高二数学圆锥曲线综合测试题(使用)含答案!
高二数学圆锥曲线综合测试题(选修1-1&2-1)含答案!
高二数学圆锥曲线综合测试题(选修1-1&2-1)(考试时间:120分钟,共150分)说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为36分,试卷Ⅱ分值为64分。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( ) A.|a |4 B.|a |2 C .|a | D .-a 22.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |= ( )A .6 B.2 C .2 D .不确定3.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.1164.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为 ( ) A .1 B .5 C .4 2 D .3+2 2 5.若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255B.32C.233D .26.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4)7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b8.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1716B.1516 C .-1516 D .-17169.已知点A 、B 是双曲线x 2-y 22=1上的两点,O 为坐标原点,且满足OA ·OB =0,则点O 到直线AB 的距离等于 ( ) A. 2 B.3 C .2 D .2 210.(2009·全国卷Ⅱ)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .611.(2009·四川高考)已知双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y=x ,点P (3,y 0)在该双曲线上,则1PF ·2PF = ( ) A .-12 B .-2 C .0 D .412.(2009·天津高考)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCF S △ACF = ( )A.45B.23C.47D.12第Ⅰ卷二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________. 14.(2009·福建高考)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.15.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.16.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF =FB ,BA ·BC =48,则抛物线的方程为______________.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.18.(本小题满分12分)过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B 点,求线段AB的中点M的轨迹方程.19.(本小题满分12分)(2010·南通模拟)已知动圆过定点F (0,2),且与定直线L :y =-2相切.(1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .20.[理](本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A ,B 两点,记O 为坐标原点.(1)求OA ·OB 的值; (2)设AF =λFB ,当△OAB 的面积S ∈[2, 5 ]时,求λ的取值范围.20.[文](本小题满分12分)已知圆(x -2)2+(y -1)2=203,椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的离心率为22,若圆与椭圆相交于A 、B ,且线段AB 是圆的直径,求椭圆的方程.21.(本小题满分12分)已知A 、B 、D 三点不在一条直线上,且A (-2,0),B (2,0),|AD |=2,AE =12(AB +AD ). (1)求E 点的轨迹方程;(2)过A 作直线交以A 、B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.22.[理](本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM交曲线C 于另外一点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值.[文](本小题满分14分)设椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,点C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.高二数学圆锥曲线章节测试题(选修1-1&2-1)答案与解析:1、解析:由已知焦点到准线的距离为p =|a |2.答案:B2、解析:由题知b -a5-4=1,∴b -a =1.∴|AB |=(5-4)2+(b -a )2= 2.答案:B3、解析:依题意得e =2,抛物线方程为y 2=12p x ,故18p =2,得p =116.答案:D4、解析:由(x -2)2+(y -1)2=13,得圆心(2,1), ∵直线平分圆的周长,即直线过圆心. ∴a +b =1.∴1a +2b =(1a +2b )(a +b )=3+b a +2ab ≥3+22, 当且仅当b a =2ab ,即a =2-1,b =2-2时取等号,∴1a +2b 的最小值为3+2 2. 答案:D5、解析:由a 2+1=4,∴a =3, ∴e =23=233.答案:C6、解析:如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x>3). 答案:C7、解析:由已知b a =55e ,∴b a =55×ca ,∴c =5b ,又a 2+b 2=c 2, ∴a 2+b 2=5b 2,∴a =2b . 答案:C8、解析:准线方程为y =116,由定义知116-y M =1⇒y M =-1516.答案:C9、解析:本题是关于圆锥曲线中的点到线的距离问题,由OA ·OB =0⇒OA ⊥OB ,由于双曲线为中心对称图形,为此可考查特殊情况,令点A 为直线y =x 与双曲线在第一象限的交点,因此点B 为直线y =-x 与双曲线在第四象限的一个交点,因此直线AB 与x 轴垂直,点O 到AB 的距离就为点A 或点B 的横坐标的值,由⎩⎪⎨⎪⎧x 2-y 22=1y =x ⇒x = 2.答案:A10、解析:双曲线的渐近线方程为y =±12x 即x ±2y =0,圆心(3,0)到直线的距离d =|3|(2)2+1= 3. 答案:A11、解析:由渐近线方程y =x 得b =2, 点P (3,y 0)代入x 22-y 2b 2=1中得y 0=±1.不妨设P (3,1),∵F 1(2,0),F 2(-2,0), ∴1PF ·2PF =(2-3,-1)·(-2-3,-1) =3-4+1=0. 答案:C12、解析:如图过A 、B 作准线l :x =-12的垂线,垂足分别为A 1,B 1, 由于F 到直线AB 的距离为定值.∴S △BCF S △ACF =|BC ||CA |. 又∵△B 1BC ∽△A 1AC . ∴|BC ||CA |=|BB 1||AA 1|, 由拋物线定义|BB 1||AA 1|=|BF ||AF |=2|AF |.由|BF |=|BB 1|=2知x B =32,y B =-3,∴AB :y -0=33-32(x -3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF |=|AA 1|=52.故S △BCF S △ACF =|BF ||AF |=252=45. 答案:A 13、解析:(x 0-a )2+(y 0-b )2可看作点(x 0,y 0)与点(a ,b )的距离.而点(x 0,y 0)在直线ax +by =0上,所以(x 0-a )2+(y 0-b )2的最小值为点(a ,b )到直线ax +by =0的距离|a ·a +b ·b |a 2+b 2=a 2+b 2. 答案:a 2+b 2 解析:由焦点弦|AB |=2p sin 2α得|AB |=2psin 245°, ∴2p =|AB |×12,∴p =2.答案:214、解析:所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P ,使|PF 1|+|PF 2|最小,利用对称性可解. 答案:x 25+y 24=115、解析:设抛物线的准线与x 轴的交点为D ,依题意,F 为线段AB 的中点,故|AF |=|AC |=2|FD |=2p , |AB |=2|AF |=2|AC |=4p , ∴∠ABC =30°,|BC |=23p ,BA ·BC =4p ·23p ·cos30°=48, 解得p =2,∴抛物线的方程为y 2=4x . 答案:y 2=4x16、解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2.解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0. 17、解:法一:设点M 的坐标为(x ,y ), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k P A ·k PB =-1.而k P A =4-02-2x ,k PB =4-2y 2-0,(x ≠1),∴21-x ·2-y 1=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程 x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM |=|AB |.而|PM|22(2)(4)x y -+- |AB 22(2)(2)x y +, ∴2222(2)(4)44x y x y -+-=+化简,得x +2y -5=0即为所求的轨迹方程. 法三:设M 的坐标为(x ,y ),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO |=|MP |,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2), ∴y -2=-12(x -1), 即x +2y -5=0即为所求.18、解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,L :y =-2为准线的抛物线. 因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直, 设AB :y =kx +2. A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16.抛物线方程为y =18x 2,求导得y ′=14x . 所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2=116x 1·x 2=-1. 所以AQ ⊥BQ .19、解:(1)根据抛物线的方程可得焦点F (1,0),设直线l 的方程为x =my +1,将其与C 的方程联立,消去x 可得y 2-4my -4=0.设A ,B 点的坐标分别为(x 1,y 1),(x 2,y 2)(y 1>0>y 2),则y 1y 2=-4.因为y 21=4x 1,y 22=4x 2, 所以x 1x 2=116y 21y 22=1, 故OA ·OB =x 1x 2+y 1y 2=-3. (2)因为AF =λFB ,所以(1-x 1,-y 1)=λ(x 2-1,y 2),即⎩⎪⎨⎪⎧1-x 1=λx 2-λ, ①-y 1=λy 2, ②又y 21=4x 1, ③y 22=4x 2, ④由②③④消去y 1,y 2后,得到x 1=λ2x 2,将其代入①,注意到λ>0,解得x 2=1λ.从而可得y 2=-2λ,y 1=2λ,故△OAB 的面积S =12|OF |·|y 1-y 2|=λ+1λ, 因λ+1λ≥2恒成立,所以只要解λ+1λ≤5即可,解之得3-52≤λ≤3+52. 20、解:∵e =c a =a 2-b 2a 2=22,∴a 2=2b 2. 因此,所求椭圆的方程为x 2+2y 2=2b 2,又∵AB 为直径,(2,1)为圆心,即(2,1)是线段AB 的中点,设A (2-m,1-n ),B (2+m,1+n ),则⎩⎪⎨⎪⎧ (2-m )2+2(1-n )2=2b 2,(2+m )2+2(1+n )2=2b 2,|AB |=2 203⇒⎩⎪⎨⎪⎧ 8+2m 2+4+4n 2=4b 2,8m +8n =0,2m 2+n 2=2 203⇒⎩⎪⎨⎪⎧2b 2=6+m 2+2n 2,m 2=n 2=103,得2b 2=16. 故所求椭圆的方程为x 2+2y 2=16.21、解:(1)设E (x ,y ),由AE =12(AB +AD ),可知E 为线段BD 的中点, 又因为坐标原点O 为线段AB 的中点,所以OE 是△ABD 的中位线, 所以|OE |=12|AD |=1, 所以E 点在以O 为圆心,1为半径的圆上,又因为A ,B ,D 三点不在一条直线上,所以E 点不能在x 轴上,所以E 点的轨迹方程是x 2+y 2=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),中点为(x 0,y 0),椭圆的方程为x 2a 2+y 2a 2-4=1,直线MN 的方程为y =k (x +2)(当直线斜率不存在时不成立),由于直线MN 与圆x 2+y 2=1(y ≠0)相切,所以|2k |k 2+1=1,解得k =±33, 所以直线MN 的方程为y =±33(x +2), 将直线y =±33(x +2)代入方程x 2a 2+y 2a 2-4=1, 整理可得:4(a 2-3)x 2+4a 2x +16a 2-3a 4=0, 所以x 0=x 1+x 22=-a 22(a 2-3). 又线段MN 的中点到y 轴的距离为45, 即x 0=-a 22(a 2-3)=-45,解得a =2 2. 故所求的椭圆方程为x 28+y 24=1. 22、解:(1)设A (a,0),B (0,b ),P (x ,y ), 则AP =(x -a ,y ),PB =(-x ,b -y ),∵AP =35PB ,∴⎩⎨⎧ x -a =-35x ,y =35(b -y ).∴a =85x ,b =83y . 又|AB |=a 2+b 2=8,∴x 225+y 29=1. ∴曲线C 的方程为x 225+y 29=1. (2)由(1)可知,M (4,0)为椭圆x 225+y 29=1的右焦点, 设直线PM 方程为x =my +4, 由⎩⎪⎨⎪⎧ x 225+y 29=1,x =my +4,消去x 得 (9m 2+25)y 2+72my -81=0,∴|y P -y Q |=(72m )2+4×(9m 2+25)×819m 2+25。
高二数学圆锥曲线综合试题答案及解析
高二数学圆锥曲线综合试题答案及解析1.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线【答案】D【解析】设动点为M,到圆C的距离记为MB,直线MB过圆心,当定点A是圆心C时,MB=MA,M为AB中点轨迹为圆;当定点A在圆内(圆心除外)时,MC+MA=r>AC,轨迹为椭圆;当定点A在圆外时,MC-MA=r<AC,轨迹为双曲线的一支,答案选D。
考点:圆锥曲线的定义2.已知、是椭圆的两个焦点,为椭圆上一点,且,若的面积为9,则的值为()A.1B.2C.3D.4【答案】【解析】根据椭圆定义知①,根据,知②,③,所以,可得.【考点】椭圆定义,直角三角形的面积及勾股定理.3.若存在过点的直线与曲线和都相切,则等于()A.或B.或C.或D.或【答案】A【解析】设直线与曲线相切的切点为,利用导数的几何意义得:, 解得或,当时,直线为轴,与相切,即,解得,当时,直线为,与抛物线联立,整理得:,因为相切,所以,解得,故选A.【考点】1.导数的几何意义;2.求切线方程.4.若是任意实数,则方程所表示的曲线一定不是()A.直线B.双曲线C.抛物线D.圆【答案】C【解析】当时,即时,曲线为直线,当时,曲线为圆,当时,曲线为双曲线.故选C.【考点】圆锥曲线的标准方程.5.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.【答案】C【解析】由题可知,则,当时,圆锥曲线为椭圆,则,离心率,当时,圆锥曲线为双曲线,则,离心率.所以选C.【考点】本题主要考查圆锥曲线的标准方程,离心率.6.已知椭圆:的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程;(2)若椭圆上一动点关于直线的对称点为,求的取值范围;(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.【答案】(1)(2)(3)【解析】(1)由截距式可得直线的方程,根据点到线的距离公式可得间的关系,又因为,解方程组可得的值。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.点P在正方体ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中点,且∠EPA=∠D1PD,则点P的轨迹是()A.直线B.圆C.抛物线D.双曲线【答案】B【解析】由已知得即,在平面ABCD内以AD所在直线为x轴,AD中点为坐标原点建立直角坐标系,设A(1,0),B(-1,0),P(x,y),由建立等式化简得轨迹方程为,是圆的一般方程,所以答案选B。
【考点】1.直角三角形中的三角函数定义;2.轨迹方程的求解2.已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))(1)证明:平面;(2)求平面与平面的所成角的正切值.【答案】(1)证明详见解析;(2).【解析】(1)先以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立空间直角坐标系,求出各点的坐标以及和的坐标,进而得到两向量共线,即可证明线面平行;(2)先根据条件求出两个半平面的法向量的坐标,再求出这两个法向量所成角的余弦值,再结合同角三角函数的基本关系式可求得结果.试题解析:(1)以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立如图所示的坐标系.由已知与平面几何知识得,∴,∴,∴AF∥DE,又∥ 6分(2)由(1)得四点共面,,设平面,则不妨令,故,由已知易得平面ABCD的一个法向量为∴,设平面与平面的所成角为∴所求角的正切值为 13分.【考点】1.直线与平面平行的判定;2.用空间向量求二面角.3.抛物线的焦点到准线的距离是 .【答案】【解析】由抛物线的定义知抛物线的焦点到准线的距离是P,又由题可知P=.【考点】抛物线的几何性质.4.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分.【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.5.求以椭圆的焦点为焦点,且过点的双曲线的标准方程.【答案】【解析】首先设出双曲线的标准方程,然后利用与椭圆的关系、双曲线过点建立组可求得a,b的值.试题解析:由椭圆的标准方程可知,椭圆的焦点在轴上.设双曲线的标准方程为.根据题意,解得或(不合题意舍去),∴双曲线的标准方程为.【考点】1、椭圆的几何性质;2、双曲线的方程求法.6.已知椭圆的离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为()A.B.C.D.【答案】D【解析】根据题意,由于椭圆的离心率为,则可知b:a=1:2,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,可知为正方形边长为4,则可知(2,2)在椭圆上,可知椭圆的方程为,选D.【考点】椭圆和双曲线点评:主要是考查了椭圆与双曲线的性质的运用,属于基础题。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。
故A正确。
【考点】抛物线的定义。
3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。
(word完整版)高二数学圆锥曲线测试题以及详细答案(2021年整理)
(word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改)的全部内容。
圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为( )D 。
2。
椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对4.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A 。
1或5 B. 1或9 C 。
1 D. 95、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )。
C. 21 6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .387. 若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3 (C )4 8.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A 。
高二数学圆锥曲线测试题(含答案)
高二数学圆锥曲线检测题(文科) 2015.1一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆22146x y +=的长轴长为 ( )A .2 B.3 C.3 D.622.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆交于点P , ||2PF = ( ) A .23 B .3 C .27D .4 3.若方程x 2+ky 2=2表示焦点在x 轴上的椭圆,则实数k 的取值范围为( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件621≥+PF PF ,则点P 的轨迹是 ( ) A .椭圆B .线段C .不存在D .椭圆或线段5.设椭圆1422=+m y x 的离心率为21,则m 的值是( ) A .3 B.316或3 C.316 D.316或2 6.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 97.在同一坐标系中,方程12222=+by a x 与)0(02>>=+b a bx ay 的曲线大致是 ( )8、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ). C. 21-9.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) A .1053B .11C .22D .1010.设椭圆)0(12222>>b a b y a x =+的离心率为e =21,右焦点为F(c ,0),方程ax 2+bx-c =0的两个实根分别为x 1和x 2,则点P(x 1,x 2) ( ) A .必在圆x 2+y 2=2上 B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=2内 D .以上三种情形都有可能6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A.(7, B.(14, C.(7,± D.(7,-± 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对二、填空题(本题共5小题,每小题4分,共20分)11.双曲线221412y x -=的焦点坐标为________________. 12.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点;③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .13.已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 。
高二数学圆锥曲线综合试题答案及解析
高二数学圆锥曲线综合试题答案及解析1.已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)不存在.【解析】(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON 为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:. 4分(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).(ⅰ)联立方程组,得,则, 5分故,, 7分所以,所以k•kON=为定值. 8分(ⅱ)若F1N⊥AC,则kAC•kFN= -1,因为F1(-1,0),故, 10分代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分【考点】1.椭圆的方程;2.直线与椭圆的位置关系.2.双曲线+=1的离心率,则的值为.【答案】-32【解析】由题意可得,a=2,又∵e==3,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32【考点】双曲线离心率的计算.3.已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.设函数分别在、处取得极小值、极大值.平面上点、的坐标分别为、,该平面上动点满足,点是点关于直线的对称点.(Ⅰ)求点、的坐标;(Ⅱ)求动点的轨迹方程.【答案】(1);(2).【解析】(1)解决类似的问题时,要先求函数在区间内使的点,再判断导函数在各区间上的正负,由此得出函数的极大值和极小值.(2)第二问关键是理清思路,要求谁的方程,那就在这个曲线上任意选取一个点设为,然后根据条件寻找X与Y间的关系式即可. 试题解析:(Ⅰ)令解得当x<﹣1时,,当﹣1<x<1时,,当x>1时,所以,函数在处取得极小值,在取得极大值,故所以,点A、B的坐标为.(Ⅱ)设Q(x,y),①又点Q是点P关于直线y=x的对称点代入①得:,即为Q的轨迹方程【考点】(1)函数导数以及极值问题;(2)求点的轨迹方程问题.2.若抛物线的焦点与椭圆的右焦点重合,则的值为()A.B.C.D.【答案】D【解析】抛物线的焦点坐标为,而椭圆的右焦点坐标为即,依题意可得,故选D.【考点】1.椭圆的几何性质;2.抛物线的几何性质.3.已知离心率的椭圆一个焦点为.(1)求椭圆的方程;(2) 若斜率为1的直线交椭圆于两点,且,求直线方程.【答案】(1);【解析】(2) 或.(1)由焦点坐标、离心率及解方程即可;(2)可以联立直线L与椭圆方程消去y,得到关于x的一元二次方程,然后利用弦长公式建立方程求出斜率截距m即可.试题解析:解:(1)由题知,,∴,3分∴椭圆.4分(2) 设直线方程为,点,由方程组6分化简得:,.8分∴,9分,解得.11分∴直线方程或.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交;3.弦长公式.4.(1)已知点和,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.【答案】(1)的轨迹是以为顶点,焦点在轴的椭圆(除长轴端点);(2)证明详见解析.【解析】(1)本题属直接法求轨迹方程,即根据题意设动点的坐标,求出,列出方程,化简整理即可;(2)设,在中,由正弦定理得,同时在在中,由正弦定理得,然后根据,进而得到,最后将得到的两等式相除即可证明.试题解析:(1)设点坐标为,则 2分整理得 4分所以点的轨迹是以为顶点,焦点在轴的椭圆(除长轴端点) 6分(2)证明:设在中,由正弦定理得① 8分在中,由正弦定理得,而所以② 10分①②两式相比得 12分.【考点】1.轨迹方程的求法;2.正弦定理的应用.5.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.6.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。
高二数学圆锥曲线测试题以及详细答案汇编
高二圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线B.双曲线C. 椭圆D.以上都不对2.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A.2 B. 12C. 2D. 14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条 A. 1 B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( ) A .圆 B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A. 双曲线B.抛物线C. 椭圆D.以上都不对8.方程02=+ny mx 与)02+mx 的曲线在同一坐标系中的示意图应是( )B 二、填空9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。
高二数学圆锥曲线测试题以及详细答案(完整资料).doc
即A、B的坐标分别为(-1,0)和(3,4)
由CD垂直平分AB,得直线CD的方程为y=-(x-1)+2,即 y=3-x ,代入双曲线方程,整理,
得 x2+6x-11=0②
记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程②的两个的实数根,所以
A. B. C. D.
6.双曲线 离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A. B. C. D.
7.若双曲线 的左焦点在抛物线y2=2px的准线上,则p的值为 ()
(A)2(B)3(C)4(D)4
8.如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A B C D
9、无论 为何值,方程 所表示的曲线必不是( )
20在平面直角坐标系 中,点P到两点 , 的距离之和等于4,设点P的轨迹为 .(Ⅰ)写出C的方程;
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
21.A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(Ⅱ)设 ,其坐标满足
消去y并整理得 , 故 .
,即 . 而 ,
于是 .
所以 时, ,故 .
当 时, , .
,
而 ,
所以 .
21A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
高二数学圆锥曲线测试题以及详细答案
高二圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线B.双曲线C. 椭圆D.以上都不对2.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A.2 B. 12C. 2D. 14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条 A. 1 B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( ) A .圆 B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A. 双曲线B.抛物线C. 椭圆D.以上都不对8.方程02=+ny mx 与)02>+n mx 的曲线在同一坐标系中的示意图应是( )B 二、填空题:9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知点,,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,,,则()A.B.C.D.【答案】C【解析】依题意设,的外心为,则有即,又由得即,将代入化简得即,在中,由余弦定理可得即展开整理得即也就是,将、代入可得,整理可得,即的外心轨迹方程为设,则即,而又,所以所以,故选C.【考点】1.动点的轨迹;2.直线的斜率;3.两角和的正切公式.2.若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 () A.B.C.D.【答案】C【解析】根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.【考点】抛物线的定义.3.过抛物线的焦点的直线交抛物线于两点,且在直线上的射影分别是,则的大小为 .【答案】.【解析】如图,由抛物线的定义可知:,∴;根据内错角相等知;同理可证而,∴.【考点】抛物线的定义.4.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。
(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求四边形的面积的最大值和最小值.【答案】(Ⅰ) ;(Ⅱ) 2,【解析】(Ⅰ)依题意可得椭圆C的一个焦点为知,在代入点即可得得到一个关于的等式从而可求出的值,即可得椭圆的标准方程.(Ⅱ) 由于,所以直线都过F点,从而又因为所以直线与直线相互垂直.所以四边形的面积为.故关键是求出线段的长度.首先要分类存在垂直于轴的情况,和不垂直于轴的情况两种.前者好求.后者通过假设一条直线联立椭圆方程写出弦长的式子,类似地写出另一条所得到的弦长.通过利用基本不等式即可求得面积的范围.从而再结合垂直于轴的情况,求出最大值与最小值.试题解析:(Ⅰ)由题椭圆C的一个焦点为知故可设椭圆方程为,过焦点且与长轴垂直的直线方程为,设此直线与椭圆交于A,B两点则,又,所以,又,联立求得,,故椭圆方程为.(Ⅱ)由,知,点共线,点共线,即直线经过椭圆焦点。
又知,(i)当斜率为零或不存在时,(ii)当直线存在且不为零时,可设斜率为,则由知,的斜率为所以:直线方程为:。
圆锥曲线测试卷(含解析)
(1)求椭圆 ������ 的焦距;
(2)如果 ���⃗⃗���⃗⃗���⃗⃗���⃗2⃗ = 2���⃗⃗���⃗2⃗⃗⃗���⃗⃗���,求椭圆 ������ 的方程.
20.
设椭圆
������:
������2 ������2
+
������2 ������2
=
1(������
>
������
>
0)
的右焦点为
2019 年 12 月 5 日数学试卷
一、选择题【1-8 单选】【9-12 多选】
1. 设 ���⃗���,���⃗⃗��� 是非零向量,“ ���⃗��� ⋅ ���⃗⃗��� = ∣���⃗���∣∣∣���⃗⃗���∣∣ ”是“ ���⃗���∥���⃗⃗��� ”的 ( )
A. 充分而不必要条件
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
3.
曲线
������1:
������2 ������
+
������2 ������
=
1(������
>
������
>
0),曲线
������2:
������2 ������
−
������2 ������
=
1(������
>
.
三、解答题
17. 平面直角坐标系 ������������������ 中,点 ������(−2,0),������(2,0),直线 ������������,������������ 相交于点 ������,且它 们的斜率之积是 − 3.
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.抛物线的焦点到准线的距离是 .【答案】【解析】由抛物线的定义知抛物线的焦点到准线的距离是P,又由题可知P=.【考点】抛物线的几何性质.2.过点的双曲线的渐近线方程为为双曲线右支上一点,为双曲线的左焦点,点则的最小值为 .【答案】8【解析】由题可设双曲线方程为:,把代入得=1,所以双曲线方程为:,设双曲线右焦点为,∵P在双曲线右支上及由双曲线定义可知,∴,当点P为线段与双曲线交点时.【考点】1.双曲线的定义;2.双曲线的标准方程;3.双曲线的几何性质.3.已知是双曲线上不同的三点,且连线经过坐标原点,若直线的斜率乘积,则该双曲线的离心率为()A.B.C.D.【答案】D【解析】设,则;把坐标代入双曲线方程,用点差法可得,而,即,所以.【考点】双曲线的应用、点差法.4.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.5.设连接双曲线与的四个顶点组成的四边形的面积为,连接其四个焦点组成的四边形的面积为,则的最大值是A.B.C. 1D.2【答案】B【解析】根据题意可知双曲线与的四个顶点的焦距相等,长半轴和短半轴恰好相反,那么可知因为,可知的最大值是,选B【考点】双曲线的性质点评:主要是考查了双曲线的几何性质的运用,以及四边形的面积的求解,属于中档题。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.方程所表示的曲线为C,有下列命题:①若曲线C为椭圆,则;②若曲线C为双曲线,则或;③曲线C不可能为圆;④若曲线C表示焦点在上的双曲线,则。
以上命题正确的是。
(填上所有正确命题的序号)【答案】②④【解析】①若曲线C为椭圆,则系数都为正且不相等,解得且;②若曲线C为双曲线,则系数符号相反,解得或;③当系数相等且为正即t=3时曲线C为圆;④若曲线C表示焦点在上的双曲线,则的系数为正且的系数为负,解得,故②④正确.【考点】圆锥曲线的方程2.已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))(1)证明:平面;(2)求平面与平面的所成角的正切值.【答案】(1)证明详见解析;(2).【解析】(1)先以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立空间直角坐标系,求出各点的坐标以及和的坐标,进而得到两向量共线,即可证明线面平行;(2)先根据条件求出两个半平面的法向量的坐标,再求出这两个法向量所成角的余弦值,再结合同角三角函数的基本关系式可求得结果.试题解析:(1)以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立如图所示的坐标系.由已知与平面几何知识得,∴,∴,∴AF∥DE,又∥ 6分(2)由(1)得四点共面,,设平面,则不妨令,故,由已知易得平面ABCD的一个法向量为∴,设平面与平面的所成角为∴所求角的正切值为 13分.【考点】1.直线与平面平行的判定;2.用空间向量求二面角.3.若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 ( )A.B.C.D.【答案】C【解析】因为,由双曲线的定义可知,点的轨迹是以为焦点的双曲线。
此时,即,,所以点的轨迹方程是。
故C正确。
【考点】双曲线的定义。
4.若θ是任意实数,则方程x2+4y2=1所表示的曲线一定不是 ( )A.圆B.双曲线C.直线D.抛物线【答案】D【解析】当时,方程x2+4y2=1即为,表示两条直线;当时,方程x2+4y2=1即为,表示圆;当时,方程x2+4y2=1表示双曲线;当且时,方程x2+4y2=1表示椭圆。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 ( )A.B.C.D.【答案】C【解析】因为,由双曲线的定义可知,点的轨迹是以为焦点的双曲线。
此时,即,,所以点的轨迹方程是。
故C正确。
【考点】双曲线的定义。
3.如图平面直角坐标系中,椭圆的离心率,分别是椭圆的左、右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.则.【答案】【解析】因为所以又直角三角形中,所以,直线方程为,与椭圆方程联立方程组解得,又,所以【考点】直线与圆,直线与椭圆4.若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 () A.B.C.D.【答案】C【解析】根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.【考点】抛物线的定义.5.已知是双曲线上不同的三点,且连线经过坐标原点,若直线的斜率乘积,则该双曲线的离心率为()A.B.C.D.【答案】D【解析】设,则;把坐标代入双曲线方程,用点差法可得,而,即,所以.【考点】双曲线的应用、点差法.6.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分.【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.7.抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.(1)若点为中点,求直线的方程;(2)设抛物线的焦点为,当时,求的面积.【答案】(1)或;(2)4.【解析】(1)首先根据准线方程求得抛物线的标准方程,然后设直线直线l的方程,并与抛物线方程联立消去x得到关于y的二次方程,再利用韦达定理与中点坐标公式可求得m的值,进而得到直线l的方程;(2)根据条件中的垂直关系,利用A、B、F三点的坐标表示出向量与,然后利用向量垂直的条件可得的值,进而可求得的面积.试题解析:(1)∵抛物线的准线方程为,∴∴抛物线的方程为,显然,直线与坐标轴不平行∴设直线的方程为,,联立直线与抛物线的方程,得,,解得或.∵点为中点,∴,即∴解得,,∴或∴,直线方程为或.(2)焦点,∵∴,.【考点】1、直线方程;2、抛物线方程;3、直线与抛物线的位置关系;4、平面向量垂直的充要条件的应用.8.已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程;(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.【答案】(1);(2).【解析】(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.试题解析:(1),∴,,∴,∴,椭圆的标准方程为.(2)已知,设直线的方程为,-,联立直线与椭圆的方程,化简得:,∴,,∴的中点坐标为.①当时,的中垂线方程为,∵,∴点在的中垂线上,将点的坐标代入直线方程得:,即,解得或.②当时,的中垂线方程为,满足题意,∴斜率的取值为.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.9.椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率()A.B.C.D.【解析】由题意,设椭圆方程,焦距为,由题意,,所以离心率.【考点】椭圆的方程,离心率.10.极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl 的极坐标方程为,曲线C2的参数方程为为参数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学圆锥曲线综合测试题(考试时间:120分钟,共150分)一、选择题(本大题共12小题,每小题5分,共60分.)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( )A.|a |4 B.|a |2 C .|a | D .-a 22.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |= ( )A .6 B.2 C .2 D .不确定3.已知双曲线x 24-y212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.1164.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为 ( ) A .1 B .5 C .4 2 D .3+2 2 5.若双曲线x2a2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255 B.32 C.233D .2 6.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4)7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b 8.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1716 B.1516 C .-1516 D .-17169.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( )A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--)10.双曲线x 26-y23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .611.已知双曲线x 22-y 2b2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则1PF ·2P F= ( ) A .-12 B .-2 C .0 D .4 12.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m等于( ) A .3 B .2 C .5 D .3二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________. 14.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.15.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.16.双曲线221tx y -=的一条渐近线与直线210x y ++=垂直,则这双曲线的离心率为__ _。
三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.18.(本小题满分12分)已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。
18.(本小题满分12分)过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B 点,求线段AB的中点M的轨迹方程.19.(本小题满分12分)已知椭圆22143x y+=,试确定m的值,使得在此椭圆上存在不同两点关于直线4y x m=+对称。
20.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A ,B两点,记O 为坐标原点.(1)求OA ·OB 的值;(2)设AF =λFB,当△OAB 的面积S ∈[2, 5 ]时,求λ的取值范围.21.(本小题满分14分) 如图,在Rt △ABC 中,∠CAB= 90,AB=2,AC=22. 一曲线E 过点C ,动点P 在曲线E 上运动,且保持+PA PB 的值不变,直线m ⊥AB 于O ,AO=BO.(1)建立适当 的坐标系,求曲线E 的方程;(2)设D 为直线m 上一点,AC OD =,过点D 引直线l 交曲线E 于M 、 N 两点,且保持直线l 与AB 成45角,求四边形MANB 的面积.ABC Om高二数学圆锥曲线章节测试题(选修1-1&2-1)答案与解析:1、解析:由已知焦点到准线的距离为p =|a |2 答案:B2、解析:由题知b -a5-4=1,∴b -a =1. ∴|AB |=(5-4)2+(b -a )2= 2. 答案:B3、解析:依题意得e =2,抛物线方程为y 2=12p x ,故18p =2,得p =116. 答案:D4、解析:由(x -2)2+(y -1)2=13,得圆心(2,1), ∵直线平分圆的周长,即直线过圆心. ∴a +b =1. ∴1a +2b =(1a +2b )(a +b )=3+b a +2ab≥3+22,当且仅当b a =2a b ,即a =2-1,b =2-2时取等号,∴1a +2b 的最小值为3+2 2. 答案:D5、解析:由a 2+1=4,∴a =3, ∴e =23=233. 答案: C 6、解析:如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x >3). 答案:C7、解析:由已知b a =55e , ∴b a =55×ca,∴c =5b ,又a 2+b 2=c 2,∴a 2+b 2=5b 2,∴a =2b . 答案:C 8、解析:准线方程为y =116,由定义知116-y M =1⇒y M =-1516. 答案:C 9、2222226,(2)6,(1)41002x y x kx k x kx y kx ⎧-=-+=---=⎨=+⎩有两个不同的正根 则221221224024040,11001k k x x k x x k ⎧∆=->⎪⎪⎪+=>⎨-⎪-⎪=>⎪-⎩得13k -<<- 答案:D10、解析:双曲线的渐近线方程为y =±12x 即x ±2y =0,圆心(3,0)到直线的距离d =|3|(2)2+1= 3.答案:A11、解析:由渐近线方程y =x 得b =2, 点P (3,y 0)代入x 22-y 2b2=1中得y 0=±1.不妨设P (3,1),∵F 1(2,0),F 2(-2,0),∴1PF ·2P F=(2-3,-1)·(-2-3,-1)=3-4+1=0. 答案:C12、22212121212111,2(),2AB y y k y y x x x x x x -==--=-+=--而得,且212122x x y y ++(,)在直线y x m =+上,即21212121,222y y x x m y y x x m ++=++=++222212*********()2,2[()2]2,23,2x x x x m x x x x x x m m m +=+++-=++==答案:A13、解析:(x 0-a )2+(y 0-b )2可看作点(x 0,y 0)与点(a ,b )的距离.而点(x 0,y 0)在直线ax +by =0上,所以(x 0-a )2+(y 0-b )2的最小值为点(a ,b )到直线ax +by =0的距离|a ·a +b ·b |a 2+b 2=a 2+b 2.答案:a 2+b 214、解析:由焦点弦|AB |=2p sin 2α得|AB |=2p sin 245°,∴2p =|AB |×12,∴p =2. 答案:215、解析:所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P ,使|PF 1|+|PF 2|最小,利用对称性可解.答案:x 25+y24=116、渐近线为y =,其中一条与与直线210x y ++=11,24t ==221,2,5,42xy a c e -====答案:217、解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2. 解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎨⎧CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2.解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.18、解:设抛物线的方程为22y px =,则22,21y pxy x ⎧=⎨=+⎩消去y得21212214(24)10,,24p x p x x x x x ---+=+==12AB x =-===,则24120,2,6p p p =--==-或 22412y x y x ∴=-=,或19、解:法一:设点M 的坐标为(x ,y ), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ).∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k PA ·k PB =-1. 而k PA =4-02-2x ,k PB =4-2y 2-0,(x ≠1), ∴21-x ·2-y 1=-1(x ≠1).整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4),∴线段AB 的中点坐标是(1,2), 它满足方程x +2y -5=0. 综上所述,点M 的轨迹方程是x +2y -5=0. 法二:设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM |=|AB |.而|PM||AB∴=化简,得x +2y -5=0即为所求的轨迹方程. 法三:设M 的坐标为(x ,y ),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO |=|MP |,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2),∴y -2=-12(x -1),即x +2y -5=0即为所求.20、解:设1122(,),(,)A x yB x y ,A B 的中点00(,)M x y ,21211,4AB y y k x x -==--而22113412,x y +=22223412,x y +=相减得222221213()4()0,x x y y -+-=即1212003(),3y y x x y x +=+∴=,000034,,3x x m x m y m=+=-=-而00(,)M x y 在椭圆内部,则2291,43mm +<即1313m -<<。