山西省运城实验中学2018一2019北师大版七年级第二学期期中考试数学试题

合集下载

2018-2019学年度第二学期期中质量检测七年级数学试卷及答案

2018-2019学年度第二学期期中质量检测七年级数学试卷及答案

26.(本题满分 12 分) (1)如图①,△OAB、△OCD 的顶点 O 重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+ ∠COD= ▲ °;(直接写出结果) (2)连接 AD、BC,若 AO、BO、CO、DO 分别是四边形 ABCD 的四个内角的平分线. ①如图②,如果∠AOB=110°,那么∠COD 的度数为 ▲ ;(直接写出结果) ②如图③,若∠AOD=∠BOC,AB 与 CD 平行吗?为什么?
x

y
=-2,求
a
的值.
25.(本题满分 8 分) (1)观察下列式子: ① 21 20 =2-1=1= 20 ; ② 22 21 =4-2=2= 21 ; ③ 23 22 =8-4=4= 22 ; …… 根据上述等式的规律,试写出第 n 个等式,并说明第 n 个等式成立; (2)求 20 21 22 22 019 的个位数字.
A.4
B.5
C.6
D.7
4. 下列式子从左到右的变形中,属于因式分解的是·············································· ( ▲ )
A. 4x x = 5x
B. (x 2)2 = x2 4x 4
C. a2 a 1= a(a 1) 1
说明: (x 3)(x 7) 、 x(x 1) 计算正确分别给 1 分.
19.(本题满分 6 分,每小题 3 分)因式分解: 解:(1)原式= x2 (2y)2 ·········································································· 1 分
说明: (2a)3 、 a5 a2 计算正确分别给 1 分.

2018-2019学年北师大版七年级数学下学期期中测试题(含答案)

2018-2019学年北师大版七年级数学下学期期中测试题(含答案)

2018-2019学年七年级(下)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A.B.C.D.2.下列多项式的乘法能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x+2)(x﹣2)C.(﹣2x﹣1)(2x+1)D.(﹣3x+2)(﹣2x+3)3.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温4.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24D.(x3)3=x65.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩()A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定6.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣57.下列说法,其中错误的有()①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个8.已知a+b=3,ab=2,则a2+b2+2ab的值为()A.5B.7C.9D.139.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°10.如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分11.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为.12.∠1=35°,则∠1的余角为,补角为.13.计算:a m=3,a n=8,则a m+n=.14.△ABC底边BC上的高是8,如果三角形的底边BC长为x,那么三角形的面积y可以表示为.15.若x2﹣mx+25是完全平方式,则m=.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD =180°,其中能够得到AD∥BC的条件是.(填序号)能够得到AB∥CD的条件是.(填序号)三、解答题:本题共8小题,共86分,应写出文字说明,过程或演算步骤17.(20分)计算(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2(2)(x﹣5)(2x+5)+2x(3﹣x)(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0(4)运用乘法公式计算:1122﹣113×11118.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.(1)用尺规作出∠EBC.(不写作法,保留作图痕迹,要写结论)(2)EB与AD一定平行吗?简要说明理由.19.(8分)先化简,再求值(a+2b)(a﹣2b)﹣(a+2b)2+4ab,其中a=1,b=.20.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(),∴∠2=∠(等量代换),∴DB∥EC(),∴∠DBC+∠C=180°(两直线平行,),∵∠C=∠D(),∴∠DBC+=180°(等量代换),∴DF∥AC(,两直线平行),∴∠A=∠F()21.(8分)如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)22.(10分)如图,AB∥CD,∠A=50°,∠C=45°,求∠P的度数.下面提供三种思路:(1)过P作FG∥AB(2)延长AP交直线CD于M;(3)延长CP交直线AB于N.请选择两种思路,求出∠P的度数.23.(10分)在一定限度内弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(假设都在弹性限度内)0123456所挂物体质量x/kg1212.51313.51414.515弹簧长度y/cm(1)由表格知,弹簧原长为cm,所挂物体每增加1kg弹簧伸长cm.(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.24.(14分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为,图2中阴影部分面积为,对照两个图形的面积可以验证公式(填公式名称)请写出这个乘法公式.(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A.B.C.D.【分析】根据垂线的作法,用直角三角板的一条直角边与l重合,另一条直角边过点P后沿直角边画直线即可.【解答】解:根据分析可得D的画法正确,故选:D.【点评】此题主要考查了垂线的画法,同学们应熟练掌握垂线画法,此知识考查较多.2.下列多项式的乘法能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x+2)(x﹣2)C.(﹣2x﹣1)(2x+1)D.(﹣3x+2)(﹣2x+3)【分析】根据平方差公式对各选项进行逐一分析即可.【解答】解:A、原式可化为﹣(a+b)(a﹣b),能用平方差公式计算,故本选项正确;B、原式可化为﹣(x﹣2)(x﹣2),不能用平方差公式计算,故本选项错误;C、原式可化为﹣(2x+1)(2x+1),不能用平方差公式计算,故本选项错误;D、不符合两个数的和与这两个数的差相乘,不能用平方差公式计算,故本选项错误.故选:A.【点评】本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.3.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间;故选:A.【点评】此题考查常量和变量问题,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x 的函数.4.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24D.(x3)3=x6【分析】依据同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方法则计算即可.【解答】解:A、x6÷x3=x3,故A错误;B、(﹣2x)3=﹣8x3,故B正确;C、x6•x4=x10,故C错误;D、(x3)3=x9,故D错误.故选:B.【点评】本题主要考查的是同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方,熟练掌握相关法则是解题的关键.5.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩()A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定【分析】直接利用垂线段最短进而得出小明跳远成绩.【解答】解:过点P作PE⊥AC,垂足为E,∵AP=2.3米,∴这次小明跳远成绩小于2.3米.故选:C.【点评】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.6.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣5【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.【解答】解:(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴m=1、n=﹣6,则m+n=﹣5,故选:D.【点评】本题主要考查多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn.注意不要漏项,漏字母,有同类项的合并同类项.7.下列说法,其中错误的有()①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个【分析】依据对顶角的性质、补角的定义、平行线的性质、垂线段的性质以及平行线的定义进行判断即可.【解答】解:①相等的两个角不一定是对顶角,故错误;②若∠1+∠2=180°,则∠1与∠2互为补角,故正确;③同位角不一定相等,故错误;④垂线段最短,故正确;⑤在同一平面内,两条直线的位置关系有平行、相交,故错误;⑥过直线外一点,有且只有一条直线与这条直线平行,故正确;故选:C.【点评】本题主要考查了对顶角的性质、补角的定义、平行线的性质、垂线段的性质,解题时注意:同一平面内,两条直线的位置关系:平行或相交.8.已知a+b=3,ab=2,则a2+b2+2ab的值为()A.5B.7C.9D.13【分析】根据完全平方公式即可求出答案.【解答】解:当a+b=3时,原式=(a+b)2=32=9,故选:C.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.9.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.【分析】根据动点P在正方形各边上的运动状态分类讨论△APD的面积即可.【解答】解:有点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8当8≤x≤12时,点P在CB上运动,△APD的面积y=8当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32故选:B.【点评】本题为动点问题的函数图象探究题,考查了当动点到达临界点前后的图象变化,解答时根据临界点画出一般图形分段讨论即可.二、填空题:本题共6小题,每小题4分,共24分11.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为 1.56×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=1.56,10的指数为﹣6.【解答】解:0.000 001 56=1.56×10﹣6m.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.∠1=35°,则∠1的余角为55°,补角为145°.【分析】根据余角和补角的定义求出即可.【解答】解:∵∠1=35°,∴∠1的余角为90°﹣∠1=55°,补角为180°﹣∠1=145°,故答案为:55°,145°.【点评】本题考查了余角与补角,知道∠1的余角为90°﹣∠1和∠1的补角为180°﹣∠1是解此题的关键.13.计算:a m=3,a n=8,则a m+n=24.【分析】同底数幂相乘,底数不变指数相加.【解答】解:∵a m=3,a n=8,∴a m+n=a m•a n=3×8=24.故答案是:24.【点评】考查了同底数幂的乘法.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.14.△ABC底边BC上的高是8,如果三角形的底边BC长为x,那么三角形的面积y可以表示为y =4x.【分析】根据三角形的面积公式求出即可.【解答】解:∵△ABC底边BC上的高是8,三角形的底边BC长为x,∴三角形的面积y可以表示为y==4x,故答案为:y=4x.【点评】本题考查了列代数式和三角形的面积,能熟记三角形的面积公式是解此题的关键.15.若x2﹣mx+25是完全平方式,则m=±10.【分析】原式利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2﹣mx+25是完全平方式,∴m=±10,故答案为:±10【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD =180°,其中能够得到AD∥BC的条件是①④.(填序号)能够得到AB∥CD的条件是②③⑤.(填序号)【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【解答】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为:①④,②③⑤.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题:本题共8小题,共86分,应写出文字说明,过程或演算步骤17.(20分)计算(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2(2)(x﹣5)(2x+5)+2x(3﹣x)(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0(4)运用乘法公式计算:1122﹣113×111【分析】(1)根据多项式除以多项式和合并同类项可以解答本题;(2)根据多项式乘多项式、单项式乘多项式可以解答本题;(3)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(4)根据平方差公式可以解答本题.【解答】解:(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2=﹣3x2+2x﹣1+3x2=2x﹣1;(2)(x﹣5)(2x+5)+2x(3﹣x)=2x2﹣5x﹣25+6x﹣2x2=x﹣25;(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0=1+4﹣1=4;(4)1122﹣113×111=1122﹣(112+1)×(112﹣1)=1122﹣1122+1=1.【点评】本题考查整式的混合运算、实数的运算、幂的乘方、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.18.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.(1)用尺规作出∠EBC.(不写作法,保留作图痕迹,要写结论)(2)EB与AD一定平行吗?简要说明理由.【分析】分两种情况:①根据同位角相等两直线平行,过D点作AD的平行线即可.②当所作的角在BC下方.【解答】解:(2)EB与AD不一定平行.①当所作的角在BC上方时平行.∵∠EBC=∠A,∴EB∥AD.当所作的角在BC下方,所作的角对称时EB与AD就不平行.【点评】此题主要考查学生对平行线的判定和尺规作图相关知识的理解和掌握,此题难度不大,属于基础题.19.(8分)先化简,再求值(a+2b)(a﹣2b)﹣(a+2b)2+4ab,其中a=1,b=.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=a2﹣4b2﹣a2﹣4ab﹣4b2+4ab=﹣8b2,当b=时,原式=﹣8×=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∴∠DBC+∠D=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等)【分析】根据平行线的性质与判定即可求出答案.【解答】解:故答案为:对顶角;DMN;同为角相等,两直线平行;同旁内角互补;已知;∠D;同旁内角互补;两直线平行,内错角相等【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.21.(8分)如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)【分析】(1)根据图象看相对应的y的值即可.(2)休息时,时间在增多,路程没有变化,表现在函数图象上是与x轴平行.(3)这段时间的平均速度=这段时间的总路程÷这段时间.【解答】解:(1)看图可知y值为:4km,9km,15km,故9时,10时30分,12时所走的路程分别是4km,9km,15km;(2)根据图象可得,路程没有变化,但时间在增长,故表示该旅行者在休息:10.5﹣10=0.5小时=30分钟;(3)根据求平均速度的公式可得:(15﹣9)÷(12﹣10.5)=4千米/时.【点评】本题主要考查了实际问题的函数图象,正确理解函数的图象所表示的意义是解决问题的关键,注意休息时表现在函数图象上是与x轴平行的线段.22.(10分)如图,AB∥CD,∠A=50°,∠C=45°,求∠P的度数.下面提供三种思路:(1)过P作FG∥AB(2)延长AP交直线CD于M;(3)延长CP交直线AB于N.请选择两种思路,求出∠P的度数.【分析】过P作PG∥AB或延长AP交直线CD于M或延长CP交直线AB于N,利用平行线的性质以及三角形外角性质进行计算即可.【解答】解:(1)过P作PG∥AB,∵AB∥CD,∴AB∥CD∥PG,∴∠A=∠APG,∠C=∠CPG,∴∠APC=APG+∠CPG=∠A+∠C=50°+45°=95°;(2)延长AP交直线CD于M;∵AB∥CD,∴∠A=∠AMC=50°,又∵∠C=45°,∴∠APC=∠AMC+∠C=50°+45°=95°;(3)延长CP交直线AB于N.∵AB∥CD,∴∠C=∠ANC=45°,又∵∠A=50°,∴∠APC=∠ANC+∠A=45°+50°=95°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目的难点在于过拐点作辅助线.23.(10分)在一定限度内弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(假设都在弹性限度内)0123456所挂物体质量x/kg1212.51313.51414.515弹簧长度y/cm(1)由表格知,弹簧原长为12cm,所挂物体每增加1kg弹簧伸长0.5cm.(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式.(3)令x=10时,求出y的值即可.(4)令y=20时,求出x的值即可.【解答】解:(1)由表可知:弹簧原长为12cm,所挂物体每增加1kg弹簧伸长0.5cm,故答案为:12,0.5;(2)弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式为y=0.5x+12,(3)当x=10kg时,代入y=0.5x+12,解得y=17cm,即弹簧总长为17cm.(4)当y=20kg时,代入y=0.5x+12,解得x=16,即所挂物体的质量为16kg.【点评】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.24.(14分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为a2﹣b2,图2中阴影部分面积为(a+b)(a﹣b),对照两个图形的面积可以验证平方差公式(填公式名称)请写出这个乘法公式a2﹣b2=(a+b)(a ﹣b).(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)①把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;②利用平方差公式化成式子相乘的形式即可求解.【解答】解:(1)图1中阴影部分面积为a2﹣b2,图2中阴影部分面积为(a+b)(a﹣b),对照两个图形的面积可以验证平方差公式:a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b),平方差,a2﹣b2=(a+b)(a﹣b).(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴15=3(x﹣2y),∴x﹣2y=5;②(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)……(264+1)+1=(24﹣1)(24+1)(28+1)……(264+1)+1=(28﹣1)(28+1)……(264+1)+1=(264﹣1)(264+1)+1=2128﹣1+1=2128.【点评】本题主要考查了平方差公式的几何表示,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.表示出图形阴影部分面积是解题的关键.。

北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案一、选择题(每题3分,共30分 ) 1.下列各式不是方程的是( )A .x 2+x =0B .x +y =0C.1x +xD .x =02.若a >b >0,则下列不等式一定成立的是( )A .a -1<b -1B .-a >-bC .a +b >2bD .|a |<|b |3.解一元一次方程12(x +1)=-13x 时,去分母正确的是( )A .3(x +1)=2xB .3(x +1)=xC .x +1=2xD .3(x +1)=-2x4.一个不等式的解集在数轴上表示如图,则这个不等式可以是( )(第4题)A .x +3>0B .x -3<0C .2x ≥6D .3-x <05.利用代入法解方程组⎩⎨⎧y =2x +1①,x -y =-1②,将①代入②得( )A .x -2x +1=-1B .x +2x -1=-1C .x -2x -1=-1D .x +2x +1=-16.关于x 的方程3x +5=0与3x =1-3m 的解相同,则m 等于( )A .-2B .2C .-43D.437.在等式y =kx +b 中,当x =1时,y =-2;当x =-1时,y =-4.则2k +b 的值为( ) A .1B .-1C .-2D .-38.8个一样大小的小长方形恰好可以拼成一个大的长方形,如图甲所示,若拼成如图乙所示的正方形,中间还留下一个洞,恰好是边长为2厘米的小正方形.设一个小长方形的长为x 厘米,宽为y 厘米,则所列二元一次方程组正确的是( )(第8题)A.⎩⎨⎧3x =5y 2y =x +2B.⎩⎨⎧5x =3y 2x =y +2C.⎩⎨⎧3x =5y 2x =y +2D.⎩⎨⎧5x =3y 2y =x +29.甲、乙两车从A 地出发到B 地,甲比乙早行驶1 h ,比乙晚到2 h ,甲全程用时6 h ,则从乙出发到甲、乙两车相遇用时( ) A .1 hB .1.5 hC .2 hD .2.5 h10.已知关于x 的不等式组⎩⎨⎧x -a ≥2,2-3x >-7的整数解有5个,则a 的取值范围是( )A .-5≤a ≤-4B .-5<a ≤-4C .-5<a <-4D .-5≤a <-4二、填空题(每题3分,共15分)11.x 的平方与y 的平方的和一定是非负数,用不等式表示为________. 12.若(m +1)x |m |>2是关于x 的一元一次不等式,则m =______.13.若x ,y 满足二元一次方程组⎩⎨⎧x +2y =3,2x +y =3,则x 与y 的关系是________(写出一种关系即可).14.若方程x +y =3,x -y =1和x +2my =0有公共解,则m 的值为________. 15.已知5只碗摞起来的高度是13 cm ,9只碗摞起来的高度是20 cm ,若一摞碗的高度不超过30 cm ,最多能摞______只碗. 三、解答题(共75分)16.(8分)(1)解方程:x +2x +16=1-2x -13;(2)解方程组:⎩⎨⎧8x +5y =2,①4x -3y =-10.②第 3 页 共 9 页17.(9分)阅读下面解题过程,再解题.已知a >b ,试比较-2 024a +1与-2 024b +1的大小. 解:因为a >b ①所以-2 024a >-2 024b ② 故-2 024a +1>-2 024b +1③.(1)上述解题过程中,从第________步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.18.(8分)解下列不等式(组): (1)3(4x +2)>4(2x -1);(2)⎩⎪⎨⎪⎧3x +6≥5(x -2),①x -52-4x -33<1.②19.(9分)某食品厂元宵节前要生产一批元宵礼袋,每袋中装4颗大元宵和8颗小元宵.生产一颗大元宵要用肉馅15 g,一颗小元宵要用肉馅10 g.现共有肉馅2 100 kg.(1)假设肉馅全部用完,生产两种元宵应各用多少肉馅,才能使生产出的元宵刚好配套装袋?(2)最多能生产多少袋元宵?20.(9分)一个两位数,个位上的数字与十位上的数字之和为6,把这个两位数加上18后,比十位数字大56,请利用二元一次方程组求这个两位数.21.(10分)如图,直线l上有A,B两点,AB=18 cm,O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若动点P,Q分别从点A,B同时出发,向右运动,点P的速度为2 cm/s,点Q的速度为1 cm/s.设运动时间为t s.当t为何值时,2OP-OQ=3 cm?(第21题)22.(10分)读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元;(2)若学校决定购买以上两种书的总费用不超过3 200元,那么该校最多可以购买甲种书多少本?23.(12分)阅读材料:第 5 页共9 页我们把关于x ,y 的两个二元一次方程x +ky =b 与kx +y =b (k ≠1)叫做互为共轭二元一次方程,像x +4y =5与4x +y =5这样的方程是互为共轭二元一次方程;像二元一次方程组⎩⎨⎧x +4y =5,4x +y =5这样由互为共轭二元一次方程组成的方程组叫做共轭二元一次方程组.(1)若关于x ,y 的方程组⎩⎨⎧x +2y =b +2,()1-a x +y =3为共轭二元一次方程组,则a =________,b =________.(2)解共轭二元一次方程组:⎩⎨⎧x +4y =5①,4x +y =5②.解:①+②,得x +y =2③.①-③,得y =1.②-③,得x =1. 所以⎩⎨⎧x =1,y =1是方程组的解.仿照上面方程组的解法解方程组:⎩⎨⎧y -3x =6①,x -3y =6②;(3)发现:若共轭二元一次方程组⎩⎨⎧x +ky =b ,kx +y =b 的解是⎩⎨⎧x =m ,y =n ,则m ,n 之间的数量关系是________.第 7 页 共 9 页答案一、1.C 2.C 3.D 4.B 5.C 6.B 7.B 8.A 9.A 10.B二、11.x 2+y 2≥012.1 易错点睛:易忽略x 的系数不为0而致错. 13.x +y =2(答案不唯一)14.-1 点拨:根据题意,得⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.将⎩⎨⎧x =2,y =1代入x +2my =0,解得m =-1. 15.14 点拨:设一只碗的高度是x cm ,每摞起来一只碗增加y cm ,则⎩⎨⎧x +(5-1)y =13,x +(9-1)y =20,解得⎩⎪⎨⎪⎧x =6,y =74.设能摞m 只碗,所以6+74(m -1)≤30,m ≤1457,所以最多能摞14只碗.三、16.解:(1)去分母,得6x +(2x +1)=6-2(2x -1) 去括号,得6x +2x +1=6-4x +2 移项,得6x +2x +4x =6+2-1 合并同类项,得12x =7 系数化为1,得x =712.(2)①-②×2,得11y =22,解得y =2 把y =2代入①,得8x +10=2,解得x =-1 故方程组的解为⎩⎨⎧x =-1,y =2.17.解:(1)②(2)错误的原因是不等式的两边都乘以-2 024,不等号的方向没有改变. (3)因为a >b ,所以-2 024a <-2 024b 所以-2 024a +1<-2 024b +1. 18.解:(1)3(4x +2)>4(2x -1)12x +6>8x -4,12x -8x >-4-6,4x >-10. x >-2.5.(2)解不等式①,得x ≤8,解不等式②,得x >-3 所以不等式组的解集是-3<x ≤8.19.解:(1)设生产大元宵要用肉馅x kg ,根据题意,得8×1 000x15=4×1 000(2 100-x )10.解得x =900.所以小元宵要用肉馅2 100-900=1 200(kg).答:大元宵和小元宵分别用900 kg ,1 200 kg 肉馅,才能使生产出的元宵刚好配套装袋.(2)设能生产m 袋元宵,根据题意,得(4×15+8×10)m ≤2 100×1 000,解得m ≤15 000 所以m 可取的最大值为15 000. 答:最多能生产15 000袋元宵.20.解:设这个两位数的十位数字为x ,个位数字为y 依题意得⎩⎨⎧x +y =6,10x +y +18=x +56.解得⎩⎨⎧x =4,y =2.答:这个两位数为42. 21.解:(1)12;6(2)当点P 在点O 左侧时,2OP -OQ =3 cm 即2(12-2t )-(6+t )=3,解得t =3. 当点P 在点O 右侧时,2OP -OQ =3 cm 即2(2t -12)-(6+t )=3,解得t =11. 所以当t 为3或11时,2OP -OQ =3 cm.22.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意,得⎩⎨⎧2x +y =100,3x +2y =165,解得⎩⎨⎧x =35,y =30.答:甲种书的单价是35元,乙种书的单价是30元.(2)设该校购买甲种书m 本,则购买乙种书(100-m )本,根据题意,得35m +30(100-m )≤3 200第 9 页 共 9 页 解得m ≤40,所以m 的最大值为40. 答:该校最多可以购买甲种书40本. 23.解:(1)-1;1(2)①+②,得-x -y =6③.①+③,得-4x =12,所以x =-3.②+③,得-4y =12 所以y =-3,所以方程组的解为⎩⎨⎧x =-3,y =-3.(3)m =n。

2018-2019年度数学学科初一年级第二学期期中考试试题+答案

2018-2019年度数学学科初一年级第二学期期中考试试题+答案

2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。

2018-2019学年北师大版七年级数学第二学期期中测试卷及答案

2018-2019学年北师大版七年级数学第二学期期中测试卷及答案

2018-2019学年七年级数学第二学期期中测试卷一、选择题(每题3分,共30分)1.下列运算正确的是()A.x3÷x2=x B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x22.若(x-5)(x+20)=x2+mx+n,则m,n的值分别为()A.-15,-100 B.25,-100C.25,100 D.15,-1003.下图中,∠1与∠2互为余角的是()4.计算x3·x3的结果是()A.2x3B.2x6C.x6D.x95.在烧开水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(min)和温度T(℃)的数据:在水烧开之前(即t<10),温度T与时间t的关系式及因变量分别为() A.T=7t+30,T B.T=14t+30,tC.T=14t-16,t D.T=30t-14,T6.如图,直线AB,CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∠EOD=,则∠AOE等于()A.162°B.152°C.142°D.132°7.如图,在下列给出的条件中,不能判定AB∥EF的是() A.∠B+∠2=180°B.∠1=∠4C.∠B=∠3 D.∠1=∠B8.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有() A.5个B.4个C.3个D.2个9.一列火车从贵阳出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站,乘客上、下车后,火车开始加速,一段时间后再次开始匀速行驶,下面的哪一幅图可以近似地刻画出火车在这段时间内的速度变化情况()10.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑自行车时间t(h)之间的关系如图所示,给出下列说法:①他们都骑行了20 km;②乙在途中停留了0.5 h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,已知DE∥BC,∠ABC=40°,则∠ADE=________.12.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m.将0.000 073用科学记数法表示为_______________________________________________ _.13.如图,某小区A自来水供水路线为AB,现进行改造,沿路线AO铺设管道,并与主管道BO连接(AO⊥BO),这样路线AO最短,工程造价最低,根据是______________.14.如图,某人记录了某地一月份某天一段时间的温度随时间变化的情况.根据图象可知,在这段时间内温度最高是________℃,________________的温度是0 ℃.15.若32x-1=1,则x=________.16.洲际弹道导弹的速度会随着时间的变化而变化,某种型号的洲际弹道导弹的速度v(km/h)与时间t(h)的关系是v=1 000+50t,若导弹发出0.5 h即将击中目标,则此时该导弹的速度应为________km/h.17.若a+b=7,ab=12,则a2+b2=________.18.如图,已知∠1=∠2,则________∥________,理由是_________________ _______________________________________________________;若∠3=100°,则∠4=________,理由是_____________________________ ___________________________________________.19.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数S与天数t之间的关系图象如图所示,那么乙参与收割的天数是________天.20.如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于__________(用含n的式子表示).三、解答题(21,24,25题每题8分,22题5分,23题7分,其余每题12分,共60分)21.计算:(1)4a 2x 2·⎝ ⎛⎭⎪⎫-25a 4x 3y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2; (2)704×696;(3)(x -3)(2x +1)-3(2x -1)2;(4)(-5)0×(-2)-3+(-3)-1÷⎝ ⎛⎭⎪⎫13-1×32-|-5|.22.先化简,再求值:[(a -b )2+(2a +b )(1-b )-b ]÷⎝ ⎛⎭⎪⎫-12a ,其中a ,b 满足|a +1| +(2b -1)2=0.23.完成下列填空:如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2.试说明:DG ∥B A. 解:因为AD ⊥BC ,EF ⊥BC (已知),所以∠EFB=∠ADB=90°(______________).所以________∥________(______________________________).所以∠1=∠BAD(______________________________).又因为∠1=∠2(已知),所以____________(等量代换).所以DG∥BA(____________________________).24.如图,AD∥BC,E,F分别在DC,AB的延长线上,∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)试说明:DC∥AB;(2)求∠AFE的度数.25.下表是橘子的销售额随橘子卖出质量的变化表:(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?26.如图是甲骑自行车与乙骑摩托车分别从A,B两地向C地(A,B,C地在同一直线上)行驶过程中离B地的距离与行驶时间的关系图,请你根据图象回答下列问题:(1)A,B两地哪个距C地近?近多少?(2)甲、乙两人谁出发时间早?早多长时间?(3)甲、乙两人在途中行驶的平均速度分别为多少?27.如图,已知射线CB∥OA,∠C=∠OAB=120°,E,F在CB上,且满足∠FOB=∠FBO,OE平分∠COF.(1)求∠EOB的度数.(2)若向右平行移动AB,其他条件不变,那么∠OBC∠OFC的值是否发生变化?若变化,找出其中规律;若不变,求出这个比值.(3)在向右平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,请直接写出∠OBA的度数;若不存在,请说明理由.答案一、1.A 2.D 3.C 4.C 5.A 6.B 7.D 8.B 9.C 10.B 二、11.40° 12.7.3×10-5 13.垂线段最短 14.2;12时和18时15.12 16.1 025 17.2518.a ;b ;同位角相等,两直线平行;100°;两直线平行,内错角相等 19.4 点拨:甲、乙合作的收割速度为(350-200)÷(3-2)=150(亩/天),乙收割机参与收割的天数为(800-200)÷150=4(天).20.(n -1)·180° 点拨:如图,过点A 2作A 2D ∥A 1B ,过点A 3作A 3E ∥A 1B ……因为A 1B ∥A n C ,所以A 3E ∥A 2D ∥…∥A 1B ∥A n C .所以∠A 1+∠A 1A 2D =180°,∠DA 2A 3+∠A 2A 3E =180°…… 所以∠A 1+∠A 1A 2A 3+…+∠A n -1A n C =(n -1)·180°. 三、21.解:(1)原式=-85a 6x 5y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2=165ax 4y ; (2)原式=(700+4)×(700-4)=7002-42=489 984;(3)原式=2x 2-5x -3-3(4x 2-4x +1)=2x 2-5x -3-12x 2+12x -3=-10x 2+7x -6;(4)原式=1×⎝ ⎛⎭⎪⎫-18+⎝ ⎛⎭⎪⎫-13÷3×9-5=-18-1-5=-618.22.解:原式=(a 2-2ab +b 2+2a -2ab +b -b 2-b )÷⎝ ⎛⎭⎪⎫-12a =(a 2-4ab +2a )÷⎝ ⎛⎭⎪⎫-12a =-2a +8b -4. 由|a +1|+(2b -1)2=0, 得a =-1,b =12.代入上式,得原式=-2×(-1)+8×12-4=2.23.垂直的定义;EF ;AD ;同位角相等,两直线平行;两直线平行,同位角相等;∠2=∠BAD ;内错角相等,两直线平行24.解:(1)因为AD∥BC,所以∠DAB=∠CBF.又因为∠DCB=∠DAB,所以∠CBF=∠DCB.所以DC∥AB.(2)因为AE⊥EF,所以∠AEF=90°.因为DC∥AB,所以∠DEF+∠AFE=180°.所以∠AFE=180°-∠DEF=180°-30°-90°=60°.25.解:(1)橘子卖出的质量与销售额之间的关系,橘子卖出的质量是自变量,销售额是因变量.(2)10(3)y=2x(4)当y=100时,x=50.答:此时共卖出50 kg橘子.26.解:(1)A地距C地近,近20 km.(2)甲出发时间早,早2 h.(3)甲:(80-20)÷6=10(km/h),乙:80÷(4-2)=40(km/h).答:甲的平均速度为10 km/h,乙的平均速度为40 km/h.27.解:(1)因为CB∥OA,∠C=∠OAB=120°,所以∠COA=180°-∠C=180°-120°=60°.因为CB∥OA,所以∠FBO=∠AOB.又因为∠FOB=∠FBO,所以∠AOB=∠FOB.因为OE平分∠COF,所以∠COE=∠FOE.所以∠EOB=∠EOF+∠FOB=12∠COA=30°.(2)不变.因为CB∥OA,所以∠OBC=∠BOA,∠OFC=∠FOA.所以∠OBC∠OFC=∠AOB∠FOA.又因为∠FOA=∠FOB+∠AOB=2∠AOB,所以∠OBC∠OFC=∠AOB∠FOA=∠AOB∠AOB=(3)存在.∠OBA=∠OEC=45°.。

2018-2019学年北师大版七年级数学下册期中测试卷(含答案)

2018-2019学年北师大版七年级数学下册期中测试卷(含答案)
2018-2019 学年七年级(下)期中数学试卷
一、选择题(共 8 小题,每小题 3 分,满分 24 分)
1.下列计算正确的是(

A .a6÷ 2a2= 2a3
B.(﹣ xy3) 2=﹣ x2y5
C.(﹣ 3a2)?(﹣ 2ab2)= 6a3b2
D.(﹣ 5) 0=﹣ 5
2.下列图形中∠ 1 与∠ 2 相等的有(
20.( 6 分)如图,已知∠ α. ( 1)作∠ AOB,使得∠ AOB=∠ α; ( 2)在( 1)图中以 OA 为一边,作∠ AOC=2∠ α,使∠ BOC =∠ AOB.(尺规作图,保留作图 痕迹,不写作法)
米 2.
15.若 a3x+y=﹣ 24,ax=﹣ 2,则 ay=

16.根据如图所示图形的面积关系可以写出的一个乘法公式是

三 .解答题(共 52 分) 17.( 12 分)计算:
( 1)(﹣ ab2)2?27a2b÷(﹣ 6a3b3) ( 2) 3(x2) 3?x3﹣( 2x3) 3 18.( 10 分)求下列各式的值: ( 1)( 3x﹣ 1)( 3x+5)﹣( 3x+2)( 3x﹣ 2),其中 x=﹣ 2; ( 2) [4( x+1) 2﹣ x( 2x ﹣2)﹣ 4]÷(﹣ x),其中 x=﹣ 1. 19.( 6 分)如图,已知∠ AFC = 70°,∠ B= 110°,直线 CD 与 BE 平行吗?为什么?
C. 4x4﹣ x2y2
D .无法计算
二 .填空题(每小题 3 分,共 24 分)
9.2018 年 1 月 3 日,北京市环保局发布 2017 年全年空气质量报告,污染物均有所改善,其中细颗 粒物( PM 2.5)年均浓度为 58 微克 /立方米(一微克等于一百万分之一克). 58 微克 /立方米这个

2018-2019北师大版七年级下学期期中数学试卷(含答案)

2018-2019北师大版七年级下学期期中数学试卷(含答案)

一、选择题1.北京国尝试推动我露”、“大雪A .2.下列计A .2m a a 3.下列说(1)相等不可能等于线与已知直相等.A .1 个4.如图,AB 于点射线AP 交A .15题(每题际设计周面我国非物质雪”,其中是计算正确的是2m a = B .说法中,正确等的角是对顶于它的补角直线平行;在Rt △ABCM ,N ,再分交边BC 于点第4题图3分,共24面向社会公开质文化遗产创是轴对称图B .是()m n a a +=确的有(顶角;(2)角;(4)垂(6)若两 B .2 个C 中,∠C 分别以点点D ,若C B .304分)开征集“二十创新传承与图形的是(m n a + C .(x )个)若两个锐垂直于同一条两个角的一对=90°,以顶M ,N 为圆心CD =4,AB =十四节气”标与发展.下面)C .22x =x+y)锐角相等,则条直线的两对边在同一C .3 个顶点A 为圆心,大于12=15,则△A C .45标识系统设面四幅作品22xy y +- 则它们的余两直线平行一直线上,另圆心,适当长MN 的长为ABD 的面积第5题图2018-2019北师大版七年级数学下册期中测试卷设计,以期通品分别代表“D .D .(a -+余角也相等;;(5)过另一对边互D .4 个长为半径画为半径画弧,积是()D .60通过现代设立春”、“芒2)(2b a b --(3)一个一点有且只互相平行,则画弧,分别交,两弧交于计的手段,芒种”、“白22)4a b =-个角的余角只有一条直则这两个角交边 AC ,于点 P ,作直5.已知:如则BC 的长A .24cm6.如图,A . 40°A .1如图,在△ A 长为(已知AB 第6题ABC 中,DF )B .28cm ∥CD ,∠1=B .45°题图B .2F ,EG 分别是m=115°,∠2是AB ,AC 的 C .302=65°,则C .50°C .3的垂直平分0cm ∠C 等于(第7题图分线,且△AD D . )D .60°D .4DE 的周长为32cm为 30cm ,二、填空题9.若2x 10.已知二11.若2a 12.已知C 则边AC 的13.已知:如14.如图,15.如图,后,点C 落第15题16.如图,的同侧作等∠BOD ,A 17.在△A 的度数为_18.如图,2cm/s 的速用t (s )表示题(每题54y +=,则二次三项式24a b -+-CD 是△AB 的长为____如图在△AB 第13题在△ABC ,△ABC 中落到点E 处题图,点O 为线等腰△AOC AD 与BC 相ABC 中,_________,∠AOB =6速度移动,动示移动的时3分,共30则432x y = _式2x mx ++250b +=,BC 的AB 边______cm .BC 中,AB =题图中,AD ⊥B 中,∠B =50处,若DE 线段AB 上的C 和△BOD 相交于点∠A =30°,高.60°,C 是B 动点Q 从点时间,当t =_0分)_________9是完全平则a +b =__边上的中线,=4,AC =2,BC ,AE 平分°,∠C =30∥AB ,则 第16的任意一点D ,OA =OC P ,∠COD =高BE ,CF 所BO 延长线点O 出发沿_________时.方式,则常________.,△BCD 的点D 为BC 边分∠BAC ,0°,点D 为∠DAC =____6题图 点(不与A ,,OB =OD =110°,则所在直线交上的一点,沿OA 以1cm 时,△POQ 常数m 的值的周长比△A 边的中点,第14题图若∠1=30°,为边BC 上一______.B 重合),∠AOC ∠APB =___交于点O ,且OC =8cm ,m/s 的速度Q 是等腰三值是_______ACD 的周长则AD 的取∠2=20°,一点,将△A 第,分别以A 与∠BOD 都_______度.且O 不与B 动点P 从移动,如果三角形.___. 长大2cm ,B 值范围是_则∠B= __ADC 沿直线18题图AO ,BO 为都是锐角,且,C 重合,从点C 出发果点P ,Q 同BC =8cm ,_________.________.线AD 折叠为一腰在AB 且∠AOC = 则∠BOC 沿CB 以同时出发,叠BC三、解答题19.(8分)20.(8分的距离相等痕迹,不写21. (9分)BC 的延长(1)若(2)当点β的代数式题(共46分先化简,再)物流公司等,且到写作法))如图,在长线于点E .∠B =50°,点P 在线段式表示)分)再求值.(33a 司要建一个V 字型公路在△ABC 中,∠ACB =80°AD 上运动)32ab b ÷-个物流中转站m ,n 的距,AD 平分°,求∠E 的动时,设∠()(ab ---站,如下图距离也相等,∠BAC ,点的度数.B =α,∠AC )(2a b a --图按照设计要,则中转站点P 为线段CB =β(β)(22a b -++要求,中转站P 应建在AD 上的一>α),求∠)2,其中a 转站到两个城什么位置一个动点,P E 的大小.1=,2=b .城镇A 、(保留作图PE ⊥AD (用含α、B交22.(10产时间t (了一段时间(1)甲在(2)甲故(3)当t (4)从第相差2个,分)某车间(小时)之间间).在因机器故障故障排除之后为何值时乙第一次甲乙生,请直接写间甲、乙两间的关系如障停产之前后以原来速乙生产零件生产零件总写出此时t 的名工人分别如图所示(其前,每小时生速度的两倍重件的总数第一总数在同一时的值.别生产同种其中实线表生产重新开始生一次与甲相时刻相同到零件,他们表示甲,虚线个零件.生产,则甲停相同?到甲完工这段们生产的零线表示乙,停产了段时间,若零件数量y 且甲因机器 小时.甲乙生产的(个)与生器故障停产.的零件总数生数23.(11分直线l 同侧(1)理解中的结论,(2)类比至B A ',连(3)拓展P 从点E 沿线段OF ,当t = 当t =分)观察理侧,BD ⊥l ,解应用:如图,请按照图比探究:如图连接C B ',展提升:如图沿射线EC 设点P 运 秒时,O秒时,点理解:如图1AE ⊥l ,垂图2,AE 图中所标注的图3,Rt △A 求△C B A '图4,等边以1cm/s 速动时间为OF ∥ED ;点F恰好落,△ABC 中垂足分别为⊥AB ,且AE 的数据计算ABC 中,的面积.边△EBC 中,速度运动,连t 秒. 落在射线EB 中,∠ACB =为D ,E ,易E =AB ,BC 算图中实线所∠ACB =90°,EC =BC =3连接OP ,将B 上.=90°,AC =B 易知△AEC ≌C ⊥CD ,且所围成的图AC =4,将3cm ,点将线段OP BC ,直线≌△CDB且BC =CD 图形的面积斜边AB 绕O 在BC 上,绕点O逆时l 过点C ,点,利用图S= 绕点A 逆时针且OC =2时针旋转1点A 、B 1中的结论;针旋转90°2cm ,动点120°得到的在论°一.选择题1 D 二.填空题9.1611.313.1<A 15.35°17.150三.解答题19. 解:原当a 20.解:作分线的交作21.解(1题(每题32 D题(每题3<3AD030︒︒或题(共46分原式=26b1=,=b 作线段AB 交点即为P .作图过程略.)5B ∠= BAC ∴∠AD 平BAD ∴∠ADE ∴∠PE ⊥ E ∴∠=分,共243 B分,共30分) 2时,原式=的垂直平分.50ACB ︒∠,50C =︒BAC∠平分25D ︒=E B =∠+ADADE ︒∠90-分)4B 分)=24 分线,作公80B =︒75BAD ∠=︒15E =︒5 C10.±612.614.50°16.14518.8或8公路m ,n 组成5 C 参考答案3成的角的角6 C角平分线,垂7 C垂直平分线8 A线与角平(222.解:(1)(2)(3)由相同,此(4)23.解:(1)5(2)作∵斜边∴B A '即∠B 而∠B ) B ∠= BAC ∴∠AD 平BAD ∴∠ADE ∴∠PE ⊥ E ∴∠=52由图易知V 此时(-10=t 310=t ,550作AC D B ⊥'边AB 绕点AB =,'∠A B ∠+'BAC AC =∠+9CAB ACB α∠,180C ︒-=BAC∠平分(11802D =︒E B =∠+∠ADADE ︒∠90-()乙4-40=)264=+÷,6,323C 于D ,如A 逆时针旋︒=90AB , ︒=90C , ︒90,β=αβ- )αβ-- BAD α=+1122E β=-()62-8=÷3如图所示,旋转90°至A (11802︒-α 小时个/,在B ' )90αβ-=︒在点E 处乙1122α+-乙生产零件的β的总数第一一次与甲∴B ∠在△B ⎪⎩⎪⎨⎧''∠∠B A A B AD ∴△∴'B ∴AB S ∆(3)当当t =AC B '∠=, AD '和△AB =∠=∠='BA B AD BCA B D AD B '≌△AB 4==AC D 142B C'=⨯⨯t =1秒时,=4秒时,点BC 中A BC (AAS )48= OF ∥ED ;点F 恰好落,落在射线EB B 上.。

山西省2018-2019学年第二学期七年级阶段二质量评估试题·数学(北师版)·试题

山西省2018-2019学年第二学期七年级阶段二质量评估试题·数学(北师版)·试题

的中点,点 D 为线段 AB 上任意一点(D 不与 C 重合),分别以 AD 和 BD 为边在 AB
的下方作正方形 ADEF 和正方形 BDGH,以 AC 和 CD 为边在线段下方作正方形
ACMJ 和正方形 CDPQ,则正方形 ADEF 与正方形 BDGH 的面积之和等于正方形
ACMJ 和正方形 CDPQ 面积之和的两倍.
C. 两直线平行,同位角相等
D. 内错角相等,两直线平行
5. 目前,世界上能制造出的最小晶体管的长度只有 0.00000004 m,将 0.00000004 用科学
记数法表示为
A. 4×10-8
B. 4×108
C. 0.4×108
D. -4×108
6. 下列图形中,已知∠1=∠2,则可以得到 AB∥CD 的是
姓名
准考证号
山西省 2018-2019 学年第二学期七年级阶段二质量评估试题
数 学(北师版)
注意事项: 1. 本试卷共 6 页,满分 120 分. 2. 答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.
第Ⅰ卷 选择题 (共 30 分)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一
隔 10 s 测量一次锅中油温,测量得到的数据如下表:
时间 t/s

10
20
30
40
油温 y/℃
10
30
50
70
90
王红发现,烧了 110 s 时,油沸腾了.则下列说法中,不正确的是
A. 没有加热时,油的温度是 10 ℃
B. 加热 50 s,油的温度是 110 ℃
C. 估计这种食用油的沸点温度约是 230 ℃

2018-2019学年北师大版七年级下期中考试数学试题含答案

2018-2019学年北师大版七年级下期中考试数学试题含答案

2018-2019学年度第二学期期中试卷七年级数学(满分130分)一、选择题(每题3分,共36分)1、计算x 4• x 3÷x 2等于 ( ) A 、x 3 B 、x 4 C 、x 5 D 、 x 62、如图∠1和∠2互补,∠3=130°,那么∠4的度数是 ( ) A. 50° B. 60° C. 70° D. 80°3、下列计算结果正确的是 ( ) A 、(3x 4 )2 = 6x 8 B.(- x 4)3 = - x 12 C .(- 4a 3 )2 = 4a 6 D 、〔(- a)4〕5 = - a 204、下列各组数中不可能是一个三角形的边长的是 ( ) A 5,12,13 B 5,7,7 C 5,7,12 D 101,102,1035、下列计算结果错误的是 ( ) A 、(ab)7÷(ab)3 = (ab)4 B 、 (x 2 )3 ÷(x 3 )2 = x C . (-32m)4÷ (-32m)2 = (-32m)2 D 、 (5a)6÷(-5a)4 = 25a 2 6、如图, a // b ,且∠2是∠1的2倍,那么∠2等于 ( ) A. 60° B. 90° C. 120° D. 150° 7、下列多项式乘法中可以用平方差公式计算的是 ( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、 )31)(31(x y y x -+ D 、 )1)(2(+-x x 8、直角三角形的一个锐角是另一个锐角的4倍,那么这个锐角的度数是 ( ) A 18° B 36° C 54° D 72°9、下列式子中一定相等的是 ( ) A 、(a -b )2 = a 2 + b 2 B 、 a 2 + b 2 = (a+ b)2 C .(a -b)2 = b 2-2ab + a 2 D 、 (a+b)(a 2-ab+b 2 )= a 3 – b 310、下列说法:①平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③平行于同一条直线的两条直线也互相平行;④同位角相等。

2018-2019学年北师大版数学七年级下册期中考试试题及答案

2018-2019学年北师大版数学七年级下册期中考试试题及答案

2018-2019学年北师大版数学七年级下册期中考试试题及答案2018-201年七年级下学期数学期中试卷一、选择题(本大题共10个小题,每小题2分,共20分。

每小题的四个选项中只有一个正确答案)1.下列运算正确的是()A。

a = 1B。

(-3) - 2 =C。

a6 ÷ a3 = a2D。

(a3)2 = a62.肥皂泡的泡壁厚度大约是0.xxxxxxxx米,数字0.xxxxxxxx用科学记数法表示为()A。

7.1×107B。

0.71×10-6C。

7.1×10-7D。

71×10-83.计算:a2•a的结果是()A。

aB。

a2C。

a3D。

2a24.如图,∠1和∠2是对顶角的是()A。

B。

C。

D。

5.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A。

30°B。

40°C。

50°D。

100°6.将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为()A。

10°B。

15°C。

20°D。

25°7.下列多项式乘法中可以用平方差公式计算的是()A。

(-a+b)(a-b)B。

(x+2)(2+x)C。

(+y)(y-)D。

(x-2)(x+1)8.周末___从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以___骑得特别放松。

途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园。

图中描述了___路上的情景,下列说法中错误的是()A。

___在便利店时间为15分钟B。

公园离___家的距离为2000米C。

___从家到达公园共用时间20分钟D。

___从家到便利店的平均速度为100米/分钟9.如图,点P是直线a外的一点,点A、B、C在直线a 上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A。

2018-2019学年山西省XX实验中学七年级下期中数学试卷含答案解析

2018-2019学年山西省XX实验中学七年级下期中数学试卷含答案解析

2018-2019学年山西省XX实验中学七年级(下)期中数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.每小题的四个选项中只有一个正确答案)1.计算:a2•a的结果是()A.a B.a2C.a3D.2a22.如图,∠1和∠2是对顶角的是()A.B.C.D.3.下列运算正确的是()A.a0=1B.(﹣3)﹣2=C.a6÷a3=a2D.(a3)2=a64.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣85.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30°B.40°C.50°D.100°6.将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为()A.10°B.15°C.20°D.25°7.下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x)C.(+y)(y﹣)D.(x﹣2)(x+1)8.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.小丽从家到便利店的平均速度为100米/分钟9.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离10.如图,在下列条件中:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4,能判定AB∥CD的有()A.1个B.2个C.3个D.4个二、填空题(本大题共8个小题,每题3分,共24分,)11.计算3x2•2xy2的结果是.12.计算(6m2n﹣6m2n2﹣3m2)÷(﹣3m2)=13.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOC的度数是,∠COE的度数是.14.如果32×27=3n,则n=.15.计算:20182﹣2018×2019=.16.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在D′、C′的位置处,若∠1=56°,则∠DEF的度数是.17.太原市出租车价格是这样规定的:不超过3千米,付车费8元,超过的部分按每千米1.6元收费,已知李老师乘出租车行驶了x(x>3)千米,付车费y元,则所付车费y元与出租车行驶的路程x千米之间的关系式为.18.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE 平分∠AHG;④HE⊥AB,其中正确的是(只填序号)三.解答题(本大题共7个小题,共56分,)直滑,19.(16分)计算下列各题:(1)(﹣1)2018+3﹣2﹣(π﹣3.14)0(2)(x+3)2﹣x2(3)(x+2)(3x﹣y)﹣3x(x+y)(4)(2x+y+1)(2x+y﹣1)20.(6分)先化简,再求值:[(x+1)(x+2)﹣2]÷x,其中x=﹣.21.(6分)(1)如图,利用尺规作图:过点B作BM∥AD.(要求:不写作法保留作图痕迹);(2)若直线DE∥AB,设DE与M交于点C.试说明:∠A=∠BCD.22.(5分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.23.(8分)已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF 的位置关系,并说明理由.解:,理由如下:∵AB∥CD,∴∠B=∠BCD,()∵∠B=70°,∴∠BCD=70°,()∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴+=180°,∴EF∥,()∴AB∥EF.()24.(7分)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均剪成四个小长方形,然后拼成如图乙所示的一个大正方形.(1)你认为图乙中的阴影部分的正方形的边长=;(2)请用两种不同的方法求图乙中阴影部分的面积:方法一:方法二:(3)观察图乙,请你写出下列代数式之间的等量关系:(m+n)2、(m﹣n)2、mn.(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=7,求a﹣b的值.25.(8分)如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠CBD=(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.2018-2019学年山西省实验中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.每小题的四个选项中只有一个正确答案)1.计算:a2•a的结果是()A.a B.a2C.a3D.2a2【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:a2•a=a3.故选:C.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.如图,∠1和∠2是对顶角的是()A.B.C.D.【分析】根据对顶角的定义,判断解答即可.【解答】解:根据对顶角的定义,选B的图形符合对顶角的定义.故选:B.【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.3.下列运算正确的是()A.a0=1B.(﹣3)﹣2=C.a6÷a3=a2D.(a3)2=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算分别化简得出答案.【解答】解:A、a0=1(a≠0),故此选项错误;B、(﹣3)﹣2=,故此选项正确;C、a6÷a3=a3,故此选项错误;D、(a3)2=a6,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.4.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数字0.00000071用科学记数法表示为7.1×10﹣7,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30°B.40°C.50°D.100°【分析】根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠1与∠2互为邻补角,∠1=140°,∴∠2=180°﹣∠1=180°﹣140°=40°,∴∠2的余角的度数为90°﹣40°=50°.故选:C.【点评】本题考查了邻补角和余角的定义,是基础题,熟记概念是解题的关键.6.将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为()A.10°B.15°C.20°D.25°【分析】根据三角形内角和定理以及平行线的性质,即可得到∠ABC=45°,∠DBC=30°,据此可得∠ABD的度数.【解答】解:∵Rt△ABC中,∠C=45°,∴∠ABC=45°,∵BC∥DE,∠D=30°,∴∠DBC=30°,∴∠ABD=45°﹣30°=15°,故选:B.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.7.下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x)C.(+y)(y﹣)D.(x﹣2)(x+1)【分析】根据平方差公式即可求出答案.【解答】解:(A)原式=﹣(a﹣b)(a﹣b)=﹣(a﹣b)2,故A不能用平方差公式;(B)原式=(x+2)2,故B不能用平方差公式;(D)原式=x2﹣x+1,故D不能用平方差公式;故选:C.【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.8.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.小丽从家到便利店的平均速度为100米/分钟【分析】根据题意和函数图象可以判断各个选项是否正确.【解答】解:小丽在便利店时间为15﹣10=5(分钟),故选项A错误,公园离小丽家的距离为2000米,故选项B正确,小丽从家到达公园共用时间20分钟,故选项C正确,小丽从家到便利店的平均速度为:2000÷20=100米/分钟,故选项D正确,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离【分析】利用点到直线的距离的定义、垂线段最短分析.【解答】解:A、根据点到直线的距离的定义:即点到这一直线的垂线段的长度.故此选项正确;B、根据垂线段最短可知此选项正确;C、线段AP的长是点A到直线PC的距离,故选项错误;D、根据点到直线的距离即点到这一直线的垂线段的长度.故此选项正确.故选:C.【点评】本题主要考查了点到直线的距离的定义,及垂线段最短的性质.10.如图,在下列条件中:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4,能判定AB∥CD的有()A.1个B.2个C.3个D.4个【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【解答】解:依据∠1=∠2,能判定AB∥CD;依据∠BAD+∠ADC=180°,能判定AB∥CD;依据∠ABC=∠ADC,不能判定AB∥CD;依据∠3=∠4,不能判定AB∥CD;故选:B.【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.二、填空题(本大题共8个小题,每题3分,共24分,)11.计算3x2•2xy2的结果是6x3y2.【分析】根据单项式乘以单项式的法则即可求出答案.【解答】解:原式=6x3y2故答案为:6x3y2【点评】本题考查单项式乘以单项式,解题的关键是熟练运用单项式乘以单项式的乘法法则,本题属于基础题型.12.计算(6m2n﹣6m2n2﹣3m2)÷(﹣3m2)=﹣2n+2n2+1【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(6m2n﹣6m2n2﹣3m2)÷(﹣3m2)=﹣2n+2n2+1.故答案为:﹣2n+2n2+1.【点评】此题主要考查了整式的除法,正确把握运算法则是解题关键.13.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOC的度数是100°,∠COE的度数是140°.【分析】根据角平分线的定义计算.【解答】解:∵∠BOC=80°,∴∠AOD=∠BOC=80°.∴∠AOC=180°﹣80°=100°,∵OE平分∠AOD,∴∠AOE=∠AOD=×80°=40°.∴∠COE=180°﹣40°=140°,故答案为:100°;140°.【点评】此题考查角的计算,角的平分线是中考命题的热点,常与其他几何知识综合考查.14.如果32×27=3n,则n=5.【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【解答】解:∵32×27=3n,∴32×33=3n,∴35=3n,则n=5.故答案为:5.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.15.计算:20182﹣2018×2019=1.【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=20182﹣(2018﹣1)×(2018+1)=20182﹣20182+1=1,故答案为:1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在D′、C′的位置处,若∠1=56°,则∠DEF的度数是62°.【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出答案.【解答】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=56°,∴∠DED′=180°﹣∠1=124°,∴∠DEF=62°.故答案为:62°【点评】本题考查了翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.17.太原市出租车价格是这样规定的:不超过3千米,付车费8元,超过的部分按每千米1.6元收费,已知李老师乘出租车行驶了x(x>3)千米,付车费y元,则所付车费y元与出租车行驶的路程x千米之间的关系式为y=1.6x+3.2.【分析】根据题意找出等量关系即可列出函数关系式.【解答】解:y=8+1.6(x﹣3)=1.6x+3.2,故答案为:y=1.6x+3.2【点评】本题考查函数关系式,解题的关键是找出等量关系,本题属于基础题型.18.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE 平分∠AHG;④HE⊥AB,其中正确的是①④(只填序号)【分析】根据平行线的性质定理与判定定理,即可解答.【解答】解:∵∠B=∠AGH,∴GH∥BC,即①正确;∴∠1=∠MGH,又∵∠1=∠2,∴∠2=∠MGH,∴DE∥GF,∵GF⊥AB,∴DE⊥AB,即④正确;∠D=∠F,HE平分∠AHG,都不一定成立;故答案为:①④.【点评】本题考查了平行线的性质定理与判定定理,解决本题的关键是熟记平行线的性质定理与判定定理.三.解答题(本大题共7个小题,共56分,)直滑,19.(16分)计算下列各题:(1)(﹣1)2018+3﹣2﹣(π﹣3.14)0(2)(x+3)2﹣x2(3)(x+2)(3x﹣y)﹣3x(x+y)(4)(2x+y+1)(2x+y﹣1)【分析】(1)先计算乘方、负整数指数幂和零指数幂,再计算加减可得;(2)利用完全平方公式展开,再合并同类项即可得;(3)根据整式的混合运算顺序和运算法则计算可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=1+﹣1=;(2)原式=x2+6x+9﹣x2=6x+9;(3)原式=3x2﹣xy+6x﹣2y﹣3x2﹣3xy=﹣4xy+6x﹣2y;(4)原式=(2x+y)2﹣1=4x2+4xy+y2﹣1.【点评】本题主要考查实数与整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则.20.(6分)先化简,再求值:[(x+1)(x+2)﹣2]÷x,其中x=﹣.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(x+1)(x+2)﹣2]÷x=[x2+3x+2﹣2]÷x=(x2+3x)÷x=x+3,当x=﹣时,原式=﹣+3=2.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.21.(6分)(1)如图,利用尺规作图:过点B作BM∥AD.(要求:不写作法保留作图痕迹);(2)若直线DE∥AB,设DE与M交于点C.试说明:∠A=∠BCD.【分析】(1)以点B为顶点,在BC左侧作∠CBN=∠A即可得;(2)由∠CBN=∠A、∠BCD=∠CBN可得答案.【解答】解:(1)如图,BM即为所求;(2)由(1)知∠A=∠CBN,∵DE∥AB,∴∠BCD=∠CBN,∴∠A=∠BCD.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握作一个角等于已知角的尺规作图及平行线的判定与性质.22.(5分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,每月的乘车人数x是自变量,每月利润y是因变量;(2)观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达4500人.【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案.【解答】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;(4)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月利润为5000元时,每月乘车人数为4500人,故答案为4500.【点评】本题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键.23.(8分)已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF 的位置关系,并说明理由.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)【分析】依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.【解答】解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)故答案为:AB∥EF,两直线平行,内错角相等;等量代换,∠E,∠DCE,CD,同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行.【点评】本题考查平行线的性质和判定,解题的关键是熟练掌握平行线的判定和性质.24.(7分)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均剪成四个小长方形,然后拼成如图乙所示的一个大正方形.(1)你认为图乙中的阴影部分的正方形的边长=m﹣n;(2)请用两种不同的方法求图乙中阴影部分的面积:方法一:(m﹣n)2方法二:(m+n)2﹣4mn(3)观察图乙,请你写出下列代数式之间的等量关系:(m+n)2、(m﹣n)2、mn(m﹣n)2=(m+n)2﹣4mn.(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=7,求a﹣b的值.【分析】(1)根据图乙中的阴影部分的正方形的边长等于小长方形的长减去宽进行判断;(2)图乙中阴影部分的面积既可以用边长的平方进行计算,也可以用大正方形的面积减去四个小长方形的面积进行计算;(3)根据(m﹣n)2和(m+n)2﹣4mn表示同一个图形的面积进行判断;(4)根据(a﹣b)2=(a+b)2﹣4ab,进行计算即可得到a﹣b的值.【解答】解:(1)由题可得,图乙中的阴影部分的正方形的边长等于m﹣n;故答案为:m﹣n;(2)方法一:图乙中阴影部分的面积=(m﹣n)2方法二:图乙中阴影部分的面积=(m+n)2﹣4mn;故答案为:(m﹣n)2,(m+n)2﹣4mn;(3)∵(m﹣n)2和(m+n)2﹣4mn表示同一个图形的面积;∴(m﹣n)2=(m+n)2﹣4mn;故答案为:(m﹣n)2=(m+n)2﹣4mn;(4)∵(a﹣b)2=(a+b)2﹣4ab,而a+b=8,ab=7,∴(a﹣b)2=82﹣4×7=64﹣28=36,∴a﹣b=±6.【点评】本题主要考查了完全平方公式的几何背景,解决问题的关键是运用两种不同的方式表达同一个图形的面积,进而得出一个等式,这是数形结合思想的运用.25.(8分)如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠CBD=60°(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=30°(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【分析】(1)根据角平分线的定义只要证明∠CBD=∠ABN即可;(2)想办法证明∠ABC=∠CBP=∠DBP=∠DBN即可解决问题;(3)不变.可以证明∠APB=∠PBN,∠ADB=∠DBN=∠PBN.【解答】解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°,故答案为:60°.(2)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=∠ABN=30°,故答案为:30°.(3)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.【点评】本题考查平行线的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

学年北师大版初一数学下册期中考试试题 含答案

学年北师大版初一数学下册期中考试试题 含答案

2018-2019学年七年级(下)期中数学试卷一、选择题:每题3分,共45分。

在每小题的四个选项中,只有一项是符合题目要求的。

请把正确的选项填涂在答题卡上。

1.下列代数运算正确的是()A.x?x6=x6B.(x2)3=x6C.(x+2)2=x2+4D.(2x)3=2x32.已知a=()﹣2,b=(﹣2)3,c=(x﹣2)0(x≠2),则a,b,c的大小关系为()A.b<a<c B.b<c<a C.c<b<a D.a<c<b3.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2B.2C.0D.14.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73B.49C.43D.235.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.06.下列说法正确的是()A.相等的角是对顶角B.一个角的补角必是钝角C.同位角相等D.一个角的补角比它的余角大90°7.地球的体积约为1012立方千米,太阳的体积约为×1018立方千米,地球的体积约是太阳体积的倍数是()A.×10﹣6B.×10﹣7C.×106D.×1078.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个长方形形(不重叠无缝隙),则该长方形的面积是()A.2cm2B.2acm2C.4acm2D.(a2﹣1)cm29.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°10.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A.60°B.80°C.100°D.120°11.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°12.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15°B.25°C.30°D.45°13.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min其中正确的个数为是()A.4个B.3个C.2个D.1个14.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s15.如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()A.2αB.90°+2αC.180°﹣2αD.180°﹣3α二.填空题:每题3分,共18分,将答案填在各题的横线上.16.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据用科学记数法表示为.17.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.18.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG=.19.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转度.20.如图是婴儿车的平面示意图,其中AB∥CD,∠1=130°,∠3=40°,那么∠2的度数°.21.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=.三、解答题:共7小题,满分57分,解答应写出文字说明,说理过程或演算步骤。

北师大版2019-2020学年度七年级下期中考试数学试题(有答案)(已审阅)

北师大版2019-2020学年度七年级下期中考试数学试题(有答案)(已审阅)

//4.若∠1与∠2是同旁内角,∠1=500,则∠2的度数是( )(A )50° (B )130° (C )50°或130° (D )不能确定 5.在同一平面内,两直线的位置关系必是 ( )A .相交B .平行C .相交或平行D .垂直6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量B . x 与y 都是变量,且x 是自变量,y 是因变量 C .物体质量每增加1 kg ,弹簧长度y 增加0.5 cm D .所挂物体质量为7 kg 时,弹簧长度为23.5 cm7.如图,下列条件中,能判定DE ∥AC 的是 ( )A .∠EDC=∠EFCB .∠AFE=∠ACD (7题图)C .∠1=∠2D .∠3=∠48.把一块直尺与一块三角板如图放置,若∠1=40°,则 ∠2的度数为( )A .125°B .130°C .140°D .150°9.已知=+=--=22a ,6,5ab b b a 则( ) A. 13B. 19C. 26D. 37 10.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形的面积,验证了一个等式,则这个等式是( ) A 、()()2222a b a b a ab b +-=+- B 、()()22a b a b a b -=+- C 、()2222a b a ab b -=-+ D 、()2222a b a ab b +=++二、仔细填一填:(每小题3分,共30分)11.已知变量y 与x 的关系式是2x 25x 3y -=,则当2=x 时,____y =.12.一个角的补角是它的余角的4倍,则这个角是_________度。

13.若4x 2-mx +25是完全平方式,则m=___________。

2018年北师大附属实验中学初一数学期中测验试题 (答案版)

2018年北师大附属实验中学初一数学期中测验试题 (答案版)

22. (本题共 5 分)如图,∠1 = ∠2,������������∥������������, 求证:∠3 = ∠4。
A
C E
1
B
2
D
3
4 F
2x 5 3x 2
23.
(本小题
6
分)解不等式组
2 / 14
10. 如图,△������������������的三边长均为整数,且周长为 22,������������
是边������������上的中线,△������������������的周长比△������������������的周长大 2,
则������������4. 将四个数√2、√5、√20和π表示在数轴上,被图中表示的解集包含的数


15. 已知������的平方根是������ + 1和2������ − 2,则������ =

16. 命 题 “ 两 直 线 平 行 , 同 位 角 相 等 ” 的 题 设 部 分


3 / 14
17. 如图,一艘船从 A 点出发先沿北偏东 55°方向航行,
6. 如图所示,AD⊥BD,BC⊥CD,AB=5cm,BC=3cm,则
BD 的范围是( )
A.大于 5cm
B.小于 3cm
B
C.大于 5cm 或小于 3cm D.大于 3cm 且小于 5cm
A D
C
7. 如图,������������∥������������,∠������ = 35°,∠������ = 40°,则∠������ =(
A. 65°
B. 70°
C. 75°
D. 80°

A

2018-2019学年人教新版北京师大附属实验中学七年级第二学期期中数学试卷 含解析

2018-2019学年人教新版北京师大附属实验中学七年级第二学期期中数学试卷 含解析

2018-2019学年七年级第二学期期中数学试卷一、选择题1.在平面直角坐标系中,点(1,2)-在( )A .第一象限B .第二象限C .第三象限D .第四象限2.下列等式正确的是( )A .2(3)3-=-B .14412=±C .82-=-D .255-=-3.下列实数中,是无理数的是( )A .3.14159265B .36C .7D .2274.如图,下列能判定//AB CD 的条件有( )个.(1)180B BCD ∠+∠=︒;(2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .4个B .3 个C .2 个D .1个5.若m n >,则下列不等式不一定成立的是( )A .22m n +>+B .22m n >C .22m n ->-D .22m n >6.下列运算正确的是( )A .22x x x =gB .22()xy xy =C .236()x x =D .224x x x +=7.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若125ADE ∠=︒,则DBC ∠的度数为( )A .55︒B .65︒C .75︒D .125︒8.下列命题中假命题的是( )A .同旁内角互补,两直线平行B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直9.数轴上表示1,2的点分别为A ,B ,点A 是BC 的中点,则点C 所表示的数是( )A .21-B .12-C .22-D .22-10.如图(1)所示为长方形纸带,将纸带沿EF 折叠成图;(2)再沿BF 折叠成图;(3)继续沿EF 折叠成图(4)按此操作,最后一次折叠后恰好完全盖住EFG ∠,整个过程共折叠了9次,问图(1)中DEF ∠的度数是( )A .20︒B .19︒C .18︒D .15︒二、填空题(本大题共10小题,共20分)11.把命题“邻补角互补”改写成“如果⋯,那么⋯”的形式 .12.若某一个正数的平方根是23m +和1m +,则m 的值是 .13.若2m a =,8n a =,则2m n a += .14.若点(2,1)P m m -+在x 轴上,点P 坐标为 .15.如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西40︒方向,则从C 岛看A 、B 两岛的视角ACB ∠等于 度.16.如图,要把池中的水引到D 处,可过D 点引DC AB ⊥于C ,然后沿DC 开渠,可使所开渠道最短,试说明设计的依据: .17.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30︒角的直角三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边上,则1∠的度数是 .18.若不等式2(3)1x +>的最小整数解是方程23x ax -=的解,则a 的值为 .19.如图,在直角三角形ABC 中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若平移距离为3,则阴影部分的面积等于 .20.如图在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,⋯,那么点14A 的坐标为 ,点2019A 的坐标为 .三、解答题(本大题共8小题,共50分)21.计算:(138|32252--(2)2723()()a a a a -+÷-22.解下列不等式(组),并把(2)的解集表示在数轴上.(1)3(2)92(1)x x +---…(2)523(2)12123x xx x +<+⎧⎪--⎨⎪⎩…23.已知AD BC ⊥,FG BC ⊥,垂足分别为D 、G ,且12∠=∠,求证BDE C ∠=∠. 证明:AD BC ⊥Q ,FG BC ⊥ (已知),90ADC FGC ∴∠=∠=︒ .//AD FG ∴ .13∴∠=∠又12∠=∠Q ,(已知),32∴∠=∠ .//ED AC ∴ .BDE C ∴∠=∠ .24.如图,这是某市部分建筑分布简图,请以火车站的坐标为(1,2)-,市场的坐标为(3,5)建立平面直角坐标系,并分别写出超市、体育场和医院的坐标.25.某商场购进A 、B 两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.类型价格A 型B 型进价(元/个) 2000 2600售价(元/个)2800 3700(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B型智能扫地机器人多少个?26.如图,(1,0)A-,(1,4)C,点B在x轴上,且3AB=.(1)求点B的坐标;(2)求ABC∆的面积;(3)在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.27.先阅读第(1)题的解法,再解答第(2)题:(1)已知a,b是有理数,并且满足等式253233a b a=+,求a,b的值.解:因为253233a b a-=-,即253(2)33a b a-=-所以2523b aa-=⎧⎪⎨-=⎪⎩解得23136ab⎧=-⎪⎪⎨⎪=⎪⎩(2)已知x,y是有理数,并且x,y满足等式221742x y++=+x y的值.28.如图,已知//AM BN,60A∠=︒.点P是射线AM上一动点(与点A不重合),BC、BD分别平分ABP∠和PBN∠,分别交射线AM于点C,D.(1)求CBD∠的度数;(2)当点P运动时,APB∠与ADB∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使ACB ABD∠=∠时,ABC∠的度数是.四、填空题(本题共6分)29.阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若1122n x n -<+…,则《x 》n =.例如《0.67》1=,《2.49》2=,⋯⋯请解决下列问题:(1)2》= ;(2)若《21x -》5=,则实数x 的取值范围是 ;(3)①《2x 》2=《x 》;②当m 为非负整数时,《2m x +》m =+《2x 》;③满足《x 》32x =的非负实数x 只有两个.其中结论正确的是 (填序号)五、材料阅读题(本题共6分)30.材料一:中国象棋体现了我国古人的智慧和传统文化的精髓.中国象棋棋盘中蕴含着平面直角坐标系.如图是中国象棋棋盘的一半,棋子“马”走的规则是每步走“日”字形.例如:图中“马”所在的位置可以直接走到点A 、B 处;材料二:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位,用实数加法表示为3(2)1+-=.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移||a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移||b 个单位),则把有序数对{a ,}b 叫做这一平移的“平移量”.“平移量” {a ,}b 与“平移量” {c ,}d 的加法运算法则为{a ,}{b c +,}{d a c =+,}b d +. 下面在图中的象棋棋盘上建立直角坐标系,设“帅”位于点(0,0),“相”位于点(4,2). 请解决下列问题:(1)图中“马”所在的点的坐标为 .(2)根据材料一和材料二,在整个直角坐标系中,不是棋子“马”的一步“平移量”的是 .(可多选,填选项前的字母)A .{1,2}B .{2-,1}C .{1,1}D -.{2-,1}E -.{3,1}-(3)设“马”的初始位置如图中所示,如果现在命令“马“每一步只能向右和向上前进(例如图中的“马”只能走到点A 、B 处),在整个坐标系中,试问:①“马”能否走到点C ?答: ;(填“能”或“不能” )②“马”能否走到点(2018,2019)和点(2020,2021)?若能,则需要几步?为什么?若不能,请说明理由.六、几何探究题(本题共8分)31.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2︒,灯B转动的速度是每秒1︒.假定主道路是平行的,即//PQ MN,且∠∠=.BAM BAN:2:1(1)填空:BAN∠=︒;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且120∠=︒,则在灯B射线到ACB达BQ之前,转动的时间为秒.参考答案一、选择题1.在平面直角坐标系中,点(1,2)-在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据各象限内点的坐标特征解答即可.解:点(1,2)-在第二象限.故选:B .2.下列等式正确的是( )A 3=-B 12=±C 2=-D .5=-【分析】原式利用平方根定义及二次根式的性质判断即可得到结果.解:A 、原式|3|3=-=,错误;B 、原式12=,错误;C 、原式没有意义,错误;D 、原式5=-,正确,故选:D .3.下列实数中,是无理数的是( )A .3.14159265BCD .227【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.1415926是有限小数是有理数,选项错误.B 6=,是整数,是有理数,选项错误;C 是无理数,选项正确;D 、227是分数,是有理数,选项错误; 故选:C .4.如图,下列能判定//AB CD 的条件有( )个.(1)180B BCD ∠+∠=︒;(2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .4个B .3 个C .2 个D .1个【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线. 解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,12∠=∠Q ,//AD BC ∴,而不能判定//AB CD ,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.故选:B .5.若m n >,则下列不等式不一定成立的是( )A .22m n +>+B .22m n >C .22m n ->-D .22m n >【分析】根据不等式的性质,可得答案.解:A 、两边都加2,不等号的方向不变,故A 成立,B 、两边都乘2,不等号的方向不变,故B 成立;C 、两边都除以2-,不等号的方向改变,故C 不成立;D 、当1m n >>时,22m n >成立,当01m <<,1n <-时,22m n <,故D 不一定成立, 故选:D .6.下列运算正确的是( )A .22x x x =gB .22()xy xy =C .236()x x =D .224x x x +=【分析】根据同底数幂的除法,底数不变指数相减,合并同类项,系数相加字母和字母的指数不变,同底数幂的乘法,底数不变指数相加,幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解:A 、23x x x =g 同底数幂的乘法,底数不变指数相加,故本选项错误;B 、222()xy x y =,幂的乘方,底数不变指数相乘,故本选项错误;C 、236()x x =,幂的乘方,底数不变指数相乘,故本选项正确;D 、2222x x x +=,故本选项错误.故选:C .7.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若125ADE ∠=︒,则DBC ∠的度数为( )A .55︒B .65︒C .75︒D .125︒【分析】由125ADE ∠=︒,根据邻补角的性质,即可求得ADB ∠的度数,又由//AD BC ,根据两直线平行,内错角相等,即可求得DBC ∠的度数.解:125ADE ∠=︒Q ,18055ADB ADE ∴∠=︒-∠=︒,//AD BC Q ,55DBC ADB ∴∠=∠=︒.故选:A .8.下列命题中假命题的是( )A .同旁内角互补,两直线平行B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直【分析】利用平行线的性质、平行公理及两直线的位置关系分别判断后即可确定正确的选项.解:A 、同旁内角互补,两直线平行是平行线的判定定理,正确,是真命题; B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确,是真命题; C 、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题; D 、在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行,错误,是假命题,故选:D .9.数轴上表示1,2的点分别为A ,B ,点A 是BC 的中点,则点C 所表示的数是( )A .21-B .12-C .22-D .22-【分析】首先根据数轴上1,2的对应点分别是点A 和点B ,可以求出线段AB 的长度,然后根据中点的性质即可解答.解:Q 数轴上1,2的对应点分别是点A 和点B , 21AB ∴=-,A Q 是线段BC 的中点, CA AB ∴=,∴点C 的坐标为:1(21)22--=-.故选:C .10.如图(1)所示为长方形纸带,将纸带沿EF 折叠成图;(2)再沿BF 折叠成图;(3)继续沿EF 折叠成图(4)按此操作,最后一次折叠后恰好完全盖住EFG ∠,整个过程共折叠了9次,问图(1)中DEF ∠的度数是( )A .20︒B .19︒C .18︒D .15︒【分析】根据最后一次折叠后恰好完全盖住EFG ∠;整个过程共折叠了9次,可得CF 与GF 重合,依据平行线的性质,即可得到DEF ∠的度数. 解:设DEF α∠=,则EFG α∠=, Q 折叠9次后CF 与GF 重合, 99CFE EFG α∴∠=∠=,如图(2),//CF DE Q , 180DEF CFE ∴∠+∠=︒,9180αα∴+=︒, 18α∴=︒,即18DEF ∠=︒. 故选:C .二、填空题(本大题共10小题,共20分)11.把命题“邻补角互补”改写成“如果⋯,那么⋯”的形式 如果两个角是邻补角.那么它们(这两个角)互补 .【分析】分清题目的已知与结论,即可解答.解:把命题“邻补角互补”改写为“如果⋯那么⋯”的形式是:如果两个角是邻补角.那么它们(这两个角)互补,故答案为:如果两个角是邻补角.那么它们(这两个角)互补. 12.若某一个正数的平方根是23m +和1m +,则m 的值是 3.【分析】根据平方根互为相反数,可得平方根的和为0,根据解一元一次方程,可得m 的值,根据平方运算,可得答案. 解:正数a 的平方根是23m +和1m +, 2310m m ∴+++=,43m =--. 故答案为:43-.13.若2m a =,8n a =,则2m n a += 32 .【分析】根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可得答案. 解:222(2)24832m n m n +==⨯=g , 故答案为:32.14.若点(2,1)P m m -+在x 轴上,点P 坐标为 (3,0) . 【分析】根据x 轴上点的纵坐标为0列出方程求解即可. 解:Q 点(2,1)P m m -+在x 轴上, 10m ∴+=,解得1m =-,22(1)213m ∴-=--=+=,∴点P坐标为(3,0).故答案为:(3,0).15.如图,C岛在A岛的北偏东50︒方向,C岛在B岛的北偏西40︒方向,则从C岛看A、B两岛的视角ACB∠等于90 度.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.解:CQ岛在A岛的北偏东50︒方向,∴∠=︒,DAC50Q岛在B岛的北偏西40︒方向,C∴∠=︒,CBE40Q,DA EB//DAB EBA∴∠+∠=︒,180∴∠+∠=︒,CAB CBA90ACB CAB CBA∴∠=︒-∠+∠=︒.180()90故答案为:90.16.如图,要把池中的水引到D处,可过D点引DC AB⊥于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.【分析】根据垂线段的性质,可得答案.解:要把池中的水引到D处,可过D点引DC AB⊥于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短. 故答案为:垂线段最短.17.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30︒角的直角三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边上,则1∠的度数是 15︒ .【分析】过A 点作//AB a ,利用平行线的性质得//AB b ,所以12∠=∠,3430∠=∠=︒,加上2345∠+∠=︒,易得115∠=︒. 解:如图,过A 点作//AB a , 12∴∠=∠, //a b Q , //AB b ∴, 3430∴∠=∠=︒,而2345∠+∠=︒, 215∴∠=︒, 115∴∠=︒.故答案为15︒.18.若不等式2(3)1x +>的最小整数解是方程23x ax -=的解,则a 的值为2. 【分析】求得x 的取值范围来确定x 的最小整数解;然后将x 的值代入已知方程列出关于系数a 的一元一次方程,通过解该方程即可求得a 的值. 解:2(3)1x +>解得52x >-,其最小整数解为2-,因此2(2)23a ⨯-+=,解得72a =. 故答案为:72. 19.如图,在直角三角形ABC 中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若平移距离为3,则阴影部分的面积等于 12 .【分析】利用平移的性质得3BE AD ==,//AD BE ,则可判断四边形ABED 为平行四边形,然后根据平行四边形的面积公式计算.解:ABC ∆Q 沿CB 向右平移3个单位得到DEF ∆, 3BE AD ∴==,//AD BE , ∴四边形ABED 为平行四边形, ∴阴影部分的面积4312=⨯=.故答案为12.20.如图在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,⋯,那么点14A 的坐标为 (7,1) ,点2019A 的坐标为 .【分析】根据图象可得移动4次图象完成一个循环,从而可得出点14A 、2019A 的坐标. 解:14432÷=⋯Q ,20194504..3÷=则14A 的坐标是(321⨯+,1)(7=,1).2019A 的坐标是(50421⨯+,0)(1008=,0). 故答案为:(7,1);(1008,0).三、解答题(本大题共8小题,共50分) 21.计算:(1)38|32|252+--+ (2)2723()()a a a a -+÷-【分析】(1)根据立方根的定义,绝对值的定义,算术平方根的定义分别化简计算即可; (2)根据幂的乘方与积的乘方以及同底数幂的除法分别化简即可求解. 解:(1)原式232520=+--+=;(2)原式2662a a a a =+-=.22.解下列不等式(组),并把(2)的解集表示在数轴上. (1)3(2)92(1)x x +---… (2)523(2)12123x x x x +<+⎧⎪--⎨⎪⎩„【分析】(1)去括号,移项,合并同类项,系数化为1,求得不等式的解集即可. (2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 【解答】(1)解:去括号,得36922x x +--+…,移项,得32296x x ++-…, 合并同类项,得55x …, 系数化为1,得1x …, (2)解:()523212123x x x x ⎧+<+⎪⎨--⎪⎩①②„,解不等式①,得2x <; 解不等式②,得1x -…,所以不等式组的解集为12x -<„, 不等式组的解集在数轴上的表示如下:23.已知AD BC ⊥,FG BC ⊥,垂足分别为D 、G ,且12∠=∠,求证BDE C ∠=∠. 证明:AD BC ⊥Q ,FG BC ⊥ (已知),90ADC FGC ∴∠=∠=︒ 垂直的定义 . //AD FG ∴ . 13∴∠=∠又12∠=∠Q ,(已知), 32∴∠=∠ . //ED AC ∴ . BDE C ∴∠=∠ .【分析】由条件可证明//AD FG ,可得到13∠=∠,结合条件可得//DE AC ,可得到BDE C ∠=∠,依此填空即可.【解答】证明:AD BC ⊥Q ,FG BC ⊥ (已知), 90ADC FGC ∴∠=∠=︒(垂直的定义). //AD FG ∴(同位角相等,两直线平行). 13∴∠=∠ (两直线平行,同位角相等), 又12∠=∠Q ,(已知), 32∴∠=∠(等量代换). //ED AC ∴(内错角相等,两直线平行). BDE C ∴∠=∠(两直线平行,同位角相等)故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.24.如图,这是某市部分建筑分布简图,请以火车站的坐标为(1,2)-,市场的坐标为(3,5)建立平面直角坐标系,并分别写出超市、体育场和医院的坐标.【分析】根据火车站的坐标为(1,2)-,市场的坐标为(3,5)可建立平面直角坐标系,再根据坐标系得出所求点的坐标.解:建立平面直角坐标系如下:由图可知超市的坐标为(1,2)-.-,医院的坐标为(3,0)-,体育场的坐标为(5,5)25.某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.类型A型B型价格进价(元/个)2000 2600售价(元/个)2800 3700(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B型智能扫地机器人多少个?【分析】(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据总价=单价⨯数量结合购进A、B两种型号的智能扫地机器人60个共花费14.4万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60)-个,根据总利m润=单台利润⨯购进数量结合总利润不少于53000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中最小的整数即可得出结论.解:(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据题意得:60 20002600144000x yx y+=⎧⎨+=⎩,解得:2040xy=⎧⎨=⎩.答:购进A型智能扫地机器人20个,购进B型智能扫地机器人40个.(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60)m-个,根据题意得:(37002600)(28002000)(60)53000m m-+--…,解得:503 m….mQ为整数,17m∴….答:至少需购进B型智能扫地机器人17个.26.如图,(1,0)A-,(1,4)C,点B在x轴上,且3AB=.(1)求点B的坐标;(2)求ABC∆的面积;(3)在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)分点B在点A的左边和右边两种情况解答;(2)利用三角形的面积公式列式计算即可得解;(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.解:(1)点B在点A的右边时,132-+=,点B在点A的左边时,134--=-,所以,B的坐标为(2,0)或(4,0)-;(2)ABC∆的面积1346 2=⨯⨯=;(3)设点P到x轴的距离为h,则13102h⨯=,解得203h=,点P在y轴正半轴时,20(0,)3P,点P在y轴负半轴时,20(0,)3P-,综上所述,点P的坐标为20(0,)3或20(0,)3-.27.先阅读第(1)题的解法,再解答第(2)题:(1)已知a,b是有理数,并且满足等式253233a b a=+,求a,b的值.解:因为253233a b a-=-,即253(2)33a b a-=-所以2523b aa-=⎧⎪⎨-=⎪⎩解得23136ab⎧=-⎪⎪⎨⎪=⎪⎩(2)已知x,y是有理数,并且x,y满足等式221742x y++=+x y的值.【分析】观察(1)中的解题过程,将(2)中已知等式变形求出x与y的值,即可求出原式的值.解:(2)整理得:(2)21742x y y ++=+,可得2174x y y +=⎧⎨=⎩, 解得:94x y =⎧⎨=⎩,则原式321=-=.28.如图,已知//AM BN ,60A ∠=︒.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D .(1)求CBD ∠的度数;(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使ACB ABD ∠=∠时,ABC ∠的度数是 30︒ .【分析】(1)先根据平行线的性质,得出120ABN ∠=︒,再根据BC 、BD 分别平分ABP ∠和PBN ∠,即可得出CBD ∠的度数;(2)根据平行线的性质得出APB PBN ∠=∠,ADB DBN ∠=∠,再根据BD 平分PBN ∠,即可得到2PBN DBN ∠=∠进而得出2APB ADB ∠=∠;(3)根据ACB CBN ∠=∠,ACB ABD ∠=∠,得出CBN ABD ∠=∠,进而得到ABC DBN ∠=∠,根据60CBD ∠=︒,120ABN ∠=︒,可求得ABC ∠的度数.解:(1)//AM BN Q ,180A ABN ∴∠+∠=︒,60A ∠=︒Q ,120ABN ∴∠=︒,BC Q 、BD 分别平分ABP ∠和PBN ∠,12CBP ABP ∴∠=∠,12DBP NBP ∠=∠, 1602CBD ABN ∴∠=∠=︒;(2)不变化,2APB ADB ∠=∠,证明://AM BN Q ,APB PBN ∴∠=∠,ADB DBN ∠=∠,又BD Q 平分PBN ∠,2PBN DBN ∴∠=∠,2APB ADB ∴∠=∠;(3)//AD BN Q ,ACB CBN ∴∠=∠,又ACB ABD ∠=∠Q ,CBN ABD ∴∠=∠,ABC DBN ∴∠=∠,由(1)可得,60CBD ∠=︒,120ABN ∠=︒, 1(12060)302ABC ∴∠=︒-︒=︒, 故答案为:30︒.四、填空题(本题共6分)29.阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若1122n x n -<+…,则《x 》n =.例如《0.67》1=,《2.49》2=,⋯⋯请解决下列问题:(1)2》= 1 ;(2)若《21x -》5=,则实数x 的取值范围是 ;(3)①《2x 》2=《x 》;②当m 为非负整数时,《2m x +》m =+《2x 》;③满足《x 》32x =的非负实数x 只有两个.其中结论正确的是 (填序号)【分析】(1)根据题意判断即可;(2)我们可以根据题意所述利用不等式解答;(3)根据题意可以判断题目中各个结论是否正确,从而可以解答本题.解:(1)》1=.故答案为:1;(2)若《21x -》5=,则11521522x --<+„,解得111344x <„. 故答案为:111344x <„; (3)《2x 》2=《x 》,例如当0.3x =时,《2x 》1=,2《x 》0=,故①错误; 当m 为非负整数时,不影响“四舍五入”,故《2m x +》m =+《2x 》,故②正确; 《x 》32x =,则31312222x x -<+„,解得11x -<„,故③错误. 故答案为:②五、材料阅读题(本题共6分)30.材料一:中国象棋体现了我国古人的智慧和传统文化的精髓.中国象棋棋盘中蕴含着平面直角坐标系.如图是中国象棋棋盘的一半,棋子“马”走的规则是每步走“日”字形.例如:图中“马”所在的位置可以直接走到点A 、B 处;材料二:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位,用实数加法表示为3(2)1+-=.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移||a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移||b 个单位),则把有序数对{a ,}b 叫做这一平移的“平移量”.“平移量” {a ,}b 与“平移量” {c ,}d 的加法运算法则为{a ,}{b c +,}{d a c =+,}b d +. 下面在图中的象棋棋盘上建立直角坐标系,设“帅”位于点(0,0),“相”位于点(4,2). 请解决下列问题:(1)图中“马”所在的点的坐标为 (3,0)- .(2)根据材料一和材料二,在整个直角坐标系中,不是棋子“马”的一步“平移量”的是 .(可多选,填选项前的字母)A .{1,2}B .{2-,1}C .{1,1}D -.{2-,1}E -.{3,1}-(3)设“马”的初始位置如图中所示,如果现在命令“马“每一步只能向右和向上前进(例如图中的“马”只能走到点A 、B 处),在整个坐标系中,试问:①“马”能否走到点C?答:;(填“能”或“不能”)②“马”能否走到点(2018,2019)和点(2020,2021)?若能,则需要几步?为什么?若不能,请说明理由.【分析】(1)根据“帅”,“相”的位置确定“马”的位置;(2)由于马走“日”,因此马的平移向量左或右平移1,则相应的上或下平移2;平移向量左或右平移2,则相应的上或下平移1,由此可判断所给平移量;(3)①马可以先走到A,再走到C;也可以先走到B,再走到C;②设马沿着平移量(2,1)移动n次,沿着平移量(1,2)移动m次,则马沿着平移量++移动;走到点(2018,2019)时,向右移动2021,马向上移动2019,可得n m m n(2,2)m n+=,22019+=;走到点(2020,2021)时,向右移动2023,马向上移动2021,22021n m可得22023+=.m nn m+=,22021解:(1)由“帅”位于点(0,0),“相”位于点(4,2),-;∴“马”坐标为(3,0)(2)由于马走“日”,因此马的平移向量左或右平移1,则相应的上或下平移2;平移向量左或右平移2,则相应的上或下平移1,∴、B、D可以是“马”的一步“平移量”,A故答案为C、E.(3)①马可以先走到A,再走到C;也可以先走到B,再走到C;故答案为能;②由题意可知“马”的走法只有两种平移量(2,1)或(1,2),设马沿着平移量(2,1)移动n次,沿着平移量(1,2)移动m次,则马沿着平移量(2,2)++移动,n m m n如图马的初始位置是(3,0)-,走到点(2018,2019)时,向右移动2021,马向上移动2019,+=,m n∴+=,22019n m2202120173m ∴=(不合题意), ∴马走不到(2018,2019);走到点(2020,2021)时,向右移动2023,马向上移动2021,22023n m ∴+=,22021m n +=,673m ∴=,675n =,∴能走到点(2020,2021),需要沿着平移量(2,1)移动675次,沿着平移量(1,2)移动673次.六、几何探究题(本题共8分)31.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视若灯A 转动的速度是每秒2︒,灯B 转动的速度是每秒1︒.假定主道路是平行的,即//PQ MN ,且:2:1BAM BAN ∠∠=.(1)填空:BAN ∠= 60 ︒;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C ,且120ACB ∠=︒,则在灯B 射线到达BQ 之前,转动的时间为 秒.【分析】(1)根据180BAM BAN ∠+∠=︒,:2:1BAM BAN ∠∠=,即可得到BAN ∠的度数;(2)设A 灯转动t 秒,两灯的光束互相平行,分两种情况进行讨论:当090t <<时,根据21(30)t t =+g ,可得30t =;当90150t <<时,根据1(30)(2180)180t t ++-=g ,可得110t =;(3)分两种情形,根据平行线的性质,构建方程解决问题即可.解:(1)180BAM BAN ∠+∠=︒Q ,:2:1BAM BAN ∠∠=,1180603BAN ∴∠=︒⨯=︒, 故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当090<<时,如图1,tPQ MNQ,//∴∠=∠,PBD BDAQ,//AC BD∴∠=∠,CAM BDA∴∠=∠CAM PBD∴=+g,21(30)t t解得30t=;②当90150<<时,如图2,t//Q,PQ MN∴∠+∠=︒,180PBD BDAAC BDQ,//∴∠=∠CAN BDA∴∠+∠=︒180PBD CANg,∴++-=1(30)(2180)180t t解得110t=,综上所述,当30t=秒或110秒时,两灯的光束互相平行;(3)设灯A射线转动时间为t秒,Q,∠=︒-1802CAN t∴∠=,CBP t又120Q∠=︒ACB∴∠=∠+∠=︒=︒-+,1201802ACB CBN CBP t t解得:60t=,此时AC与AB共线,不符合题意,如图4中,当120∠=︒时,ACBQ,∠=∠+∠ABC MAC QBC∴︒=︒-+︒-,t t 1203602180∴=,t140故答案为:140.。

北大实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

北大实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

北大实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列方程组中,属于二元一次方程组的是()A.B.C.D.【答案】C【考点】二元一次方程组的定义【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;B. 第一个方程不是整式方程,故不是二元一次方程组;C. 符合二元一次方程组的定义,是二元一次方程组;D.含有三个未知数,故不是二元一次方程组。

故答案为:C【分析】组成方程组的两个方程满足:①一共含有两个未知数,②未知数项的最高次数是1,③整式方程,同时满足这些条件的方程组就是二元一次方程组,根据定义即可一一判断。

2、(2分)下列图形中,线段AD的长表示点A到直线BC距离的是()A. B.C. D.【答案】D【考点】点到直线的距离【解析】【解答】解:∵线段AD的长表示点A到直线BC距离∴过点A作BC的垂线,A、过点A作DA⊥AB,故A不符合题意;B、AD与BC相交,故B不符合题意;C、过点A作DA⊥AB,故C不符合题意;D、过点A作AD⊥BC,交BC的延长线于点D,故D符合题意;故答案为:D【分析】根据已知条件线段AD的长表示点A到直线BC距离,因此应该过点A作BC的垂线,观察图形即可得出答案。

3、(2分)利用数轴确定不等式组的解集,正确的是()A.B.C.D.【答案】A【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:先解不等式2x+1≤3得到x≤1则可得到不等式组的解集为-3<x≤1,再根据不等式解集的数轴表示法,“>”、“<”用虚点,“≥”、“≤”用实心点,可在数轴上表示为:.故答案为:A.【分析】先求出每一个不等式的解集,确定不等式组的解集,在数轴上表示出来.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4、(2分)若5x+19的立方根是4,则2x+7的平方根是()A. 25B. -5C. 5D. ±5【答案】D【考点】平方根,立方根及开立方【解析】【解答】解:∵5x+19的立方根是4,∴5x+19=64,解得x=9则2x+7=2×9+7=25,∵25的平方根是±5故2x+7的平方根是±5.故答案为:D【分析】根据立方根的意义,5x+19的立方根是4,故5x+19就是4的立方,从而列出方程,求解得出x的值;再代入2x+7算出结果,最后求平方根。

山西省太原市山西省实验中学2018-2019学年 第二学期七年级期中数学试卷

山西省太原市山西省实验中学2018-2019学年 第二学期七年级期中数学试卷

山西省实验中学2018~2019学年度第二学期期中考试试题(卷)七年级 数学第Ⅰ卷 选择题(共30分)一、(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列运算中,结果是5a 的是( ) A .23a a ⋅B .102a a ÷C .()32aD .23a a +2.如图,一个弯形管道ABCD 的拐角,要使管道AB ,CD 保持平行,则BCD ∠的度数为( ) A .110︒B .90︒C .70︒D .50︒3.小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数y (元)与购买彩笔的支数x (支)之间的关系式为( ) A .23y x =B .32y x =C .12y x =D .18y x =4.下列说法中,正确的是( ) A .同位角相等B .内错角相等C .同旁内角相等D .对顶角相等5.已知225x mx ++是完全平方式,则m 的值为( ) A .10B .C .20D .6.如图示,把一块含有45︒的直角三角形的两个顶点放在直尺的对边上.如果120∠=︒,那么2∠的度数是( ) A .15︒B .20︒C .25︒D .30︒7.化简的结果是( ) A .25n -B .35n -C .D .8.如图,AB 是一条河流,要铺设管道将河水引到两个用水点C 和D ,现有两种铺设管道的方案; 方案一:分别过C 、D 作AB 的垂线,垂足为E 、F ,沿CE 、DF 铺设管道; 方案二:连接CD 交AB 于点P ,沿PC ,PD 铺设管道. 下列说法正确的是( )A .方案一比方案二省钱,因为垂线段最短B .方案二比方案一省钱,因为两点之间,线段最短C .方案一与方案二一样省钱,因为管道长度一样D .方案一与方案二都不是最省钱的方案9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的方法,你认为其中正确的有( ) ①;②;③;④22 am an bm bn +++. A .①②B .③④C .①②④D .①②③④10.甲、乙两人沿相同路线前往距离单位10km 的培训中心参加学习.图中l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (千米)随时间t (分)两个变量之间关系的图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲.其中正确的有( ) A .3个B .2个C .1个D .0个第Ⅱ卷 选择题(共70分)二.填空题(本大题含5个小题,每小题3分,共15分).11.如图,直线a 与直线b 相交于点O ,231∠=∠,2∠=_________.12. 2.5PM 是指大气中直径小于或等于的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5m μ用科学记数法可表示为____________m . 13.声音在空气中传播的速度()/y m s (简称音速)与气温()x C ︒之间的关系如下表:在气温为15C ︒的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令枪的地点有____________m .14.如图,把一张长方形纸条ABCD 沿EF 折叠,点C 与点D 分别落在点C '与点D '处,D E '与BC 交于点G ,若,则EGF ∠=___________.15.已知,1ab =,则22a b +=_________.三.简答题(本大题共8个小题,共55分,解答题应写出文字说明、证明过程或演算步骤)16.计算: (1) (2) (3) (4) 17.操作题.(1)如图是一个正方形网格,在此网格中有直线AB 与点C .请按下列要求画图:①画直线CDAB ;②画直线CE AB ⊥,垂足为点F . (温馨提示:要标明字母呦)(2)作图题(尺规作图,要求:不写作法,保留作图痕迹)如图,已知P 是BAC ∠的边AB 上不同于A 的一点,经过点P 请作出AC 的平行线PQ .18.化简求值题 (1),其中2a =-(2)()()222a b a a b ab ---+,其中2a =,12b =- 19.观察下列等式: ①2132341⨯-=-=- ②2243891⨯-=-=- ③235415161⨯-=-=-... (1)请按以上规律写出第4个等式;(2)请按以上规律写出第n 个等式;(用含n 的代数式表示) 20.填空题如图示,B C ∠=∠,AB EF ,判断BGF ∠与C ∠的数量关系.解:BGF ∠与C ∠的数量关系是: ① 理由如下:∠=∠∵B C∴②(内错角相等,两直线平行).∵AB EF∴EF CD(③)∴(④)21.将若干张长为10cm,宽为4cm的长方形条按如图所示的方法粘合起来,粘合部分的宽为0.5cm.(1)3张纸条粘合后的总长度为___________cm.(2)设x张纸条粘合后的总长度为ycm,求y与x之间的关系式.(3)当粘合后纸条的总长度为105cm时,求粘合纸条的张数.22.综合与实践在研究完平行线的知识内容后,“雄鹰”数学兴趣小组在课外展开了折叠纸片并研究其中问题的活动.动手操作:如图1,在一张长方形纸片上有一点P.将纸片依次按以下步骤进行操作:第一步:将纸片随意折叠并展开铺平,得到折横AB,如图2;第二步:将纸片按如图3的方式折叠,然后展开铺平得到图4,折痕CD与折痕AB交于点E;第三步:将纸片按如图5的方式折叠,然后展开铺平得到图6,折痕为GF.观察思考:“雄鹰”数学兴趣小组一名成员通过观察发现CD与AB垂直,为了验证自己的想法,他测量了图中的⊥,你能解释其中的道理吗?请说明理由.∠,发现,于是他就断定CD ABAED问题解决:“雄鹰”数学兴趣小组的另外一名成员受此启发,通过观察,提出了一个猜想:GF AB.你认为这个猜想正确吗?请为你的判断说明理由.23.综合与探究一列快车从甲地匀速驶往乙地,同时一列慢车从乙地匀速驶往甲地.设慢车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的关系,根据图象解决以下问题:(1)甲、乙两地之间的距离为___________km;(2)求快车与慢车的速度;(3)求慢车行驶多少时间后,两车之间的距离为500km .参考答案1.【考点】幂运算【难度星级】★ 【答案】A【解析】解:235a a a ⋅= 故选A 2.【考点】平行线的性质【难度星级】★ 【答案】C【解析】两直线平行,同旁内角互补 ∴70BCD ∠=︒3.【考点】变量之间的表示——关系式【难度星级】★ 【答案】B【解析】每支彩笔的价格是(元) ∴32y x =4.【考点】平行线及对顶角的性质【难度星级】★ 【答案】D【解析】解:A .两直线平行,同位角相等,错误; B .两直线平行,内错角相等,错误; C .两直线平行,同旁内角互补,错误; D .对顶角相等,正确: 故选;D5.【考点】完全平方公式【难度星级】★ 【答案】B【解析】解:∵225x mx ++是完全平方式,∴10m =±, 故选:B6.【考点】两直线平行,内错角相等【难度星级】★★ 【答案】C【解析】解:∵直尺的两边平行,120∠=︒, ∴3120∠=∠=︒,∴. 故选:C7.【考点】整式除法【难度星级】★★【答案】C【解析】略8.【考点】垂线段最短【难度星级】★【答案】A【解析】垂线段最短9.【考点】整式乘法【难度星级】★【答案】D【解析】略10.【考点】变量之间的表示——图象法【难度星级】★★【答案】B【解析】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度40101560=÷=千米/时;故②正确;③设乙出发x分钟后追上甲,则有:,解得6x=乙第一次遇到甲时,所走的距离为:10662818km⨯=-,故③错误;所以正确的结论有两个:①②故选:B11.【考点】对顶角、邻补角【难度星级】★【答案】135︒【解析】略12.【考点】科学记数法表示较小的数【难度星级】★【答案】【解析】略13.【考点】变量的表示方法【难度星级】★【答案】68【解析】当气温为25C︒时,音速为340米/秒,而该人是看到发令枪的烟0.2秒后,听到了枪声.则由此可知,这个人距发令地点3400.268⨯=米.14.【考点】平行线的性质,折叠问题【难度星级】★【答案】80︒【解析】解:根据折叠的性质,得;∵AD BC,∴(两直线平行,内错角相等);(两直线平行,内错角相等); ∵,∴. ∴80EGF ∠=︒15.【考点】整式的混合运算 化简求值【难度星级】★ 【答案】7【解析】2222()2327a b a b ab +=+-=-= 16.【考点】计算【难度星级】★★ 【答案】(1)313x y - (2)2414x y (3)(4)【解析】略17.【考点】尺规作图【难度星级】★★ 【答案】略【解析】略18.【考点】化简求值【难度星级】★★ 【答案】(1)224a a +-,原式 (2)24b ab -,原式2= 【解析】略19.【考点】找规律【难度星级】★★★ 【答案】(1)246524251⨯-=-=-(2)()()222212211n n n n n n n +-+=+---=- 【解析】略20.【考点】平行线的性质与判定【难度星级】★★ 【答案】① ②ABCD③平行于同一直线的两直线平行 ④两直线平行,同位角相等 【解析】略21.【考点】关系式法【难度星级】★★ 【答案】解:(1)29(2)9.50.5y x =+(3)当105y =时,9.50.5105x +=解得:11x = 答:粘合纸条的张数为11张.22.【考点】平行判定【难度星级】★★ 【答案】(1)CD AB ⊥,理由如下: 由折叠可知: ∵∴ ∴CD AB ⊥ (2)GFAB ,理由如下:由折叠可知: ∴∴GFAB23.【考点】图象信息综合【难度星级】★★★ 【答案】(1)720(2)120/v km h =快,80/v km h =慢 (3)1.1h 或6.25h 【解析】(1)略(2)慢车的速度:720980/km h ÷=,两车速度差:720 3.6200/km h ÷=, 快车的速度:(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km . 即相遇前:,解得 1.1x =, 快车7201206h ÷=到乙地,∵慢车行驶20km 两车之间的距离为500km , ∵慢车行驶20km 需要的时间是, ∴,故 1.1x h =或6.25,两车之间的距离为500km .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档