高中数学选修1-2测试题
人教版高中高二文科数学选修1-2测试题教学教材
高二数学(文)选修1-2测试题(60分钟)满分:100分 考试时间:2018年3月姓名: 班级: 得分:附:1.22(),()()()()n ad bc K n a b c d a b a c b c b d -==+++++++ 2.“X 与Y 有关系”的可信程度表:P (K 2≥k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828一、 单项选择题(每题4分,共40分。
每题只有一个选项正确,将答案填在下表中)1、下列说法不正确的是( )A .程序图通常有一个“起点”,一个“终点”B .程序框图是流程图的一种C .结构图一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成D .流程图与结构图是解决同一个问题的两种不同的方法 2. 给出下列关系:其中具有相关关系的是( ) ①考试号与考生考试成绩; ②勤能补拙; ③水稻产量与气候; ④正方形的边长与正方形的面积。
A .①②③ B .①③④ C .②③ D .①③ 3、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中的白色地面砖有( ). A .4n -2块 B .4n +2块 C .3n +3块D .3n -3块4、如图是一商场某一个时间制订销售计划时的局部结构图,则直接影响“计划” 要素有( )A .1个B .2个C .3个D .4个 5、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
A.假设三内角都不大于60度;B. 假设三内角都大于60度;C. 假设三内角至多有一个大于60度;D. 假设三内角至多有两个大于60度。
6、在复平面内,复数103ii+的共轭复数应对应点的坐标为( ) A . (1,3) B .(1,-3) C .(-1,3) D .(3 ,-1)7、已知两个分类变量X 和Y ,由他们的观测数据计算得到K 2的观测值范围是3.841<k<6.635,根据K 2的临界值表,则以下判断正确的是( )A .在犯错误概率不超过0.05的前提下,认为变量X 与Y 有关系B. 在犯错误概率不超过0.05的前提下,认为变量X 与Y 没有关系C.在犯错误概率不超过0.01的前提下,认为变量X 与Y 有关系D. 在犯错误概率不超过0.01的前提下,认为变量X 与Y 没有关系8、已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n ∈N ,可归纳猜想出n S 的表达式为 ( )A .21n n + B .311n n -+ C .212n n ++D .22nn + 9、z 为纯虚数,且|z-1|=|-1+i|,则z=( )A.iB. -iC. ± iD.±2i 10、求135101S =++++L 的流程图程序如右图所示,其中①应为 ( )A .101?A =B .101?A ≤C .101?A >D .101?A ≥二、填空题:(每小题4分,共16分)11、对于一组数据的两个线性模型,其R 2分别为0.85和0.25,若从中选取一个拟合效果好的函数模型,应选 (选填“前者” 或“后者”) 12、2006)11(ii -+=___________ 13、若三角形内切圆半径为r ,三边长为a,b,c 则三角形的面积12S r a b c =++();利用类比思想:若四面体内切球半径为R ,四个面的面积为124S S S 3,,S ,;则四面体的体积V= 14、 把“函数y=2x+5的图像是一条直线”改写成三段论形式:题号 1 2 3 4 5 6 7 8 9 10 答案ˆˆˆ∑∑∑∑nnii i ii=1i=1nn222iii=1i=1(x-x)(y -y)x -nxyb==,(x-x)x-nxa=y -bx y开始 ①是 否 S =0 A =1S =S +A A =A +2输出x 结束三、解答题:(共44分)15.证明题(每小题6分共12分): (1>(2)若0a >,0b >,求证:()11()4a b a b++≥16、(10分)据不完全统计,某厂的生产原料耗费x (单位:百万元)与销售额y (单位:百万元)如下:变量X ,Y 为线性相关关系,(1)求线性回归方程必过的点; (2)求线性回归方程, 6.5y bx a b ∧=+=; (3)若实际销售额要求不少于54百万元,则原材料耗费至少要多少百万元17、(10分)实数m 取什么值时,复数i m m m z )2(122--+-=是 (1)纯虚数;(2)对应的点在直线y=2x-2上18、(12(1)请将上述的列联表的空缺处完成;(2) 请你根据所给数据判断能否有85%的把握认为在恶劣气候下航行,女人比男人更容易晕船?。
(必考题)高中数学选修1-2第一章《统计案例》测试卷(答案解析)(3)
一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( ) A .120B .320C .15D .7202.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )表1表2表3 语文 性别不及格 及格 总计 数学 性别不及格 及格 总计 英语 性别不及格 及格 总男 14 36 50 男 10 40 50 男 25 25 女 16 34 50 女 20 30 50 女 5 45 总计3070100总计3070100总计30701A .语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B .数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C .英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D .英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 3.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C4.在一次抗洪抢险中,准备用射击的方法引爆漂流的汽油桶.现有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击相互独立,且命中概率都是34.则打光子弹的概率是( ) A .9256B .13256C .45512D .910245.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有( )参考公式:0.10 0.05 0.025 0.010 0.005 0.001 2.7063.8415.0246.6357.87910.828A .12人B .18人C .24人D .30人6.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:20()P K k ≥ 0.050 0.0100.0010k3.841 6.635 10.8282()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .187.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.喜爱打篮球 不喜爱打篮球 合计男生 25530 女生 151530合计40 20 60附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.20()P K k ≥ 0.100.050.025 0.010 0.005 0.001 0k 2.706 3.8415.0246.6357.78910.828A .99.9%B .99.5%C .99%D .97.5%8.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .139.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125 C .61125 D .6412510.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样11.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:A .90%B .95%C .97.5%D .99%12.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.有7个评委各自独立对A 、B 两位选手投票表决,两位选手旗鼓相当,每位评委公平投票且不得弃权.若7位评委依次揭晓票选结果,则A 选手在每位评委投票揭晓后票数始终保持领先的概率是______.14.有9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为2的概率等于_______.15.已知如下四个命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于0,表示回归效果越好;②在回归直线方程ˆ0.812yx =-中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.8个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于1;④对分类变量X 与Y ,对它们的随机变量2K 的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________. 16.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.17.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P B A │等于_________.18.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________19.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23. (1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X 表示结束比赛还需打的局数,求X 的分布列及期望.22.某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg ,每件尺寸限制为40cm 60cm 100cm ⨯⨯,其中头等舱乘客免费行李额为40kg ,经济舱乘客免费行李额为20kg .某调研小组随机抽取了100位国内航班旅客进行调查,得到如表所示的数据:(1)请完成22⨯列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关?(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补贴券”,记赠送的补贴券总金额为X 元,求X 的分布列与数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:23.某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和21(0.51)p p -.(1)从A ,B 生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p 的最小值0p ;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的0p 作为p 的值. ①已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.24.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,()20P K k ≥ 0.100.05 0.01 0.005 0.001 0k 2.7063.8416.6357.87910.82825.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动 不喜爱运动 总计 男生 ab30 女生 cd20 总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)20()P K k ≥ 0.5000.100 0.050 0.010 0.001 0k 0.4552.7063.8416.63510.82826.某花圃为提高某品种花苗质量,开展技术创新活动,分别用甲、乙两种方法培育该品种花苗.为比较两种培育方法的效果,选取了40棵花苗,随机分成两组,每组20棵.第一组花苗用甲方法培育,第二组用乙方法培育.培育完成后,对每棵花苗进行综合评分,绘制了如图所示的茎叶图:(1)分别求两种方法培育的花苗综合评分的中位数.你认为哪一种方法培育的花苗综合评分更高?并说明理由.(2)综合评分超过80的花苗称为优质花苗,填写下面的列联表,并判断是否有99.5%的把握认为优质花苗与培育方法有关?优质花苗 非优质花苗 合计甲培育法 乙培育法 合计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥ 0.0100.050 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.C解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目. 3.B解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B. 【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.4.B解析:B 【分析】打光所有子弹,分中0次、中一次、中2次. 【详解】5次中0次:5 1 4⎛⎫ ⎪⎝⎭5次中一次:4 153144 C⎛⎫⨯⨯ ⎪⎝⎭5次中两次:前4次中一次,最后一次必中314331 444C⎛⎫⨯⨯⨯ ⎪⎝⎭则打光子弹的概率是514⎛⎫⎪⎝⎭+4153144C⎛⎫⨯⨯ ⎪⎝⎭+314331444C⎛⎫⨯⨯⨯ ⎪⎝⎭=13256,选B【点睛】本题需理解打光所有子弹的含义:可能引爆,也可能未引爆.5.B解析:B【解析】【分析】设男生人数为,女生人数为,完善列联表,计算解不等式得到答案.【详解】设男生人数为,女生人数为喜欢抖音不喜欢抖音总计男生女生总计男女人数为整数故答案选B【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.6.A解析:A【分析】设男生人数为x ,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论. 【详解】设男生人数为x ,依题意可得列联表如下:则2 3.841K >,由222235236183 3.841822x x x K x x x x x ⎛⎫- ⎪⎝⎭==>⋅⋅⋅,解得10.24x >, ,26x x为整数, ∴若在犯错误的概率不超过95%的前提下认为是否喜欢追星和性别有关,则男生至少有12人,故选A. 【点睛】本题主要考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.7.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.8.A解析:A 【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而 甲考140 分以上乙未考到140 分以上事件概率为14(1)25⨯-,乙考140 分以上甲未考到140 分以上事件概率为14(1)25-⨯,因此,所求概率为14(1)25⨯-1451(1)25102+-⨯==, 选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.9.C解析:C 【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过700辆的概率()()()111700150070010.60.2225P X P X ⎡⎤≥=-<<=⨯-==⎣⎦, ∴这三个收费口每天至少有一个超过700辆的概率 3161115125P ⎛⎫=--=⎪⎝⎭,故选C. 点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.10.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A11.B解析:B 【解析】因为4.804>3.841,所以有95%的把握认为对街舞的喜欢与性别有关.12.C解析:C 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解. 【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=.甲队以3:0获胜的概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.二、填空题13.【分析】将比分分为四种情况讨论计算概率【详解】由条件可知前两名投票的都投给选手并且投给每位选手的概率是若投票给两位选手的比分为则概率为若比分为则投给选手的方法有种所以概率为若比分为则投给选手的两票不 解析:532【分析】将比分分为7:0,6:1,5:2,4:3四种情况讨论计算概率. 【详解】由条件可知前两名投票的都投给选手A ,并且投给每位选手的概率是12P =. 若投票给A 、B 两位选手的比分为7:0,则概率为712⎛⎫ ⎪⎝⎭, 若比分为6:1,则投给选手B 的方法有155C =种,所以概率为7152⎛⎫⋅ ⎪⎝⎭若比分为5:2,则投给选手B 的两票不能在第三和第四的位置,有2519C -=种,所以概率为7192⎛⎫⋅ ⎪⎝⎭, 若比分为4:3,则投给A 的票不能是最后一位,且不能占5,6位,有2415C -=种,所以概率为7152⎛⎫⋅ ⎪⎝⎭, 所以概率()7151595232P ⎛⎫=+++⋅=⎪⎝⎭. 故答案为:532【点睛】本题考查独立事件同时发生的概率,重点考查分类的思想,属于中档题型.14.【分析】先计算出粒种子都没有发芽的概率即得出每个坑需要补种的概率然后利用独立重复试验的概率得出所求事件的概率【详解】由独立事件的概率乘法公式可知粒种子没有粒发芽的概率为所以一个坑需要补种的概率为由独 解析:21512【分析】先计算出3粒种子都没有发芽的概率,即得出每个坑需要补种的概率,然后利用独立重复试验的概率得出所求事件的概率. 【详解】由独立事件的概率乘法公式可知,3粒种子没有1粒发芽的概率为31128⎛⎫= ⎪⎝⎭, 所以,一个坑需要补种的概率为18, 由独立重复试验的概率公式可得,需要补种的坑数为2的概率为223172188512C ⎛⎫⋅⋅= ⎪⎝⎭, 故答案为21512. 【点睛】本题考查独立事件概率乘法公式的应用,同时也考查了独立重复试验恰有()k k N *∈次发生的概率,要弄清楚事件的基本类型,并结合相应的概率公式进行计算,考查分析问题和理解问题的能力,属于中等题.15.②③【分析】①根据相关指数的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量的观测值k 的关系进行判断【详解】①在线性回归模型中相关指数表示解释变量对于预报变量解析:②③ 【分析】①根据相关指数2R 的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量2K 的观测值k 的关系进行判断. 【详解】①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好,所以①错误;②在回归直线方程ˆy=0.8x−12中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.8个单位,正确;③两个变量相关性越强,则相关系数的绝对值就越接近于1,正确;④对分类变量X 与Y ,对它们的随机变量K2的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越小,所以④错误; 故正确命题的序号是②③. 【点睛】该题考查的是有关统计的问题,涉及到的知识点有线性回归分析,两个变量之间相关关系强弱的判断,独立性检验,属于简单题目.16.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概 解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.17.【解析】因为所以应填答案解析:35【解析】因为()()2254336613,210C C P A P AB C C ====,所以3(|)5P B A =。
【创新设计】高中数学北师大版选修1-2练习:综合检测卷(含答案解析)
综合检测卷一、选择题(本大题共10小题,每小题5分,共50分) 1.i 是虚数单位,复数1-3i1-i 的共轭复数是( )A .2+iB .2-iC .-1+2iD .-1-2i答案 A解析 ∵1-3i 1-i =(1-3i)(1+i)(1-i)(1+i)=4-2i 2=2-i ,∴1-3i 1-i的共轭复数是2+i. 2.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33 D .27 答案 B解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,x =32.3.演绎推理“因为对数函数y =log a x(a>0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误 答案 A解析 对数函数y =log a x(a>0,且a ≠1),当a>1时是增函数,当0<a<1时是减函数,故大前提错误.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A .y =0.4x +2.3 B .y =2x -2.4 C .y =-2x +9.5D .y =-0.3x +4.4答案 A解析 因为变量x 和y 正相关,则回归直线的斜率为正,故可以排除选项C 和D. 因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A 和B 中的直线方程进行检验,可以排除B ,故选A.5.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76C .123D .199答案 C解析 观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123.6.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( ) A .a ,b 都能被3整除 B .a ,b 都不能被3整除 C .a ,b 不都能被3整除 D .a 不能被3整除 答案 B解析 “至少有一个”的否定为“一个也没有”.7.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由χ2=n(ad -bc)2(a +b)(c +d)(a +c)(b +d)算得,χ2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” 答案 C解析 根据独立性检验的定义,由χ2≈7.8>6.635可知我们有99%以上的把握认为“爱好该项运动与性别有关”.8.下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a 的性质|a|2=a 2类比得到复数z 的性质|z|2=z 2;③方程ax 2+bx +c =0(a ,b ,c ∈R)有两个不同实数根的条件是b 2-4ac>0可以类比得到:方程az 2+bz +c =0(a ,b ,c ∈C)有两个不同复数根的条件是b 2-4ac>0;④由向量加法的几何意义可以类比得到复数加法的几何意义. 其中类比得到的结论错误的是( ) A .①③ B .②④ C .②③ D .①④ 答案 C9.执行如图所示的算法框图,若输入n =10,则输出S 等于( )A.511B.1011C.3655D.7255 答案 A解析 执行第一次循环后,S =13,i =4;执行第二次循环后,S =25,i =6;执行第三次循环后,S =37,i =8;执行第四次循环后,S =49,i =10;执行第五次循环后,S =511,i =12,此时i ≤n 不成立,退出循环,输出S =511.10.已知x>0,由不等式x +1x≥2x·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…,可以推出结论:x +ax n ≥n +1(n ∈N +),则a 等于( )A .2nB .3nC .n 2D .n n 答案 D解析 由两个不等的结构特点知, x +a x n =x n +x n +…+x n +a xn ≥ (n +1)n +1x n ·x n ·…·x n ·a x n =(n +1)n +1a n n =n +1.所以a =n n .二、填空题(本大题共5小题,每小题5分,共25分)11.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为________. 答案 P<Q解析 要比较P 与Q 的大小,只需比较P 2与Q 2的大小,只需比较2a +7+2a(a +7)与2a +7+2(a +3)(a +4)的大小,只需比较a 2+7a 与a 2+7a +12的大小,即比较0与12的大小,而0<12,故P<Q.12.若复数z =cos θ-sin θi 所对应的点在第四象限,则θ为第________象限角. 答案 一解析 由已知得⎩⎪⎨⎪⎧cos θ>0-sin θ<0,所以θ为第一象限角.13.如图所示,A ,B ,C 表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为______. ①0.504;②0.994;③0.496;④0.06. 答案 ②解析 A 、B 、C 三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知 P =1-(1-0.9)×(1-0.8)×(1-0.7) =1-0.1×0.2×0.3=0.994. 14.复数11-x2+(2-2x)i(x ∈R)在复平面内的对应点位于第________象限.答案 一 解析 由题意可得11-x 2>0,解得-1<x<1,故2-2x >0,所以复数11-x2+(2-2x)i(x ∈R)在复平面内对应点位于第一象限.15.已知下列框图,若a =5,则输出b =________.答案 26解析 因a =5,所以5>5不成立, 判断框执行“否”,即b =52+1=26. 三、解答题(本大题共6小题,共75分)16.已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R),试求实数a 取什么值时,z 分别为(1)实数;(2)虚数;(3)纯虚数.解 (1)当z 为实数时,则a 2-5a -6=0,且a 2-7a +6a 2-1有意义,∴a =-1,或a =6,且a ≠±1, ∴当a =6时,z 为实数.(2)当z 为虚数时,则a 2-5a -6≠0,且a 2-7a +6a 2-1有意义,∴a ≠-1,且a ≠6,且a ≠±1.∴当a ≠±1,且a ≠6时,z 为虚数,即当a ∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z 为虚数. (3)当z 为纯虚数时,则有a 2-5a -6≠0, 且a 2-7a +6a 2-1=0.∴⎩⎪⎨⎪⎧a ≠-1,且a ≠6,a =6. ∴不存在实数a 使z 为纯虚数.17.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N +),证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n(S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2)(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意的正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)18.为了研究教师工作积极性和对待教育改革态度的关系,随机抽取了278名教师进行问卷调查,所得数据如下表:0.01的前提下认为态度与工作积极性有关? 解 利用公式得χ2=278×(55×52-73×98)2153×125×128×150≈13.959>6.635,故在犯错误的概率不超过0.01的前提下认为该单位教师对待教育改革的态度与其工作积极性是有关的.19.某种产品的广告费支出x 与销售额y(单位:百万元)之间有如下对应数据:(1)画出散点图;(2)求线性回归方程;(3)试预测广告费支出为10百万元时,销售额多大? 解 (1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算:因此,x =255=5,y =2505=50,∑5i =1x 2i =145,∑5i =1y 2i =13 500,∑5i =1x i y i =1 380. 于是可得:b =∑5i =1x i y i -5x ·y∑5i =1x 2i -5x 2=1 380-5×5×50145-5×5×5=6.5;a =y -b x =50-6.5×5=17.5.因此,所求线性回归方程为:y =6.5x +17.5.(3)根据上面求得的线性回归方程,当广告费支出为10百万元时,y =6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.20.画出计算函数y =|2x -3|的函数值的框图.(x 由键盘输入) 解21.f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解 f(0)+f(1)=130+3+131+3=11+3+13(1+3)=33(1+3)+13(1+3)=33,同理可得:f(-1)+f(2)=33, f(-2)+f(3)=33. 由此猜想f(x)+f(1-x)=33. 证明:f(x)+f(1-x)=13x +3+131-x +3=13x +3+3x 3+3·3x =13x +3+3x3(3+3x ) =3+3x 3(3+3x )=33.。
高中数学 期末综合测试(含解析)北师大版选修1-2-北师大版高二选修1-2数学试题
单元综合测试五(期末综合测试)时间:120分钟 分值:150分一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z =1i -1的模为( )A.12B.22 C.2 D .2 【答案】B【解析】 本题考查复数的运算和复数的模. ∵z =1i -1=-12-12i ,∴|z |=(-12)2+(-12)2=22.故选B. 2.已知复数z =2-i ,则z ·z -的值为( ) A .5 B. 5 C .3 D. 3 【答案】A【解析】 ∵z =2-i ,∴z =2+i ,∴z ·z =(2+i)(2-i)=4-(-1)=5.3.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a ,b ∈R )”,其反设正确的是( ) A .a 、b 至少有一个不为0 B .a 、b 至少有一个为0 C .a 、b 全不为0 D .a 、b 中只有一个为0 【答案】A【解析】 对“全为0”的否定是“不全为0”,故选A.4.在平面直角坐标系内,方程x a +yb =1表示在x ,y 轴上的截距分别为a ,b 的直线,拓展到空间,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的方程为( )A.x a +y b +z c =1B.x ab +y bc +zac =1 C.xy ab +yz bc +zxca =1 D .ax +by +zc =1 【答案】A【解析】 由类比推理可知,方程为x a +y b +zc=1.5.阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A .S <8B .S <9C .S <10D .S <11 【答案】B【解析】 本题考查了程序框图的循环结构.依据循环要求有i =1,S =0;i =2,S =2×2+1=5;i =3,S =2×3+2=8;i =4,S =2×4+1=9,此时结束循环,故应为S <9.6.对a ,b ∈R +,a +b ≥2ab ,大前提 x +1x≥2x ·1x,小前提 所以x +1x≥2.结论以上推理过程中的错误为( )A .大前提B .小前提C .结论D .无错误 【答案】B【解析】 小前提错误,应满足x >0.7.执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是( )A .1B .2C .3D .7 【答案】C【解析】 本题考查程序框图中的循环结构.i =1,s =1→s =1+(1-1)=1,i =2→s =1+(2-1)=2,i =3→s =2+(3-1)=4,i =4→输出s .8.甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( )A .0.49B .0.42C .0.7D .0.91 【答案】B【解析】 两人都击中概率P 1=0.49,都击不中的概率P 2=0.09,∴恰有一人击中的概率P =1-0.49-0.09=0.42.9.将正奇数按如图所示规律排列,则第31行从左向右的第3个数为( )1 3 5 7 17 15 13 11 9 19 21 23 25 27 29 31A .1 915B .1 917C .1 919D .1 921 【答案】B【解析】 如题图,第1行1个奇数,第2行3个奇数,第3行5个奇数,归纳可得第31行有61个奇数,且奇数行按由大到小的顺序排列,偶数行按由小到大的顺序排列.又因为前31行共有1+3+…+61=961个奇数,则第31行第1个数是第961个奇数即是1 921,则第3个数为1 917.10.已知x >0,y >0,2x +1y =1,若x +2y >m 2-2m 恒成立,则实数m 的取值X 围是( )A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <2 【答案】C【解析】 x +2y =(x +2y )(2x +1y )=4+4y x +x y ≥4+4=8,当且仅当4y x =xy ,即x =4,y =2时取等号.∴m 2-2m <8,即m 2-2m -8<0,解得-2<m <4. 二、填空题(本大题共5小题,每小题5分,共25分)11.i 是虚数单位,i +2i 2+3i 3+…+8i 8=________(用a +b i 的形式表示,a ,b ∈R ).【答案】4-4i【解析】 i +2i 2+3i 3+4i 4+5i 5+6i 6+7i 7+8i 8=i -2-3i +4+5i -6-7i +8=4-4i.12.阅读如图所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =______.【答案】4【解析】 本题考查程序框图的循环结构. i =1,A =2,B =1; i =2,A =4,B =2; i =3,A =8,B =6; i =4,A =16,B =18; 此时A <B ,则输出i =4.13.已知f (x )是定义在R 上的函数,且f (x )=1+f (x -2)1-f (x -2),若f (1)=2+3,则f (2 009)=________.【答案】2+ 3【解析】 ∵f (x )=1+f (x -2)1-f (x -2),∴f (x -2)=1+f (x -4)1-f (x -4).代入得f (x )=1+1+f (x -4)1-f (x -4)1-1+f (x -4)1-f (x -4)=2-2f (x -4)=-1f (x -4).∴f (x )=f (x -8),即f (x )的周期为8. ∴f (2 009)=f (251×8+1)=f (1)=2+ 3.14.古希腊数学家把数1,3,6,10,15,21,…,叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为________.【答案】59【解析】 设数1,3,6,10,15,21,…各项为a 1,a 2,a 3,…, 则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,即数列{a n +1-a n }构成首项为2,公差为1的等差数列. 利用累加法得a 28=a 1+(2+3+…+28), a 30=a 1+(2+3+…+28+29+30), ∴a 30-a 28=29+30=59.15.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比AE EB =ACBC ,把这个结论类比到空间:在三棱锥A —BCD 中,如图,面DEC 平分二面角A —CD —B 且与AB 相交于E ,则得到的类比的结论是________.【答案】AE EB =S △ACDS △BCD三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分)16.实数m 为何值时,复数z =m 2(1m +5+i)+(8m +15)i +m -6m +5.(1)为实数; (2)为虚数; (3)为纯虚数; (4)对应点在第二象限?【解析】 z =m 2+m -6m +5+(m 2+8m +15)i ,(1)z 为实数⇔m 2+8m +15=0且m +5≠0, 解得m =-3.(2)z 为虚数⇔m 2+8m +15≠0且m +5≠0, 解得m ≠-3且m ≠-5. (3)z 为纯虚数⇔⎩⎪⎨⎪⎧m 2+m -6m +5=0m 2+8m +15≠0,解得m =2.(4)z 对应的点在第二象限⇔⎩⎪⎨⎪⎧m 2+m -6m +5<0m 2+8m +15>0,解得m <-5或-3<m <2.17.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论.【解析】 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得f (-1)+f (2)=33, f (-2)+f (3)=33, 并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1+x2=1时,均有f(x1)+f(x2)=3 3.18.已知f(x)=-x3-x+1(x∈R).(1)求证:y=f(x)是定义域上的减函数;(2)求证满足f(x)=0的实数根x至多只有一个.【证明】(1)∵f′(x)=-3x2-1=-(3x2+1)<0(x∈R),∴y=f(x)是定义域上的减函数.(2)假设f(x)=0的实数根x至少有两个,不妨设x1≠x2,且x1,x2∈R,f(x1)=f(x2)=0.∵y=f(x)在R上单调递减,∴当x1<x2时,f(x1)>f(x2),当x1>x2时,f(x1)<f(x2),这与f(x1)=f(x2)=0矛盾,故假设不成立,所以f(x)=0至多只有一个实数根.19.如图是某工厂加工笔记本电脑屏幕的流程图:根据此流程图可回答下列问题:(1)一件屏幕成品可能经过几次加工和检验程序?(2)哪些环节可能导致废品的产生,二次加工产品的来源是什么?(3)该流程图的终点是什么?【解析】 (1)一件屏幕成品经过一次加工、二次加工两道加工程序和检验、最后检验两道检验程序;也可能经过一次加工、返修加工、二次加工三道加工程序和检验、返修检验、最后检验三道检验程序.(2)返修加工和二次加工可能导致屏幕废品的产生,二次加工产品的来源是一次加工的合格品和返修加工的合格品.(3)流程图的终点是“屏幕成品”和“屏幕废品”.20.已知数学、英语的成绩分别有1,2,3,4,5五个档次,某班共有60人,在每个档次的人数如下表:(1)求m =4,n =3(2)求在m ≥3的条件下,n =3的概率;(3)若m =2与n =4是相互独立的,求a ,b 的值. 【解析】 本题为条件概率和相互独立事件的概率. (1)m =4,n =3时,共7人,故概率为P =760.(2)m ≥3时,总人数为35.当m ≥3,n =3时,总人数为8,故概率为P =835.(3)若m =2与n =4是相互独立的, 则P (m =2)·P (n =4)=P (m =2,n =4). ∴1+b +6+0+a 60×3+0+1+b +060=b 60.故总人数为60,知a +b =13. ∴13×(4+b )=b .∴a =11,b =2.21.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2P (χ2≥k )0.100 0.050 0.010 0.001 k2.7063.8416.63510.828(注:此公式也可以写成χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ))【解析】 (1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名. 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结构共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:所以得χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)2 60×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.。
(好题)高中数学选修1-2第三章《推理与证明》检测(含答案解析)
一、选择题1.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖” 丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( ) A .C 作品 B .D 作品C .B 作品D .A 作品2.将正整数1,2,3,4,按如图所示的方式排成三角形数组,则第20行从左往右数第1个数是( )A .381B .361C .362D .4003.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在222+++⋅⋅⋅“…”.即代表无限次重复,但原式却是个定值x ,这可以通过方程2x x +=确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B .122C 21D .21-4.某校甲、乙、丙、丁四位同学参加了第34届全国青少年科技创新大赛,老师告知只有一位同学获奖,四人据此做出猜测:甲说:“丙获奖”;乙说:“我没获奖”;丙说:“我没获奖”;丁说:“我获奖了”,若四人中只有一人判断正确,则判断正确的是( ) A .甲B .乙C .丙D .丁5.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .656.0x y =,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为07.已知平面直角坐标系内曲线()1:,0C F x y =,曲线()200:(,),0C F x y F x y -=,若点()00,P x y 不在曲线1C 上,则下列说法正确的是( )A .曲线1C 与2C 无公共点B .曲线1C 与2C 至少有一个公共点C .曲线1C 与2C 至多有一个公共点D .曲线1C 与2C 的公共点的个数无法确定8.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕大吕太簇{}n a 中,k a =( )A .n -B .n -C .D .9.===⋅⋅⋅=(m 、n 均为正实数),根据以上等式,可推测m 、n 的值,则m n +等于( )A .40B .41C .42D .4310.下列说法中不正确的是()A .命题:“∈,x y R ,若110x y -+-=,则1x y ==”,用反证法证明时应假设x ≠1或y ≠1.B .若2a b +>,则a ,b 中至少有一个大于1.C .若14-,,,,-x y z 成等比数列,则2y =±. D .命题:“[0,1]∃∈m ,使得12+<m x x”的否定形式是:“[0,1]∀∈m ,总有12m x x+≥”. 11.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过“…”即代表无限次重复,但原式却是个定值x ,这可以通过x =确定出来2x =,类似地,可得112122...+++的值为( )A 1B 1CD12.2018年科学家在研究皮肤细胞时发现了一种特殊的凸多面体, 称之为“扭曲棱柱”. 对于空间中的凸多面体, 数学家欧拉发现了它的顶点数, 棱数与面数存在一定的数量关系.五棱锥 6 10 6 六棱锥712712个顶点,8个面的扭曲棱柱的棱数是( ) A .14B .16C .18D .20二、填空题13.本学期我们学习了一种求抛物线2yx 与x 轴和直线1x =所围“曲边三角形”面积的方法,即将区间[0,1]分割成n 个小区间,求每个小区间上矩形的面积,再求和的极限.类比上述方法,试求222222222(1)2(21)2lim 2sin 2sin 2sin 2sin cos cos cos cos 844448888n n n n n n n n n n n nn n πππππππππ→∞⎡⎤--⎛⎫+++++++++= ⎪⎢⎥⎝⎭⎣⎦________.14.已知等差数列{}()*n a n N∈中,若10100a=,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b=,则与此相应的等式_________________恒成立.15.观察下列等式:11=,3211=123+=,332123+=1236++=,33321236++=……可以推测3333123n +++⋅⋅⋅+=____(*n N ∈,用含有n 的代数式表示).16.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同, 则积不容异”,其中“幂”是截面积,“势” 是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的xoy 平面内,若函数1,[1,0]()1,(0,1]x x f x x x ⎧+∈-⎪=⎨-∈⎪⎩的图象与轴x 围城一个封闭的区域A ,将区域A 沿z 轴的正方向平移2个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域A 的面积相等,则此圆柱的体积为 _______.图一 图二17.观察下列等式:11234934567254567891049=++=++++=++++++=照此规律,则第五个等式应为________________.18.集合{,,}{1,2,3}a b c =,现有甲、乙、丙三人分别对a ,b ,c 的值给出了预测,甲说3a ≠,乙说3b =,丙说1c ≠.已知三人中有且只有一个人预测正确,那么10100a b c __________.19.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =__________.20.对于问题“已知关于x 的不等式20ax bx c ++>的解集为(2,3)-,解关于x 的不等式20ax bx c -+>的”,给出一种解法:由20ax bx c ++>的解集为(2,3)-,得2()()0a x b x c -+-+>的解集为(3,2)-.即关于x 的不等式20ax bx c -+>的解集为(3,2)-.类比上述解法,若关于x 的不等式20ax bx c ++>的解集为(1,4),则关于x 的不等式20a bc x x++>的解集为_____. 三、解答题21.(1)已知0a >,0b >,求证:22a b aba b+≥+; (2)已知0a b c ++>,0ab bc ca ++>,0abc >,求证:0a >,0b >,0c >.22.23523.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值()0f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数:()121f x x =-,()221xf x =-的定义域为()0,1D =,试判断其中哪些在D 上封闭,并说明理由. (2)若函数()52x ag x x -=+的定义域为()1,2,是否存在实数a ,使得()g x 在其定义域()1,2上封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且()()0f f x x =,求证:()00f x x =.24.已知i 为虚数单位,观察下列各等式:()()cos1sin1cos2sin 2cos3sin3i i i ++=+; ()()cos3sin3cos4sin 4cos7sin7i i i ++=+; ()()cos5sin5cos6sin6cos11sin11i i i ++=+; ()()cos7sin7cos8sin8cos15sin15i i i ++=+. 记()cos sin ,f i R αααα=+∈.(1)根据以上规律,试猜想()()(),,f f f αβαβ+成立的等式,并加以证明;(2)计算612i ⎫+⎪⎪⎝⎭.25.已知函数3()3xf x x =+,数列{}n a 对于*n ∈N ,总有1()n n a f a +=,112a =. (1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明你的猜想. 26.已知()f x =,分别求()()01f f +,()()12f f -+,()()23f f -+的值,然后归纳猜想一般性结论,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:根据学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,故假设A ,B ,C ,D 分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断. 详解:若A 为一等奖,则甲,丙,丁的说法均错误,故不满足题意, 若B 为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意, 若C 为一等奖,则甲,丙,丁的说法均正确,故不满足题意, 若D 为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B 故答案为C.点睛:本题考查推理的应用,意在考查学生的分析、推理能力.这类题的特点是:通过几组命题来创设问题情景,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.对于逻辑推理问题,应耐心读题,找准突破点,一般可以通过假设前提依次验证即可.2.C解析:C 【分析】本题可根据图中数字的排列规律来思考,先观察每行数字的个数的规律,然后找到每行第一个数之间的规律,然后根据规律得出第20行的第1项的数字. 【详解】解:由图中数字排列规律可知:∵第1行有1个数,第2行有3个数,第3行有5个数,第4行有7个数,… ∴第i 行有(21)i -个数.可设第i 行第j 个数字为.i j a ,其中121j i ≤≤-.观察每行的第1项,可得: 1.11a =, 2.12a =, 3.15a =, 4.110a =,… ∴ 1.11a =,2.1 1.11a a -=,3.1 2.13a a -=,4.1 3.15a a -=,….1 1.123i i a a i ---=.以上各项相加,可得:.1113523i a i =++++⋅⋅⋅+-()(1)(123)12i i -+-=+2(1)1i =-+.∴220.1(201)1362a =-+=. 故选:C . 【点睛】本题主要考查数列排列规律,等差数列的特点及求通项和求和.属于中档题.3.C解析:C 【分析】本题依照题干中的例子进行类比推理进行计算即可得到结果. 【详解】由题意,令12(0)122x x +=>++⋯,即12x x+=, 即2210x x --=,解得1x =或1x =(舍去)121122∴+=++⋅⋅⋅,故选:C 【点睛】 本题主要考查类比推理方法的应用,以及一元二次方程的解法,属于中档题.4.C解析:C 【分析】根据题意知甲和丙的说法矛盾,因此两人中有一人判断正确,据此推断得到答案. 【详解】由题意知,甲和丙的说法矛盾,因此两人中有一人判断正确,故乙和丁都判断错误,乙获奖,丙判断正确. 故选:C. 【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力.5.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.6.B解析:B 【分析】根据反证法,假设要否定结论,根据且的否定为或,判断结果. 【详解】0x y ==的否定为00x y ≠≠或,即x ,y 不都为0,选B.【点睛】本题考查反证法以及命题的否定,考查基本应用能力.属基本题.7.A解析:A 【分析】利用反证法,假设曲线1C 与2C 有公共点()11,Q x y ,推出矛盾,即可得到结论. 【详解】假设曲线1C 与2C 有公共点()11,Q x y ,则()11,0F x y =和()1100(,),0F x y F x y -=同时成立,()00,0F x y ∴=,∴点()00,P x y 在曲线1C 上,这与已知条件点()00,P x y 不在曲线1C 上矛盾. ∴假设不成立,所以曲线1C 与2C 无公共点. 故选:A . 【点睛】本题考查反证法,关键是理解掌握反证法的定义.8.C解析:C 【分析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示. 【详解】因为三项等比数列的中项可由首项和末项表示, 四项等比数列的第2、第3项均可由首项和末项表示, 所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以=q所以11=k k a a -⎛ ⎝1111=k n n a a a --⎛⎫ ⎪⎝⎭1111=n k k n n na a ----⋅=【点睛】本题以数学文化为背景,考查类比推理能力和逻辑推理能力,求解时要先读懂题目的文化背景,再利用等比数列的通项公式进行等价变形求解.9.B解析:B 【分析】根据前面几个等式归纳出一个关于k 的等式,再令6k =可得出m 和n 的值,由此可计算出m n +的值. 【详解】==,====)2,k k N *=≥∈,当6k ==26135m ∴=-=,6n =,因此,41m n +=,故选B. 【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.10.C解析:C 【分析】根据反证法的知识判断A,B 两个选项说法正确,根据等比数列的知识判断C 选项错误.根据特称命题的否定是全称命题的知识判断D 选线说法正确. 【详解】对于A 选项,反证法假设时,假设“1x ≠或1y ≠”,说法正确.对于B 选项,假设,a b 两个都不大于1,即1,1a b ≤≤,则2a b +≤与已知矛盾,故假设不成立,原来说法正确.对于C ,假设等比数列公比为()0q q ≠,则()210y q =-⋅<,所以C 选项说法错误.对于D 选项,根据特称命题的否定是全称命题的知识可知D 选项说法正确.综上所述,本小题选C. 【点睛】本小题主要考查反证法的知识,考查等比数列基本量以及项的正负关系,考查全称命题与特称命题互为否定等知识,属于基础题.11.B【解析】 【分析】设()1012122...t t =>+++,可得12t t=+,求解即可. 【详解】设()1012122...t t =>+++,则12t t=+,即2210t t +-=,解得1t =,取1t =. 故选B. 【点睛】本题考查了类比推理,考查了计算能力,属于基础题.12.C解析:C 【分析】分析顶点数, 棱数与面数的规律,根据规律求解. 【详解】易知同一凸多面体顶点数, 棱数与面数的规律为: 棱数=顶点数+面数-2,所以,12个顶点,8个面的扭曲棱柱的棱数=12+8-2=18. 故选C. 【点睛】本题考查逻辑推理,从特殊到一般总结出规律.二、填空题13.【分析】先画出的图象再根据和式的几何意义可得所求的极限【详解】关于中心对称其在上的图象如图所示:将区间分为段每段矩形面积为将区间分为段每段矩形面积为其中原式即求在上与轴和所围图形面积利用割补法易知面解析:4π【分析】先画出2sin y x =的图象,再根据和式的几何意义可得所求的极限. 【详解】211sin cos222y x x ==-+,关于1,42π⎛⎫⎪⎝⎭中心对称,其在0,2π⎡⎤⎢⎥⎣⎦上的图象如图所示:将区间0,4⎡⎤⎢⎥⎣⎦π分为n 段,每段矩形面积为211111cos 2sin 424244k k n n n n ππππ⎡⎤⎛⎫⋅-⨯+=⎪⎢⎥⎝⎭⎣⎦,11k =,2,...,n ,将区间,42ππ⎡⎤⎢⎥⎣⎦分为2n 段,每段矩形面积为 22222111cos2sin cos 42228282888k k k n n n n n n ππππππππ⎡⎤⎛⎫⎛⎫⋅--+=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 其中21k =,...,2n , 原式即求11cos222y x =-+在0,2π⎡⎤⎢⎥⎣⎦上与x 轴和2x π=所围图形面积,利用割补法易知面积为1224ππ⨯=. 故答案为:4π. 14.【分析】根据等差数列的性质有等比数列的性质有类比即可得到结论【详解】已知等差数列中由等差数列的性质得等比数列且有等比数列的性质得所以类比等式可得故答案为:【点睛】本题考查等差数列和等比数列的性质结合 解析:()*12112199199,N n n n b b b b b b b n n --=<∈【分析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论. 【详解】已知等差数列{}()*n a n N∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N∈,且1001b=,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈.故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.或或【解析】【分析】观察找到规律由等差数列求和可得【详解】由观察找到规律可得:故可得解【点睛】本题考查观察能力和等差数列求和属于中档题解析:()212n n +⎡⎤⎢⎥⎣⎦或()2214n n +或()2123n +++⋅⋅⋅+ 【解析】 【分析】观察找到规律由等差数列求和可得. 【详解】由观察找到规律可得:()223333(1)123123,2n n n n +⎡⎤+++⋅⋅⋅+=+++⋅⋅⋅+=⎢⎥⎣⎦故可得解. 【点睛】本题考查观察能力和等差数列求和,属于中档题.16.【分析】先利用定积分计算底面面积再用体积公式得到答案【详解】的图象与轴围城一个封闭的区域故答案为【点睛】本题考查了体积的计算意在考查学生解决问题的能力解析:73【分析】先利用定积分计算底面面积,再用体积公式得到答案. 【详解】[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩的图象与轴x 围城一个封闭的区域A1322101217(1)(1)(1)10326A S x dx x x -=+-=+--=-⎰77263A V S h ==⨯=故答案为73【点睛】本题考查了体积的计算,意在考查学生解决问题的能力.17.【解析】【分析】左边根据首数字和数字个数找规律右边为平方数得到答案【详解】等式左边:第排首字母为数字个数为等式右边:第五个等式应为:故答案为:【点睛】本题考查了找规律意在考查学生的应用能力 解析:567891011121381++++++++=【解析】 【分析】左边根据首数字和数字个数找规律,右边为平方数,得到答案. 【详解】等式左边:第n 排首字母为n ,数字个数为21n - 等式右边:2(21)n -第五个等式应为:567891011121381++++++++= 故答案为:567891011121381++++++++= 【点睛】本题考查了找规律,意在考查学生的应用能力.18.【解析】【分析】由题意利用推理的方法确定abc 的值进一步可得的值【详解】若甲自己的预测正确则:据此可知丙的说法也正确矛盾;若乙自己的预测正确则:矛盾;据此可知只能是丙自己的预测正确即:;故:则故答案解析:【解析】 【分析】由题意利用推理的方法确定a ,b ,c 的值,进一步可得10100a b c 的值.【详解】若甲自己的预测正确,则:3,3a b ≠≠,据此可知3c =,丙的说法也正确,矛盾; 若乙自己的预测正确,则:3,3a b ==,矛盾;据此可知只能是丙自己的预测正确,即:3,3,1a b c =≠≠;故:3,1,2a b c ===,则10100213a b c ++=. 故答案为213. 【点睛】本题主要考查推理案例及其应用,属于中等题.19.【解析】【分析】根据递推关系利用叠加法求结果【详解】因为所以【点睛】由前几项归纳数列通项的常用方法:观察(观察规律)比较(比较已知数列)归纳转化(转化为特殊数列)联想(联想常见的数列)等方法 解析:271【解析】 【分析】根据递推关系16(1)n n a a n +-=-,利用叠加法求结果 【详解】因为16(1)n n a a n +-=-, 所以1010998211=()()()6[981]1271.a a a a a a a a -+-++-+=++++=【点睛】由前几项归纳数列通项的常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.20.【分析】关于的不等式可看成不等式中的用代入得来进而可根据不等式ax2+bx+c >0的解集进行求解【详解】若关于的不等式的解集为则关于的不等式看成不等式中的用代入得来则可得解得故答案为:【点睛】本题主解析:114⎛⎫ ⎪⎝⎭,. 【分析】关于x 的不等式20a b c x x ++>可看成不等式20ax bx c ++>中的x 用1x代入得来,进而可根据不等式ax2+bx+c >0的解集进行求解. 【详解】若关于x 的不等式20ax bx c ++>的解集为14(,),则关于x 的不等式20a bc x x++>看成不等式20ax bx c ++>中的x 用1x代入得来, 则可得,114x<< 解得,114x <<. 故答案为:1,14⎛⎫⎪⎝⎭.【点睛】本题主要考查类比推理,同时也考查了不等式的基本性质,属于中档题.三、解答题21.(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)利用分析法,0,0a b >>,要证22a b aba b+≥+,只要证()24a b ab +≥,只要证()240a b ab +-≥,只需证明()20a b -≥即可,该式显然成立,从而可得结论;(2)本题是一个全部性问题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑采用反证法,假设,,a b c ,不全是正数,这时需要逐个讨论,,a b c 不是正数的情形,但注意到条件的特点(任意交换,,a b c 的位置不改变命题的条件),我们只要讨论其中一个数〔例如a ,其他两个数〔例如,b c 〕与这种情形类似. 试题 (1)证明:0,0a b >>,要证22a b ab a b+≥+,只要证()24a b ab +≥,只要证()240a b ab +-≥,即证2220a ab b -+≥,而()22220a ab b a b -+=-≥恒成立,故22a b aba b+≥+成立. (2)假设,,a b c 不全是正数,即其至少有一个不是正数,不妨先设0a ≤,下面分0a =和0a <两种情况讨论,如果0a =,则0abc =与0abc >矛盾,0a ∴=不可能,如果0a <,那么由0abc >可得,0bc <,又0,0a b c b c a ++>∴+>->,于是()0ab bc ca a b c bc ++=++<,这和已知0ab bc ca ++>相矛盾,因此,0a <也不可能,综上所述,0a >,同理可证0,0b c >>,所以原命题成立.【方法点睛】本题主要考查反证法的应用以及利用分析法证明不等式,属于难题.分析法证明不等式的主要事项:用分析法证明不等式时,不要把“逆求”错误的作为“逆推”,分析法的过程仅需寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接关键词. 22.详见解析 【分析】,=边平方整理,推出矛盾即可. 【详解】则由等差数列的性质可得=∴1225=++∴5=∴25=40(矛盾),故假设不成立, ∴【点睛】本题主要考查反证法的应用,还考查了运算求解的能力,属于中档题.23.(1)()2f x 在D 上封闭,理由见解析;(2)存在,2a =,证明见解析;(3)证明见解析 【分析】(1)根据定义域,求得函数的值域,利用新定义,即可得到结论;(2)根据函数封闭定义转化为不等式恒成立问题,再利用变量分离法求解,可求a 的值. (3)函数f (x )在其定义域D 上封闭,且单调递增,假设()00f x x ≠,根据单调函数性质可证假设不成立,由此能证明f (x 0)=x 0. 【详解】(1)当()0,1x ∈时,()()1211,1f x x =-∈-, ∴()1f x 在D 上不封闭;()()2210,1x f x =-∈,∴()2f x 在D 上封闭.(2)设存在实数a ,使得()52x ag x x -=+在()1,2上封闭, 即对一切()1,2x ∈,5122x ax -<<+恒成立, ∵20x +>,∴2524x x a x +<-<+, 即3442x a x -<<-恒成立, ∵()341,2x -∈-∴2a ≥; ∵()422,6x -∈∴2a ≤. 综上,满足条件的2a =. (3)假设()00f x x ≠,①若()00f x x >,∵()00f x x D ∈,,()f x 在D 上单调递增, ∴()()()0ff x f x >,即()00x f x >,矛盾;②若()00f x x <,∵()0f x ,0x D ∈,()f x 在D 上单调递增, ∴()()()0ff x f x <,即()00xf x <,矛盾.∴假设不成立,()00f x x =. 【点睛】本题考查函数的综合运用,根据函数封闭的定义与函数定义域、值域、单调性等知识点进行综合的考查,考查转化能力与函数基础知识的应用,属于中等题. 24.(1) 猜想()()()f f f αβαβ=+,证明见解析;(2)-1【分析】 (1)将()(),f f αβ和()f αβ+之间的关系进行验证,总结出规律,即为猜想,作出证明即可;(2)利用(1)推出的结论,代入求解,即可得到答案. 【详解】(1)猜想()()()ff f αβαβ=+,证明:()()()()cos sin cos sin f f i i αβααββ=++ ()()cos cos sin sin sin cos cos sin i αβαβαβαβ=-++()()()cos sin i f αβαβαβ=+++=+;(2)因为()()()f f f αβαβ=+,所以()()()()()cosn isinn nff f f f n ααααααα===+,∴661cos sin 266i i ππ⎫⎛⎫+=+⎪ ⎪⎪⎝⎭⎝⎭cos sin 1i ππ=+=-. 【点睛】本题主要考查了归纳推理的应用,其中根据题设中各式子的结构,合理归纳是解答的关键,着重考查了推理与计算能力,属于基础题. 25.(1)237a =,338a =,439a =,*3()5n a n n =∈+N (2)见证明 【解析】 【分析】(1) 计算得到237a =,338a =,439a =,猜想*3()5n a n n =∈+N . (2)利用数学归纳法验证,假设,推导的顺序证明猜想. 【详解】(1)解:由3()3xf x x =+,得13()3n n n na a f a a +==+,因为11326a ==,所以237a =,338a =,439a =,猜想*3()5n a n n =∈+N . (2)证明:用数学归纳法证明如下: ①当1n =时,131152a ==+,猜想成立;②假设当*()n k k =∈N 时猜想成立,即35k a k =+, 则当1n k =+时,133335331535k k k a k a a k k +⋅+===+++++,所以当1n k =+时猜想也成立.由①②知,对*n ∈N ,35n a n =+都成立. 【点睛】本题考查了数列的计算,归纳猜想,数学归纳法,意在考查学生对于数学归纳法的掌握情况.26.详见解析. 【详解】试题分析:将0,1,1,2,2,3x =--代入()f x =()()()()()()01,12,23f f f f f f +-+-+的值;观察()()()()()()01,12,23f f f f f f +-+-+,根据上一步的结果可以归纳出一般的结论:自变量的和为1,则函数值的和为3,根据结论的形式将()f x =可完成证明. 试题 由()f x =,得()()01f f +==,()()12f f -+== ()()23f f -+==. 归纳猜想一般性结论为 ()()1f x f x -++= 证明如下:()()1f x f x -++==x ===【方法点睛】本题通过观察几组等式,归纳出一般规律来考查函数的解析式及归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.。
新人教A版选修1-2高中数学第一、二章测试题及答案
数学选修1-2第一、二章测试题参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,回归直线方程:1221ni ii nii x ynx y b xnx==-=-∑∑,一、选择题(共10小题,每小题5分,共50分。
) 1、下列两个量之间的关系是相关关系的为( )A .匀速直线运动的物体时间与位移的关系B .学生的成绩和体重C .路上酒后驾驶的人数和交通事故发生的多少D .水的体积和重量2、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A .模型1的相关指数2R 为0.98 B. 模型2的相关指数2R 为0.80 C. 模型3的相关指数2R 为0.50 D. 模型4的相关指数2R 为0.253. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y = 7.19 x +73.93. 用这个模型预测这个孩子10岁时的身高,则正确的叙述是(A) 身高一定是145.83 cm ; (B) 身高在145.83 cm 以上; (C) 身高在145.83 cm 以下; (D) 身高在145.83 cm 左右 4、下列说法正确的是( )A.由归纳推理得到的结论一定正确 B.由类比推理得到的结论一定正确 C.由合情推理得到的结论一定正确D.演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确。
5、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊄平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 6、下表为某班5位同学身高x (单位:cm)与体重y (单位kg)的数据,若两个量间的回归直线方程为1.16y x a =+,则a 的值为( ) A .-121.04 B .123.2 C .21 D .-45.127、用反证法证明命题:“,,,a b c d R ∈,1a b +=,1c d +=,且1ac bd +>,则,,,a b c d 中至少有一个负数”时的假设为( )A .,,,a b c d 中至少有一个正数B .,,,a b c d 全为正数C .,,,a b c d 全都大于等于0D .,,,a b c d 中至多有一个负数8、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角x 为( )A .6πB .4πC .3πD .π1259、在平面上,若两个正三角形的边长比为1:2.则它们的面积之比为1:4.类似地,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为( )A .1:2 B. 1:4 C. 1:8 D. 1:610、设函数()y f x =定义在R 上,满足(2)4f =,且对任意12,x x R ∈,恒12()f x x +=12()()f x f x +,则满足()f x 的表达式为( )(A)2()log f x x = (B)()2x f x = (C)()2f x x = (D)1()2f x x =二、填空题(共4小题,每小题5分,共20分)11、回归直线方程为0.57514.9y x =-,则100x =时,y 的估计值为12、黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖________________块.13、若()()()(,),f a b f a f b a b N +=⋅∈且(1)2f =,则=+++)2011()2012()3()4()1()2(f f f f f f 14、当n=1时,有(a-b )(a+b )=a 2-b2当n=2时,有(a-b )(a 2+ab+b 2)=a 3-b 3当n=3时,有(a-b )(a 3+a 2b+ab 2+b 3)=a 4-b 4当n *∈N 时,你能得到的结论是三、解答题(共6小题,共80分) 15、(本题满分12分)在数列{a n }中,1121,()2n n na a a n N a ++==∈+,试写出这个数列的前4项,并猜想这个数列的通项公式。
高中数学选修1-2综合测试题及参考答案
高中数学选修1-2(人教A 版)综合测试题一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.独立性检验,适用于检查______变量之间的关系 ( ) A.线性 B.非线性 C.解释与预报 D.分类2.样本点),(,),,(),,(2211n n y x y x y x 的样本中心与回归直线a x b y ˆˆˆ 的关系( )A.在直线上B.在直线左上方C. 在直线右下方D.在直线外 3.复平面上矩形ABCD 的四个顶点中,C B A 、、所对应的复数分别为i 32 、i23 、i32 ,则D点对应的复数是( )A.i 32B.i 23C.i 32D.i 23 4.在复数集C内分解因式5422 x x 等于( )A.)31)(31(i x i xB.)322)(322(i x i xC.)1)(1(2i x i xD.)1)(1(2i x i x5.已知数列 ,11,22,5,2,则52是这个数列的 ( ) A.第6项 B.第7项 C.第19项 D.第11项6.用数学归纳法证明)5,(22n N n n n成立时,第二步归纳假设正确写法是( )A.假设k n 时命题成立B.假设)(N k k n 时命题成立 C.假设)5( n k n 时命题成立 D.假设)5( n k n 时命题成立 7.2020)1()1(i i 的值为 ( )A.0B.1024C.1024D.10241 8.确定结论“X 与Y 有关系”的可信度为5.99℅时,则随即变量2k 的观测值k 必须( ) A.大于828.10 B.小于829.7 C.小于635.6 D.大于706.29.已知复数z满足||z z ,则z的实部( )A.不小于0B.不大于0C.大于0D.小于0 10.下面说法正确的有 ( ) (1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。
(好题)高中数学选修1-2第一章《统计案例》检测(答案解析)(3)
一、选择题1.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为37和27,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( ) A .2949B .649C .2349D .43492.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( ) A .14 B .89 C .116D .5323.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 3 4.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( )A .25 B .310 C .15D .1106.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13 D .297.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >=B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样 8.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.20009.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好10.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为 A .13B .14C .12D .3511.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .4012.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A.130 B.190C.240 D.250二、填空题13.掷三个骰子,出现的三个点数的乘积为偶数的概率是________.14.一盒子中装有6只产品,其中4只一等品,2只二等品,从中取产品两次,每次任取1只,做不放回抽样.则在第一次取到的是一等品的条件下,第二次取到的是二等品的概率为__________.15.已知x、y之间的一组数据如下:=+所表示的直线必经过点________.则线性回归方程ˆy a bx16.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________17.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知=)=,lg30.4771lg20.301018.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p,若该同学本次测试合格的概率为0.784,则p=_____.19.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.20.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求:(i)三个球中有两个红球一个黑球的概率;(ii)第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查结果如下面22⨯列联表.22⨯与性别有关”?(2)现在从这100名学生中按性别采取分层抽样的方法抽取5名学生,如果再从中随机选取2人进行有关“嫦娥五号”情况的宣讲,求选取的2名学生中恰有1名女生的概率.若将频率视为概率. 附:()()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++ 23.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 24.随着运动App 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健康达人”小王某天统计了他朋友圈中所有好友(共400人)的走路步数,并整理成下表:间中点值作代表);(2)若用A 表示事件“走路步数低于平均步数”,试估计事件A 发生的概率;(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人有200人,其中健步达人恰有150人,请填写下面22⨯列联表.根据列联表判断有多大把握认为,健步达人与年龄有关?附:()()()()()22n ad bc K a b c d a c b d -=++++25.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()20P K k ≥ 0.050 0.010 0.001 0k3.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++26.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额.(1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为x ,若每次抽取的结果是相互独立的,求x 的分布列,期望和方差. 附表:22()()()()()n ad bc K a b c d a c b d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案. 【详解】根据题意:32291117749p ⎛⎫⎛⎫=---=⎪⎪⎝⎭⎝⎭. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.2.D解析:D 【分析】首先确定是条件概率,在出现数字乘积为偶数的前提下,乘积为非零偶数的概率, 首先求两次数字乘积为偶数的概率, 然后两次为非零偶数的概率,再按照条件概率的公式求解. 【详解】两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,概率是22169⎛⎫= ⎪⎝⎭, 所以两次数字乘积为偶数的概率P =228169⎛⎫-= ⎪⎝⎭ ; 若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),P =111152366636⨯⨯+⨯=,.故所求条件概率为55368329P ==.故选:D 【点睛】本题主要考查了条件概率的计算和独立事件,考查了学生的计算能力,属于基础题.3.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.4.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。
人教版高中数学选修1-2 练习:模块综合测试2
选修1-2模块综合测试(二)(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.[2013·江西高考]已知集合M={1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=()A. -2iB. 2iC. -4iD. 4i解析:由M∩N={4}知4∈M,所以z i=4,z=-4i,选C.答案:C2.凡自然数是整数,4是自然数,所以4是整数,以上三段论推理()A. 正确B. 推理形式不正确C. 两个“自然数”概念不一样D. 两个“整数”概念不一致解析:此三段论中的大前提,小前提以及推理形式都是正确的,因此,此三段论推理是正确的,故选A.答案:A3.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有()A. b与r的符号相同B. a与r的符号相同C. b与r的符号相反D. a与r的符号相反解析:正相关时,b>0,r>0;负相关时,b<0,r<0,选A.答案:A4.勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d的长方体中,有()A. p+q+r=dB. p2+q2+r2=d2C. p3+q3+r3=d3D. p2+q2+r2+pq+pr+qr=d2解析:类比即可.答案:B5.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于()A. f(x)B. -f(x)C. g(x)D. -g(x)解析:由题知偶函数的导数为奇函数,选D.答案:D6.设z=log2(m2-3m-3)+ilog2(m-3)(m∈R),若z对应的点在直线x-2y+1=0上,则m的值是()A.±15 B.15C.-15D.15解析:log2(m2-3m-3)-2log2(m-3)+1=0,log2m2-3m-3m-2=-1,m2-3m-3m-2=12,m=±15,而m>3,m=15.答案:B7.[2014·贵州六校联考]如图,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分,得x1=6,x2=9,p=9.5时,x3等于()A. 10B. 9C. 8D. 7解析:x1=6,x2=9,|x1-x2|=3,|x3-6|<|x3-9|不成立,取x1=x3⇒x3+9=9.5×2⇒x3=10.答案:A8.[2013·安徽高考]设i是虚数单位,z是复数z的共轭复数.若z·z i+2=2z,则z=()A. 1+iB. 1-iC. -1+iD. -1-i解析:设z =a +b i(a ,b ∈R ),则z ·z i +2=(a +b i)·(a -b i)·i +2=2+(a 2+b 2)i ,故2=2a ,a 2+b 2=2b ,解得a =1,b =1.即z =1+i.答案:A9.[2014·昆明调研]执行如图的程序框图,如果输入的N =10,那么输出的S =( )A. 109B. 169C. 95D. 2011解析:在程序执行过程中p ,S ,k 的值依次为p =0,S =0,k =1;p =1,S =1,k =2;p =3,S =43,k =3;p =6,S =32,k =4;p =10,S =85,k =5;…;p =36,S =169,k =9;p=45,S =95,k =10.又N =10,k =N ,故程序结束,输出的S =95.答案:C10.定义复数的一种运算z 1]|z 1|+|z 2|,2)(等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =3,则z *z 的最小值为( )A.92B.322 C.32D.94 解析:z *z =|z |+|z |2=2a 2+b 22=a 2+b 2=a +b2-2ab ,又∵ab ≤⎝⎛⎭⎫a +b 22=94,∴-ab ≥-94,z *z ≥9-2×94=92=322. 答案:B11.按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是( )A .C 4H 9B .C 4H 10 C .C 4H 11D .C 6H 12解析:后一种化合物应有4个C 和10个H ,所以分子式是C 4H 10. 答案:B12.对于定义在数集R 上的函数f (x ),如果存在实数x 0,使f (x 0)=x 0,则x 0叫函数f (x )的一个不动点.已知f (x )=x 2+2ax +1不存在不动点,那么a 的取值范围是( )A. (-12,32)B. (-32,-12)C. (12,32) D. (-32,12)解析:因为f (x )=x 2+2ax +1不存在不动点,所以f (x )=x 无实根.由x 2+2ax +1=x 得x 2+(2a -1)x +1=0,此方程若无实根,则Δ=(2a -1)2-4<0,解得-12<a <32.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为________.解析:首先把两组值代入回归直线方程得⎩⎪⎨⎪⎧3b ^ +a ^=17,8b ^ +a ^ =22⇒⎩⎪⎨⎪⎧b ^=1,a ^ =14.所以回归直线方程是y ^=x +14.答案:y ^=x +1414.如图所示是按照一定规律画出的一列“树型”图,设第n 个图有a n 个“树枝”,则a n +1与a n (n ≥2)之间的关系是________.解析:观察图1~5得:a 1=1,a 2=3,a 3=7,a 4=15,a 5=31,由规律可得a n +1=2a n+1(n ≥2).答案:a n +1=2a n +1(n ≥2)15.读下面的流程图,当输入的值为-5时,输出的结果是________.解析:①A =-5<0,②A =-5+2=-3<0,③A =-3+2=-1<0,④A =-1+2=1>0,⑤A =2×1=2.答案:216.若Rt △ABC 中两直角边为a 、b ,斜边c 上的高为h ,则1h 2=1a 2+1b 2,如右图,在正方体的一角上截取三棱锥P -ABC ,PO 为棱锥的高,记M =1PO 2,N =1P A 2+1PB 2+1PC 2,那么M 、N 的大小关系是__________.解析:在Rt △ABC 中,c 2=a 2+b 2①,由等面积法得ch =ab ,∴c 2·h 2=a 2·b 2②,①÷②整理得1h 2=1a 2+1b2.类比得,S 2△ABC =S 2△P AB +S 2△PBC +S 2P AC ③,由等体积法得S △ABC ·PO =12P A ·PB ·PC , ∴S 2△ABC ·PO 2=14P A 2·PB 2·PC 2④,③÷④整理得M =N . 答案:M =N三、解答题(本大题共6小题,共70分)17.(10分)满足z +5z 是实数且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ;若不存在,请说明理由.解:设虚数z =x +y i(x ,y ∈R ,且y ≠0) z +5z =x +y i +5x +y i =x +5x x 2+y 2+(y -5y x 2+y 2)i , 由已知得⎩⎪⎨⎪⎧y -5y x 2+y 2=0,x +3=-y .∵y ≠0,∴⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3, 解得⎩⎪⎨⎪⎧x =-1,y =-2或⎩⎪⎨⎪⎧x =-2,y =-1.∴存在虚数z =-1-2i 或z =-2-i 满足以上条件. 18.(12分)已知函数f (x )=a x +x -2x +1(a >1).(1)证明函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根. 证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0, ∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0. 又∵x 1+1>0,x 2+1>0, ∴x 2-2x 2+1-x 1-2x 1+1= x 2-x 1+-x 1-x 2+x 1+x 2+=x 2-x 1x 1+x 2+1>0.于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)证法一:假设存在x 0<0(x 0≠-1)满足f (x 0)=0, 则ax 0=x 0-2x 0+1,且0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2.与假设x 0<0矛盾,故方程f (x )=0没有负数根. 证法二:假设存在x 0<0(x 0≠-1)满足f (x 0)=0. ①若-1<x 0<0,则x 0-2x 0+1<-2,0<ax 0<1,∴f (x 0)<-1,与f (x 0)=0矛盾; ②若x 0<-1,则x 0-2x 0+1>0,0<ax 0<1,∴f (x 0)>0,与f (x 0)=0矛盾. 故方程f (x )=0没有负数根.19.(12分)设z 1=1+2a i ,z 2=a -i(a ∈R ),已知A ={z ||z -z 1|≤2},B ={z ||z -z 2|≤22}, A ∩B =∅,求a 的取值范围.解:∵集合A 、B 在复平面内对应的点是两个圆面,又A ∩B =∅,∴这两个圆外离. 所以|z 1-z 2|>32, 即|(1+2a i)-(a -i)|>3 2.解之得a ∈(-∞,-2)∪⎝⎛⎭⎫85,+∞.20.(12分)已知函数f (x )=⎩⎪⎨⎪⎧2-x x ,2 x =,2+x x ,设计一个输入x 值,输出y 值的流程图.解:流程图如图所示.21.(12分)为了调查胃病是否与生活规律有关,对某地540名40岁以上的人进行了调查,结果如下:生活规律有关系?解:根据公式得K 2的观测值 k =-280×460×220×320≈9.638>6.635,因此,在犯错误的概率不超过0.01的前提下,认为40岁以上的人患胃病与生活规律有关.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?(注:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y=b ^x .)解:(1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5,∑i =14x 2i =54,∴b ^=0.7.∴a ^=1.05,∴y ^=0.7x +1.05. 回归直线如图所示.(3)将x =10代入线性回归方程,得y ^=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.。
高中数学选修1-2数系的扩充与复数的引入单元测试题
选修1-2 数系的扩充与复数的引入 单元测试一、 选择题(共12题,每题5分,共60分)1、i 是虚数单位,5i 2-i= ( ) A .1+2i B .-1-2i C .1-2i D .-1+2i2、设i z 431-=,i z 322+-=,则21z z +在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、设O 是原点,向量,对应的复数分别为i i 23,32+--,那么向量对应的复数是( )A .-5+5iB .-5-5 iC .5+5 iD .5-5 i 4、复数22i 1+i ⎛⎫ ⎪⎝⎭等于( ) A .4iB .4i -C .2iD .2i - 5、()i i ⋅-21等于( )A .2-2 iB .2+2 iC .-2D .26、复数21(1)i+的值是 ( )A.2iB.2i -C.2D.2- 7、如果复数212bi i-+的实部和虚部互为相反数,那么实数b 的值为 ( )B.2-C.23-D.238、若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i +的点是 ( )A.EB.FC.GD.H9、已知复数z 3i )z =3i ,则z =( )A .32 B. 34 C. 32 D.34 10、设z 的共轭复数是z ,且z +z =4,z ·z =8,则zz 等于 ( ) A.1 B.-i C.±1 D.±i11、ii -210=( ) A .-2+4i B .-2-4i C .2+4i D .2-4i12、下列命题中正确的是( ) A .任意两复数均不能比较大小; B .复数z 是实数的充要条件是z =z ;C .复数z 是纯虚数的充要条件是z +z =0;D .i +1的共轭复数是i -1;二、 填空题(共4题,每题5分,共20分)13、已知复数()i m m z 11-++=,当实数m = 时,z 是实数;当实数m = 时,z 是虚数;当实数m = 时,z 是纯虚数14、已知(2x -1)+i =y -(3-y )i ,其中x ,y ∈R ,则x = ;y =15、已知()2,a i b i a b R i+=+∈,其中i 为虚数单位,则a b += _______ 16、已知复数i i Z +-=11,则4321Z Z Z Z ++++的值是___________ 三、 解答题(共4题,每题10分,共40分)17、设x 、y 为实数,且ii y i x 315211-=-+-,求x +y .18、已知复数i z i z 34,321+=+=(1) 写出这两个复数的共轭复数(2) 求出这两个复数的模19、已知复数z=()i x x x 2562-++-在复平面内对应的点在第三象限,求实数x 的取值范围20、已知R b a i z ∈+=,,1,若432-+=Z z ω,求ω。
(必考题)高中数学选修1-2第一章《统计案例》检测(答案解析)(1)
一、选择题1.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9162.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%4.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .595.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7106.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1157.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =8.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样9.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 10.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9011.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .312.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;二、填空题13.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为______. 14.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.15.如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________16.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.17.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.18.甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为12,乙投篮命中的概率为23,求甲至多命中2个且乙至少命中2个概率____.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是_____.20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.2020年1月24日,中国疾控中心成功分离中国首株新型冠状病毒毒种.6月19日,中国首个新冠mRNA疫苗获批启动临床试验,截至2020年10月20日,中国共计接种了约6万名受试者,为了研究年龄与疫苗的不良反应的统计关系,现从受试者中采取分层抽样抽取100名,其中大龄受试者有30人,舒张压偏高或偏低的有10人,年轻受试者有70人,舒张压正常的有60人.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否能够以99%的把握认为受试者的年龄与舒张压偏高或偏低有关?大龄受试者年轻受试者合计舒张压偏高或偏低舒张压正常合计6人,从抽出的6人中任取3人,设取出的大龄受试者人数为X,求X的分布列和数学期望.运算公式:()()()()()22n ad bcKa b c d a c b d-=++++,对照表:22.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面22⨯列联表,并问是否有0099的把握认为“两个分厂生产的零件的质量有差异”.附:22()()()()()n ad bcKa b c d a c b d-=++++23.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示. (1)求a 的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关? ()()()()()22n ad bc K a b a d b c c d -=++++()2P K k >0.15 0.100.050.025 0.010 0.005 0.001k2.0722.7063.8415.0246.6357.879 10.82824.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为子调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到如图所示的频率分布直方图.(1)根据女性频率分布直方图估计女性使用微信的平均时间;(2)若每天再微信超过4个小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“微信控”与“性别有关”? 25.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x1 2 3 4 5 6 7 8 y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by a x=+和指数函数模型dx y ce =分别对两个变量的关系进行拟合.为此变换如下:令1xμ=,则y a b μ=+,即y 与μ满足线性关系;令ln νμ=,则ln c dx ν=+,即ν与x 也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54dx y e =,ν与x 的相关系数10.94r =-,其他参考数据如表(其中1ln i i i iy x μν==).(1)求指数函数模型和反比例函数模型中y 关于x 的回归方程;(2)试计算y 与μ的相关系数2r ,并用相关系数判断:选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?(3)根据(2)小题的选择结果,该企业采取订单生产模式(即根据订单数量进行生产,产品全部售出).根据市场调研数据,该产品单价定为100元时得到签订订单的情况如表:已知每件产品的原料成本为10元,试估算企业的利润是多少?(精确到1千元) 参考公式:对于一组数据()11,μν,()22,μν,⋅⋅⋅,(),n n μν,其回归直线ναβμ=+的斜率和截距的最小二乘估计分别为:1221ni i i nii n n μνμνβμμ==-=-∑∑,ανβμ=-,相关系数ni in r μνμν-=∑26.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n 的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名. ①完成如下所示22⨯列联表技术工 非技术工 总计 月工资不高于平均数 50 月工资高于平均数50 总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050.01 0.005 0.001 0k 3.8416.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.C解析:C 【解析】分析:利用概率的计算公式,求解事件A 和事件A B 的概率,即可利用条件概率的计算公式,求解答案.详解:由题意,事件A =“第一次摸出的是红球”时,则63()105P A ==, 事件A =“第一次摸出的是红球”且事件B =“第二次摸出白球”时,则6412()10945P AB =⨯=, 所以()4(|)()9P AB P B A P A ==,故选C . 点睛:本题主要考查了条件概率的计算,其中熟记条件概率的计算公式和事件的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.5.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.6.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.7.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.8.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A9.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.10.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.11.D解析:D 【解析】对于①,4344443273()()464432A PB P AB ⨯====,,所以()2()()9P AB P A B P B ==,故①正确;对于②,当22log log a b >,有0a b >>,而由21a b ->有a b >,因为0,0a b a b a b a b >>⇒>>≠>>> ,所以22log log a b >是21a b ->的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线3ξ=对称,且27σ= 所以3,7D μξ==,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.12.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.二、填空题13.【分析】根据甲乙两人各射击一次得分之和为2的概率为列方程解方程求得的值【详解】甲乙两人各射击一次得分之和为2可能是甲击中乙未击中或者乙击中甲未击中故解得故答案为:【点睛】本小题主要考查相互独立事件概解析:34【分析】根据甲、乙两人各射击一次得分之和为2的概率为920列方程,解方程求得p 的值. 【详解】甲、乙两人各射击一次得分之和为2,可能是甲击中乙未击中,或者乙击中甲未击中,故()339115520p p ⎛⎫⋅-+⋅-= ⎪⎝⎭,解得34p =. 故答案为:34【点睛】本小题主要考查相互独立事件概率计算,属于基础题.14.【解析】设第一次摸出正品为事件第二次摸出正品为事件则事件和事件相互独立在第一次摸出正品的条件下第二次也摸到正品的概率为:故答案为 解析:【解析】设“第一次摸出正品”为事件A ,“第二次摸出正品”为事件B , 则事件A 和事件B 相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:()()655109|6910P AB P B A P A ⨯===().故答案为5915.994【解析】由题意知本题是一个相互独立事件同时发生的概率种开关中至少有个开关能正常工作的对立事件是种开关都不能工作分别记开关能正常工作分别为事件故答案为解析:994 【解析】由题意知本题是一个相互独立事件同时发生的概率,,,A B C ,3种开关中至少有1 个开关能正常工作的对立事件是3种开关都不能工作,分别记,,A B C 开关能正常工作分别为事件123,,A A A ,()()1231,,10.10.20.30.994P E P A A A =-=-⨯⨯=, 故答案为0.994. 16.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.17.乙【解析】线性回归模型中越接近1效果越好故乙效果最好解析:乙 【解析】线性回归模型中2R 越接近1,效果越好,故乙效果最好.18.【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件分别做出甲至多命中2个球的概率和乙至少命中两个球的概率根据相互独立事件的概率公式得到结果【详解】甲至多命中2个且乙至少命中2个包含的解析:1118【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件,分别做出甲至多命中2个球的概率和乙至少命中两个球的概率,根据相互独立事件的概率公式得到结果. 【详解】甲至多命中2个且乙至少命中2个包含的两个事件是互相独立事件, 设“甲至多命中2个球”为事件A ,“乙至少命中2个球”为事件B ,由题意()41322124411111112222216P A C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()22342344212128333339P B C C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴甲至多命中2个球且乙至少命中2个球的概率为()()1181116918P A P B ⋅=⨯=,故答案为1118. 【点睛】本题考查独立重复试验,考查离散型随机变量,是一个综合题,解题时注意进球的个数对应的是乙所得的分数,注意分数与进球个数的对应.19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的车能够充电2500次为事件B 即求条件概率:由条件概率公式即得解【详解】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的解析:717【分析】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:(|)P B A ,由条件概率公式即得解. 【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:()35%7(|)()85%17P A B P B A P A ===故答案为:717【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.三、解答题21.(1)没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)分布列见解析,()32E X = 【分析】(1)根据题意列出列联表,再计算2 4.762 6.635K ≈<,故没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)由分层抽样得抽得样本的大龄受试者有3人,年轻受试者有3人,X 的可能取值为0,1,2,3,再结合超几何分布求概率和期望即可.【详解】解:()122⨯列联表如下:()210010601020 4.762 6.63530702080K ⨯⨯-⨯∴=≈<⨯⨯⨯所以,没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关.(2)由题意得,采用分层抽样抽取的6人中,大龄受试者有3人,年轻受试者有3人, 所以大龄受试者人数为X 的可能取值为0,1,2,3,所以()33361020C P X C ===,()2133369120C C P X C ===, ()1233369220C C P X C ===,()33361320C P X C ===,所以X 的分布列为:所以()0123202020202E X =⨯+⨯+⨯+⨯=. 【点睛】本题第二问解题的关键在于根据题意得抽取的6人中,大龄受试者有3人,年轻受试者有3人,进而根据超几何分布求概率分布列与数学期望,考查运算求解能力,是中档题.22.(1) 72% 64% (2) 有99%的把握认为“两个分厂生产的零件的质量有差异” 【解析】解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%. (2)χ2=()1000360180320140500500680320⨯⨯-⨯⨯⨯⨯≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”. 23.(1)0.035,41.5;(2)有. 【分析】(1)由频率分布直方图求出a 的值,再计算数据的平均值;(2)由题意填写列联表,计算观测值,对照临界值得出结论. 【详解】(1)由频率分布直方图可得:10×(0.01+0.015+a +0.03+0.01)=1, 解得a =0.035,所以通过电子阅读的居民的平均年龄为:20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5;(2)由题意200人中通过电子阅读与纸质阅读的人数之比为3:1, ∴纸质阅读的人数为20014⨯=50,其中中老年有30人,∴纸质阅读的青少年有20人,电子阅读的总人数为150,青少年人数为1500.10.150.35⨯++()=90,则中老年有60人, 得2×2列联表,计算()2200903060202006.061 5.024501501109033K ⨯-⨯==≈>⨯⨯⨯,所以有97.5%的把握认为认为阅读方式与年龄有关. 【点睛】本题考查了频率分布直方图与独立性检验的应用问题,考查了阅读理解的能力,是基础题.24.(1)4.76;(2)有90%的把握认为“微信控”与“性别”有关 【解析】 试题分析:(1)由频率直方图中各概率乘以各方块中点频率相加后即得;(2)从频率直方图中可计算出“微信控”和“非微信控”的男女生人数,再计算出2K 可得. 试题(1)女性平均使用微信的时间为:0.16×1+0.24×3+0.28×5+0.2×7+0.12×9=4.76. (2)2(0.04+a +0.14+2×0.12)=1,解得a =0.08. 由题设条件得列联表:所以K 2==≈2.941>2.706.所以有90%的把握认为“微信控”与“性别”有关.25.(1)指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+;(2)20.99r ≈;用反比例函数模型拟合效果更好;(3)612(千元). 【分析】(1)由96.54dx y e =,得ln ln96.54 4.6y dx dx ν=+⇔=+,将 3.7ν=, 4.5x =代入可得指数模型回归方程.令1xμ=,则y b a μ=+,代入y ,求得b ,a ,可得反比例函数回归方程.(2)求得y 与u 的相关系数为2r ,由12r r <,可得结论. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,可求得订单的期望,从而求得该企业的利润约. 【详解】解:(1)因为96.54dx y e =,所以ln ln96.54 4.6y dx dx ν=+⇔=+, 将 3.7ν=, 4.5x =代入上式,得0.2d =-,所以0.296.54x y e -=.令1xμ=,则y b a μ=+, 因为360458y ==,所以182218183.480.34451001.5380.1158ni ii i i u y u yb u u==-⋅-⨯⨯===-⨯-∑∑,则451000.3411a y b u =-⋅=-⨯=,所以11100y u =+, 所以y 关于x 的回归方程为10011y x=+. 综上,指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+. (2)y 与u 的相关系数为812882222118610.9961.40.616185.588i ii i i i i u y u yr u u y y ===-⋅===≈⨯⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑,因为12r r <,所以用反比例函数模型拟合效果更好. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 令109811111123102222T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①, 则111092111111*********T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②, ②-①,得11109211111522222T ⎛⎫⎛⎫⎛⎫⎛⎫-=+++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简得10192T ⎛⎫=+ ⎪⎝⎭,所以101391292256S ⎛⎫=+⨯=+ ⎪⎝⎭,所以该企业的利润约为:3310091009101161232562569256⎡⎤⎢⎥⎛⎫⎛⎫+⨯-+⨯++≈ ⎪ ⎪⎢⎥⎝⎭⎝⎭+⎢⎥⎣⎦(千元). 【点睛】本题考查线性回归方程的求得,相关系数的比较,以及运用数学期望求利润,属于中档题. 26.(1)0.05n =;(2)①列联表见解析;②不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关 【分析】(1)根据频率分布直方图列方程组求得n 的值;(2)根据题意得到22⨯列联表,计算观测值,对照临界值表得出结论. 【详解】 (1)月工资收入在[45,50)(百元)内的人数为15月工资收入在[45,50)(百元)内的频率为:150.15100=; 由频率分布直方图得:(0.020.0420.01)50.151n +++⨯+=0.05n ∴=(2)①根据题意得到列联表:技术工 非技术工总计月工资不高于平均数193150月工资高于平均数3119 50总计 50 50 1002 5.7610.82850505050K ==<⨯⨯⨯ 不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关.【点睛】本题主要考查了独立性检验和频率分布直方图的应用问题,也考查了计算能力及频率应用问题,是基础题.。
高中数学选修1-2第一章统计案例测试题带详细解答(可编辑修改word版)
1
A、增加3个单位B、增加个单位C、减少3个单位D、减少个单位
3
【答案】C
【解析】
解释变量即回归方程里的自变量xˆ,由回归方程知预报变量yˆ减少 3 个单位
4.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U
与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之
选修 1-2 第一章、统计案例测试
一、选择题
1.已知x与y之间的一组数据:
x
0
1
2
3
y
1
3
5
7
则y与x的线性回归方程为ybxa必过点() A.(2,2)B. (1.5 ,4)C.(1.5 ,0)D.(1,2)
【答案】B
【解析】
试题分析:由数据可知x1.5,y4,∴线性回归方程
4
为yb xa必过点(1.5,4)
5 =11.72
. Y =(1+2+3+4+5)
5 =3
∴这组数据的相关系数是r=7.2
19.172 =0.3755,
变量U与V相对应的一组数据为(10,5),(11.3,4),
(11.8,3),(12.5,2),(13,1)
. U =(5+4+3+2+1)
5 =3,
∴这组数据的相关系数是-0.3755,
【解析】
试题分析:由题意,年劳动生产率x(千元)和工人工资y(元)之间回归方程为
y1070x,
故当x增加 1 时,y要增加 70 元,
∴劳动生产率每提高1千元时,工资平均提高70元,故A正确.
高中数学选修1-2综合测试题(人教A版)
A .输出m ;交换m 和n 的值B .交换m 和n 的值;输出 mC .输出n ;交换m 和n 的值D .交换m 和n 的值;输出n7.按照图1――图3的规律,第10个图中圆点的个数为( )个.A . 40B . 36C . 44D . 52&已知二次函数 f (x ) =ax bx c 的导数为f'(x ) , f '(0) 0,对于任意实数 x 都有、选择题:1 .下列命题正确的是( ) A .虚数分正虚数和负虚数 B .实数集与复数集的交集为实数集 c .实数集与虚数集的交集是 {0}2 .下列各式中,最小值等于 2的是( D .纯虚数集与虚数集的并集为复数 ) 2 x y x +5 尺 1 x x A .B. --------------- C . tan D . 2 2 y x x 2 4 tan 寸 1 3.已知三次函数 f (x ) = -x 3- (4m v 1)x 2+ (15m -2n v 7)x + 2 在 x € ( —a, )是增函数,3 则m 的取值范围是( ) A . n <2 或 n >4 B . — 4<n < — 2 C . 2<n <4 D .以上皆不正确 4. 函数f x 的定义域为 a,b ,导函数「x 在a,b 内的图像如图所示, 则函数f x 在a, b 内有极小值点 A . 1个 B . 2个 C . 3个 D . 4个5. 下面对相关系数r 描述正确的是() A . r 0表明两个变量负相关 B . r 1表明两个变量正相关C . r 只能大于零D . | r |越接近于0,两个变量相关关系越弱 6.下面的程序框图的作用是输出两数中的较大者,则①②处分别为( )f(x) _0」 f ⑴的最小值为 f'(0) A . 3 B 5 C .2 D 3 2 2 9.下表为某班 5位同学身高x (单位: cm )与体重 y (单位 kg ) 的数据, 若两个量间的回归直线方程为 y=1.16x ・a ,则a 的值为( ) A . -121.04 B . 123.2 C . 21 D . -45.1216. 若x,厂 R 且满足x 3^2,则3x 27y 1的最小值是1 ]2 117. 若a 0,贝y a " . a ■: —2的最大值为 __________________a V a三、解答题: 10.用反证法证明命题:“ a,b,c,d R , a b =1, c d =1,且 ac bd 1,则 a,b,c,d 中至少有一个负数”时的假设为( A . a, b,c,d 中至少有一个正数 B . a, b, c, d 全为正数 C . a,b, c,d 全都大于等于 0 D . a,b,c,d 中至多有一个负数 二、填空题: 11.关于x 的4- i = 0的实数解为 12. 用支付宝在淘宝网购物有以下几步: ②淘宝网站收到买家的收货确认信息, 无问题,在网上确认收货;④买家登录淘宝网挑选商品; 司发货给买家. 13. 将正整数 ①买家选好商品,点击购买按钮,并付款到支付宝; 将支付宝里的货款付给卖家; ③买家收到货物,检验 ⑤卖家收到购买信息,通过物流公 他们正确的顺序依次为 _________ 1,2,3,……按照如图的规律排列,则100应在第列. 7 8 9 1015141314.已知函数 3f (x ) =x ax 在R 上有两个极值点,则实数 a 的取值范围是15.若 a b 0,则 a 1b(a 「b) 的最小值是 ______________218.复数z = 1 -i a -3a 2 i ( a R),(1 )若Z=z,求|z|; (2)若在复平面内复数z对应的点在第一象限,求a的范围.19.证明不等式:*一y (其中x, y皆为正数).y x320.设函数f(x)=x -6x 5,x R.(1 )求f (x)的单调区间和极值;(2)若关于x的方程f(x) =a有3个不同实根,求实数a的取值范围.(3)已知当* (1「:)时,f(x) _k(x-1)恒成立,求实数k的取值范围21.已知x =1是函数f (x) =mx3_3(m亠1)x2亠nx亠1的一个极值点,其中m, n三R, m:::0(1)求m与n的关系式;(2)求f (x)的单调区间;(3)当x •[」,1],函数y二f (x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围。
人教新课标高中数学选修1-2第一章测试题及答案
(选修1-2)第一章统计案例——测试题答题时间50分钟,满分100分(命题人:依兰高中 刘 岩)一、选择题(每小题8分,5个小题共40分)1、下列结论正确的是( C )①函数关系是一种确定性关系; ②相关关系是一种非确定性关系③回归分析是对具有函数关系的两个变量进行统计分析的一种方法④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。
A. ①②B. ①②③C. ①②④D. ①②③④2、设有一个回归方程为y=2-2.5x,则变量x 增加一个单位时( C )A.y 平均增加2.5个单位B.y 平均增加2个单位C.y 平均减少2.5个单位D.y 平均减少2个单位3、已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( C )A.y ∧=1.23x +4B.y ∧=1.23x+5 C. y ∧=1.23x+0.08 D. y ∧=0.08x+1.234、2.下面是一个2×2列联表:则表中a 、b 处的值分别为( A )A .52、60B .52、50C .94、96D .54、52D )A.(2,2)点B.(1.5,0)点C.(1,2)点D.(1.5,4)点6、已知回归直线方程 y bx a =+,其中3a =且样本点中心为(12),,则回归直线方程为( C ) A.3y x =+ B.23y x =-+ C.3y x =-+ D.3y x =-7、为了考察中学生的性别与是否喜欢数学课程之间的关系,在某校中学生中随机抽取了300名学生,得到如下列联表:你认为性别与是否喜欢数学课程之间有关系的把握有( B )A.0B.95%C.99%D.100%8、在回归直线方程 y a bx=+中,回归系数b表示( D )A.当0x=时,y的平均值B.x变动一个单位时,y的实际变动量C.y变动一个单位时,x的平均变动量D.x变动一个单位时,y的平均变动量9、如图所示,图中有5组数据,去掉哪组数据后,剩下的4组数据的线性相关性最大(A)A.E B.C C.D D.A10、如下图所示是调查某地区男、女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出(C)A.性别与喜欢理科无关B.女生中喜欢理科的比例为80%C.男生比女生喜欢理科的可能性大些D.男生中不喜欢理科的比例为60%11、甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性作试验,并用回归分析方法分别求得相关指数R2则试验结果体现A 、B 两变量有更强的线性相关性的同学是( D )A .甲B .乙C .丙D .丁12、对于分类变量X 与Y 的随机变量K 2的观测值k ,下列说法正确的是( B)A .k 越大,推断“X 与Y 有关系”,犯错误的概率越大B .k 越小,推断“X 与Y 有关系”,犯错误的概率越大C .k 越接近于0,推断“X 与Y 无关”,犯错误的概率越大D .k 越大,推断“X 与Y 无关”,犯错误的概率越小二、填空题:(每小题8分, 2个小题共16分)13、对于线性回归方程 =4.75x +257,当x =28时,y 的估计值为_ 390_______.14、从某地区老人中随机抽取500人,其生活能否自理的情况如下表所示:15、对具有线性相关关系的变量x 和y ,由测得的一组数据已求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为_y_=-10+6.5x .____________.16、若两个分类变量X 与Y 的列联表为:则“X 与Y .三、解答题17.(20分)某种产品的广告费支出x (单位:百万元)与销售额y (单位:百万元)之间有如下对应数据:(1) 求y 关于x 的回归直线方程.(2) 并预测广告费支出700万元的销售额大约是多少万元? 解:(1)由已知:x =5; y =50; ∑i =15x 2i =145; ∑i =15x i y i =1380 可得b ^=22i i i x y nx yx nx -⋅-∑∑=1380-5×5×50145-5×52=6.5,a ^=y -b ^x =50-6.5×5=17.5.所求的回归直线方程是y ^=6.5x +17.5.(2)由(1)可知:回归直线方程是y ^=6.5x +17.5.又700万元=7百万元即 x=7时y ^=6.5×7+17.5=63 (百万元)答:广告费支出700万元销售额大约是6300万元。
(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)
一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1154.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .125.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .406.在一次独立性检验中,得出列表如下:合计 190 400a + 590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .907.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .48.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .149.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131510.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1911.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女 20 30 50 合计3070100(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.00122.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.23.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X 为这一天他获得的奖励金数,求X 的概率分布和数学期望.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表) 月份2020.012020.022020.032020.042020.05(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 5.D解析:D 【解析】由表中数据知,199.51010.511105x =⨯++++=(),1111086585y =⨯++++=(),代入回归直线方程 3.ˆ2yx a =-+中,求得实数 3.28 3.21040a y x =+=+⨯=,故选D. 6.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.7.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.8.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.9.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.10.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=,易知1()()3P AB P B ==.故()1()235()56P AB P BA P A ===∣. 故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.11.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】设甲乙两台机床生产正品的概率分别为则根据题意列方程组解得甲乙同时生产这种零件至少一台获得正品为甲获得正品乙不是正品乙获得正品甲不是正品以及甲乙均获得正品根据概率加法公式求解即可【详解】设甲乙 解析:1112【分析】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤,根据题意列方程组()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩,“甲乙同时生产这种零件,至少一台获得正品”为甲获得正品乙不是正品,乙获得正品甲不是正品,以及甲乙均获得正品,根据概率加法公式求解即可. 【详解】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤. 甲获得正品乙不是正品的概率为14()114p q ∴-=① 又乙获得正品甲不是正品的概率为16()116q p ∴-=② ①②联立得()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩则甲乙均获得正品的概率为321432p q ⋅=⨯= 即甲乙同时生产这种零件,至少一台获得正品的概率是1111146212++= 故答案为:1112【点睛】本题考查概率的加法与乘法公式,属于中档题.14.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.15.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+,∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.16.51【解析】由于两套方案互不影响故至少有一套方案通过的概率是解析:51 【解析】由于两套方案互不影响,故至少有一套方案通过的概率是2120.3C 0.3(10.3)0.51+⋅⋅-=.17.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.18.【解析】表示在已经发生事件的情况下事件发生的概率又事件恰有一次出现正面包含于事件至少一次出现反面所以所以解析:37【解析】(/)P B A 表示在已经发生事件A 的情况下,事件B 发生的概率,又事件B = “恰有一次出现正面”包含于事件A =“至少一次出现反面”,所以()()(/)()()P AB P B P B A P A P A ==,37(),()88P B P A ==,所以()3()7P B P A =. 19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】由题意求得一个周期内就停止训练的概率再结合相互独立事件的概率计算公式即可求解【详解】由题意小白每天不能参加训练的概率为若一个训练周期内出现2次不能参加训练可得一个周期内就停止训练的概率为这个 解析:811024【分析】由题意,求得一个周期内就停止训练的概率,再结合相互独立事件的概率计算公式,即可求解.【详解】由题意,小白每天不能参加训练的概率为14,若一个训练周期内出现2次不能参加训练,可得一个周期内就停止训练的概率为221135244432⎛⎫⎛⎫+⨯⨯=⎪ ⎪⎝⎭⎝⎭,这个训练计划持续两个周期的概率为2513811232441024⎛⎫⎛⎫-⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:81 1024.【点睛】本题主要考查了相互独立事件的概率的计算,其中解答中正确理解题意,结合独立事件的概率计算公式求得一个周期内就停止训练的概率是解答的关键,着重考查分析问题和解答问题的能力.三、解答题21.(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)8 15.【分析】(1)由题中22⨯列联表中的数据代入()()()()()22n ad bcKa b c d a c b d-=++++然后与所给表值进行比较可得答案;(2)列出从这6人中随机抽取2人的所有可能情况,选中的2人中恰有一男一女的所有可能情况可得答案.【详解】(1)由题中22⨯列联表,可得()22100103020404.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系.(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,男性人数为106230⨯=人,记为A,B;女性人数为206430⨯=人,记为a,b,c,d.则从这6人中随机抽取2人的所有可能情况有以下“A,B;A,a;A,b;A,c;A,d;B ,a ; B ,b ; B ,c ; B ,d ;a ,b ; a ,c ; a ,d ; b ,c ; b ,d ; c ,d ”共15种.其中,选中的2人中恰有一男一女的所有可能情况有以下“A ,a ; A ,b ; A ,c ; A ,d ; B ,a ; B ,b ; B ,c ; B ,d ”共8种. ∴选中的2人中恰有一男一女的概率815P =. 【点睛】古典概型的概率的计算方法,首先计算所有基本事件数,再计算事件A 包含的基本事件数,应用古典概率公式计算求解.22.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=, 所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.23.(1)各组分别为5人,6人,4人;(2)35;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 【解析】试题分析:(1)三组一共有30人,抽取15人,故两个人抽一人,由此得到抽取的人数分别为5,6,4人.(2)利用列举法列举出所有可能性有15种,其中符合题意的有9种,故概率为35.(3)根据题意填写好表格后,计算29.979 6.635K ≈>,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 试题解:(1)因为1012815=5,15=615=4303030,⨯⨯⨯,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:,,,,,,,,,,,,,,,AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab 共15个结果,其中至少有1人愿意选择此款“流量包”,,,,,,,,,Aa Ab Ba Bb Ca Cb Da Db ab 共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率93155P ==. (3)2×2列联表∴()()()()25010310279.979 6.63510271031010273K ⨯⨯-⨯=≈>++++∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 24.(1)平均数为6,“长潜伏者”的人数为250人(2)列联表见解析, 有97.5%的把握认为潜伏期长短与年龄有关 (3)分布列见解析,()1750E X = 【分析】(1)由频率分布直方图可计算出潜伏期的均值,再由频率分布直方图可得“长潜伏者”的频率,从而得人数;(2)由所给数据计算出2K 后可得结论;(3)由题意知所需要的试验费用X 所有可能的取值为1000,1500,2000,分别计算出概率得概率分布列,再由期望公式得期望.。
(好题)高中数学选修1-2第四章《数系的扩充与复数的引入》测试卷(有答案解析)(2)
一、选择题1.若i 是虚数单位,则复数11i i +=-( ) A .-1 B .1 C .i - D .i2.已知集合{|()()20,,,}A z a bi z a bi z a b R z C =++-+=∈∈,{|||1,}B z z z C ==∈,若A B =∅,则a ,b 之间的关系是( )A .1a b +>B .1a b +<C .221a b +<D .221a b +> 3.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段4.下列关于复数z 的四个命题中,正确的个数是( )(1)若|1||1|2z z -++=,则复数z 对应的动点的轨迹是椭圆;(2)若|2||2|2z z --+=,则复数z 对应的动点的轨迹是双曲线;(3)若|1||Re 1|z z -=+,则复数z 对应的动点的轨迹是抛物线;(4)若|2|3z -≤,则||z 的取值范围是[1,5]A .4B .1C .2D .3 5.在复平面内,复数12z i =-对应的向量为OA ,复数2z 对应的向量为OB ,则向量AB所对应的复数为( )A . 42i +B . 42i -C . 42i --D . 42i -+ 6.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线B .圆C .椭圆D .抛物线 7.若(13)n x +的二项展开式各项系数和为256,i 为虚数单位,则复数(1)n i +的运算结果为( )A .16-B .16C .4-D .48.已知复数z 满足:32z z =-,且z 的实部为2,则|1|z -=A .3B C .D .9.设复数3422i i z +-=,则复数z 的共轭复数是( ) A .52i - B .52i + C .52i -+ D .52i -- 10.已知i 是虚数单位,复数z 满足|12|z i i -=+,则z 的共轭复数z 在复平面上对应点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 11.在复平面内满足11z -=的动点z 的轨迹为( )A .直线B .线段C .两个点D .圆12.已知复数(,,0)z x yi x y R x =+∈≠且|2|3z -=,则y x 的范围为( ) A .33,⎡⎤-⎢⎥⎣⎦ B .33,,⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .3,3⎡⎤-⎣⎦D .(,3][3,)-∞-⋃+∞二、填空题13.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为____. 14.在下列命题中:①两个复数不能比较大小;②复数1z i =-对应的点在第四象限;③若()()22132x x x i -+++是纯虚数,则实数1x =±;④若()()2212230z z z z -+-=,则123z z z ==;⑤“复数(),,a bi a b c R +∈为纯虚数”是“0a =”的充要条件;⑥复数12120z z z z >⇔->;⑦复数z 满足22z z =;⑧复数z为实数z z ⇔=.其中正确命题的是______.(填序号)15.i 为虚数单位,若复数22(23)()m m m m i +-+-是纯虚数,则实数m =_______. 16.若复数()()1i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围为_____. 17.复数z=(其中i 为虚数单位)的虚部为________.18.已知复数z 与(z +2)2+5均为纯虚数,则复数z =__.19.若复数z 满足1z =,则1z i -+的最大值是______.20.设()f z z =,且115z i =+,232z i =-+,则12()f z z -的值是__________.三、解答题21.已知i 为虚数单位,m 为实数,复数()(12)z m i i =+-.(1)m 为何值时,z 是纯虚数?(2)若||5z ≤,求||z i -的取值范围.22.已知复数2i α=-,i m β=-,m R ∈.(1)若2αβα+<,求实数m 的取值范围;(2)若αβ+是关于x 的方程2130()x nx n -+=∈R 的一个根,求实数m 与n 的值.23.已知复数2()z a ai a R =+∈,若2z =z 在复平面内对应的点位于第四象限.(1)求复数z ; (2)若22m m mz +-是纯虚数,求实数m 的值.24.已知复数()221132z x x x i =-+-+,()232,z x x i x R =+-∈ (1)若1z 为纯虚数,求实数x 的值;(2)在复平面内,若1z 对应的点在第四象限,2z 对应的点在第一象限,求实数x 的取值范围.25.(1)已知121,2z i z i =+=-,且12111z z z =+,求z ; (2)已知32i --是关于x 的方程220x px q ++=的一个根,求实数,p q 的值.26.设z 1是虚数,z 2=z 111z +是实数,且﹣1≤z 2≤1. (1)求|z 1|的值以及z 1的实部的取值范围;(2)若ω1111z z -=+,求证ω为纯虚数; (3)求z 2﹣ω2的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】()()()21121112i i i i i i i ++===--+, 本题选择D 选项. 2.C解析:C【分析】先设出复数z ,利用复数相等的定义得到集合A 看成复平面上直线上的点,集合B 可看成复平面上圆的点集,若A ∩B =∅即直线与圆没有交点,借助直线与圆相离的定义建立不等关系即可.【详解】设z =x +yi ,,x y R ∈,则(a +bi )(x ﹣yi )+(a ﹣bi )(x +yi )+2=0化简整理得,ax +by +1=0即,集合A 可看成复平面上直线上的点,集合B 可看成复平面上圆x 2+y 2=1的点集,若A ∩B =∅,即直线ax +by +1=0与圆x 2+y 2=1没有交点,1d =,即a 2+b 2<1故选C .【点睛】本题考查了复数相等的定义及几何意义,考查了直线与圆的位置关系,考查了转化思想,属于中档题.3.D解析:D【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.4.B解析:B【分析】(1)根据椭圆的定义来判断;(2)根据双曲线的定义来判断;(3)根据抛物线的定义来判断;(4)利用圆的有关知识点判断.【详解】(1)|1||1|2z z -++=,表示复平面内到点()()1,0,1,0-距离之和为2的点的轨迹,是由点()()1,0,1,0-构成的线段,故错误;(2)|2||2|2z z --+=,表示复平面内到点()2,0的距离比到点()2,0-的距离大2的点的轨迹,是双曲线的左支,故错误;(3)|1||Re 1|z z -=+,表示复平面内到点()1,0的距离等于到直线1x =-的距离的点的轨迹(点()1,0不在直线1x =-上),所以轨迹是抛物线,故正确;(4)|2|3z -≤,表示点的轨迹是圆心为()2,0,半径为3的圆及其内部(坐标原点在圆内),且z 表示轨迹上的点到原点的距离,所以min 0=,此时z 对应的点为原点,max 325r d =+=+=(d 表示原点到圆心的距离),所以 ||z 的取值范围是[0,5],故错误.故选B.【点睛】复数对应的轨迹方程:(1)122z z z z a -+-=,当122a z z >-时,此时z 对应的点的轨迹是椭圆;(2)()1220z z z z a a ---=>,当122a z z <-时,此时z 对应的点的轨迹是双曲线. 5.C解析:C【分析】先计算A 点坐标和B 点坐标,再计算向量AB ,最后得到对应的复数.【详解】复数12z i =-对应的向量为(1,2)OA A ⇒-22()3412i z i ==---复数2z 对应的向量为(3,4)OB B ⇒--(4,2)AB =--对应的复数为:42i -- 故答案选C【点睛】本题考查了复数的计算,对应向量,意在考查学生综合应用能力.6.A解析:A【解析】【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线.【详解】设()z x yi x y R =+∈、,1x yi ++=,()11iz i x yi +=++=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A.【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.7.C解析:C【详解】分析:利用赋值法求得n ,再按复数的乘方法则计算.详解:令1x =,得4256n =,4n =,∴42(1)(2)4i i +==-.故选C .点睛:在二项式()()n f x a bx =+的展开式中,求系数和问题,一般用赋值法,如各项系数为(1)f ,二项式系数和为2n ,两者不能混淆.8.B解析:B【解析】分析:根据题意设2,z bi =+根据题意得到224+1412b b b z i =+⇒=±∴=±,从而根据复数的模的概念得到结果.详解:设2,z bi =+根据题意得到224+1412b b b z i =+⇒=±∴=±则1z -.故答案为B.点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.9.B解析:B【解析】分析:根据复数模的定义化简复数,再根据共轭复数概念求结果. 详解:因为3422i iz +-=,所以522i z -=, 所以复数z 的共轭复数是52i +, 选B. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi10.D解析:D【解析】分析:先根据复数的模求出z ,再求z 的共轭复数,最后确定对应点所在象限.详解:因为12z i i -=+,所以z i =,所以z i =,因此对应点为1-),在第四象限, 选D.点睛:.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi11.D解析:D【分析】由题意把|1|2||z z -=平方可得关于x 、y 的方程,化简方程可判其对应的图形.【详解】解:设z x yi =+,|1|1z -=,2|1|1z ∴-=,2|1|1x yi ∴-+=,22(1)1x y ∴-+=,故该方程表示的图形为圆,故选:D .【点睛】本题主要考查复数的代数形式及其几何意义,考查圆的方程,涉及复数的模长公式,属于中档题.12.C解析:C【分析】转化|2|z -=为22(2)3x y -+=,设,y k y kx x==,即直线和圆有公共点,联立2164(1)0k ∆=-+≥,即得解.【详解】由于|2||2z x yi -=-+22(2)3x y -+=∴ 设y k y kx x=∴= 联立:2222(2)3,(1+)410x y y kx k x x -+==∴-+=由于直线和圆有公共点,2164(1)0k k ∴∆=-+≥≤≤故y x 的范围为[ 故选:C【点睛】 本题考查了直线和圆,复数综合,考查了学生转化划归,数学运算的能力,属于中档题.二、填空题13.1【解析】因为为纯虚数所以解析:1【解析】因为()1i z +⋅(1)()(1)(1)i a i a a i =++=-++ 为纯虚数,所以10110a a a -=⎧∴=⎨+≠⎩ 14.⑧【分析】根据复数的定义和性质依次判断每个选项得到答案【详解】①当复数虚部为0时可以比较大小①错误;②复数对应的点在第二象限②错误;③若是纯虚数则实数③错误;④若不能得到举反例④错误;⑤复数为纯虚数解析:⑧【分析】根据复数的定义和性质,依次判断每个选项得到答案.【详解】①当复数虚部为0时可以比较大小,①错误;②复数1z i =-对应的点在第二象限,②错误;③若()()22132x x x i -+++是纯虚数,则实数1x =,③错误;④若()()2212230z z z z -+-=,不能得到123z z z ==,举反例1231,0,z z z i ===,④错误;⑤“复数(),,a bi a b c R +∈为纯虚数”是“0a =”的充分不必要条件,⑤错误; ⑥复数12120z z z z >⇔->,取122,z i z i =+=,不能得到12z z >,⑥错误; ⑦复数z 满足22z z =,取z i ,22z z ≠,⑦错误; ⑧复数z 为实数z z ⇔=,根据共轭复数定义知⑧正确.故答案为:⑧.【点睛】本题考查了复数的性质,定义,意在考查学生对于复数知识的理解和掌握.15.-3【解析】分析:利用纯虚数的定义直接求解详解:∵复数是纯虚数解得故答案为-3点睛:本题考实数值的求法是基础题解题时要认真审题注意纯虚数的定义的合理运用解析:-3【解析】分析:利用纯虚数的定义直接求解.详解:∵复数()()2223m m m m i +-+-是纯虚数,222300m m m m ⎧+-∴⎨-≠⎩= ,解得3m =- .故答案为-3.点睛:本题考实数值的求法,是基础题,解题时要认真审题,注意纯虚数的定义的合理运用.16.【解析】故复数对应的点的坐标为由对应的点在第二象限可得解得故答案为解析:1a <-【解析】()()()111i a i a a i -+=++-,故复数对应的点的坐标为()1,1a a +-,由对应的点在第二象限可得1010a a +<⎧⎨->⎩解得1a <-,故答案为1a <-. 17.﹣【解析】试题分析:利用复数除法运算化简可得虚部解:==则复数z 的虚部为﹣故答案为﹣考点:复数代数形式的乘除运算解析:﹣.【解析】试题分析:利用复数除法运算化简,可得虚部. 解:==,则复数z 的虚部为﹣, 故答案为﹣.考点:复数代数形式的乘除运算.18.±3i 【分析】设然后代入利用复数代数形式的乘除运算化简结合已知条件列出方程组求解即可得答案【详解】解:设为纯虚数解得故答案为:【点睛】本题考查了复数代数形式的乘除运算考查了复数的基本概念属于基础题 解析:±3i【分析】设(,0)z bi b R b =∈≠,然后代入2(2)5z ++利用复数代数形式的乘除运算化简,结合已知条件列出方程组,求解即可得答案.【详解】解:设(,0)z bi b R b =∈≠,222(2)5(2)594z bi b bi ++=++=-+为纯虚数,∴29040b b ⎧-=⎨≠⎩,解得3b =±, 3z i ∴=±.故答案为:3i ±.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.19.【分析】利用复数模的三角不等式可得出可得出的最大值【详解】由复数模的三角不等式可得因此的最大值是故答案为【点睛】本题考查复数模的最值的计算可将问题转化为复平面内复数对应的点的轨迹利用数形结合思想求解解析:1【分析】 利用复数模的三角不等式可得出()111z i z i z i -+=--≤+-可得出1z i -+的最大值.【详解】由复数模的三角不等式可得()11111z i z i z i -+=--≤+-==+因此,1z i -+的最大值是1故答案为1【点睛】本题考查复数模的最值的计算,可将问题转化为复平面内复数对应的点的轨迹,利用数形结合思想求解,同时也可以利用复数模的三角不等式进行计算,考查分析问题和解决问题的能力,属于中等题. 20.4+3i 【解析】分析:由题意可得再结合即可得到答案详解:又点睛:本题主要考查的是复数的加减法以及共轭复数掌握复数的运算法则以及共轭复数的概念是解题的关键解析:4+3i【解析】分析:由题意可得1243z z i -=+,再结合()f z z =,即可得到答案详解:115z i =+,232z i =-+,1243z z i ∴-=+1243z z i ∴-=-又()f z z =,()1243f z z i ∴-=+点睛:本题主要考查的是复数的加减法以及共轭复数,掌握复数的运算法则以及共轭复数的概念是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中新课标数学选修(1-2)月考测试题
命题人: 审题人:
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1.下列各数中
2+
2
7
i ,0i ,58i +,(1i ,0.618,纯虚数的个数有( ).
A.0个
B.1个
C.2个
D.3个
2.下表是x 与之间的一组数据,则关于x 的回归直线必过( )
A.()22,
B.()36,
C. ()35,
D.()46,
3.对于分类变量X 与Y 的随机变量2K 的观测值 k ,下列说法正确的是 ( ) A. k 越大,“x 与y 有关系”可信程度越小
B. k 越大,“x 与y 无关系”程度越大
C. k 越接近于0,“x 与y 无关”程度越小
D. k 越小,“x 与y 有关系”可信程度越小
4.每一吨铸铁成本y (元)与铸件废品率 o o x 建立的回归方程y=56+6x ,下列说法正确的是( ) A. 废品率每增加o o 1,成本每吨增加62元 B. 废品率每增加o o 1,成本每吨增加o o 6
C. 废品率每增加o o 1,成本每吨增加6元
D. 废品率每增加o o 1,成本每吨增加56元
5.观察下列各式:+=1a b ,2
2
+=3a b ,3
3
+=4a b ,4
4
+=7a b ,5
5
+=11a b ,……,则9
9
+=a b ( )
A.76
B.123
C.199
D.28
6. 若()f x 是R 上的函数,对任意实数x 满足()()+4=+4f x f x ,且()1f =4,则()2017f 的值为( ) A.2017 B.2018 C.2019 D.2020
7. 下面说法正确的有 ( ) (1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式;
(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。
A.1个
B.2个
C.3个
D.4个
8. 已知5
2
x ≥,则()2-4+5=-2x x f x x 有( )
A.最大值
52 B.最小值5
2
C.最小值2
D.最大值2 9. 设,,a b c 都是正数,则三个数111
,,a b c b c a
+++ ( ).
A .都大于2
B .至少有一个大于2
C .至少有一个不小于2
D .至少有一个不大于2
10. 已知a 、b 、c 满足>>a b c ,且0a c ⋅<,那么下列选项中不一定成立的是 ( ) A.a b a c ⋅>⋅ B.()0c b a ⋅-> C.2
2
c b a b ⋅<⋅ D.()0ac a c ⋅-<
11. 若1(2)Z x yi =-+与2Z x i =-+(,)x y R ∈互为共轭复数,则1Z 对应点在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
12. 在面积为S (S 为定值)的扇形中,当扇形的中心角为 θ,半径为r 时,扇形周长最小,这时θ,r 的值分别是( )
A.1
B.2
C.2
D.2
二、填空题(本大题共4小题,每小题5分,共20分。
把答案填在题中的横线上。
)
13.已知i 为虚数单位,则2
3
4
5
6
7
1_____.i i i i i i i +++++++=
14.设,x y R ∈,且满足()(2)(3)(19)x y x y i x y i ++-=--+-,则___x y +=。
15.已知两个正数,x y 满足2x y +=,则使
19
m x y
+≥恒成立的实数m 的取值范围是_______ 16.关于下列四个说法:(1)、AB DC BD AC ++=;(2)、函数2
()sin f x x =是周期为T 的偶函数; (3)、在ABC ∆中,若a b c >>,则必有cos cos cos A B C <<;(4)用反证法证明命题“若
2()0x a b x ab -++≠,则x a ≠且x b ≠”时,应假设“=x a x b =且”, 正确说法的是:___________
三、解答题(本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
) 17.(10分)设(0,+)a b ∈∞、且a b ≠,求证:3
3
2
2
+>+a b a b ab
18. (12分)已知数列
{}n a , ,21=a ,21
n n a n
n a +=+()*
N n ∈.
求,
2a ,3a ,4a 猜想通项公式;
19.(12
20.(12分) 实数m 取什么数值时,复数2
2
1(2)z m m m i =-+--分别是:
(1)实数? (2)虚数? (3)纯虚数?(4)表示复数z 的点在复平面的第四象限?
21. (12分)
某城市理论预测2007年到2011年人口总数与年份的关系如下表所示
(1)请根据上表提供的数据,求最小二乘法求出Y 关于x 的线性回归方程; (2) 据此估计2012年该城市人口总数。
参考公式:1
2
21
ˆˆˆn
i i
i n
i i x y nx y
b
a
y bx x nx
==-==--∑∑,
22.(12分)
(1)已知方程03)12(2
=-+--i m x i x 有实数根,求实数m 的值。
( 2 )C z ∈,解方程i zi z z 212+=-⋅。