人教版数学九上课件22.1二次函数的图像和性质4
合集下载
《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
人教版数学九年级上册22.1.2二次函数y=ax2的图像与性质 课件(21张PPT)
二二次次函函数数y的=图x2象的都图是象抛是物一线条,曲线它,们它的的开形口状或类者似向于上投或篮者球向 时下球.在一空般中地所,经二过次的函路数线y,=只ax是2 +这b条x +曲c线(开a≠口0)向的上图,象这叫条做曲抛 线物叫线做y =抛a物x2线+ byx=+xc2 ,
9 6 3
-3
3
实y轴际是上抛,物每线条y抛= 物x 2线的都对有称对轴称,轴抛,物抛线物y 线= x与2 对与称它轴的的对交称点轴 叫的做交抛点物(线0,的0顶)点叫.做顶抛点物是线抛y =物x线2 的的顶最点低,点它或是最抛高物点线.y = x 2 的最低点.
交点坐标
y
求抛物线与直线的 交点坐标的方法: 两解析式联列方程
组
y=4x2 y=3x+1
O
x
1.若抛物线y=ax²与y=4x²的形状及开口方向 均相同,则a= 4
2.下列关于二次函数y=ax²(a≠0)的说法中,错误 的是( C ) A.它的图像的顶点是原点 B.当a<0,在x=0时,y取得最大值
(2)说出函数图象的顶点坐标、对称轴、
开口方向和图象的位置;
在x轴的下方
解: (1)依题意,得 (2)2 a 3
解得
a=
3 4
∴ 该函数的解析式为 y
3 4
x2
例3、y=kx2与y=kx-2(k≠ 0)在同一坐标系中, 可能是( B )
A
B
C
D
例4、求抛物线y=4x2与直线y=3x+1的
描点法
列表、描点、连线
以0为中心 选取7个x值
画最简单的二次函数 y = x2 的图象列表
九年级数学上册22、1二次函数的图象和性质4二次函数y=ax2+bx+c的图象和性质第2课时习题课件
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上, 并写出平移后抛物线的解析式.
(2)答案不唯一,如:先向左平移2个单位长 度,再向下平移1个单位长度,得到的抛物线 的解析式为y=-x2,平移后抛物线的顶点为 (0,0),落在直线y=-x上.
考查角度二 已知面积求抛物线上点的坐标 16.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0). (1)求此抛物线的解析式;
考查角度一 抛物线的平移 15.如图,已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过 点C(0,-3). (1)求抛物线的解析式和顶点坐标;
解:(1)设抛物线的解析式为y=a(x-1)(x-3). ∵抛物线过点C(0,-3),∴-3=a×(-1)×(-3), 解得a=-1,∴y=-(x-1)(x-3)=-x2+4x-3. ∵y=-x2+4x-3=-(x-2)2+1,∴顶点坐标为 (2,1).
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax2+bx+c的图象和性质 第2课时 用待定系数法求二次函数的解析式
知识点一 利用“一般式”求二次函数的解析式
1.已知二次函数y=x2+bx+c的图象经过点(-1,0)和(1,-2),则这个函
数的解析式为( ) B
A.y=x2-x+2
3
6.如图所示的抛物线的解析式为__y_=__2_x_2_-__4_x_+__2____.
7.已知二次函数当x=-1时,有最小值-4,且当x=0时,y=-3,则二次 函数的解析式为________________.
y=(x+1)2-4
知识点三 利用“交点式”求二次函数的解析式
人教版九年级上册数学课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质
2
一般地,当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶 点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.
顶点都是原点(0,0), 顶点是抛物线的最 高点;
增减性相同: 当 x<0时,y随x增大 而增大;当x>0时, y随x增大而减小.
y O -3
3x
开口都向下; 对称轴都是y轴;
y = ax2(a<0)
(0,0) y轴
在x轴的下方(除顶点外) 向下
当x<0时,y随着x的增大而增大. 当x>0时,y随着x的增大而减小.
当x = 0时,最大值为0.
Thank you!
A.y1<y2<y3 C.y3<y2<y1
B.y1<y3<y2 D.y2<y1<y3
综合应用
3.已知y=(m+1)xm2+m是关于x的二次函数,且当x>0时,y随x 的增大而减小. (1)求m的值; (2)画出该函数的图象.
解:(1)∵y=(m+1)xm2+m是关于x的二次函数,∴m2+m=2且m +1≠0.则m=-2或m=1.又∵x>0时,y随x的增大而减小,∴m+ 1<0,m<-1,故m=-2 (2)画图略
单调性
当x<0 (在对称轴 的左侧)时,y随
着x的增大而减小.
y 9 6 3
-3 O 3 x
当x>0 (在对
称轴的右侧) 时,y随着x的
猎豹图书
增大而增大.
例1 在同一直角坐标系中,画出函数 y 1 x2 ,y =2x2的图象.
2
解:分别列表,再画出它们的图象,如图.
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
函数 y=1 x2,y=2x2 的图象与函数y=x2 的图象相比,有什么共同点
一般地,当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶 点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.
顶点都是原点(0,0), 顶点是抛物线的最 高点;
增减性相同: 当 x<0时,y随x增大 而增大;当x>0时, y随x增大而减小.
y O -3
3x
开口都向下; 对称轴都是y轴;
y = ax2(a<0)
(0,0) y轴
在x轴的下方(除顶点外) 向下
当x<0时,y随着x的增大而增大. 当x>0时,y随着x的增大而减小.
当x = 0时,最大值为0.
Thank you!
A.y1<y2<y3 C.y3<y2<y1
B.y1<y3<y2 D.y2<y1<y3
综合应用
3.已知y=(m+1)xm2+m是关于x的二次函数,且当x>0时,y随x 的增大而减小. (1)求m的值; (2)画出该函数的图象.
解:(1)∵y=(m+1)xm2+m是关于x的二次函数,∴m2+m=2且m +1≠0.则m=-2或m=1.又∵x>0时,y随x的增大而减小,∴m+ 1<0,m<-1,故m=-2 (2)画图略
单调性
当x<0 (在对称轴 的左侧)时,y随
着x的增大而减小.
y 9 6 3
-3 O 3 x
当x>0 (在对
称轴的右侧) 时,y随着x的
猎豹图书
增大而增大.
例1 在同一直角坐标系中,画出函数 y 1 x2 ,y =2x2的图象.
2
解:分别列表,再画出它们的图象,如图.
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
函数 y=1 x2,y=2x2 的图象与函数y=x2 的图象相比,有什么共同点
人教版九年级上册22.1二次函数的图象和性质 复习课件(共32张PPT)
o
2
x
5
10
15
D.(4,3)
4
例 3 ( 2 ) ( 山 东 中 考 ) 抛 物 线 y = a x ²+ b x + c 经 过 点 A ( - 2 , 7 ) , B(6,7)C(3,-8),则该抛物线上纵坐标为-8的另一个点D 的坐标是
例 3 ( 3 ) ( 上 海 中 考 ) 抛 物 线 2 ( x + m ) ²+ n ( m , n 是 常 数 )
y
8
6
4
2
10
5
o
5
x
10
15
2
4
例 3 , 如 图 已 知 抛 物 线 y = x ²+ b x + c 的 对 称 轴 为 x = 2 , 点
A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为
(0,3),则点B的坐标为(
)
8y
6 4
x=2
A.(2,3) B.(3,2)
2A
B
C.(3,3)
5
二次函数的解析式(三种形式解析式)
一 般 式 : y = a x ²+ b x + c ( a ≠ ᄋ )
顶 点 式 : y = a ( x - h ) ²+ k ( a8, h , k 为 常 数 , 且 a ≠ ᄋ )
两根式:y=a(x-x1)(x-x2)(a≠ᄋ,x1,x2是抛物线与x轴两交点
解析式为
6
y
4
2
A(-1,0)
B(3,0)
15
10
5
O
x5
10
2
4
∙x 3
2)2 2∙(x +例2) 43:如图,在平面直角坐标系xOy中,抛8 物线C1的顶点为A(-1, -4),且过点B(-3,0)。
人教九年级数学上册《二次函数图像与性质》课件(共14张PPT)
(3) 二次函数的图象是什么 形 状呢?
结合图象讨论
性质是数形结合
的研究函数的重要 方法.我们得从最 简单的二次函数开 始逐步深入地讨论 一般二次函数的图 象和性质.
画最简单的二次函数 y = x2 的图象
1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:
x ··· -3 -2 -1 0
2 0.5
0 0.5 2 4.5
···
8
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
·
y 2x2 ·· 8 4.5 2 0.5 0 0.5 2 4.5 8 ···
·
y x2
y 2x2
8
6
4
y 1 x2
2
2
-4 -2
24
函数 y 1 x2 , y 2x2 的图象与函数 y=x2 的图象相比 ,有什么共同2 点和不同点?
相同点:开口:向上, 顶点:原点(0,0)——最低点 对称轴: y 轴
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数 yx2,y1x2,y2x2 的图象,并考虑这些抛物 2
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象
.
6
y = x2
人教版九年级上册22.二次函数的图像与性质课件(共129张)
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
课件_人教版数学九年级二次函数y=ax的图像和性质PPT课件_优秀版
y -4 -2 0 2 4 x
-3 -6 -9
探究新知 知识点 2 二次函数y=ax2的图象性质
根据你以往学习函数图象性质的经验,说说二次函 数y=x2的图象有哪些性质,并与同伴交流.
1.y=x2的图象是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点.
···
-8
-4.5 -2
-0.5 0 -0.5 -2 -4.5 -8
···
x ··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ··· y 2x2 ··· -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8 ···
探究新知
【思考】二次函数 y 1 x2 , y x2 , y 2x2
y 9 6 3
-4 -2 o 2 4 x
探究新知
当取更多个点时,函数y=x2的图象如下:
解②得:m1=-2, m2=1
(1) 你们喜欢打篮球吗?
y
利用函数y=ax2的图像性质确定字母的值
顶点( 0 ,0 );
9
连线:如图,再用平滑曲线顺次连接各点,就得到y = x2 的图象.
在已对知称 :轴如的图左,侧直线, yy随=x3的x增+大4与而抛物线y=, x2交于A、B两点,求出A6、B两点的坐标,并对求称出两轴交与点与抛原物点所线围的成的交三角形的面积.
(3)根据图象,求出当S=1cm2时,正方形的周长;
(4)根据图象,求出C取何值时,S ≥4cm2.
探究新知
解:(1)∵正方形的周长为Ccm,
∴正方形的边长为 C cm,
4
∴S与C之间的关系式为S
=
C2
;
16
-3 -6 -9
探究新知 知识点 2 二次函数y=ax2的图象性质
根据你以往学习函数图象性质的经验,说说二次函 数y=x2的图象有哪些性质,并与同伴交流.
1.y=x2的图象是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点.
···
-8
-4.5 -2
-0.5 0 -0.5 -2 -4.5 -8
···
x ··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ··· y 2x2 ··· -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8 ···
探究新知
【思考】二次函数 y 1 x2 , y x2 , y 2x2
y 9 6 3
-4 -2 o 2 4 x
探究新知
当取更多个点时,函数y=x2的图象如下:
解②得:m1=-2, m2=1
(1) 你们喜欢打篮球吗?
y
利用函数y=ax2的图像性质确定字母的值
顶点( 0 ,0 );
9
连线:如图,再用平滑曲线顺次连接各点,就得到y = x2 的图象.
在已对知称 :轴如的图左,侧直线, yy随=x3的x增+大4与而抛物线y=, x2交于A、B两点,求出A6、B两点的坐标,并对求称出两轴交与点与抛原物点所线围的成的交三角形的面积.
(3)根据图象,求出当S=1cm2时,正方形的周长;
(4)根据图象,求出C取何值时,S ≥4cm2.
探究新知
解:(1)∵正方形的周长为Ccm,
∴正方形的边长为 C cm,
4
∴S与C之间的关系式为S
=
C2
;
16
人教版数学九年级上册课件22.1.4二次函数的图像和性质
2 2
16
14
12
10
8
6
4
2
15
10
5
5
10
15
一般地,对于二次函数y=ax² +bx+c,我们可以利用配方法 推导出它的对称轴和顶点坐标. 试将式一般转化为顶点 式.
2 b b 2 b 2 a x x a c a 2a 2a
2
y ax2 bx c 2 b a x x c a
b 4ac b2 a x . 2a 4a
二次函数y=ax2+bx+c(a≠0)的图象和性质
抛物线 顶点坐标 对称轴 开口方向 增减性 最值
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a
直线 x b 2a
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a
直线 x b 2a
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
b 4ac b 2 当x 时, 最小值为 2a 4a
b 4ac b 2 当x 时, 最大值为 2a 4a
作用
• 二次函数图象特征与 参数a,b,c的关系.完成 下表.
作用
符号
字母符号
图象特征 图象特征
归纳总结: a的符号决定 开口方向 ,简记为 “上正下负 ”. a,b的符号决定 对称轴位置 ,简记为 “左同右异 ”. c的符号决定 与y轴交点 ,简记为 “ 上正下负 ”
16
14
12
10
8
6
4
2
15
10
5
5
10
15
一般地,对于二次函数y=ax² +bx+c,我们可以利用配方法 推导出它的对称轴和顶点坐标. 试将式一般转化为顶点 式.
2 b b 2 b 2 a x x a c a 2a 2a
2
y ax2 bx c 2 b a x x c a
b 4ac b2 a x . 2a 4a
二次函数y=ax2+bx+c(a≠0)的图象和性质
抛物线 顶点坐标 对称轴 开口方向 增减性 最值
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a
直线 x b 2a
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a
直线 x b 2a
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
b 4ac b 2 当x 时, 最小值为 2a 4a
b 4ac b 2 当x 时, 最大值为 2a 4a
作用
• 二次函数图象特征与 参数a,b,c的关系.完成 下表.
作用
符号
字母符号
图象特征 图象特征
归纳总结: a的符号决定 开口方向 ,简记为 “上正下负 ”. a,b的符号决定 对称轴位置 ,简记为 “左同右异 ”. c的符号决定 与y轴交点 ,简记为 “ 上正下负 ”
人教版九年级数学上册《二次函数的图象和性质》PPT
22.1.4二次函数y=ax2+bx+c 图象和性质
y
o
x
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减
抛物线y=a(x-h)2+k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
方∵9对向/a4于=,)-1y,求<=与a出0x,y2它∴轴+开b的交x口+点对c向我坐称下标们轴,为可、顶以顶点确坐点定标坐(它标2的、.5开,与口y 轴的交点坐标、与x轴的交点坐标(有交 点(时0),,- 4这),样与就x可轴以交画点为出(它1的,0)大、致(4,图0)象,。
a
x
b 2a
2
4ac b2 4a2
a x
b
2
4ac
b2
.
2a 4a
函数y=ax2+bx+c的顶点式
y a x
b
2
4ac
b2
.
2a
4a
(- b ,4ac - b2 ) 2a 4a
快速反应:火箭被竖直向上发射时,它的高度 h (m) 与 时间 t (s) 的关系为h = - 5 t ²+ 150 t +10 经过多长时 间,火箭到达它的最高点?最高点的高度是多少?
的顶点都在
( B)
A.直线y = x上 B.直线y = - x上
C.x轴上
y
o
x
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减
抛物线y=a(x-h)2+k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
方∵9对向/a4于=,)-1y,求<=与a出0x,y2它∴轴+开b的交x口+点对c向我坐称下标们轴,为可、顶以顶点确坐点定标坐(它标2的、.5开,与口y 轴的交点坐标、与x轴的交点坐标(有交 点(时0),,- 4这),样与就x可轴以交画点为出(它1的,0)大、致(4,图0)象,。
a
x
b 2a
2
4ac b2 4a2
a x
b
2
4ac
b2
.
2a 4a
函数y=ax2+bx+c的顶点式
y a x
b
2
4ac
b2
.
2a
4a
(- b ,4ac - b2 ) 2a 4a
快速反应:火箭被竖直向上发射时,它的高度 h (m) 与 时间 t (s) 的关系为h = - 5 t ²+ 150 t +10 经过多长时 间,火箭到达它的最高点?最高点的高度是多少?
的顶点都在
( B)
A.直线y = x上 B.直线y = - x上
C.x轴上
22.1《二次函数的图象和性质》课件(共5课时)
2.类比探究二次函数 y = ax2 + k 的图象和性质
归纳: 一般地,当 a>0 时,抛物线 y = ax2 + k 的对称轴是 y 轴,顶点是(0,k),开口向上,顶点是抛物线的最 低点,a 越大,抛物线的开口越小.当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大.
3.练习、巩固二次函数的定义
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是__S_=__4_π_r_2_; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ___m_=__n(__n_-_1__)____.
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20x2 40x 20
2.通过实例,归纳二次函数的定义
这三个函数关系式有什么共同点?
y 6x2 m 1 n2 1 n
2
4.小结
(1)本节课学了哪些主要内容? (2)抛物线 y = ax2 + k 与抛物线 y = ax2 的区别与联 系是什么?
5.布置作业
教科书习题 22.1 第 5 题(1).
九年级 上册
22.1 二次函数的图象和性质 (第4课时)
• 本课是在学生已经学习了二次函数 y = ax2,y = ax2+ k 的基础上,继续进行二次函数的学习,这是对二次函 数图象和性质研究的延续.
2.类比探究 y a(x h)2, y a(x h)2 k 的图 象和性质
22.1.4二次函数y=ax2+bx+c的图象和性质课件 2024-2025学年人教版数学九上
【例 1】如图,已知二次函数y=-x2+2x,当-1<x<a时,y随x的增
大而增大,则实数a的取值范围是( B )
A.a>1
B.-1<a≤1
C.a>0
D.-1<a<2
知识讲解
知识点1 二次函数y=ax2+bx+c的图象和性质
【例 2】已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象
面积.
(2)∵该抛物线的对称轴为直线x=
4
=4,
1
A.(-3,-6)
B.(1,-4)
C.(1,-6)
D.(-3,-4)
再将抛物线y=2(x-1)2-5向下平移1个单位所得抛物线的解析式为
y=2(x-1)2-5-1=2(x-1)2-6,
此时二次函数图象的顶点为(1,-6).
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
项目
a
b
字母的符号
图象的特征
确的结论的序号是________;
解析:由抛物线开口向上,得a>0;
由抛物线y轴的交点在负半轴上,得c<0;
由抛物线的顶点在第四象限,得
b
2a
>0,又a>0,所以b<0;
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
【例 4】如图,二次函数y=ax2+bx+c的图象开口向上,图象经过
2
2
b
c
b
b
b
c
2
2
2
y ax bx c a x x a x x
a
大而增大,则实数a的取值范围是( B )
A.a>1
B.-1<a≤1
C.a>0
D.-1<a<2
知识讲解
知识点1 二次函数y=ax2+bx+c的图象和性质
【例 2】已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象
面积.
(2)∵该抛物线的对称轴为直线x=
4
=4,
1
A.(-3,-6)
B.(1,-4)
C.(1,-6)
D.(-3,-4)
再将抛物线y=2(x-1)2-5向下平移1个单位所得抛物线的解析式为
y=2(x-1)2-5-1=2(x-1)2-6,
此时二次函数图象的顶点为(1,-6).
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
项目
a
b
字母的符号
图象的特征
确的结论的序号是________;
解析:由抛物线开口向上,得a>0;
由抛物线y轴的交点在负半轴上,得c<0;
由抛物线的顶点在第四象限,得
b
2a
>0,又a>0,所以b<0;
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
【例 4】如图,二次函数y=ax2+bx+c的图象开口向上,图象经过
2
2
b
c
b
b
b
c
2
2
2
y ax bx c a x x a x x
a
人教版九年级上册学数学22.1.4二次函数y=ax2+bx+c的图象和性课件
c的正负
y 3 2 1
-3 -2 -1 O 1 x -1
课堂小结
1. 二次函数 y=ax2+bx+c的图象与各项系数符号的关系.
2. 数学思想方法:数形结合. 3. 常用解题方法:赋值法.
二次函数 y=ax2+bx+c的图象与各项系数符号的关系.
数学思想方法:数形结合.
的图象上的三个点.
二次函数 y=ax2+bx+c的图象与各项系数符号的关系.
类型二:由二次函数 y=ax2+bx+c图象判断式子符号.
类型二:由二次函数 y=ax2+bx+c图象判断式子符号.
课堂小结
开口方向
y 3
2 1
2a
决定抛物线与y轴的交点位置
巩固落实
类型一:由二次函数 y=ax2+bx+c图象判断各项系数符号.
例1. 若二次函数 y=ax2+bx+c的图象如图所示,
你可以判断出 a,b,c的符号吗? a <0
y
3
x
b
2-a
>
0
2
b >0
1
c >0
-2 -1 O -1
1 2 3x
巩固落实
类型二:由二次函数 y=ax2+bx+c图象判断式子符号.
-2 -1 O -1
1 2 3x
a的正负
y 3 2 1
-3 -2 -1 O 1 x -1
对称轴位置
开口方向
y 3
2 1
课堂小结
-
b 2a
的正负
a的正负
b的正负
y 3 2 1
新人教版九年级上册初三数学 22.1.4二次函数图像和性质 课件PPT
我们已经知道二次函数y=a(x-h)2+k的图象 和性质,能否利用这些知识来讨论二次函数 y=ax2+bx+c 图象和性质?
探究新知
知识点 1 画出二次函数y=ax2+bx+c的图象
我们已经知道y=a(x-h)2+k的图象和性质,能
否利用这些知识来讨论 y
1 2
x2
6x
21
的图象
和性质?
【思考1】怎样将 y 1 x2 6x 21 化成y=a(x-h)2+k 2
性质
例1 画出函数
y 1 x2 x 5
2
2
的图象,并说明这个函
数具有哪些性质.
解: 函数
y 1 x2 x 5
2
2
通过配方可得
y 1 (x 1)2 2 2
,
先列表:
x ··· -2 -1 0 1 2 3 4 ··· y ··· -6.5 -4 -2.5 -2 -2.5 -4 -6.5 ···
素养考点 3 利用二次函数y=ax2+bx+c的图象确定字母的值
例3 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;
②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是 ( D )
A.1
B.2
C.3
D.4
【解析】由图象开口向下可得a<0,由对称轴在y轴左
(3)
y
2
x
1 2
x
2;
直线x=1.25
5 4
,
9 8
探究新知
知识点 1 画出二次函数y=ax2+bx+c的图象
我们已经知道y=a(x-h)2+k的图象和性质,能
否利用这些知识来讨论 y
1 2
x2
6x
21
的图象
和性质?
【思考1】怎样将 y 1 x2 6x 21 化成y=a(x-h)2+k 2
性质
例1 画出函数
y 1 x2 x 5
2
2
的图象,并说明这个函
数具有哪些性质.
解: 函数
y 1 x2 x 5
2
2
通过配方可得
y 1 (x 1)2 2 2
,
先列表:
x ··· -2 -1 0 1 2 3 4 ··· y ··· -6.5 -4 -2.5 -2 -2.5 -4 -6.5 ···
素养考点 3 利用二次函数y=ax2+bx+c的图象确定字母的值
例3 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;
②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是 ( D )
A.1
B.2
C.3
D.4
【解析】由图象开口向下可得a<0,由对称轴在y轴左
(3)
y
2
x
1 2
x
2;
直线x=1.25
5 4
,
9 8
九年级数学上册第22章二次函数22.1二次函数的图象和性
10. 在同一平面直角坐标系内, 将抛物线 y=(x-1) +3 先向左 平移 1 个单位长度,再向下平移 3 个单位长度后所得抛物线的顶点 坐标为( D ) A.(2,0) B.(2,6) C.(0,6) D.(0,0)
2
第3课时 二次函数y=a(x-h)2+k的图象和性质
B 规律方法综合练
1 11.2017·盐城 如图 22-1-13,将函数 y= (x-2)2+1 的图象沿 2
3.2017·金华 对于二次函数 y=-(x-1) +2 的图象与性质, 下列说法正确的是( B ) A.对称轴是直线 x=1,最小值是 2 B.对称轴是直线 x=1,最大值是 2 C.对称轴是直线 x=-1,最小值是 2 D.对称轴是直线 x=-1,最大值是 2
【解析】二次函数 y=-(x-1)2+2 的图象的对称轴是直线 x=1.∵-1<0, ∴抛物线开口向下,有最大值,最大值是 2.
第3课时 二次函数y=a(x-h)2+k的图象和性质
解:(1)列表: x … -3
1 2 y=- x 2 … -4.5
-2 -2-1 -0.5ຫໍສະໝຸດ 0 01 -0.5
2
3
4 …
… …
-2 -4.5
1 y =- (x 2 … -1)2+2
…
-2.5
0
1.5
2
1.5
0
-2.5
…
第3课时 二次函数y=a(x-h)2+k的图象和性质
描点、连线,如图所示:
(2)①下 x=0 ③右 1 上
(0,0)
②下
x=1 (1,2)
1)
2(或上
2 右
第3课时 二次函数y=a(x-h)2+k的图象和性质
人教版九年级数学上册课件二次函数y=ax+bx+c的图象和性质
22.1.4 二次函数 y= ax2+bx+c的图 象和性质(4)
二次函数 一般式: y ax2 bx c (a 0)
顶点式: y a(x h)2 k (a 0) 顶点为(h,k)
用待定系数法确定一次函数 y=kx+b 的解析式, 需求出待定系数 k 和 b 的值.
如果已知图象上两个点的坐标 (这两点的连 线不与坐标轴平行)
对称轴为 直线 x 2
练习1 已知二次函数的最小值为-4,它的图象 经过点(-2,0)与(6,0),求这个二次函数的 解析式.
解:由已知, (-2,0)与(6,0)是一对对称点,
则抛物线的对称轴为直线 x 2 .
由已知,最小值为 -4 ,
得到抛物线的顶点为( 2 ,-4 ).
练习1 已知二次函数的最小值为-4,它的图象 经过点(-2,0)与(6,0),求这个二次函数的 解析式.
经过(4,5)与(-1,0)两点,求这条抛物线
的解析式.
方法三
(4,5 )
直线 x 1
(2,5 ) (4 ,5 )和 (1,0 )
解:
由已知,当自变量x=-4时,函数值y=-2 ,得
16 4b c 2,
由已知,当x=-5与x=1时,所对应的函数值 相等,得
25 5b c 1 b c,
练习2 已知二次函数 y=x2+bx+c中,当自变 量 x=-4时,函数值 y=-2 ,当 x=-5与 x=1时,所对 应的函数值相等.求这个二次函数的解析式.
解:设所求二次函数为 y=ax2+bx+c.
由已知,与y轴的交点为(0,2),得 c=2.
由已知,顶点为(3,-4), 得
b 2a
3,
4ac
b
2
二次函数 一般式: y ax2 bx c (a 0)
顶点式: y a(x h)2 k (a 0) 顶点为(h,k)
用待定系数法确定一次函数 y=kx+b 的解析式, 需求出待定系数 k 和 b 的值.
如果已知图象上两个点的坐标 (这两点的连 线不与坐标轴平行)
对称轴为 直线 x 2
练习1 已知二次函数的最小值为-4,它的图象 经过点(-2,0)与(6,0),求这个二次函数的 解析式.
解:由已知, (-2,0)与(6,0)是一对对称点,
则抛物线的对称轴为直线 x 2 .
由已知,最小值为 -4 ,
得到抛物线的顶点为( 2 ,-4 ).
练习1 已知二次函数的最小值为-4,它的图象 经过点(-2,0)与(6,0),求这个二次函数的 解析式.
经过(4,5)与(-1,0)两点,求这条抛物线
的解析式.
方法三
(4,5 )
直线 x 1
(2,5 ) (4 ,5 )和 (1,0 )
解:
由已知,当自变量x=-4时,函数值y=-2 ,得
16 4b c 2,
由已知,当x=-5与x=1时,所对应的函数值 相等,得
25 5b c 1 b c,
练习2 已知二次函数 y=x2+bx+c中,当自变 量 x=-4时,函数值 y=-2 ,当 x=-5与 x=1时,所对 应的函数值相等.求这个二次函数的解析式.
解:设所求二次函数为 y=ax2+bx+c.
由已知,与y轴的交点为(0,2),得 c=2.
由已知,顶点为(3,-4), 得
b 2a
3,
4ac
b
2