y =kx
xy x2 + y2
k = 1+ k2
,因 k 不同时, k 1+ k2
的值不同,
( ) 故极限 lim x®0 y®0
xy x2 + y2
……2 分
Ñò ò 于是 I = (z - y)dx + (x - z)dy + (x - y)dz = - 0 (2(sinq + cosq ) - 2cos 2q -1)dq
C
2p
=
-[2(- cosq
数学分析 复旦大学
第一章 集合
1.1 集合
1.2 数集及其确界
第二章 数列极限
2.1 数列极限
2.2 数列极限(续)
2.3 单调数列的极限
2.4 子列
第三章 映射Leabharlann 实函数 3.1 映射 3.2 一元实函数
3.3 函数的几何特性
第四章 函数极限和连续性
4.1 函数极限
4.2 函数极限的性质
4.3 无穷小量、无穷大量和有界量
第五章 连续函数和单调函数
5.1 区间上的连续函数
5.2 区间上连续函数的基本性质
5.3 单调函数的性质
第六章 导数和微分
6.1 导数概念
6.2 求导法则
6.3 高阶导数和其他求导法则
6.4 微分
第七章 微分学基本定理及应用
7.1 微分中值定理
7.2 Taylor展开式及应用
7.3 LHospital法则及应用
第八章 导数的应用
8.1 判别函数的单调性
8.2 寻求极值和最值
8.3 函数的凸性
8.4 函数作图
8.5 向量值函数
第九章 积分
9.1 不定积分
9.2 不定积分的换元法和分部积分法
9.3 定积分
9.4 可积函数类R[a,b]
第二十六章 Lebesgue积分
26.1 可测函数
26.2 若干预备定理
26.3 Lebesgue积分
26.4(L)积分存在的充分必要条件
26.5 三大极限定理
26.6 可测集及其测度
26.7 Fubini定理
练习及习题解答
1997数学二--考研数学真题详解
【详解】 方法一:
【】 【】
原式= lim 4t2 − t −1 − t +1
t → +∞
t2 − sin t
= lim t → +∞
4
−
1 t
−
1 t2
−1+ 1 t
=1
1−
1 t2
sin
t
方法二: 先进行有理化,再计算.
原式= lim
3x2 − x − 2
( ) x→−∞ x2 + sin x 4x2 + x −1 − x −1
−2⎥⎥
⎢⎣0 −4 5 −2⎥⎦ ⎢⎣0 −4 5 −2⎥⎦
秩 r (α1,α2,α3 ) = 2 ⇒ t + 2 = 5
即 t = 3.
二、选择题
(1)设 x → 0 时, etan x − ex 与 xn 是同阶无穷小,则 n 为
(A)1.
(B)2.
(C)3.
【答】 应选(C). 【详解】 方法一:
B = ⎢⎢0 1
1
⎥ ⎥
−
⎢⎢0
1
1
⎥ ⎥
⎢⎣0 0 −1⎥⎦ ⎢⎣0 0 −1⎥⎦
⎡0 2 1⎤ = ⎢⎢0 0 0⎥⎥
⎢⎣0 0 0⎥⎦
⎧
四、λ
取何值时,方程组
⎪ ⎨
2x1 + λ x2 − x3 = 1 λ x1 − x2 + x3 = 2
无解,有唯一解或有无穷多解?并在有无穷多
⎪⎩4x1 + 5x2 − 5x3 = −1
B.
⎢⎣0 0 −1⎥⎦
【详解】 因 A ≠ 0 ,在 A2 − AB = E 两边左乘 A−1 ,得
复旦大学经济学1997及答案
复旦大学1997年招收攻读硕士学位研究生入学考试经济学试题一、简释下列概念(每小题5分,共25分)1. 绝对剩余价值和相对剩余价值2. 股票与股息3. 要素报酬递减和规模报酬递减4. 自愿失业与非自愿失业二、按马克思主义政治经济学原理,不变资本在全部资本中所占比重越大,利润率就越低,试问为什么资本主义企业会不断提高资本有机构成?(15分)三、垄断价格的形成怎样使价值规律进一步改变了它的表现形式?(15分)四、免费发给消费者一定量实物(如食物)与发给消费者按市场价格计算的这些实物折算的现金,哪种方法给消费者带来更高的效用?为什么?试用无差异曲线图表示。
(15分)五、假定行业需求曲线为X=250-P X,每家厂商的边际成本为4(15分)①求两家厂商的古诺反应函数;②求该古诺双寡头厂商的价格和产量;③若厂商数目无限增大,古诺均衡价格和产量是多少?六、假定经济满足Y=C+I+G,且消费C=800+0.63Y,投资I=7500-20000Y,货币需求L=0.6125Y-10000r,名义货币供给量M S=6000亿美元,价格水平P=1,试问当政府支出从7500亿美元增加到8500亿美元时,政府支出(这里指政府购买)的增加挤占了多少私人投资?(15分)答案部分复旦大学1997年招收攻读硕士学位研究生入学考试经济学试题一、简释下列概念(每小题5分,共25分)1. 绝对剩余价值和相对剩余价值:绝对剩余价值是指在必要劳动时间不变的条件下,通过绝对延长工作日的方法所生产的剩余价值;相对剩余价值是指在工作日长度不变的条件下,由于缩短必要劳动时间而相对延长剩余劳动时间所生产的剩余价值。
2. 股票与股息:股票是股份公司发给股东的借以证明其股份数额并用于取得股息的凭证。
股息是股票持有人定期从股份公司分取的利润。
3. 要素报酬递减和规模报酬递减:在一定技术水平条件下,若其他生产要素不变,连续地增加某种生产要素的投入量,在达到某一点后,总产量的增加会递减,这就是生产要素报酬递减规律。
复旦大学 复旦 复旦大学试题清单 考研真题及答案解析
复旦大学中国古代文学研究中心③324哲学综合知识④425形式逻辑基础1993-1994,1996③311语言学基础知识1996-1999④402古代汉语和现代汉语基础1996-1999③312文史知识1996-1997④403古籍校读1996-1997③338文学理论④801中国古代文学西方哲学史1994-1998西方哲学史(从古希腊到现代)2005中国古代与现代文学1996-1999,2002、2004-2005中国现当代文学1999中外文学与文艺理论1995-1998、2000、2003-2005写作1996-2002,2004-2005语文与写作1997中国语言文学系③313写作1996-2002、2004-2005④405中外文学与文艺理论1995-1998、2000、2003-2005③311语言学基础知识1996-1999④402古代汉语和现代汉语基础1996-1999③312文史知识1996,1997、④406目录版本学1996,1997④404中国古代与现代文学1996-1999,2002、2004-2005④802电影史与电影理论美学与文艺学1996-1999、2002理论语言学1996-1999中国古代文学史1996-1999语文与写作1997外国语言文学学院②207二外俄语208二外日语1994-1996,1998209二外德语1994-1995210二外法语1994-1996③314基础英语1995-1999④407英美文学史1995-1998408语言学理论1995-1998新闻学院③320新闻传播学基础2003-2005④414新闻实务2003-2004新闻实务模拟试题和答案18套(36元)④813传播实务2004(2004有答案)③340营销学2004④804广告与公关实务2004③339传媒与社会2004④803广播电视艺术2004新闻传播学实务2003新闻传播理论2003新闻业务1996-1998新闻传播业务1999-2000,2002新闻与传播理论1999,2001-2002新闻理论与中国新闻史1995-1998中外新闻事业史1999-2000,2002新闻传播学基础(单考生)2004历史学系③321史学概论1994-2000世界近现代史1996-1999世界上古史中古史1999世界古代中世纪史1995-1997中国古代史1995-1997、1999中国近现代史1996-1999古代汉语1992,1994,1996经济学院④420经济学综合基础2003-2005(2003-2005均有答案)经济学1993-2002(均有答案)④421西方经济学④401金融学基础(金融联考)2002-2005(均有答案)④421微观经济学1996-2001(A)-2001(B)-2002,2004(均有答案)世界经济1999-2000,2002(均有答案)世界经济概论1996-1998(均有答案)货币银行学1998-2002(1998有两份,国际金融和货币银行学专业各一份)货币银行学与国际金融1998金融学1999-2001综合考试(金融学专业)1999-2002当代中国经济1999管理学院④446经济与管理综合知识④420经济学综合基础2003-2005(2003-均有答案)经济学1993-2002(均有答案)④447概率论与数理统计1998-2004④421西方经济学③330高等数学1998④448线性规划1995-1998④449管理科学导论(运筹学)1994-1995-1999,2001-2002821运营管理④822数据结构与数据库管理444企业管理综合理论与知识2003-2005(2003-2005有答案)企业管理综合理论与知识模拟试题和答案18套(36元)④445会计学1995-2003(2001-2003有答案)④823东方管理与应用经济④825经济、管理和市场营销学基础④824财务金融综合知识微观经济学1996-2001(A)-2001(B)-2002,2004(均有答案)世界经济1999-2000,2002(均有答案)世界经济概论1996-1998(均有答案)企业经营管理1995-2002(1995-2002有答案)数据结构与操作系统1990-2004应用概率统计1999-2000概率统计1998企业管理2005(有答案)!哲学系③324哲学综合知识2004-2005④422马克思主义哲学原著1993-1994,1996④423中国哲学史1994,1996④424外国哲学史2000、2005④425形式逻辑基础1993-1994,1996④426西方伦理思想史④427宗教学原理④428科学技术哲学西方哲学史(从古希腊到现代)2005西方哲学史1994-1998国际关系与公共事务学院③325政治学原理1996-2005(1996-2004有答案)④429西方政治思想史1999-2004④430马克思主义原著选读1993-1994,1996④432国际关系1996-2005433行政学1997-2005(2002-2005有答案)当代中国政治制度1996-2005世界经济1999-2000,2002(均有答案)行政管理学1996-2002(均有答案)世界经济概论1996-1999(1996-1998有答案)世界经济与政治1996-2002,2004-2005数学研究所③331数学分析1996-2001④450代数与几何常微分方程1995-2001高等代数1996-2001数学物理方程1995-1997、1999-2001概率统计(数量经济专业)1998应用概率统计1999-2000应用概率2002物理学系③332量子力学1996-2004④451普通物理1996-2004固体物理1996-1999-2001电动力学1996-2001热力学与统计物理1996-1997、1999、2001传热学1999现代物理所③332量子力学1996-2004④451普通物理1996-2004固体物理1996-1999-2001电动力学1996-2001热力学与统计物理1996-1997,1999,2001信息科学与工程学院③332量子力学1996-2004④451普通物理1996-2004④452电磁场和电磁波1998-1999805光学④453电路与系统基础④817电子线路与集成电路设计④818半导体器件原理1994-1997、1999④454电子学基础(模拟、数字和微波技术)2000④455数据结构与操作系统1990-1999-2000-2001-2004③333数学分析与线性代数1990-1999,2001-2004电子线路(模拟和数字)1996-1998-2000固体物理1996-1999-2001计算机原理1994-1997、1999编译原理1990-1999-2002离散数学1999计算机图示学1992-1999-2002计算机组织与结构1990-1999-2002电磁场理论和微波技术1997-1998电路和信号理论1999电子线路1999化学系④334物理化学(含结构化学)1994-2004(2002-2003有答案)④456有机化学1994-1995,1997-2004(2003-2004有答案,但不完整)457无机化学和分析化学1998-2000,2003-2004(1998—2004有答案)③336生物化学1996,1998-2005④465细胞生物学1994,1997-2002-2004332量子力学1996-2004④451普通物理1996-2004生命科学学院③335生态学1995—1998④462植物学1994—1997③334物理化学(含结构化学)1994-2004(2002-2003有答案)④456有机化学1994-1995,1997-2004(2003-2004有答案,但不完整)③352药学综合④482有机化学(医)④463动物学1995、1997—1998③336生物化学1996,1998-2005④464微生物学1999337生理学④465细胞生物学1994,1997-2002-2004④466遗传学和细胞生物学345进化生物学④819生物统计学820生物信息学遗传学1999、2001-2002遗传学和细胞学2003生物综合2001法学院③326法学概论1996-2005④434法理学1999-2000,2003-2005435中外法制史④436宪法与行政法学2000④437刑法学④438民商法学2005④439诉讼法学2005④806环境法④440国际法及冲突法1999,2002,2003③398专业基础课(含刑法、民法)④498综合基础课(含法理、宪法和中国法制史)民法学1996-1997-2002中国法制史1995-1999-2000外国法制史1995-1996-1999、2001外国宪法1995-1998行政法学1997,1998,2002商法学1999-2000,2002国际法1995-1997,1999-2000,2003-2005力学与工程科学系④461理论力学1995-1999、2002-2004(2002有答案)④459材料科学基础④460高分子材料化学与物理807材料科学与工程材料力学1999、2002答案:2002材料科学系459材料科学基础460高分子材料化学与物理807材料科学与工程451普通物理1996-2004有机化学1994-1995,1997-2004光源与照明工程系③332量子力学1996-2004④451普通物理1996-2004人口研究所④420经济学综合基础③327社会统计学1995—1998441社会学概论1995-1998、2000、2005357卫生管理综合808社会保障479卫生统计学351卫生综合经济学综合基础2003-2005(2003-2005均有答案,2005为回忆版)经济学1993-2002(均有答案)社会科学基础部③325政治学原理1996-2005(1996-2004有答案)④431马克思主义理论与中国社会主义建设④809中共党史分析测试中心③334物理化学(含结构化学)1994-2004(2002-2004有答案)④456有机化学1994-1995,1997-2004(2003-2004有答案,但不完整)457无机化学和分析化学1998-2000,2003-2004(1998—2004有答案)历史地理研究中心③323中国历史地理1996—1997、1999④417中国古代史1995-1997、1999419中国自然地理1999高分子科学系③334物理化学(含结构化学)1994-2004(2002-2004有答案)④456有机化学1994-1995,1997-2004(2003-2004有答案,但不完整)457无机化学和分析化学1998-2000,2003-2004(1998—2004有答案)458高分子化学与物理1994-1998③336生物化学1996,1998-2005④465细胞生物学1994,1997-2002—2004社会发展与公共政策学院(社会学系)④327社会统计学1995—1998441社会学概论1995-1998、2000、2005④442社会工作概论③328文化人类学2005高等教育研究所③329中国教育史1999-2001-2003-2004(均有答案)④443教育学1999-2001-2003-2004(2003有答案)343经济学2004环境科学与工程系④467环境科学综合知识2003—2004④811环境工程综合知识基础环境学1995-1999(1998有答案)环境化学1999—2002(1999-2001有答案)环境生物学2000—2001(2000-2001有答案)微电子研究院④817电子线路与集成电路设计④818半导体器件原理1994-1997、1999电子线路(模拟和数字)1996-1998-2000计算机原理1994-1997、1999软件学院③333数学分析与线性代数1990-1999,2001-2004④812数据结构与计算机系统基础数据结构与操作系统1999-2000-2001-2004计算机组织与结构1999-2002文物与博物馆学系③322考古学通论1994、1999④815博物馆学概论826文物保护基础③346文物学基础④827文化遗产理论和管理中国古代史1995-1997、1999先进材料与技术研究院③332量子力学1996-2004④451普通物理1996-2004334物理化学(含结构化学)1994-2004(2002-2003有答案)④456有机化学1994-1995,1997-2004(2003-2004有答案)457无机化学和分析化学1998-2000,2003-2004(1998—2004有答案)458高分子化学与物理1994-1998-1999④459材料科学基础固体物理1996-1999-2001旅游学系④418旅游学旅游学概论1996-1997文献资源中心③341文献学④814图书馆学③342信息管理与计算机技术上海医学院(基础)④468生物化学(医)354生物综合2001352药学综合④469细胞生物学(医)356生物医工综合④470计算机应用基础④472组织胚胎学355检验综合353数学综合④816放射诊断学④473人体解剖学④471生理学(医)药学院③352药学综合④482有机化学(医)469细胞生物学(医)④483生物药剂学与药物动力学④485药用植物学④486分析化学④468生物化学(医)复旦大学医学院(2005年和2006年的专业目录没有这个学院)病理生理学1999内科学1999-2002遗传学2001-2002遗传学和细胞学2003内科学1999-2002、2004(博士题)外科学1999-2004(博士题)病理生理学2003(博士题)病理学2003-2004(博士题)解剖学2003(博士题)神经内科2003(博士题)妇产科2004(博士题)生物化学2004(博士题)诊断学2004(博士题)外科学1999-2001生理学1995、2003生物综合2001微生物学1999-2000细胞生物学1997-2001-2002病理学1995、1998、2000-2001、2004诊断学1997-1998、2001-2002耳鼻咽喉科学2004中山医院④472组织胚胎学④351卫生综合④473人体解剖学④475病理学1995、1998、2000-2001、2004 355检验综合④468生物化学(医)③360护理综合④476病理生理学1999④494肿瘤学④471生理学(医)④488诊断学1997-1998、2001-2002③358口腔综合④496口腔病理学④492中医学基础内科学1999—2000外科学1994、4997、2001肿瘤医院④475病理学1995、1998、2000-2001、2004④493妇产科学④494肿瘤学④477药理学307中医综合④492中医学基础儿科医院④476病理生理学1999金山医院④488诊断学1997-1998、2001-2002④475病理学1995、1998、2000-2001、2004④476病理生理学1999④494肿瘤学实验动物部③359畜牧兽医综合354生物综合2001④475病理学1995、1998、2000-2001、2004 468生物化学(医)④480营养与食品卫生学④471生理学(医)上海市肿瘤研究所③352药学综合354生物综合2001④468生物化学(医)④469细胞生物学(医)351卫生综合357卫生管理综合④479卫生统计学放射医学研究所④468生物化学(医)病理学1995、1998、2000-2001、2004生物综合2001上海市第一妇婴保健院④476病理生理学1999④468生物化学(医)护理学院③360护理综合④476病理生理学1999华山医院③356生物医工综合④487高等数学(医)④470计算机应用基础④468生物化学(医)355检验综合497微生物学(医)④473人体解剖学④491神经病学④474免疫学④475病理学1995、1998、2000-2001、2004④471生理学(医)③352药学综合④482有机化学(医)④476病理生理学1999④490外科学1994、1997、2001④488诊断学1997-1998、2001-2002③358口腔综合④828口腔解剖生理④492中医学基础④483生物药剂学与药物动力学④494肿瘤学④493妇产科学内科学1999—2000上海市第五人民医院④488诊断学④476病理生理学1999外科学1994、1997、2001诊断学1997-1998、2001-2002内科学1999—2000公共卫生学院③351卫生综合357卫生管理综合④479卫生统计学④481基础毒理学④468生物化学(医)眼耳鼻喉科医院④476病理生理学1999473人体解剖学上海市计划生育研究所③359畜牧兽医综合④475病理学1995、1998、2000-2001、2004468生物化学(医)354生物综合2001④469细胞生物学(医)③351卫生综合④479卫生统计学③352药学综合④482有机化学(医)④471生理学(医)文献信息中心③341文献学④814图书馆学③342信息管理与计算机技术华东医院④488诊断学④476病理生理学1999妇产科医院④468生物化学(医)本文档来源于布丁考研网(),全国最真实、最全面的考研真题及资料库。
数学分析习题集9复旦大学
ln n
2
2n 2 ; ⑵ ∑ 3 n =1 n + 3n ∞ 1 ⑷ ∑ ; n =1 n ! ∞ π⎞ ⎛ ⑹ ∑ ⎜1 − cos ⎟ ; n⎠ n =1 ⎝
⑻ ⑽
∞
1
n
∑(
n =1
∞
n
n − 1) ;
n2 ; ∑ n n =1 2
∞
∑n
n =1 ∞ n =1
∞
2
e −n ;
[2 + (−1) n ]n ; ∑ 2 2 n +1 n =1 ∞ 2 n n! ⑿ ∑ n ; n =1 n
1+ 15. 利用级数的 Cauchy 乘积证明: (1)
1 ∞ (−1) n ⋅∑ = 1; ∑ n! n =0 n ! n =0
∞
(2) ⎜
⎛
∞ ⎞ n ⎞ ⎛ q qn ⎟ = ⎟ ⎜ ∑ ∑ ⎝ n =0 ⎠ ⎝ n =0 ⎠ ∞
∑ (n + 1)q
n =0
∞
n
=
1 (|q|<1 ) 。 (1 − q ) 2
12. 已知任意项级数
14. 利用
1 1 1 + + … + - ln n → γ ( n → ∞ ), 2 3 n ∞ (−1) n +1 其中 γ 是 Euler 常数(见例 2.4.8),求下述 ∑ 的更序级数的和: n n =1 1 1 1 1 1 1 1 1 1+ + + + + - + … 。 3 2 5 7 4 9 11 6
(a>0)。
2. 利用级数收敛的必要条件,证明: (1) lim
n →∞
(2)
复旦大学07-08数学分析试卷
复旦大学数学科学学院2007~2008学年第一学期期末考试试卷□A 卷课程名称:_ 数学分析 III______________ 课程代码:__MATH 130001_____ 开课院系:__数学科学学院________ _ __ 考试形式:闭卷姓 名: 学 号: 专 业: 题 号 1 2 3 4 5 6 7 8总 分得 分填充题(每空格5分,共30分)(1)10x ∫= 。
(2)dx yx dy y y∫∫−+2042221= 。
(3)曲线222222x y z x y⎧+=⎪⎨=+⎪⎩在点处的切线方程为 (1,1,3) 。
(4),222(,)f x y z xyz ++=0z∂ 。
=x∂(5)sin 0ln(1)()ttx I t dx x+=∫,()d I t d t 。
=(6)()222,,(,,)y z z x x y x y z x y z −−−=++JG f ,()x,y,z rot JG f = 。
解答题(每题10分)2.由变量代换2u x y v x ay =−⎧⎨=+⎩,可把 226zx ∂+∂2z x y ∂−∂∂220z y ∂=∂ 化简为20zu v∂=∂∂,求a 的值。
3.设, 是由曲线∫=21)(A dt t f D x y x y xy xy 4,,2,1====所围区域,求二重积分。
∫∫D dxdy xy f )(4.计算曲面(0,0z x y )=≥≥包含在球面2221x y z ++=内的部分的面积。
5.利用Lagrange 乘数法,在曲面)0,0,0(14222>>>=++z y x z y x 上求一点,使过该点的切平面在三个坐标轴上的截距平方和最小。
6.计算第二类曲线积分:222()()()L I x yz dx y zx dy z xy d =−+−+−∫z ,其中有向曲线L 为:cos ,sin ,t t L x e t y e t z t ===,:02t π→。
复旦大学数学系《数学分析》(第3版)(下册)-名校考研真题-多变量微积分学【圣才出品】
由于对任意的 y∈[c,d],有下式成立
所以有
即
.
5 / 54
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 2 部分 多变量微分学
第 14 章 偏导数和全微分
解答题 1.已知
1 确定,且 h(x)具有所需的性质.求
所以对任意的 ε>0,取 在(0,0)处连续.
,则当
时,有
,故 f(x,y)
7 / 54
圣才电子书
十万种考研考证电子书、题库视频学习平 台
由于当(x,y)≠(0,0)时,
,故
4.讨论
在(0,0)点的连续性和可微性.[武汉大学研] 解:(1)连续性.可以令 x=ζcosθ,y=ζsinθ,因为
十万种考研考证电子书、题库视频学习平 台
故
12.
解:由
又由
得
[上海交通大学研] 得
,于是
13.设 z 由 求 [南京大学研]
解:由
得 ①式两端再对 x 求导得
定义为 x,y 的隐函数,其中 为二次连续可微,
两边对 x 求导 ①
所以 f(x,y)在(0,0)点连续. (2)可微性.由于 从而
选取特殊路径 y=kx,有 为 1,所以 f(x,y)在(0,0)点不可微.
5. 解:由于
,求 dz.[华东师范大学研]
8 / 54
,极限不
圣才电子书
十万种考研考证电子书、题库视频学习平 台
故
.
6.函数 数.[天津大学研]
同时
,
.
5.若函数 f(x,y)在 上对 x 连续,且存在 L>0,对任意的 x、y′有
1997考研数学一真题及答案详解
1997年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.)(1) 2013sin coslim(1cos )ln(1)x x x x x x →+=++ . (2) 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 .(3) 对数螺线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为 .(4) 设12243311A t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B 为三阶非零矩阵,且0AB =,则t = .(5) 袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 二元函数22, (,)(0,0),(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处 ( )(A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 (2) 设在区间[,]a b 上()0,()0,()0,f x f x f x '''><>令12(),()()baS f x dx S f b b a ==-⎰,31[()()]()2S f a f b b a =+-,则 ( )(A) 123S S S << (B) 213S S S << (C) 312S S S << (D) 231S S S << (3) 2sin ()sin ,x t xF x e tdt π+=⎰设则()F x ( )(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数(4) 设111122232333,,,a b c a b c a b c ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则三条直线1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 ( )(A) 123,,ααα线性相关 (B) 123,,ααα线性无关(C) 秩123(,,)r ααα=秩12(,)r αα (D) 123,,ααα线性相关,12,αα线性无关(5) 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是 ( )(A) 8 (B) 16 (C) 28 (D) 44三、(本题共3小题,每小题5分,满分15分.)(1) 计算22(),I x y dV Ω=+⎰⎰⎰其中Ω为平面曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周形成的曲面与平面8z =所围成的区域.(2) 计算曲线积分()()()C z y dx x z dy x y dz -+-+-⎰,其中C 是曲线221,2,x y x y z ⎧+=⎨-+=⎩从z 轴正向往z轴负向看,C 的方向是顺时针的.(3) 在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N ,在0t =时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为()x t (将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求()x t .四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.) (1) 设直线0,:30x y b L x ay z ++=⎧⎨+--=⎩在平面∏上,且平面∏与曲面22z x y =+相切于点(1,2,5)-,求,a b之值.(2) 设函数()f u 具有二阶连续导数,而(sin )xz f e y =满足方程22222xz z e z x y∂∂+=∂∂,求()f u .五、(本题满分6分)设()f x 连续,1()(),x f xt dt ϕ=⎰且0()limx f x A x→=(A 为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11112,(),1,2,...,2n n na a a n a +==+=证明: (1) lim n n a →∞存在;(2) 级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)(1) 设B 是秩为2的54⨯矩阵,123(1,1,2,3),(1,1,4,1),(5,1,8,9)T T Tααα==--=--是齐次线性方程组0Bx =的解向量,求0Bx =的解空间的一个标准正交基.(2) 已知111ξ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量.(Ⅰ) 试确定参数,a b 及特征向量ξ所对应的特征值; (Ⅱ) 问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1) 证明B 可逆; (2) 求1AB -.九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25.设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为(1), 01,()0, x x f x θθ⎧+<<=⎨⎩其它,其中1θ>-是未知参数.12,,,n x x x 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和最大似然估计法求θ的估计量.1997年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)【答案】32【分析】这是00型极限.注意两个特殊极限00sin ln(1)lim1,lim 1x x x x x x→→+==. 【解析】将原式的分子、分母同除以x ,得2001sin 13sin cos 3cos3limlim .ln(1)(1cos )ln(1)2(1cos )x x x x x x x x x x x x x x→→++==++++ 评注:使用洛必达法则的条件中有一项是0()lim()x x f x g x →''应存在或为∞,而本题中,[]200111(3sin cos )3cos 2cos sinlimlim 1cos (1cos )ln(1)sin ln(1)1x x x x x x x x x xx x x x x→→'+++=+'++-+++ 极限不存在,也不为∞,不满足使用洛必达法则的条件,故本题不能用洛必达法则.【相关知识点】1.有界量乘以无穷小量为无穷小量. (2)【答案】(2,4)-【解析】考察这两个幂级数的关系.令1t x =-,则()1212111n n n n n nn n n na ttna tta t ∞∞∞+-==='==∑∑∑. 由于逐项求导后的幂级数与原幂级数有相同的收敛半径,1nn n a t∞=∑的收敛半径为3⇒()1nn n a t ∞='∑的收敛半径为3.从而()2111n n n n n n t a t na t ∞∞+=='=∑∑的收敛半径为3,收敛区间即(-3,3),回到原幂级数11(1)n nn na x ∞+=-∑,它的收敛区间为313x -<-<,即(2,4)-.评注:幂级数的收敛区间指的是开区间,不考虑端点. 对于n n n a x ∞=∑,若1limn n na a ρ+→+∞=⇒它的收敛半径是1R ρ=.但是若只知它的收敛半径为R ,则⇒11limn n n a a R +→+∞=,因为1lim n n naa +→+∞可以不存在(对于缺项幂级数就是这种情形).(3)【答案】2x y e π+=【解析】求切线方程的主要问题是求其斜率x k y '=,而xy '可由e θρ=的参数方程 cos cos ,sin sin x e y e θθρθθρθθ⎧==⎪⎨==⎪⎩ 求得: 2sin cos sin cos ,1cos sin cos sin x x y e e y y x e e θθθπθθθθθθθθθθθθ='++''====-'--, 所以切线的方程为2(0)y e x π-=--,即2x y e π+=.评注:本题难点在于考生不熟悉极坐标方程与直角坐标方程之间的关系. (4)【答案】3t =-【解析】由0AB =,对B 按列分块,设[]123,,B βββ=,则[][][]123123,,,,0,0,0AB A A A A ββββββ===,即123,,βββ是齐次方程组0Ax =的解.又因B O ≠,故0Ax =有非零解,那么()1221024343373031131A tt t --==+=+=-,由此可得3t =-.评注:若熟悉公式0AB =,则()()3r A r B n +≤=,可知()3r A <,亦可求出3t =-. (5)【答案】25【解析】方法1:利用全概率公式.求第二人取得黄球的概率,一般理解为这事件与第一人取得的是什么球有关.这就要用全概率公式.全概率公式首先需要一个完全事件组,这就涉及到设事件的问题.设事件i A =“第i 个人取得黄球”,1,2i =,则完全事件组为11,A A (分别表示第一个人取得黄球和第一个人取得白球).根据题设条件可知{}1202505P A ===黄球的个数球的总数;{}1303505P A ===白球的个数球的总数;{}2120119|50149P A A -==-(第一个人取得黄球的条件下,黄球个数变成20119-=,球的总数变成50149-=,第二个人取得黄球的概率就为1949);{}2120|49P A A =(第一个人取得白球的条件下,黄球个数亦为20,球的总数变成50-1=49,第二个人取得黄球的概率就为2049).故应用全概率公式{}{}{}{}{}21211212193202||5495495P A P A P A A P A P A A =+=⋅+⋅=.方法二:利用“抽签原理”.只考虑第二个人取得的球,这50个球中每一个都会等可能地被第二个人取到.犹如几个人抽奖,其中只有一张彩票有奖,那么这几个人先抽与后抽,抽到有奖彩票的概率是一样的,这就是我们抽奖的公平性,此题中取到黄球的可能有20个,所以第二个人取到黄球的概率为202505=. 【相关知识点】1.全概率公式: {}{}{}{}{}2121121||P A P A P A A P A P A A =+; 2. 古典型概率公式:()i i A P A =有利于事件的样本点数样本空间的总数.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)【答案】(C)【解析】这是讨论(,)f x y 在(0,0)点是否连续,是否存在偏导数的问题.按定义00(0,0)(0,0)(,0),(0,)x y f d f df x f y x dx y dy ==∂∂==∂∂, 由于 (,0)0(),(0,)0()f x x f y y =∀=∀,⇒∃偏导数且(0,0)(0,0)0,0f f x y∂∂==∂∂. 再看(,)f x y 在(0,0)是否连续?由于222(,)(0,0)01lim(,)lim (0,0)2x y x y xx f x y f x x →→===≠+,因此(,)f x y 在(0,0)不连续.应选(C).评注:① 证明分段函数在某点连续,一般要用定义证,有难度.证明分段函数(,)f x y 在某点000(,)M x y 不连续的方法之一是:证明点(,)x y 沿某曲线趋于0M 时,(,)f x y 的极限不存在或不为00(,)f x y .② 证明00(,)(,)lim(,)x y x y f x y →不存在的重要方法是证明点(,)x y 沿两条不同曲线趋于000(,)M x y 时,(,)f x y 的极限不想等或沿某条曲线趋于0M 时,(,)f x y 的极限不存在.对于该题中的(,)f x y ,若再考察(,)(0,0)(,)(0,0)1lim (,)lim 00lim (,)2x y x y y x y xf x y f x y →→→====≠=, (,)(0,0)lim (,)x y f x y →⇒不存在.由本例可见,函数在一点处不连续,但偏导数却可以存在.容易找到这种例子,例如(,),f x y x y =+它在点(0,0)处连续,但(0,0)x f '与(0,0)y f '都不存在.可见二元函数的连续性与偏导数的存在性可以毫无因果关系.(2)【答案】(B)【解析】方法1:用几何意义.由()0,()0,()0f x f x f x '''><>可知,曲线()y f x =是上半平面的一段下降的凹弧,()y f x =的图形大致如右图.1()baS f x dx =⎰是曲边梯形ABCD 的面积;2()()S f b b a =-是矩形ABCE 的面积;31[()()]()2S f a f b b a =+-是梯形ABCD 的面积.由图可见213S S S <<,应选(B).方法2:观察法.因为是要选择对任何满足条件的()f x 都成立的结果,故可以取满足条件的特定的()f x 来观察结果是什么.例如取21(),[1,2]f x x x=∈,则 2123213211115,,248S dx S S S S S x ====⇒<<⎰.【评注】本题也可用分析方法证明如下:由积分中值定理,至少存在一个点ξ,使()()(),baf x dx f b a a b =-<<⎰ξξ成立,再由()0,f x '<所以()f x 是单调递减的,故()(),f f b ξ>从而12()()()()()baS f x dx f b a f b b a S ==->-=⎰ξ.为证31S S >,令1()[()()]()(),2x a x f x f a x a f t dt ϕ=+--⎰则()0,a ϕ=11()()()(()())()2211()()(()())2211()()()()()()221(()())(),2x f x x a f x f a f x f x x a f x f a f x x a f x a a x f x f x a ''=-++-'=---''=---<<''=--ϕηηη拉格朗日中值定理 由于()0f x ''>,所以()f x '是单调递增的,故()()f x f ''>η,()0x '>ϕ,即()x ϕ在[,]a b 上单调递增的.由于()0,a ϕ=所以()0,[,]x x a b >∈ϕ,从而1()[()()]()()02bab f b f a b a f t dt =+-->⎰ϕ,即31S S >.因此,213S S S <<,应选(D).如果题目改为证明题,则应该用评注所讲的办法去证,而不能用图证.【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[,]a b 上连续,则在(,)a b 上至少存在一个点ξ,使下式成立:()()()()ba f x dx fb a a b =-<<⎰ξξ.这个公式叫做积分中值公式.2. 拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立. (3)【答案】(A) 【解析】由于函数sin sin tet 是以2π为周期的函数,所以, 22sin sin 0()sin sin x t t xF x e tdt e tdt +==⎰⎰ππ,()F x 的值与x 无关.不选D,(周期函数在一个周期的积分与起点无关).估计2sin 0sin t e tdt ⎰π的值有多种方法.方法1:划分sin sin te t 取值正、负的区间.22sin sin sin 0sin sin 0sin sin 0()sin sin sin sin (sin )()sin t t t tu t t F x e tdt e tdt e tdtetdt e u due e tdt--==+=+-=-⎰⎰⎰⎰⎰⎰πππππππ当0t π<<时,sin 0t >,sin sin 0,tt e e -->所以()0F x >.选(A).方法2:用分部积分法.22sin sin 022sin sin 00220sin 2sin 20()sin cos cos cos (11)cos cos 0.tt t tt t F x etdt e d te ttde e e t dt e t dt ==-=-+=--+=>⎰⎰⎰⎰⎰ππππππ故应选(A).【评注】本题的方法1十分有代表性.被积函数在积分区间上可以取到正值与负值时,则常将积分区间划分成若干个,使每一个区间内,被积函数保持确定的符号,然后再作适当的变量变换,使几个积分的积分上下限相同,然后只要估计被积函数的正、负即可. (4)【答案】(D)【解析】方法1:三条直线交于一点的充要条件是方程组111111222222333333000a x b y c a x b y c a x b y c a x b y c a x b y c a x b y c++=+=-⎧⎧⎪⎪++=⇒+=-⎨⎨⎪⎪++=+=-⎩⎩ 有唯一解.将上述方程组写成矩阵形式:32A X b ⨯=,其中112233a b A a b a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是其系数矩阵,123c b c c -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.则AX b =有唯一解⇔[]()2r A r A b ==(方程组系数矩阵的秩与增广矩阵的秩相等且等于未知量的个数),即A 的列向量组12,αα线性相关.所以应选(D). 方法2:用排除法.(A)123,,ααα线性相关,当123ααα==时,方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则①式有无穷多解,根据解的个数与直线的位置关系.所以三条直线重合,相交有无穷多点,(A)不成立.(B)123,,ααα线性无关,3α不能由12,αα线性表出,方程组的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解得个数与直线的位置关系,所以一个交点也没有,(B)不成立.(C)秩123(,,)r ααα=秩12(,)r αα,当123(,,)r ααα=12(,)1r αα=时,三条直线重合,不只交于一点,与题设条件矛盾,故(C)不成立.由排除法知选(D). 评注:应重视线性代数中的几何背景.空间直线方程及平面方程其在空间的位置关系应与线性代数中的线性相关性、秩及方程组的解及其充要条件有机的结合起来. (5)【答案】(D)【解析】因X 与Y 独立,故3X 和2Y 也相互独立.由方差的性质,有(32)(3)(2)9()4()44D X Y D X D Y D X D Y -=+-=+=.【相关知识点】方差的性质:X 与Y 相互独立时,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.三、(本题共3小题,每小题5分,满分15分.)(1)【分析】三重积分的计算有三种方法:直角坐标中的计算,柱面坐标中的计算,球面坐标中的计算,其中柱面坐标中又可分先z 后(,)r θ,或先(,)r θ后z 两种方法.本题的区域Ω为绕z 轴旋转的旋转体,用柱面坐标先(,)r θ后z 方便.【解析】方法1:采用柱面坐标,先(,)r θ后z ,为此,作平面z z =.{}22(,,)|2,,z D x y z x y z z z =+≤=82220()zD I x y dv dz r rdrd θΩ=+=⋅⎰⎰⎰⎰⎰⎰(将直角坐标化为柱面坐标)82301024.3dz d dr ππθ==⎰⎰ 方法2:将Ω投影到xOy 平面,得圆域{}22(,)|16,D x y x y =+≤用柱面坐标先z 后(,)r θ,有22248422330021024()2(8).23r r I x y dv d dr r dz r dr ππθπΩ=+==-=⎰⎰⎰⎰⎰⎰评注:做二次积分或三次积分时,如果里层积分的结果不含外层积分变量,那么里、外层积分可以分别积分然后相乘即可.如本例方法2中20d πθ⎰可以单独先做.(2)【解析】方法1:写出C 的参数方程,然后用曲线积分化为定积分的公式.由平面上圆的参数方程易写出C 的参数方程为:()cos ,()sin ,()2cos sin x x t t y y t t z z t t t ======-+,其中2z x y =-+.由C 的方向知,C 在Oxy 平面上的投影曲线相应地也是顺时针的,于是t 从π2到0. 在把参数方程代入被积表达式之前,先用C 的方程将被积表达式化简,有222022220()()()(2)()(2)(2())()[cos (2cos sin )]cos (2())()0[2cos sin cos 2cos ]02cos 2.C CI z y dx x z dy x y dzx dx x z dy z dzx t dx t t t t tdt z t dz t t t t t dt tdt ππππππ=-+-+-=-+-+-=-+--++-=+--+=-=-⎰⎰⎰⎰⎰⎰⎰方法2:用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围有限部分,由L 的定向,按右手法则S 取下侧.原积分2SS dydzdzdx dxdy dxdy x y z z yx zx y∂∂∂==∂∂∂---⎰⎰⎰⎰. S 在xy 平面上的投影区域xy D 为221x y +≤.将第二类曲面积分化为二重积分得原积分22xyD dxdy π=-=-⎰⎰.这里因S 取下侧,故公式取负号.(3)【解析】已掌握新技术人数()x t 的变化率,即dxdt,由题意可立即建立初值问题 0(),(0).dxkx N x dtx x ⎧=-⎪⎨⎪=⎩ 把方程分离变量得,()dx kdt x N x =-111()dx kdt N x N x+=-.积分可得 11ln xkt c N N x=+-,1kNt kNt cNe x ce =+. 以0(0)x x =代入确定00x c N x =-,故所求函数为000.kNtkNtNx e x N x x e =-+四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1)【分析】求出曲面22:0S x y z +-=在点0(1,2,5)M -(位于S 上)处的切平面方程,再写出L 的参数方程,L 上的点的坐标应满足切平面方程,由此定出参数a 与b . 【解析】曲面S 在点0M 的法向量{2,2,1}{2,4,1}M n x y =-=--.切平面∏的方程是2(1)4(2)(5)0x y z --+--=,即 2450x y z ---=.将直线L 的方程改写成参数方程,(1) 3.y x b z a x ab =--⎧⎨=---⎩ 将它代入平面∏方程得24()(1)350x x b a x ab -----++-=,即(5)420a x b ab +++-=.解得5,2a b =-=-.(2)【分析】(sin )x z f e y =是由一元函数()z f u =与二元函数sin xu e y =复合而成的二元函数,它满足方程22222xz z e z x y∂∂+=∂∂. (*) 为了求()f u ,我们将用复合函数求导法,导出z x ∂∂,z y ∂∂,22z x ∂∂,22zy ∂∂与(),()f u f u '''的关系,然后由(*)式导出()f u 满足的常微分方程,从而求出()f u . 【解析】先用复合函数求导法导出22222222()()sin ,()()cos ,()sin ()sin ,()cos ()sin .x x x x x xz u z u f u f u e y f u f u e y x x y y z z f u e y f u e y f u e y f u e y xy∂∂∂∂''''====∂∂∂∂∂∂''''''=+=-∂∂将后两式代入(*)得 222222()()x xz z f u e e f u x y∂∂''+==∂∂,即 ()()0f u f u ''-=.这是二阶线性常系数齐次方程,相应的特征方程210λ-=的特征根为1λ=±,因此求得12()u u f u C e C e -=+,其中1C 、2C 为任意常数.五、(本题满分6分)【分析】通过变换将()x ϕ化为积分上限函数的形式,此时0x ≠,但根据0()limx f x A x→=,知 (0)0f =,从而1(0)(0)0f dt ϕ==⎰,由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续的定义来判定()x ϕ'在0x =处的连续性. 【解析】由题设0()limx f x A x→=知,(0)0,(0),f f A '==且有(0)0ϕ=.又 10()()()(0),xf u du x f xt dtu xtx xϕ==≠⎰⎰于是 02()()()(0),xxf x f u dux x xϕ-'=≠⎰由导数定义,有0200()()(0)()(0)limlimlim22xx x x f u du x f x Axx x ϕϕϕ→→→-'====⎰. 而 022000()()()()lim ()limlim lim x xx x x x xf x f u duf u du f x x x x xϕ→→→→-'==-⎰⎰ (0)22A AA ϕ'=-==, 从而知()x ϕ'在0x =处连续. 评注:对1()()x f xt dt ϕ=⎰作积分变量变换xt u =时,必附加条件0x ≠.因此,由01()()xx f u du x ϕ=⎰得到的()x ϕ'也附加有条件0x ≠.从而(0)ϕ'应单独去求.六、(本题满分8分)【解析】(1)先证n a 单调有界.显然0(1,2,)n a n >=,由初等不等式:对∀非负数,x y必有x y +≥,易知 1111()21(1,2,)22n n n a a n a +=+≥⋅==.再考察 121111(1)(1)1221n n n a a a +=+≤+=.因此,n a 单调下降且有界,存在极限lim n n a →+∞.(2)方法1:由n a 单调下降11110n n n n n a a a a a +++-⇒-=≥. ⇒原级数是正项级数.现适当放大,注意1n a ≥,得111101.n n n n n n n a a a a a a a ++++-≤-=≤- 11()nn n aa ∞+=-∑的部分和1111()n k k n k S a a a a ∞++==-=-∑,11lim lim n n n n S a a +→+∞→+∞⇒=-存在,可见级数11()n n n a a ∞+=-∑收敛.由比较判别法知,级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 方法2:令11nn n a b a +=-,利用递推公式,有 221221111lim lim 0141n n n n n n n n b a a b a a ρ+→∞→∞++-==⋅⋅=<+, 由比值判别法知级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 【评注】由证明中可见,有下述结论:11()nn n aa ∞+=-∑收敛⇔lim n n a →∞存在.在考研题中多次用到这个知识点,考生可倍加注意.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)【分析】要求0Bx =的解空间的一个标准基,首先必须确定此解空间的维数以及相应个数的线性无关的解.【解析】(1)因秩()2r B =,故解空间的维数()422n r B -=-=,又因12,αα线性无关,12,αα是方程组0Bx =的解,由解空间的基的定义,12,αα是解空间的基.用施密特正交化方法先将其正交化,令:[][][][]1121221111,1,2,3,(,)521,1,4,11,1,2,32,1,5,3.(,)153TT T T βααββαβββ===-=---=--将其单位化,有]]1212121,1,2,3,2,1,5,3T T ββηηββ====--, 即为所求的一个标准正交基.评注:此题是一个基本计算题,只要求得一个齐次方程组的基础解系再标准正交化即可. 由于解空间的基不唯一,施密特正交化处理后标准正交基也不唯一.已知条件中12,,αα3α是线性相关的(注意12323ααα-=),不要误认为解空间是3维的.(2)(I)设ξ是矩阵A 的属于特征值0λ的特征向量,即0,A ξλξ=021*******,1211a b λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦即 0002125312a b λλλ--=⎧⎪+-=⎨⎪-++=-⎩0130,a ,b λ⇒=-=-=. (II)将(1)解得的30a ,b =-=代入矩阵A ,得212533102A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦. 其特征方程为3212533(1)0,102E A λλλλλ---=-+-=+=+知矩阵A 的特征值为1231λλλ===-.由于 312()5232101r E A r --⎡⎤⎢⎥--=--=⎢⎥⎢⎥⎣⎦, 从而1λ=-只有一个线性无关的特征向量,故A 不能相似对角化. 评注:A 相似于对角阵⇔A 的每个i r 重特征值有i r 个线性无关的特征向量.八、(本题满分5分)【解析】由于ij B E A =,其中ij E 是初等矩阵10111ij i E j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)因为A 可逆,0A ≠,故0ij ij B E A E A A ==⋅=-≠,所以B 可逆.(2)由ij B E A =,知11111().ij ij ij ij AB A E A AA E E E -----====评注:①本题考查初等矩阵的概念与性质,要知道初等变换与初等矩阵左右乘的关系以及初等矩阵的逆矩阵的三个公式.有的考生写不出初等矩阵ij E ,或将B 写成ij B AE =,或不知道1ij ij E E -=,或认为A B =±,而不知道B A =-等,这些要引起注意.②经初等变换矩阵的秩不变,易知()()r B r A n ==,也可证明B 可逆.九、(本题满分7分)【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .这道题中经过三个交通岗,在各个交通岗遇到红灯的事件是独立的,概率都为25,相当于做了3次独立重复试验,试验的结果只有两个(要么遇到红灯(成功),要么不遇到(失败)),每次成功的概率都为25,X 表示遇到红灯的次数,相当于做了3次试验成功的次数,故2~(3,)5X B . 【解析】由题意知:2~(3,)5X B ,由二项分布的分布律的定义,有{}33(1),0,1,2,3.k kk p X k C p p k -==-=再由离散型随机变量分布函数的定义,有()kk xF x p≤=∑,(1)当0x <时,()0kk xF x p≤==∑;(2)当01x ≤<,{}300300322327()0()(1)555125k k xF x p p P X C -≤⎛⎫=====-== ⎪⎝⎭∑;(3)当12x ≤<,{}{}1131013272281()01()(1)12555125k k xF x p p p P X P X C -≤==+==+==+-=∑; (4)当23x ≤<,{}{}{}012()012kk xF x pp p p P X P X P X ≤==++==+=+=∑223238122117()(1)12555125C -=+-=; (5)当3x ≥时 {}{}{}{}0123()01231kk xF x pp p p p P X P X P X P X ≤==+++==+=+=+==∑.因此X 的分布函数为:0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 2~(3,)5X B 的数学期望为26355EX np ==⋅=.【相关知识点】1.二项分布分布律的定义:{}(1),0,1,,k kn k n P X k C p p k n -==-=.2.离散型随机变量分布函数的定义:{}()i ix xF x P X x p ≤=≤=∑.3.二项分布~(,)X B n p 的期望为EX np =.十、(本题满分5分)【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望);最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数. 【解析】(1)矩估计 由期望的定义:1110()()(1)(1)E X xf x dx x x dx x dx θθθθ+∞+-∞==+=+⎰⎰⎰1211001(1)(1)22x x dx θθθθθθθ+++=+=+=++⎰.样本均值11n i i X X n ==∑,用样本均值估计期望有EX X =,即12X θθ+=+,解得未知参数θ的矩估计量为:^21.1X Xθ-=- (2)最大似然估计设 12,,...,n x x x 是相应于样本12,,...,n X X X 的样本值,则样本的似然函数为:1(1)01(1,2,,)0 .nn ii i x x i n L θθ=⎧+<<=⎪=⎨⎪⎩∏其他当01i x <<时,10ni i x θ=>∏,又1θ>-,故10θ+>,即()10nθ+>.所以()0L θ>.111ln ln (1)ln(1)ln ln(1)ln n n nn i i i i i i L x n x n x θθθθθθ===⎡⎤=+=++=++⎢⎥⎣⎦∑∑∏.(由于ln L 是单调递增函数,L 取最大与ln L 取最大取到的θ是一致的,而加对数后能把连乘转换成累加,这样求导,找极值比较方便)1ln ln 1ni i d L nx d θθ==++∑. 令1ln ln 01n i i d L nx d θθ==+=+∑, 解得θ的最大似然估计值为^11ln nii nxθ==--∑,从而得θ的最大似然估计量为:^11ln nii nXθ==--∑.。
【考研数学】1997年一数一真题、标准答案及解析
1997 年全国硕士研究生入学统一考试理工数学一试题详解及评析一、填空题1 3 sin x + x cos2x ( 【 1)lim=.( + ) ( + ) x → 01 cos x ln 1 x 3答】. 213 sin x + x cos23 sin x 1 1x lim= lim + lim x cos【 详解】 原式= x →02x2 x →0 x x →0 2x3 = 3 + 0 = . 2 2∞∞∑∑+( − )n 1 n( 【 【 2)设幂级数a x n的收敛半径为 3,则幂级数 na x 1 的收敛区间为 .n n =0n =1(− )答】2,4 . ∞∑ na xn 1 的收敛半径仍为 3,故−详解】 根据幂级数的性质,逐项求导后,得nn =1∞∞∑ ( − )n +1= ( − ) ∑( − )n −2na x 1n2nax 1 x 1nn =1n =1的收敛区间为 x −1 < 3, 即(−2,4 .)( 3)对数螺线 ρ = e θ在点处切线的直角坐标方程为 .π【 答】 x + y = e 项解 1】2.【 由于 x = ρ cos θ, y = ρ sin θ, 螺线方程 ρ =e θ 可化为⎧ ⎨ ⎩ = θθ x e cos , y e sin . = θ θdy dxsin θ + cos θcos θ−sin θπ π|θ =π |θ =π由于= = −1,且当θ = 时, x = 0, y = e 2.222故所求切线方程为ππ y − e1 x 0 , = − ⋅( − ) 即 x + y = .22【 详解 2】螺线方程 ρ = e θ可化为隐函数方程:yln x 2 + y 2 = arctan ,x⎛ π⎞ ' (0)= −1,故所求切线方程为 y利用隐函数求导法,得在点⎜0,e 2⎟ 处的导数为⎝ ⎠π π y − e1 x 0 , = − ⋅( − ) 即 x + y =. 22 ⎡ 1 2 t −2⎤⎢ ⎥ ( 4)设 A = 4 3 , B 为三阶非零矩阵,且 AB = 0,则 t= .⎢ ⎥ ⎢ −1 ⎥ 13 ⎣ ⎦【 【答】 -3.详解】 由于 B 为三阶非零矩阵,且 AB = 0,,可见线性方程组 Ax = 0存在非零解,故 1 2 t−23 = 0 ⇒ t = −3. A = 43 −1 1(5)袋中有 50 个乒乓球,其中 20 个是黄球,30 个是白球,今有两人依次随机地从袋中各取一 球,取后不放回,则第二个人取得黄球的概率是 .2【 答】. 5【 详解】 设 A = {第一个人取出的为黄球}, B = {第一个人取出的为白球},C = {第二个人取 出的为黄球}. 2 5 3 5 19 49 2049( ) =P A( ) = , P B ( ) = ( ) = 则, P C | A , P C | B . 由全概率公式知:( )= ( )⋅( )+ ( )⋅( )P C P A P C | AP B P C | B 2 5 9 3 20 19 + ×49 5 49 492= . 5= × = 二、选择题⎧ ⎪ xy+ y ,(x , y )≠ (0,0 ) ) ( )= x 2 2 ( ) ,在点 0,0 处 ( 1)二元函数 f x , y ⎨⎪ 0 , (x , y )= (0,0 ⎩( A )连续,偏导数存在. C )不连续,偏导数存在. (B )连续,偏导数不存在. (D) 不连续,偏导数不存在.( 【 】【 【 答】 应选(C ).详解】 由偏导数的定义知( ++ )− ( )f 0 x ,0 f 0, 0(0, 0)= lim= 0,f ' x +x+ x →0而当 y = kx ,有xy + x ⋅kx k1+ k lim= lim = ,(x ,y ) (0,0) → x 2 y 2 x → 0 x 2 + k 2 x 2 2k + k xy+ y ( ) ( ) 不存在,因而 f x , y 在点 0,0 处不连续, 2当 k 不同时,不同,故极限 lim 1 2 ( )→(0,0) x2 x ,y 可见,应选(C ). ∫ b( ) f x dx ,[ ] ( ) > f x 0, f ( ) < x ( ) > x = (2)设在区间 a ,b 上'0, f ' 0 ,令 S 1 a 1( )( −) = ⎡ ( )+ ( )⎤( − ),则S 2 f b b a ,S = f a f b b a ⎣ ⎦ 3 2( A ) S < S < S (B) S < S < S213.1 2 3.(C) S < S < S(D) S < S < S231.3 1 2. 【 】【 答】 应选(B ).【 详解】( ) > ' ( ) < '( )>= ( ) [ ]0 知,曲线 y f x 在 a ,b 上单调减少且是凹曲线弧,于由 f x 0, f x 0, f x ( )> ( )是有 f x f b ,( )− ( )f b f a ( )< ( )+( − ) < <x a ,a x b .f x f a b − a 从而∫ b( ) > ( )( − ) = 2S 1 = = f x dx f b b a S ,a⎡ ⎢ ⎣ ( )− ( ) f b f a ⎤ ∫ b ( ) < f x dx∫ b ( )+ f a ( − ) S 1 x a dx ⎥ b − a a a ⎦ 12 = ⎡ ( )+ ( )⎤( − ) = f a f b b a S . ⎣ ⎦3 即S < S < S ,故应选(B ). 2 1 3x +2π( ) = (3)设F x ∫ e sin t sin tdt ,则F (x ) x( A ) 为正常数. C )恒为零.(B )为负常数. (D )不为常数.( 【 】【 答】 应选(A ).【详解】 由于esin tsin t 是以2π 为周期的,因此x +2π 2π( ) = F x ∫ e sin tsin tdt = ∫ e sin tsin tdtx 02π = = −∫e sin t d cos t2π∫0 +cos 2t ⋅e sin t dt > 0.故应选(A ).⎡ a ⎤ ⎡b ⎤ ⎡c ⎤1 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ( 4)设α = a ,α = b ,α = c , 则三条直线 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 12 2 23 2 ⎢ ⎣ ⎥ ⎦⎢ ⎥ ⎢ ⎥ c 3a 3 ⎣b 3 ⎦ ⎣ ⎦a x +b y +c = 0,a x + b y + c = 0,a x + b y + c = 0(其中a i2+ b i ≠ 0,i =1,2,3)交于一21 1 12 2 23 33 点的充要条件是( ( A )α ,α ,α 线性相关.(B )α ,α ,α 线性无关.1231 2 3 (α α α ) (α α ) α α ,α 线性相关, , 线性无关. α α 12C )秩r , , =秩r , (D ) , 1 2 3 1 2 1 2 3【 】【 【 答】 应选(D).详解】 由题设,三条直线相交于一点,即线性方程组⎧ ⎪ ⎨ a x + b y + c = 011 1 a x + b y + c = 02 22 ⎪ a x + b y + c = 0 ⎩3 3 3(α α α ) (α α ) , =2. 1 2 有唯一解,其充要条件为秩秩 r , , =秩r 1 2 3 ( ( ( A )、(C )必要但非充分;(B )既非充分又非必要;只有(D )为充要条件,故应选(D ). 5)设两个相互独立的随机变量 X 和Y 的方差分别为 4 和 2,则随机变量3X − 2Y 的方差是 A )8.(B )16.(C )28.(D )44.【 】【 【 答】 应选(D ). ( −) = 2 ( )+ 2 ( ) = × + × =详解】 D 3X 2Y 3 D X 2 D Y 9 4 4 2 44. ⎧ 2 = 2z y ∫ ∫∫(x 2)三、(1)计算 I =+ y 2 dV , 其中 Ω 为平面曲线 ⎨绕 z 轴旋转一周形成的曲面 x = 0⎩ Ω与平面 z = 8 所围成的区域.【详解】 利用柱面坐标,积分区域可表示为⎧ 2⎫ r Ω = (θ ⎨,r , z | 0 ) ≤θ ≤ 2π,0 ≤ r ≤ 4, ≤ ≤ z 8⎬,⎩ 2 ⎭ 于是⎛ ⎜ ⎝2⎞r 2π484∫ ∫ rdr ∫ ∫ 0I = d θ r 2dz = 2π r 38− dr ⎟ r 22 0⎠21 024π=. 3⎧ 2 + y =1 2 x v ∫ ( − ) + ( −) + ( − )( 2)计算曲线积分z y dx x z dy x y dz ,其中C 是曲线 ⎨,x − y + z = 2⎩ C从 z 轴正向往 z 轴负向看,C 的方向是顺时针的. 【详解 1】令 x = cos θ, y = sin θ, 则 z = 2 − x + y = 2 − cos θ + sin θ由于曲线C 是顺时针方向,其起点和终点所对应θ 值分别为θ = 2π,θ = 0. 于是v ∫ ( − ) + ( − ) + ( − ) z y dx x z dy x y dz C∫ 02 2cos 2θ −1⎤d θ − ⎡ (sin θ + cos θ )− ⎣= ⎦ 2 π| 0= = − ⎡ (cos θ + sin θ )−sin 2θ −θ ⎤ 2 ⎣ ⎦ 2 π −2π.【 详解 2】设 ∑ 是平面 x − y + z = 2 以 C 为边界的有限部分,其法向量与 Z 轴负向一致, D 为 ∑ 在 xyxOy 面上的投影区域.记F = (z − y )i + (x − z ) j + (x − y )k , i j ∂ k∂∂ 则rotF= 2k . ∂x ∂y ∂z z − y x − z x − y根据斯托克斯公式知v ∫ ( − ) + ( − ) + ( −) = ∫∫z y dx x z dy x y dz rotFdSC∑∫ ∫ ∫∫= 2dxdy = − 2dxdy ∑Dxy= −2π.( 3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为 N ,在t = 0时刻已掌握新技术的人数为 x , 在任意时刻t 已掌握新技术的人数为 x t (将 x t 视为( ) ( ) 0 连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数k > 0, 求 x t . ( )⎧ dx= ( − ) kx N x ⎪ 【 详解】 由题设,有⎨ dt , ⎪ ⎩x (0)= x 0 dx( − ) x N x 原方程可化为= kdt ,NCe kNt 积分,得x = , 1 + Ce kNtNx e kNt x =代入初始条件,得N − x + x e kNt0 0 ⎧ x + y + b = 0 四、(1)设直线 l : ⎨在平面 π 上,而平面 π 与曲面 z = x + y 2 相切于点2 x + ay − z −3 = 0⎩( − ) 1 , 2,5 ,求 a 、b 之值.【 详解 1】 令 F x , y , zx 2 y 2z ,则 F ( ) = + − '= 2x , F'= 2y , F' = −1.在点(1,−2, 5)处曲面得法向量为xy z n2, 4, 1= { − − },于是切平面方程为( − )− ( + )−( − ) = x 1 4 y 2 z 5 0,2 即 2x − 4y − z −5 = 0. ⎧ x + y + b = 0由l : ⎨, x + ay − z −3 = 0 ⎩ 得= − + (− − ) x −b , z x 3 a x b 代入平面π 方程,得2 x + 4x + 4b − x + 3+ ax + ab −5 = 0,5+ a = 0, 4b + ab − 2 = 0.a = −5,b = −2有由此解得 【 详解 2】由方法一知,平面π 方程为 2π − 4y − z −5 = 0.⎧ x + y + b = 0过直线l : ⎨的平面束为 x + ay − z −3 = 0⎩ + + +κ ( + −− ) = x y bx ay z 3 0, ( + λ) + ( + λ) − λ + − λ =0.即 1 x 1 a z b 3 y 其与平面π 重合,要求1 + λ 1+ a λ −λ b −3λ= = = ,2−4 −1 −5 解得λ =1, a = −5,b = −2∂ ∂ 2 z ∂ 2 z ( ) = ( x)+ = e z , 求 2x( 2)设函数 f u 具有二阶连续导数,而 z f e sin y 满足方程 x 2 ∂y2 ( )f u .【 详解】∂z ∂z ∂y = f ' (u )e (u )e (u )e xsin y , = f'(u )e x cos y ,y ,sin y + f ' (u )e 2x cos ∂x∂ ∂ ∂ ∂2 z= = f ' x sin y + f ' (u )e 2x sin 2x 2 2 z − f ' x2y ,y 2∂ ∂ 2 z ∂ 2 z + = e 2xz ,得'(u )− f (u )= 0.f代入方程 x 2 ∂y2 解此方程得( ) = u+ −uf u C eC e (其中C ,C 为任意常数). 1 2 1 2( ) f x ∫1( ) ( ) x 并讨论 'ϕ (x )( ) ϕ ( ) = = A ( A 为常数),求ϕ ' 五 、设 f x 连续, x f xt dt ,且 lim 0x → 0x 在 x = 0 处的连续性. ( )f x = A 知, f 0 0, f 0 ( ) = ' ( ) = A ,且有 0 0. ϕ ( ) =【 详解】 由题设 limx → 0x x∫ ( )f u du ∫ 1( ) ( ≠ ) x 0 ,又ϕ ( ) = x f xt dtu xt =x 0x( )− ∫ ( ) xf x f u du 于是 ϕ ' (x ) = 0 (x ≠ 0) x2 由导数定义,有∫x( ) f u du ( ) f x Aϕ '(0)= lim= lim= . 22x 2x → 0x x → 0而xx( )− ∫ ( ) ∫ ( ) xf x f u du ( ) f u du f x lim ϕ ' (x )= lim 0 2 = lim − lim 0 2x → 0 x → 0 x x → 0 x x →0 x A A= A − = = ϕ ' (0)2 2可见,ϕ(x )在 x = 0 处的连续性.' ⎛ ⎞ 1 2 1 ( = ") 证明: 六、设 a 1 2,a n +1= = ⎜a ⎝+ ⎟, n 1, 2, , n a n ⎠( 1) lim a 存在; nn →∞∞⎛ a n ⎞∑ ( 2)级数 ⎜ − ⎟ 收敛. 1 a n +1⎝ ⎠n =1 【 ( 详解】 1)因为⎛ ⎞− n 2 1 1 1 a a n +1 − a = ⎜a +⎟ − a = , n n n 2 a n 2a n⎝ ⎠ ⎛ ⎞ 1 1 1而a n +1 = ⎜a + ⎟ ≥ a ⋅ =1, n n2 a n a n⎝ ⎠ 于是有 a n +1 − a ≤ 0,故数列 a 单调递减且有下界,所以 lim a 存在. { } n n n n →∞(2)方法一:ana − a nn +1≤ a − a .nn +1 由(1)知 0 ≤ −1= a n +1a n +1∞∞∑∑ ( − ) = ( − a k +1 ) = − 由于级数a na n +1 的部分和数列 S n a k a 1 a n +1 的极限 lim S 存在,可见 nn →∞n =1k =1∞∞⎛ a ⎞ ∑ ∑ ( − ) − a n a n +1 收敛,由比较判别法知,级数⎜ ⎝n1 ⎟ 也收敛. 级数an +1⎠ n =1n =1 方法二:an令 b = n−1,利用递推公式,有an +1bn +1b n1 a = lim ⋅2 n 2 +1 a n 2 −1ρ = lim⋅ = 0 <1, +1 a n 2 n →∞ n →∞ 4 a n +1∞⎛ a ⎞ ∑ n− ⎟ 也收敛. 1 由比值判别法知级数⎜ ⎝ a n +1⎠ n =1 七、(1)设 B 是秩为 2 的5×4 矩阵,α = (1,1, 2, 3 ,) T α = (− 1,1, 4, 1 , −) T5, 1, 8,9 α = ( − − 3) T1 2 是齐次方程组 Bx = 0 的解向量,求 Bx = 0 的解空间的一个标准正交基. ( )= − ( )= − =详解】 因秩 r B 2, 故解空间的维数为: 4 r B 4 2 2,【又α ,α 线性无关,可见α ,α 是解空间的基. 1 2 1 2 先将其正交化,令:⎡ ⎢ ⎢ ⎢ 3⎤−⎥ 4 2 = ⎢ 3 ⎥ ⎡ ⎢ ⎢ 1⎤ ⎡−1⎤ ⎡1⎤ ⎥ ⎥ 1 ⎢ ⎥ 1 ⎢ ⎥ ⎥ (α β ) , 1 1 ⎥ ⎢ ⎥ ⎢ ⎥ − β = α = ,β = α − 2 1 β = 1 1 1 ⎢ ⎥ 2 2 (β β ) ⎢ ⎥ ⎢ ⎥ ⎢ ⎢ ⎢ ⎥ ⎥2 , 43 2 1 1 10 3 ⎥ ⎢ ⎣⎥ ⎢ ⎥ ⎢ ⎥ 3⎦ ⎣−1⎦ ⎣3⎦ ⎢ ⎥ − 2 ⎣ ⎦再将其单位化,令:⎡ ⎢ ⎢ 1⎤⎡−2⎤ ⎥1 ⎢ ⎢ ⎥ ⎥ ⎥⎥β1 β1 1 1 β2 β2 1 1 ⎥ η = 1 = ,η = = ⎢ ⎥ 2 ⎢ 5 2 39 5 ⎢ ⎥ ⎢ ⎣3⎦ ⎣−3⎦ 即为所求的一个标准正交基.⎡ ⎢ 1 ⎤⎡ 2 −1 2 ⎤⎥ ⎢ ⎥ ⎥ (2)已知 ζ = 1 是矩阵 A = 5 a b 3 − ⎥2的一个特征向量. ⎢ ⎥ ⎢ ⎢ ⎣ − ⎥ ⎢− ⎣ 1 1 ⎦ ⎦ (I)试确定参数 a ,b 及特征向量ζ 所对应的特征值;问 A 能否相似于对角阵?说明理由.(II)【 详解】 (I )由题设,有 A ζ = λ ζ ,即⎡ ⎢ ⎢2 −1 2 ⎤ ⎡1⎤ ⎡ 1 ⎤⎥ ⎢ ⎥ ⎢ ⎥ 5 a b 3 1 = λ 1 , 0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎣−1 2 1 − ⎥ ⎢ ⎥ ⎢− ⎥ 1 ⎦ ⎣ ⎦ ⎣⎦ ⎧ ⎪ 2 −1− 2 = λ0 ⎨ 5+ a −3 = λ 也即 0 ⎪ − 1+ b + 2 = −λ0 ⎩解得a = −3,b = 0,λ = −1.( I I )由⎡ ⎢ 2 −1 2 ⎤λ − 2 1λ +0 −2⎥ A = 5 a b 3 − ⎥2,知 λ − E A = −5 3 −31 , = (λ + )3 ⎢ ⎥⎦ ⎢ −1 λ + 2 1⎣ 可见 λ = −1为 A 的三重根,但秩 r E A2, 从而(− − ) = λ = −1对应的线性无关特征向量只有3− r (− −)= 个,故 A 不可对角化.E A1 八、设 A 是 n 阶可逆方阵,将 A 的第i 行和第 j 行对换后得到的矩阵为 B .( 1) 证明B 可逆;AB − .1 ( 【 ( 2) 求 详解】 ( ) 1) 记E i , j 是由n 阶单位矩阵的第i 行和第 j 行对换后得到的初等矩阵,则( ) ,于是有 B = E (i , j ) A = − A ≠ 0.故B 可逆E i , j A B = − 1 AB − 1 = A ⎡E (ij ) A ⎤ = ⎦AA −1 E −1 (i , j ) E − (i , j )= E (i , j ). = 1 ( 2) ⎣ 九、从学校乘汽车到火车站的途中有 3 个交通岗,假设再各个交通岗遇到红灯的事件是象话2 独立的,并且概率都是 , 设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数 5 和数学期望.⎛ ⎝ 2 ⎞ 5 ⎠【 详解】 X 服从二项分布B ⎜3, ⎟,其分布律为k 3−k ⎛ ⎝ 2 ⎞ ⎛ 2 ⎞ { P X k = } =C 3k ⋅ ⋅ 1− ,k = 0,1, 2, 3. ⎜ ⎟ ⎜ ⎟ 5 ⎠ ⎝ 5 ⎠ 因此,X 的分布函数为 ⎧ ⎪ ⎪ 0, x < 0 7 , , , 0 ≤ x <1 1≤ x < 2⎪ ⎪125 1 ( )= { ≤ } = F x P X x ⎨ ⎪ ⎪ ⎪ 8 1 25 117 2 ≤ x < 3 ⎪ ⎩125 2 6 5( )= ⋅ = X 的数学期望为 E X 3 . 5 十、设总体X 的概率密度为⎧ ⎨ ⎩(θ + ) x ,0 < x <1 θ 1 ( ) = f x 0,其他 其中θ > −1是未知参数,x , x ,", x 是来自总体X 的一个容量为n 的简单随机样本,分别 1 2 n用矩估计法和极大似然估计法求θ 的估计值.详解】 总体 X 的数学期望为【 θ +1 θ + 2+ ∞ 1 ( )= ∫ ( ) = ∫ (θ + ) θ +1 E X xf x dx 1 x dx = . −∞ 0θ +1 θ + 2 2X −1 ^ 令 设 = X ,得参数θ 的矩估计量为θ = . 1− X x , x ,", x 是相应于样本 X , X ,", X 的一组观测值,则似然函数为 1 2 n 1 2 n⎧ ⎪ θ ⎛ n ⎞ ∏ " (θ + ) n < < ( = )1 x ,0 x i 1 i 1, 2,3, ,n ⎜ ⎟ i L = ⎨ ⎝ 0 i =1 ⎠ ⎪ ⎩ 其他. 当 0 x 1 i 1, 2,3, ,n < < ( = " )时, L > 0 且i n ∑ ln L = n ln (θ + )+θ 1 ln x ii =1d ln L d θ n θ +1 n ∑ 令 = + ln x = 0,i i =1^ n得θ 的极大似然估计值为 θ = −1− n ∑ ln x ii =1^ n从而 θ 的极大似然估计值为 θ = −1− n ∑ ln x ii =1。
复旦数学专业真题试卷
复旦数学专业真题试卷由于我无法提供真实的复旦数学专业真题试卷,我可以为你模拟一份数学专业的试卷,以供学习和练习之用。
请注意,这份试卷是虚构的,仅用于示例。
复旦大学数学专业模拟试卷一、选择题(每题2分,共20分)1. 下列哪个选项是微积分的基本定理?A. 泰勒公式B. 拉格朗日中值定理C. 费马引理D. 牛顿-莱布尼茨公式2. 线性代数中,下列哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 行阶梯矩阵D. 任意矩阵3. 集合{1, 2, 3}的子集个数是多少?A. 3B. 4C. 7D. 84. 函数f(x) = x^2 + 3x + 2在点x=-1处的导数是:A. -2B. -1C. 0D. 15. 欧拉公式e^(iθ) = cosθ + isinθ中,e的值是多少?A. 1B. 2.71828C. πD. √2...二、填空题(每题2分,共10分)1. 根据泰勒公式,函数f(x) = sinx在x=0处的泰勒展开式为:______。
2. 矩阵A = [a_{ij}]_{n×n}的行列式记作|A|,若|A| = 0,则称矩阵A为______。
3. 已知函数f(x) = ln(x),求其在x=1处的导数f'(x),结果为______。
4. 给定一个实数序列{a_n},如果对于任意的ε > 0,存在正整数N,使得当n > N时,|a_{n+1} - a_n| < ε,则称序列{a_n}是______。
5. 根据傅里叶级数,周期函数f(x)可以表示为______。
...三、简答题(每题10分,共30分)1. 简述拉格朗日插值法的基本原理,并给出一个具体的例子。
2. 解释什么是特征值和特征向量,并说明它们在矩阵理论中的重要性。
3. 描述什么是连续性、可导性、可积性,并给出它们之间的关系。
...四、计算题(每题15分,共30分)1. 计算下列不定积分:∫(3x^2 - 2x + 1) dx2. 求解下列线性方程组:\[\begin{bmatrix}2 & -1 &3 \\-1 & 4 & -2 \\3 & -2 & 5\end{bmatrix}\begin{bmatrix}x \\y \\z\end{bmatrix}=\begin{bmatrix}5 \\-1 \\6\end{bmatrix}\]3. 证明:对于任意的实数x,不等式e^x ≥ x + 1成立。
]1997考研数二真题及解析
四、(本题满分 8 分.)
2x1 + λ x2 − x3 = 1 λ 取何值时,方程组 λ x1 − x2 + x3 =2 无解,有惟一解或有无穷多解?并在有无穷
4x1 + 5x2 − 5x3 = −1
多解时写出方程组的通解.
五、(本题满分 8 分)
设曲线 L 的极坐标方程为 r = r(θ ) , M (r,θ ) 为 L 上任一点, M 0 (2, 0) 为 L 上一定点,
α1 1 2 −1 1
α 2
=
2
0
t
0
,
α3 0 −4 5 −2
应有
1 2 −1 1 2 −1 1 2 −1 2 0 t = 0 −4 t + 2 = 0 −4 t + 2 = 0 , 0 −4 5 0 −4 5 0 0 3 − t
5
解得 t = 3 .
2 − x2, x < 0 (B)
2 + x, x ≥ 0
2 − x2, x < 0 (C)
2 − x, x ≥ 0
2 + x2, x < 0 (D)
2 + x, x ≥ 0
Born to win
()
三、(本题共 6 小题,每小题 5 分,满分 30 分.)
4x2 + x −1 + x +1
lim
x → x0
f (x) =
f (x0 ), 则称函数
f (x) 在点
x0 连续.
2.如果函数在
x0
处连续,则有
l= im f (x)
x→x0 +
l= im f (x)