高二上学期期中考试试题

合集下载

2023--2024学年山西省太原市上学期高二年级期中考试语文试卷

2023--2024学年山西省太原市上学期高二年级期中考试语文试卷

2023--2024学年山西省太原市上学期高二年级期中考试语文试卷阅读下面的文字,完成下面小题。

材料一:小区门禁、账号登录、超市付款……近年来,人脸识别技术应用场景不断丰富,在便利生活的同时,技术的不规范使用也对个人信息保护提出了挑战。

有的商家暗中对人脸信息进行统计分析,用于商业营销,甚至进行“大数据杀熟”;随着生成式人工智能的发展,人脸信息甚至还可能被用于电信诈骗等不法行为。

合理使用人脸识别技术的同时,如何更有效地防止信息泄露,成为当务之急。

不久前,国家网信办公布《人脸识别技术应用安全管理规定(试行)(征求意见稿)》(以下简称“征求意见稿”),就人脸识别技术的使用条件、使用禁则、备案要求、数据保护、设备管理等向社会公开征求意见,对保护个人信息权益、维护社会秩序和公共安全具有现实意义。

当前,我国对出售公民个人信息、诈骗等涉嫌犯罪或严重违法的行为,打击力度较大,但对部分商家“无感知收集”“一揽子收集”人脸信息等现象,监管力度较弱。

有一些人认为人脸信息无关紧要,低估人脸信息泄露的危害性。

要看到,人脸信息这样的生物特征具有唯一性、难以改变的特性,一旦泄露,比数字密码丢失更难得到有效补救。

因此,用好人脸识别技术,必须做好从数据收集、使用到备案、删除等全过程监管,并提供较高级别的安全保护。

规范人脸识别技术应用,“安全”应成为绝对的关键词。

首先要把住信息采集入口关。

《征求意见稿》提出,只有在具有特定的目的和充分的必要性,并采取严格保护措施的情形下,方可使用人脸识别技术处理人脸信息。

这样具有很强针对性的界定,能有效防止人脸信息的非必要采集。

比如,在健身房、书店等消费场景中,即便智能设备更加便捷,也应把消费方式的选择权交给消费者,而不能把采集人脸信息作为前置条件。

确有必要时,应当取得个人的单独同意或者依法取得书面同意。

以当事人知情、同意为基础,确保个人信息主体享有撤回授权的权利等,有助于为新技术规范应用划清边界。

山东省德州市2023-2024学年高二上学期期中考试 数学含解析

山东省德州市2023-2024学年高二上学期期中考试 数学含解析

2023-2024学年上学期期中考试高二数学试题(答案在最后)第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知双曲线222:1y C x b -=的一个焦点为(2,0)-,则双曲线C 的一条渐近线方程为()A.0x +=B.0y +=C.10x -=D.10y +-=2.若向量()1,,0a λ= ,()2,1,2b =- ,且,a b的夹角的余弦值为23,则实数λ等于().A.0B.43-C.0或43-D.0或433.已知直线1l :10x my -+=过定点A ,直线2l :30mx y m +-+=过定点B ,1l 与2l 相交于点P ,则22PA PB +=()A.10B.12C.13D.204.直线():120l kx y k k ---=∈R 与圆22:5C x y +=的公共点个数为().A.0个B.1个C.2个D.1个或2个5.如图,在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点G 是PQ 的中点,若记OA a = ,OB b =,OC c = ,则OG =()A.111444a b c ++B.113444a b c ++C.311444a b c ++D.113444a b c -+ 6.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A.22B.40C.10D.227.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为224x y +≤,若将军从点()3,1A 处出发,河岸线所在直线方程为5x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为().A.102B.52- C.10 D.258.已知椭圆()2222:10y x C a b a b+=>>的长轴长为26,且与x 轴的一个交点是(2,0),过点13,22P ⎛⎫ ⎪⎝⎭的直线与椭圆C 交于A ,B 两点,且满足0PA PB +=,若M 为直线AB 上任意一点,O 为坐标原点,则OM的最小值为()A.1B.2C.2D.22二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆M 的标准方程为22(4)(3)25x y -++=,则下列说法正确的是()A.圆M 的圆心为()4,3-B.点()1,0在圆内C.圆M 的半径为5D.点()3,1-在圆内10.已知椭圆22116x y m+=的焦距是23m 的值可能是()A.13B.13C.19D.1911.已知直线:0l kx y k --=,圆22:10M x y Dx Ey ++++=的圆心坐标为()2,1,则下列说法正确的是()A.直线l 恒过点()1,0B.4,2D E =-=-C.直线l 被圆M 截得的最短弦长为D.当1k =时,圆M 上存在无数对点关于直线l 对称12.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为AD ,AB ,11B C 的中点,以下说法正确的是()A.1A C ⊥平面EFGB.C 到平面EFG 的距离为C.过点E ,F ,G 作正方体的截面,所得截面的面积是D.平面EGF 与平面11BCC B 夹角余弦值为3第II 卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.过直线30x y +-=和260x y -+=的交点,且与直线230x y +-=垂直的直线方程是____.14.已知()1,2,3PA = ,()1,1,2PB = ,()2,3,PC λ=,若P ,A ,B ,C 四点共面,则λ=______.15.已知椭圆22:1204x y C +=的两焦点为1F ,2F ,P 为椭圆C 上一点且12PF PF ⊥,则12||||||PF PF -=___________.16.若点P 在曲线C :222610x y x y +--+=上运动,则3yx +的最大值为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知(3,2,1),a =- (2,1,2)b =.(1)求()()2a b a b +⋅-;(2)求a 与b夹角的余弦值;(3)当()()ka b a kb +⊥- 时,求实数k 的值.18.已知直线2310x y -+=和直线20x y +-=的交点为P .(1)求过点P 且与直线310--=x y 平行的直线方程;(2)若直线l 与直线310--=x y 垂直,且P 到l 的距离为5,求直线l 的方程.19.已知圆C 经过()2,0A ,()0,4B 两点,且圆C 的圆心在直线60x y +-=上.(1)求圆C 的标准方程;(2)若直线370x y +-=与圆C 相交于M ,N 两点,O 为坐标原点,求OM ON ⋅.20.设抛物线C :22(0)y px p =>的焦点为F ,A 是抛物线上横坐标为4的点,5AF =.(1)求抛物线C 的方程;(2)设过点F 且斜率为1的直线l 交抛物线C 于M ,N 两点,O 为坐标原点,求OMN 的面积.21.如图,ABC 内接于⊙O ,AB 为⊙O 的直径,10AB =,6BC =,8CD =,E 为AD 的中点,且平面BCE ⊥平面ACD .(1)证明:BC ⊥平面ACD ;(2)若AD =,求二面角A BD C --的正弦值.22.如图,经过点()2,3P ,且中心在坐标原点,焦点在x 轴上的椭圆C 的离心率为12.(1)求椭圆C的方程;(2)若椭圆C的弦,PA PB所在直线交x轴于点,C D,且PC PD.求证:直线AB的斜率为定值.2023-2024学年上学期期中考试高二数学试题第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知双曲线222:1y C x b -=的一个焦点为(2,0)-,则双曲线C 的一条渐近线方程为()A.0x +=B.0y +=C.10x -=D.10y +-=【答案】B 【解析】【分析】由双曲线中a ,b ,c 的关系先求出b ,进而可求焦点在x 轴上的双曲线的渐近线方程.【详解】解:由题意,1,2a c ==,又222c a b =+,解得b =.所以双曲线C的一条渐近线方程为by x a=-=0y +=.故选:B.2.若向量()1,,0a λ= ,()2,1,2b =- ,且,a b的夹角的余弦值为23,则实数λ等于().A.0B.43-C.0或43-D.0或43【答案】C 【解析】【分析】根据空间向量的数量积运算及夹角公式,代入坐标计算即可.【详解】由题意得2cos ,3a b a b a b ⋅=== ,解得0λ=或43λ=-,故选:C .3.已知直线1l :10x my -+=过定点A ,直线2l :30mx y m +-+=过定点B ,1l 与2l 相交于点P ,则22PA PB +=()A.10B.12C.13D.20【答案】C 【解析】【分析】根据题意,求得直线1l 过定点(1,0)A -,直线2l 恒过定点(1,3)B -,结合1()10m m ⨯+-⨯=,得到PA PB ⊥,利用勾股定理,即可求解.【详解】由直线1:10l x my -+=过定点(1,0)A -,直线2:30l mx y m +-+=可化为(1)30m x y -++=,令1030x y -=⎧⎨+=⎩,解得1,3x y ==-,即直线2l 恒过定点(1,3)B -,又由直线1:10l x my -+=和2:30l mx y m +-+=,满足1()10m m ⨯+-⨯=,所以12l l ⊥,所以PA PB ⊥,所以22222(11)(03)13PA PB AB +==--++=.故选:C.4.直线():120l kx y k k ---=∈R 与圆22:5C x y +=的公共点个数为().A.0个B.1个C.2个D.1个或2个【答案】D 【解析】【分析】求直线过的定点,再判断直线与圆位置关系,【详解】():120l kx y k k ---=∈R 为(2)10k x y ---=,故l 过定点(2,1)-,在圆225x y +=上,故直线l 与圆相切或相交,公共点个数为1个或2个,故选:D5.如图,在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点G 是PQ 的中点,若记OA a = ,OB b =,OC c = ,则OG =()A.111444a b c ++B.113444a b c ++C.311444a b c ++ D.113444a b c -+【答案】A 【解析】【分析】根据题意,结合空间向量的线性运算法则,准确化简、运算,即可求解.【详解】由在三棱锥O ABC -中,点P ,Q 分别是OA ,BC 的中点,点G 是PQ 的中点,如图所示,连接OQ ,根据空间向量的线性运算法则,可得:11111111()[()]22222222OG OP PG OA PQ a OQ OP a OB OC OA =+=+=+-=+⋅+-1111[()]2222111444a b c a a b c =+⋅+++-= .故选:A.6.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A.22B.40C. D.【答案】C 【解析】【分析】过A 作AE BD 且AE BD =,连接,CE DE ,易得60CAE ︒∠=,通过线面垂直的判定定理可得ED ⊥平面AEC ,继而得到ED EC ⊥,由勾股定理即可求出答案.【详解】解:过A 作AE BD 且AE BD =,连接,CE DE ,则四边形ABDE 是平行四边形,因为BD AB ⊥,所以平行四边形ABDE 是矩形,因为BD l ⊥,即AE l ⊥,而AC l ⊥,则CAE ∠是二面角l αβ--的平面角,即60CAE ︒∠=,因为3BD AE AC ===,即ACE △为正三角形,所以3CE =,因为,ED AE l AC ⊥⊥,即ED AC ⊥,,,AE AC A AE AC ⋂=⊂平面AEC ,所以ED ⊥平面AEC ,因为EC ⊂平面AEC ,所以ED EC ⊥,所以在Rt EDC中,ED ==,所以AB ED ==故选:C7.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为224x y +≤,若将军从点()3,1A 处出发,河岸线所在直线方程为5x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为().A.2B.2-C.D.【答案】B 【解析】【分析】利用点关于直线的找到最短距离,根据两点之间的距离公式即可求得.【详解】由已知得()3,1A 关于直线5x y +=的对称点为(),A a b ',AA '中点坐标为31,22a b ++⎛⎫⎪⎝⎭,且直线AA '斜率为1所以31=522113a b b a ++⎧+⎪⎪⎨-⎪=⎪-⎩解得4a =,2b =即()4,2A '圆心()0,0O,可知OA '=2OA r '-故选:B8.已知椭圆()2222:10y x C a b a b+=>>的长轴长为,且与x轴的一个交点是(,过点13,22P ⎛⎫ ⎪⎝⎭的直线与椭圆C 交于A ,B 两点,且满足0PA PB +=,若M 为直线AB 上任意一点,O 为坐标原点,则OM 的最小值为()A.1B.C.2D.【答案】B 【解析】【分析】由题意可求得椭圆方程为22162y x +=,由0PA PB += ,得点P 为线段AB 的中点,然后利用点差法可求出直线AB 的方程,则OM 的最小值为点O 到直线AB 的距离,再利用点到直线的距离公式可求出结果.【详解】由题意得2a b ==,则a b ==,2c ==,所以椭圆方程为22162y x +=,因为22311221622⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=<,所以13,22P ⎛⎫ ⎪⎝⎭在椭圆内,所以直线AB 与椭圆总有两个交点,因为0PA PB +=,所以点P 为线段AB 的中点,设1122(,),(,)A x y B x y ,则12121,3x x y y +=+=,22112222162162y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩,所以22222121062y y x x --+=,所以21212121()()3()()0y y y y x x x x +-++-=,所以21213()3()0y y x x -+-=,即2121()()0y y x x -+-=,所以21211y y x x -=--,所以直线AB 为3122y x ⎛⎫-=-- ⎪⎝⎭,即20x y +-=,因为M 为直线AB 上任意一点,所以OM 的最小值为点O 到直线AB的距离d ==,故选:B 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆M 的标准方程为22(4)(3)25x y -++=,则下列说法正确的是()A.圆M 的圆心为()4,3- B.点()1,0在圆内C.圆M 的半径为5D.点()3,1-在圆内【答案】ABC【解析】【分析】根据给定圆的方程,结合点与圆的位置关系逐项判断作答.【详解】圆22:(4)(3)25M x y -++=的圆心为()4,3-,半径为5,AC 正确;由22(14)(03)2518+=-+<,得点()1,0在圆内,B 正确;由22(34)(13)2565-+=-+>,得点()3,1-在圆外,D 错误.故选:ABC 10.已知椭圆22116x y m+=的焦距是m 的值可能是()A. B.13C. D.19【答案】BD【解析】【分析】利用椭圆焦距的定义和性质即可求解.【详解】由题知,==解得13m =或19m =.故选:BD11.已知直线:0l kx y k --=,圆22:10M x y Dx Ey ++++=的圆心坐标为()2,1,则下列说法正确的是()A.直线l 恒过点()1,0B.4,2D E =-=-C.直线l 被圆M 截得的最短弦长为D.当1k =时,圆M 上存在无数对点关于直线l 对称【答案】ABD【解析】【分析】求解直线系结果的定点判断A ;圆的圆心求解D 、E 判断B ;求解直线被圆截的弦长判断C ,利用圆的圆心到直线的距离判断D .【详解】直线:0l kx y k --=,恒过点(1,0),所以A 正确;圆22:10M x y Dx Ey ++++=的圆心坐标为(2,1),4D =-,2E =-,所以B 正确;圆22:4210M x y x y +--+=的圆心坐标为(2,1),圆的半径为2.直线:0l kx y k --=,恒过点(1,0),直线l 被圆M 截得的最短弦长为=≠,所以C 不正确;当1k =时,直线方程为:10x y --=,经过圆的圆心,所以圆M 上存在无数对点关于直线l 对称,所以D 正确.故选:ABD .12.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为AD ,AB ,11B C 的中点,以下说法正确的是()A.1A C ⊥平面EFGB.C 到平面EFG 的距离为C.过点E ,F ,G 作正方体的截面,所得截面的面积是D.平面EGF 与平面11BCC B 夹角余弦值为3【答案】ABD【解析】【分析】建立空间直角坐标系,对于A ,用空间向量计算证明垂直即可判断;对于B ,用空间向量求平面EFG 的法向量,再CF在法向量上的投影即可判断;对于C ,补全完整截面为正六边形,直接计算面积即可判断;对于D ,用空间向量求平面的法向量再计算二面角的余弦值即可判断.【详解】以DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,(0,2,0)C ,1(2,0,2)A ,(1,0,0)E ,(2,1,0)F ,(1,2,2)G ,则1(2,2,2)A C =-- ,(1,1,0)EF = ,(0,2,2)EG = ,10A C EF ⋅= ,10A C EG ⋅= ,则1A C ⊥平面EFG ,故A 正确;向量1AC 为平面EFG 的法向量,且1(2,2,2)A C =-- ,(2,1,0)CF =- ,所以C 到平面EFG的距离为11|(2,1,0)(2,2,2)||(2,2,2)|CF A C A ⋅-⋅--==-- ,故B 正确;作11C D 中点N ,1BB 的中点M ,1DD 的中点T ,连接GN ,GM ,FM ,TN ,ET ,则正六边形EFMGNT 为对应截面面积,则截面面积为:2364S =⨯⨯=C 错误;平面11BCC B 的一个法向量为(0,1,0)n = ,平面EGF 的一个法向量为1(2,2,2)A C =--,设两个平面夹角为θ,11cos 3||n A C n A C θ⋅=== ,故D 正确.故选:ABD .第II 卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.过直线30x y +-=和260x y -+=的交点,且与直线230x y +-=垂直的直线方程是____.【答案】290x y -+=【解析】【分析】通过解方程组,利用互相垂直直线的方程的特征进行求解即可.【详解】两直线方程联立,得3012604x y x x y y +-==-⎧⎧⇒⎨⎨-+==⎩⎩,所以交点为()1,4-设与直线230x y +-=垂直的直线方程为20x y c -+=,把()1,4-代入20x y c -+=中,得12409c c --⨯+=⇒=,故答案为:290x y -+=14.已知()1,2,3PA = ,()1,1,2PB = ,()2,3,PC λ= ,若P ,A ,B ,C 四点共面,则λ=______.【答案】5【解析】【分析】根据P ,A ,B ,C 四点共面,由PA xPB yPC =+ 求解.【详解】解:因为()1,2,3PA = ,()1,1,2PB = ,()2,3,PC λ= ,且P ,A ,B ,C 四点共面,所以PA xPB yPC =+ ,则122332x y x y x y λ=+⎧⎪=+⎨⎪=+⎩,解得115x y λ=-⎧⎪=⎨⎪=⎩,故答案为:515.已知椭圆22:1204x y C +=的两焦点为1F ,2F ,P 为椭圆C 上一点且12PF PF ⊥,则12||||||PF PF -=___________.【答案】43【解析】【分析】根据椭圆的定义以及焦点三角形的性质即可求解.【详解】解: 椭圆22:1204x y C +=得25a =,2b =,4c =,设1||PF m =,2||PF n =,则45m n +=,12PF PF ⊥ ,2264m n ∴+=,2222()()16mn m n m n ∴=+-+=,22()()4803248m n m n mn ∴-=+-=-=,||43m n ∴-=,即12||||||43PF PF -=.故答案为:4316.若点P 在曲线C :222610x y x y +--+=上运动,则3y x +的最大值为__________.【答案】247##337【解析】【分析】先根据已知求出圆心,半径,再把分式转化为斜率,最后化简为直线结合直线和圆的位置关系应用点到直线距离求解即可.【详解】曲线C 方程化为()()22139x y -+-=,是以()1,3为圆心,3为半径的圆,3y x +表示点(),P x y 与点()3,0-连线的斜率,不妨设3y k x =+即直线l :30kx y k -+=,又P 在圆上运动,故直线与圆C3≤,化简得27240k k -≤解得2407k ≤≤,故3y x +的最大值为247.故答案为:247.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知(3,2,1),a =- (2,1,2)b = .(1)求()()2a b a b +⋅- ;(2)求a 与b夹角的余弦值;(3)当()()ka b a kb +⊥- 时,求实数k 的值.【答案】(1)-10(2)7(3)32k =或23-【解析】【分析】(1)根据空间向量的坐标运算律,即可求解.(2)根据空间向量的夹角公式,代入求解.(3)由()()ka b a kb +⊥- ,转化为数量积为0即可.【小问1详解】()()2a b a b +⋅- ()()5,3,11,0,510=⋅--=-;【小问2详解】cos ,7||||a b a b a b ⋅<>==⋅ ;【小问3详解】当()()ka b a kb +⊥- 时,()()0ka b a kb +⋅-= ,得(32,21,2)(32,2,12)k k k k k k ++-+⋅----=0,(32)(32)(21)(2)(2)(12)0k k k k k k +-++-+-+⋅--=,32k =或23-.18.已知直线2310x y -+=和直线20x y +-=的交点为P .(1)求过点P 且与直线310--=x y 平行的直线方程;(2)若直线l 与直线310--=x y 垂直,且P 到l 的距离为5,求直线l 的方程.【答案】(1)320x y -+=;(2)320x y +-=或360x y +-=.【解析】【分析】(1)联立直线方程求得交点(1,1)P ,根据直线平行及点在直线上求平行直线方程;(2)设垂直直线为2:30l x y c ++=,由已知及点线距离公式列方程求参数,即可得直线方程.【小问1详解】联立231020x y x y -+=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,交点(1,1)P ,设与直线310--=x y 平行的直线方程为130x y c -+=把(1,1)P 代入可得1130c -+=,可得12c =,∴所求的直线方程为:320x y -+=.【小问2详解】设与直线310--=x y 垂直的直线方程为2:30l x y c ++=,∵(1,1)P 到l 5=,解得22c =-或6-,∴直线l 的方程为:320x y +-=或360x y +-=19.已知圆C 经过()2,0A ,()0,4B 两点,且圆C 的圆心在直线60x y +-=上.(1)求圆C 的标准方程;(2)若直线370x y +-=与圆C 相交于M ,N 两点,O 为坐标原点,求OM ON ⋅.【答案】(1)()()223310x y -+-=(2)1【解析】【分析】(1)求出AB 的中垂线方程联立60x y +-=,即可求得圆心坐标,继而求得半径,可求得圆的方程;(2)设()11,M x y ,()22,N x y ,联立直线和圆的方程,可得根与系数的关系式,结合向量的数量积的坐标表示,即可求得答案.【小问1详解】因为()2,0A ,()0,4B ,所以40202AB k -==--,线段AB 的中点坐标为()1,2,则AB 的中垂线方程为12(1)2y x -=-,即230x y -+=,故圆C 的圆心在直线230x y -+=上.联立方程组23060x y x y -+=⎧⎨+-=⎩,解得33x y =⎧⎨=⎩,故圆C 圆心的坐标为()3,3,圆C 的半径r ==,则圆C 的标准方程为22(3)(3)10x y -+-=.【小问2详解】设()11,M x y ,()22,N x y ,联立方程组()()223310370x y x y ⎧-+-=⎪⎨+-=⎪⎩,整理得22630x x -+=,120∆=>,则123x x +=,1232x x =.故()()()12121212121237371021491OM ON x x y y x x x x x x x x ⋅=+=+-+-+=-++= .20.设抛物线C :22(0)y px p =>的焦点为F ,A 是抛物线上横坐标为4的点,5AF =.(1)求抛物线C 的方程;(2)设过点F 且斜率为1的直线l 交抛物线C 于M ,N 两点,O 为坐标原点,求OMN 的面积.【答案】(1)24y x =;(2).【分析】(1)根据给定条件,利用抛物线定义求出p 值作答.(2)求出直线l 的方程,与C 的方程联立,再求出三角形面积作答.【小问1详解】抛物线C :22(0)y px p =>的准线方程为2p x =-,依题意,4(52p --=,解得2p =,所以抛物线C 的方程为24y x =.【小问2详解】由(1)知,(1,0)F ,则直线l 的方程为1y x =-,由214y x y x=-⎧⎨=⎩消去y 得:2440y y --=,解得12y =-,22y =+,所以OMN 的面积1211||||122OMN S OF y y =⋅-=⨯⨯=21.如图,ABC 内接于⊙O ,AB 为⊙O 的直径,10AB =,6BC =,8CD =,E 为AD 的中点,且平面BCE ⊥平面ACD .(1)证明:BC ⊥平面ACD ;(2)若AD =,求二面角A BD C --的正弦值.【答案】(1)证明见解析(2)53434【分析】(1)通过面面垂直的性质,找到CE AD ⊥后证明线面垂直,从而证明线线垂直,通过两组线线垂直即可得证;(2)通过已知条件以}{,,CA CB CD 为正交基底建立空间直角坐标系,通过二面角向量方法计算公式求解即可.【小问1详解】因为AB 是⊙O 的直径,所以ACBC ⊥,因为10AB =,6BC =,所以8AC ==,又因为8CD =,E 为AD 的中点,所以CE AD ⊥,因为平面BCE ⊥平面ACD ,平面BCE 平面ACD CE =,AD ⊂平面ACD ,所以AD ⊥平面BCE ,因为BC ⊂平面BCE ,所以AD BC ⊥,又因为,AC AD ⊂平面ACD ,AD AC A ⋂=,所以BC ⊥平面ACD【小问2详解】因为8AC =,8CD =,AD =,所以222AC CD AD +=,所以CD CA ⊥,因为BC ⊥平面ACD ,CA,CD ⊂平面ACD ,所以,BC CA BC CD ⊥⊥,以}{,,CA CB CD 为正交基底,建立如图所示的空间直角坐标系C -xyz ,则()8,0,0A ,()0,6,0B ,()0,0,8D ,()4,0,4E .显然,()11,0,0n =u r是平面BDC 的一个法向量,设()2,,n x y z =u u r是平面ABD 的一个法向量,则22860880n AB x y n AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令3x =,则()23,4,3n = ,所以121212334cos ,34n n n n n n ⋅=== ,设二面角A BD C --所成角为α,[]0,πα∈,则12sin sin ,34n n α== ,所以二面角A BD C --的正弦值为5343422.如图,经过点()2,3P ,且中心在坐标原点,焦点在x 轴上的椭圆C 的离心率为12.(1)求椭圆C 的方程;(2)若椭圆C 的弦,PA PB 所在直线交x 轴于点,C D ,且PC PD =.求证:直线AB 的斜率为定值.【答案】(1)2211612x y +=(2)证明见解析【解析】【分析】(1)椭圆的标准方程为:22221(0)x y a b a b+=>>,12c e a ==,即2a c =,22223b a c c =-=,将点(2,3)P ,代入即可求得a 和b 的值,求得椭圆C 的方程;(2)联立直线,PA PB 的方程与椭圆方程,可得,A B 坐标,进而根据两点斜率公式即可求解.【小问1详解】由题意可知:焦点在x 轴上,设椭圆的标准方程为:22221(0)x y a b a b+=>>,由椭圆的离心率12c e a ==,即2a c =,22223b a c c =-=,将(2,3)P 代入椭圆方程:2249143c c+=,解得:24c =,216a ∴=,212b =,∴椭圆的标准方程为:2211612x y +=;【小问2详解】由题意可知:直线PA 有斜率,且0k ≠,设直线PA 方程为()32y k x -=-,1(A x ,1)y ,2(B x ,2)y ,∴222311612y kx k x y =-+⎧⎪⎨+=⎪⎩,整理得:()()222(34)823423480k x k k x k +-+--=-,()()()22228234(34)42348016210k k k k k ∆⎡⎤---+-->⇒+>⎡⎤⎣⎣=⎦⎦,故12k ≠-由韦达定理可知:()()211222412382324343k k k k x x k k ---+=⇒=++,由PC PD =得:0PC PD k k +=,故直线PB 方程为()32y k x -=--()22224+12343k k x k -=+,因此()212212244348,4343k k x x x x k k -+-==++所以()()()()222121212121212443443224148243AB k k k k x k x k x x y y k k x x x x x x k ⎛⎫- ⎪-- ⎪+-----+--⎝⎭=====---+因此12ABk ,为定值.。

山东省泰安市2023-2024学年度上学期高二期中考试语文试题【含答案】

山东省泰安市2023-2024学年度上学期高二期中考试语文试题【含答案】

山东省泰安市2023-2024学年度上学期高二期中考试语文试题高二语文试题2023.11本试卷共150分,考试时间150分钟。

注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(37分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下面小题。

材料一:就广义的书写而言,胜迹所关联的历史、文学、宗教甚至神话、民俗都至关重要,但最终既体现“文”而又显现为“迹”的,无疑是具有物质性的题刻,尤其是摩崖石刻。

题刻的原始动力可能来自文本,但促使人们前往观赏的却不仅文本,还有作为遗迹的文字书写。

对于胜迹而言,题刻显然不仅具有指认的作用,对其塑造也有一定的意义,尤其是山东境内那些以摩崖石刻著名的山川:泰山经石峪金刚经、四山摩崖与云峰山刻石。

尽管宋人已经注意到泰山经石峪所刻的《金刚经》并留下题名,但文人的到访与题刻,在旅游成为风气的明代嘉隆以后才明显增多。

而由于金石学在清代的风行,这些摩崖题刻甚至超越地方风景的图绘与刊印,在胜迹的塑造中起到直接的作用。

在更多的情形下,摩崖与环境可能并不是一种协作的关系,而是互相提示的关系。

摩崖石刻的特点在于不可移动,因而是真正嵌入自然山水之中的文字,与名胜的关系更为密切。

诚如白谦慎先生所说,摩崖与特定的历史时间和地理空间联系,从而成为一个地区的历史文化遗产。

可见,要准确解释摩崖石刻的文字形式,我们确需将之置诸环境之中加以观察。

嘉庆二年(1797)二月初,黄易访碑岱麓,他不仅关心摩崖,也关心“奇观”,从他的描述中,我们发现他一会儿看自然风光,一会儿看石刻。

在登山时,他记录了道路两侧山石树木,奇峭逼人,有愈上愈妙之感。

嗣至玉皇顶,俯视周边山峦,盛称此乃“天下奇观”。

高二上学期数学期中考试卷(含答案)

高二上学期数学期中考试卷(含答案)

高二上学期数学期中考试卷(含答案)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线10x y +-=的倾斜角为( )A .30B .60︒C .120︒D .135︒ 2.76是等差数列4,7,10,13, 的第( )项A .25B .26C .27D .283.若两条直线210ax y +-=与3610x y --=互相垂直,则a 的值为( )A .4B .-4C .1D .-14.设等差数列{}n a 的前n 项和为n S ,若1073=+a a ,则=9S ( )A .22.5B .45C .67.5D .905. 已知直线l 过()2,1A -,且在两坐标轴上的截距为相反数,那么直线l 的方程是( )A .02=+y x 或30x y -+=B .10x y --=或30x y -+=C .10x y --=或30x y +-=D .02=+y x 或30x y +-= 6.设等比数列{}n a 的前n 项和为147258,9,18,n S a a a a a a ++=++=则9S =( )A .27B .36C .63D .727.已知圆()()111:221=-++y x C ,圆2C 与圆1C 关于直线01=--y x 对称,则圆2C 的方程为( )A .B .C .D .8.若数列{n a }的前n 项和为n S =2133n a +,n S =( )A .123n -B .1(2)3n --C .2123+ D .1(2)3n +- 二、选择题:本题共 4 小题,每小题 5 分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.9.一条光线从点()0,1射出,经x 轴反射后与圆22430x y x +-+=相切,则反射光线所在直线的方程是( )A .4330x y --=B .1=yC .3440x y --=D .1y =-10.已知等差数列{}n a 中,410a a =,公差0d <,则使其前n 项和n S 取得最大值的自然数n 是( )A .4B .5C .6D .711.已知圆222450x y x y a +--+-=上有且仅有两个点到直线34150x y --=的距离为1,则实数a 的可能取值为( )A .12-B .8-C .6D .1-12.数列{}n a 的前n 项和为n S ,已知27n S n n =-+,则下列说法正确的是( )A .{}n a 是递增数列B .1014a =-C .当4n >时,0n a <D .当3n =或4时,n S 取得最大值三、填空题:本题共4小题,每小题5分,共20分.13.已知数列{}n a 中,11,111+-==+n n a a a ,则=2022a _________. 14.已知两条直线0162:,033:21=++=-+y x l y ax l ,若12//l l ,则直线1l 与2l 之间的距离=d ______.15.由正数组成的等比数列{}n a 中,若3654=a a a ,则=+++93832313log log log log a a a a .16.点M 在圆()()93522=-+-y x 上,点M 到直线3x +4y -2=0的最短距离为四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边的垂直平分线DE 的方程. 18.(本小题满分12分)已知S n 为等差数列{a n }的前n 项和,且a 3=17,S 7=98. (1)求{a n }的通项公式;(2)求S n 的最大值. 19.(本小题满分12分)已知圆()()2521:22=-+-y x C 及直线()()()R m m y m x m l ∈+=+++47112:.(1)证明:不论m 取什么实数,直线l 与圆C 恒相交; (2)求直线l 被圆C 截得的弦长的最短长度及此时的直线方程. 20.(本小题满分12分)数列{}n a 中13a =,已知1(,)n n a a +在直线2y x =+上. (1)求数列{}n a 的通项公式;(2)若3nn n b a =⋅,求数列{}n b 的前n 项和n T .21.(本小题满分12分)已知等比数列{}n a 中,11a =,且22a 是1a 和14a 的等差中项.数列{}n b 满足,且12712,13,1++=+==n n n b b b b b .(1)求数列{}n a 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 22.(本小题满分12分)已知圆C 过点()6,2A ,且与直线010:1=-+y x l 相切于点()4,6B . (1)求圆C 的方程;(2)过点()24,6P 的直线2l 与圆C 交于N M 、两点,若CMN ∆为直角三角形,求直线2l 的方程;(3)在直线2:3-=x y l 上是否存在一点Q ,过点Q 向圆C 引两切线,切点为F E 、,使QEF ∆为正三角形,若存在,求出点Q 的坐标,若不存在,说明理由.参考答案一、单选题题目 1 2 3 4 5 6 7 8 答案DA AB AC BB二、多选题题目 9 10 11 12 答案ADCDABDCD三、填空题:13.2 14.20107 15.34 16.2 三、解答题:17.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,所以BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2.因为BC 边的垂直平分线DE 经过BC 的中点(0,2),所以所求直线方程为y -2=2(x -0), 即2x -y +2=0.18.解:(1)因为{a n }是等差数列,设公差为d ,因为a 3=17,S 77a 4=98所以a 4=14, 由d =a 4﹣a 3=﹣3,所以a n =a 3+(n ﹣3)d =17﹣3(n ﹣3)=﹣3n +26;(2)易知S n,当n =8时,S n 取得最大值S 8=100.19.(1)将直线的方程变形为,令,解得,即直线过定点.因为,所以点在圆内部.所以不论m 为何实数,直线与圆恒相交.(2)由(1)的结论知直线过定点,且当直线时,此时圆心到直线的距离最大,进而被圆所截的弦长最短,故,从而此时,此时,直线方程为,即.20、【解析】(1)∵1(,)n n a a +在直线2y x =+上, ∴12n n a a +=+,即12n n a a +-=∴{}n a 是以3为首项,以2为公差的等差数列.32(1)21n a n n ∴=+-=+.(2)3,(21)3n n n n n b a b n =⋅∴=+⋅231335373(21)3(21)3n n n T n n -∴=⨯+⨯+⨯+⋯+-⋅++⋅ ① 23133353(21)3(21)3n n n T n n +∴=⨯+⨯+⋯+-⋅++⋅ ②由①-②得()23+12332333(21)3n n n T n -=⨯+++⋯+-+⋅()11191392(21)32313n n n n n -++-=+⨯-+⋅=-⋅-,13n n T n +∴=⋅.21、解:(1)设等比数列{}n a 的公比为q 因为11a =,所以222131,a a q q a a q q ====.因为22a 是3a 和14a 的等差中项, 所以23144a a a =+, 即244q q =+, 解得2,q =所以1112n n n a a q --==.(2)因为212n n n b b b +++=, 所以{}n b 为等差数列. 因为171,13b b ==, 所以公差131271d -==-. 故21n b n =-.所以1122n n n T a b a b a b =++++⋯++()()1212n n a a a b b b =++⋅⋅⋅++++⋯+2121212112()2n n n n n -+-=+=+--22、(1)设圆心坐标为,则,解得:,圆的半径, 圆的方程为:.(2)为直角三角形,,,则圆心到直线的距离;当直线斜率不存在,即时,满足圆心到直线的距离;当直线斜率存在时,可设,即,,解得:,,即;综上所述:直线的方程为或.(3)假设在直线存在点,使为正三角形,,,设,,解得:或,存在点或,使为正三角形.。

广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题

广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题

深圳中学2023-2024学年度第一学期期中考试试题年级:高二科目:数学注意事项:答案写在答题卡指定的位置上,写在试题卷上无效。

选择题作答必须用2B 铅笔,修改时用橡皮擦干净。

一、单项选择题(每小题只有一个答案符合题意,共8小题,每小题5分,共40分)1.在等差数列{}n a 中,4820a a +=,712a =,则4a =( ) A .4B .5C .6D .82.在等比数列{}n a 中,若52a =,387a a a =,则{}n a 的公比q =( )A B .2C .D .43.已知两条直线1l :350x y +−=和2l :0x ay −=相互垂直,则a =( ) A .13B .13−C .3−D .34.已知椭圆C 的一个焦点为(1,0,且过点(,则椭圆C 的标准方程为()A .22123x y +=B .22143x y +=C .22132x y +=D .22134x y +=5.在等比数列{}n a 中,24334a a a =,且652a a =,则{}n a 的前6项和为( ) A .22B .24C .21D .276.已知F 是双曲线C :2213x y −=的一个焦点,点P 在C 的渐近线上,O 是坐标原点,2OF PF =,则△OPF 的面积为( )A .1B C D .127.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为()1,0F c −、()2,0F c ,若椭圆C 上存在一点P ,使得12PF F ∆的内切圆的半径为2c,则椭圆C 的离心率的取值范围是( ) A .30,5B .40,5C .3,15D .4,158.已知双曲线C :22221x y a b−=(0a >,0b >),点B 的坐标为()0,b ,若C 上的任意一点P 都满足PB b ≥,则C 的离心率取值范围是( )A .B .+∞C .(D .)+∞二、多项选择题(共4小题,每小题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分)9.已知等差数列{}n a 的前n 项和为n S ,51a =,则( ) A .222a a +=B .371a a =C .99S =D .1010S =10,已知圆M :22430x y x +−+=,则下列说法正确的是( ) A .点()4,0在随M 内 B .圆M 关于320x y +−=对称CD .直线0x −=与圆M 相切11.已知双曲线22221x y a b−=(0a >,0b >)的右焦点为F ,过点F 且斜率为k (0k ≠)的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥( )A .23BCD 12.若数列{}n a 满足121a a ==,12n n n a a a −−=+(3n ≥),则称该数列为斐波那契数列.如图所示的“黄金螺旋线”是根据斐波那契数列画出来的曲线.图中的长方形由以斐波那契数为边长的正方形拼接而成,在每个正方形中作圆心角为90°的扇形,连接起来的曲线就是“黄金螺旋线”.记以n a 为边长的正方形中的扇形面积为n b ,数列{}n b 的前n 项和为n S .则下列说法正确的是( ):A .821a =B .2023a 是奇数C .24620222023a a a a a ++++=D .2023202320244s a a π=⋅三、填空题(共4小题,每空5分,共20分)13.数列{}n a 的通项公式n a =,若9n S =,则n = .14.已知直线l :y x =被圆C :()()22231x y r −+−=(0r >)截得的弦长为2,则r = . 15.已知椭圆C :22221x y a b+=(0a b >>)的左、右两焦点分别是1F 、2F ,其中122F F c =.椭圆C 上存在一点A ,满足2124AF AF c ⋅=,则椭圆的离心率的取值范围是 .16.已知A ,B 分别是椭圆E :22143x y +=的左、右顶点,C ,D 是椭圆上异于A ,B 的两点,若直线AC ,BD的斜率1k ,2k 满足122k k =,则直线CD 过定点,定点坐标为 .四、解答题(共6小题,17题10分,18-22题12分)17.在平面直角坐标系xOy 中,圆1C :()2214x y ++=与圆2C :()22310x y +−=相交于P ,Q 两点. (1)求线段PQ 的长;(2)记圆1C 与x 轴正半轴交于点M ,点N 在圆2C 上滑动,求2MNC ∆面积最大时的直线MN 的方程. 18.已知等差数列{}n a 的前n 项和为n S ,13a =,{}n b 为等比数列,且11b =,0n b >,2210b S +=,53253S b a =+,*n N ∈. (1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T .19.已知半径为3的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4370x y −+=相切. (1)求圆的方程;(2)设直线420ax y a −+−=与圆相交于A ,B 两点,求实数a 的取值范围;(3)在(2)的条件下,是否存在实数a ,使得弦AB 的垂直平分线l 过点()3,1P −?若存在,求出实数a 的值;若不存在,请说明理由.20.在平面直角坐标系xOy 中,圆1O :()2221x y ++=,圆2O :()2221x y −+=,点()1,0H ,一动圆M 与圆1O 内切、与圆2O 外切. (1)求动圆圆心M 的轨迹方程E ;(2)是否存在一条过定点的动直线l ,与(1)中的轨迹E 交于A 、B 两点,并且满足HA ⊥HB ?若存在,请找出定点;若不存在,请说明理由.21.已知等差数列{}n a 的前n 项和为n S ,且44a =,数列{}n b 的前n 项之积为n T ,113b =,且()n n S T =.(1)求n T ; (2令nn na cb =,求正整数n ,使得“11n n n c c c −+=+”与“n c 是1n c −,1n c +的等差中项”同时成立; (3)设27n n d a =+,()()112nn nn n d e d d +−+=,求数列{}n e 的前2n 项和2n Y .22.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点为1F 、2F,12F F =P 为椭圆C 上异于长轴端点的一个动点,O 为坐标原点,直线1PF ,PO ,2PF 分别与椭圆C 交于另外三点M ,Q ,N ,当P 为椭圆上顶点时,有112PF F M =.(1)求椭圆C 的标准方程; (2)求12POF POF PQMPQNs s s s ∆∆∆∆+的最大值。

2023-2024学年北京市海淀区高二上学期期中考试化学试卷+答案解析(附后)

2023-2024学年北京市海淀区高二上学期期中考试化学试卷+答案解析(附后)

2023-2024学年北京市海淀区高二上学期期中考试化学试卷一、单选题:本大题共14小题,共42分。

1.反应的能量变化示意图如图所示。

下列说法正确的是( )A. 和的内能之和为akJB. 该反应每生成2个AB分子,吸收能量C. 该反应每生成1mol AB,放出能量bkJD. 反应,则2.用如图装置进行铁的电化学腐蚀实验。

下列说法正确的是( )一段时间后,左侧试管发热,导管口有气泡产生。

A. 铁发生的电极反应:B. 铁腐蚀过程中,化学能转化为热能C. 炭粉的存在对铁腐蚀的速率无影响D. 导管口产生气泡证明铁发生了析氢腐蚀3.已知反应:①②相关化学键的键能数据如下:化学键键能a b c d下列说法正确的是( )A. ①中反应物的总能量小于生成物的总能量B.C.D.4.某种培根型碱性氢氧燃料电池示意图如图所示,下列有关该电池的说法不正确的是( )A. 出口Ⅰ处有水生成B. 循环泵可使电解质溶液不断浓缩、循环C. 电池放电时,向镍电极Ⅰ的方向迁移D. 正极电极反应为:5.M与N在密闭容器中反应生成P,其反应速率分别用、、表示。

已知、、之间有以下关系:、,则此反应可表示为( )A. B. C. D.6.室温下,用溶液、溶液和蒸馏水进行如下表所示的5个实验,分别测量浑浊度随时间的变化。

溶液溶液蒸馏水浑浊度随时间变化的曲线编号①10②9③x④9⑤10下列说法不正确的是( )A. 实验③中B. 实验①②③或③④⑤均可说明其他条件相同时,增大反应物浓度可增大该反应速率C.降低溶液浓度比降低溶液浓度对该反应化学反应速率影响程度更大D. 将装有实验②的试剂的试管浸泡在热水中一段时间后再混合,其浑浊度曲线应为a7.Li可与发生系列反应:,,,,。

科学家据此设计某锂硫电池,示意图如下。

放电时,炭/硫复合电极处生成、2、4、6或。

下列说法正确的是( )A. 该电池中的电解质溶液可以用水溶液B. 放电时,电子由炭/硫复合电极经用电器流向Li电极C. 放电时,生成的若穿过聚合物隔膜到达Li电极表面,不会与Li直接发生反应D. 放电时,当全部转化为时,理论上消耗8.电解溶液制备NaOH和的装置示意图如图。

山东省烟台市2023-2024学年高二上学期期中考试 地理含解析

山东省烟台市2023-2024学年高二上学期期中考试 地理含解析

2023—2024学年度第一学期期中学业水平诊断高二地理(答案在最后)1.答题前,考生先将自己的姓名、考生号、座号填写在相应位置。

2.选择题答案必须使用2B铅笔(按填涂样例)正确填涂;非选择题答案必须使用0.5毫米的黑色签字笔书写,绘图时,可用2B铅笔作答,字体工整,笔迹清楚。

3.请按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

保持卡面清洁,不折叠,不破损。

第Ⅰ卷(选择题)一、选择题(本题共15小题,每小题3分,共45分。

每小题只有一个选项符合题目要求。

)洗车指数是根据过去12小时和未来48小时有无雨雪天气,路面是否有积雪和是否容易使汽车溅上泥水,是否有沙尘等天气条件,给爱车族提供是否适宜洗车的气象指数。

洗车指数共分为4级,级数越高,就越不适宜洗车。

读“某年3月16日17时某区域地面天气图”,据此完成下面小题。

1.图中①②③④四地,洗车指数数值最低的是()A.①B.②C.③D.④2.如果图中等压线状况维持不变,某自驾游汽车从②地经③地到④地,天气变化可能是()A.气温:由暖到冷再到暖B.降雨:由晴朗到阴雨再到晴朗C.气压:由高到低D.风向:由西北风转到东南风再到东北风3.图示虚线范围内,该天气形势下可能出现的气象灾害及成因是()A.冷气团过境,气温骤降B.冷锋过境后,带来连续性降水C.冷锋过境后,出现“倒春寒”D.高压系统控制,降水偏少图左为“塞浦路斯岛位置示意图”,图右为“尼科西亚的气温、降水统计图”。

据此完成下面小题。

4.尼科西亚的气候特征为()A.夏季温和干燥,冬季温暖湿润B.夏季温和少雨,冬季低温多雨C.夏季炎热少雨,冬季寒冷多雨D.夏季炎热干燥,冬季温和湿润5.甲~丁四地中降水最多的是()A.甲B.乙C.丙D.丁6.该岛上河流均为时令河的主要原因是()A.年降水量较少、旱季长且流域面积小B.夏季气温高,河流蒸发旺盛C.以冰雪融水补给为主,冬季消融量少D.植被稀少,涵养水源作用弱海绵城市被称之为“水弹性城市”,下图为某海绵城市示意图。

四川省成都市第七中学2023-2024学年高二上学期期中考试语文含答案

四川省成都市第七中学2023-2024学年高二上学期期中考试语文含答案

2023-2024学年度上期高2025届半期考试语文试题考试时间:150分钟试卷总分:150分一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,17分)阅读下面的文字,完成第1~5题材料一:作为两种最主要、也最具代表性的艺术形式,文学和图像之间既存在对立或相互竞争,也存在合作或相互模仿。

一方面,语词的时间性使其在叙事上,具有图像叙事难以企及的天然优势,而图像的直观性和在场感,不可避免地给文学叙事带来冲击。

另一方面,为了强化叙事效果,两者都会或多或少地受彼方叙事策略的影响,进而突破自身媒介的限制展开故事。

比如,当代小说受图像的影响,突破传统小说的因果线性逻辑和语词叙事的时间性,追求图像的直观性和在场感,从而凸显故事的空间维度,达到不同以往的艺术境界。

文学受图像的影响,首先体现在对故事内容或题材的选取上。

敏锐的现代作家往往会因某幅图像带来的视觉震撼而产生创作冲动,借语词将图像内容部分或整体地转译、再现出来,形成故事从图像到文字的同质异构转化。

鲁迅先生在《示众》中,用细致的语言对看客们围观杀头的情景进行反复刻画。

相比语词解读的私人性,图像解读的公共性创造了一个主客体转换的空间,受众由解读主体变成被解读与被言说的对象。

正是在这个基于图像而创设的空间中,充当看客的、愚钝麻木的同胞给鲁迅带来了强烈的心灵冲击,使他意识到国民劣根性的根深蒂固。

除了直接转译图像内容之外,文学家还注意到图像在唤起知性和强化记忆方面的强势作用。

劳拉·里斯曾将宣传广告语比作“钉子”,而将视觉形象比作“锤子”,指出只有依靠“图像之锤”才能更准确有力地将“产品之钉”嵌入消费者的大脑。

文学创作对颜色、形状等造型艺术的表现媒介加以利用,从而引发受众视觉层面的联想。

鲁迅的小说中有大量对于颜色的运用,如《药》中“红红白白的”破灯笼映照下,老栓从“碧绿的”包中掏出“红黑的”人血馒头,一连串颜色的对比描写形成强烈的视觉冲击,使受众如见其形、如临其境,凸显封建社会的黑暗及人的麻木与愚昧。

北京市2023-2024学年高二上学期期中语文试题含答案

北京市2023-2024学年高二上学期期中语文试题含答案

2023北京高二(上)期中语文(答案在最后)2023.11.610:30-12:30本试卷共8页,100分。

考试时长120分钟。

考生务必将答案作答在答题卡上,在试卷上作答无效。

考试结束后,请将答题卡上交,自己保存试卷,以备讲评之用。

一、本大题共4小题,共9分。

阅读下面材料,完成下面小题。

材料一:汉以后,先秦诸子百家中,唯有儒、道两家长期共存,互相竞争,互相吸收,形成中国传统文化中一条纵贯始终的基本发展线索。

在中国传统文化的多元成分中,儒家和道家是主要的两极,形成鲜明的对立和有效的互补。

两者由于处处相反,因而能够相辅相成,给予整个中国传统文化以深刻的影响。

儒家的人生观,以成就道德人格和救世事业为价值取向,内以修身,充实仁德,外以济民,治国平天下,这便是内圣外王之道。

其人生态度是积极进取的,对社会现实强烈关切并有着历史使命感,以天下为己任,对同类和他人有不可自已的同情,“己所不欲,勿施于人”,“己欲立而立人,己欲达而达人”,“达则兼济天下,穷则独善其身”,不与浊俗同流合污,在生命与理想发生不可兼得的矛盾时,宁可杀身成仁,舍生取义,以成就自己的道德人生。

道家的人生观,以超越世俗人际关系网的羁绊,获得个人内心平静自在为价值取向,既反对心为形役,逐外物而不反,又不关心社会事业的奋斗成功,只要各自顺任自然之性而不相扰,必然自为而相因,成就和谐宁静的社会。

其人生态度消极自保,以免祸全生为最低目标,以各安其性命为最高目标。

或隐于山林,或陷于朗市,有明显的出世倾向。

儒家的出类拔萃者为志士仁人,道家的典型人物为清修隐者。

儒道两家的气象不同,大儒的气象似乎可以用“刚健中正”四字表示,就是道德高尚、彬彬有礼、从容中道、和而不同等,凡事皆能观研深究,以求合理、合时、合情,可谓为曲践乎仁义,足以代表儒家的态度。

道家高士的气象似可用“涵虚脱俗”四字表示,就是内敛不露、清静自守、质朴无华、超然自得等,富于诗意,富于山林隐逸和潇洒超脱的风味。

浙江省台州市2023-2024学年高二上学期期中数学试题含解析

浙江省台州市2023-2024学年高二上学期期中数学试题含解析

台州市2023学年第一学期期中考试试卷高二数学(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.直线210x y +-=的一个方向向量是()A.()2,1- B.()2,1 C.()1,2- D.()1,2【答案】A 【解析】【分析】根据方向向量的定义即可求解.【详解】210x y +-=的一个方向向量是()2,1-,故选:A2.在平面直角坐标系xOy 中,双曲线221x y -=的渐近线方程为()A.22y x =±B.y =C.y x =±D.24y x =±【答案】C 【解析】【分析】根据等轴双曲线即可求解.【详解】221x y -=的渐近线方程为y x =±,故选:C3.圆1C :22210240x y x y +-+-=与圆2C :222260x y x y +++-=的公共弦所在直线方程为()A.240x y ++=B.2490x y -+=C.240x y -+=D.240x y --=【答案】B 【解析】【分析】将两圆方程作差即可得相交弦方程.【详解】由221:(1)(5)50C x y -++=,即1(1,5)C -,半径为由222:(1)(1)8C x y +++=,即2(1,1)C --,半径为,所以12||C C <=<,即两圆相交,将两圆方程作差得2222210222604x y x y x y x y +-+----+=-,整理得2490x y -+=,所以公共弦所在直线方程为2490x y -+=.故选:B4.已知(2,0)(4,)A B a -,两点到直线:10l x y -+=的距离相等,则=a ()A.4 B.6C.2D.4或6【答案】D 【解析】【分析】直接根据点到直线距离公式进行求解即可.【详解】已知点()2,0A -,()4,B a ,直线:10l x y -+=,由于点A 与点B 到直线l 的距离相等,,解得:4a =或6a =.故选:D5.“直线10x ay +-=与直线10ax y -+=相互垂直”是“1a =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据两直线垂直,求出a 的值,则可判断充分性和必要性.【详解】因为直线10x ay +-=与直线10ax y -+=相互垂直,所以()()110a a ⨯+⨯-=,所以R a ∈.当1a =时,直线10x ay +-=与直线10ax y -+=相互垂直,而当直线10x ay +-=与直线10ax y -+=相互垂直时,1a =不一定成立,所以“直线10x ay +-=与直线10ax y -+=相互垂直”是“1a =”的必要而不充分条件,故选:B .6.已知抛物线2:4C y x =的焦点为F ,准线为l ,过C 上一点A 作l 的垂线,垂足为B .若3AF =,则AFB △的外接圆面积为().A.27π8 B.64π27C.9π4D.25π16【答案】A 【解析】【分析】根据抛物线的定义求得1x ,进而得到1y ,利用勾股定理求得BF ,进而得到sin BAF ∠,然后利用正弦定理中的外接圆直径公式,求得AFB △的外接圆半径为R ,然后计算其面积.【详解】设()11,A x y ,由抛物线的定义可知113x AF AB =+==,所以12x =,代入抛物线的方程中得到1y ==由几何关系可知BF ==1sin 3y BAF AF ∠==.设AFB △的外接圆半径为R ,由正弦定理可知2sin BFR BAF=∠,解得R =,所以AFB △的外接圆面积为227ππ8R =.故选:A7.有以下三条轨迹:①已知圆22:(1)9A x y ++=,圆22:(1)1B x y -+=,动圆P 与圆A 内切,与圆B 外切,动圆圆心P 的运动轨迹记为1C ;②已知点A ,B 分别是x ,y 轴上的动点,O 是坐标原点,满足||4AB =,AB ,AO 的中点分别为M ,N ,MN 的中点为P ,点P 的运动轨迹记为2C ;③已知A ,直线l :x =,点P 满足到点A 的距离与到直线l 的距离之比为2,点P 的运动轨迹记为3C .设曲线123,,C C C 的离心率分别是123,,e e e ,则()A.123e e e << B.132e e e << C.321e e e << D.231e e e <<【答案】A 【解析】【分析】由题意求出点P 的运动轨迹方程,进而求出曲线的离心率,比较它们大小即可得出答案.【详解】对于①,因为圆22:(1)9A x y ++=,圆22:(1)1B x y -+=.所以为()1,0A -,A 的半径13r =,()10B ,,B 的半径21r =,设动圆P 的半径为R ,则21PB r R R =+=+,13PA R r R =-=-,可得314PB PA R R +=-++=为定值,所以圆心P 在以A 、B 为焦点的椭圆上运动,由24a =,1c =得2a =,b =,所以椭圆方程为22143x y +=,即动圆P 圆心的轨迹1C 方程为22143x y+=,所以143122e ==,对于②,设(),P x y ,()(),0,0,A a B b ,因为||4AB =,所以2216a b +=,因为AB ,AO 的中点分别为M ,N ,所以,22a b M ⎛⎫⎪⎝⎭,,02a N ⎛⎫⎪⎝⎭,MN 的中点为P ,所以,24a b P ⎛⎫⎪⎝⎭,所以2244a x a x bb y y ⎧=⎪=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩,因为2216a b +=,所以2241616x y +=,故点P 的运动轨迹记为2C :()22104xy y +=≠,所以222e ==;对于③,设点()00,P x y2=,整理可得2200142x y -=.所以,点P 的运动轨迹3C的方程为:22142x y -=,所以3=22e =,所以123e e e <<.故选:A .8.已知1F 、2F 是椭圆()222210x y a b a b+=>>的两个焦点,P 是椭圆上一点,1260F PF ∠=,121||||(2)2PF PF λλ=≤≤,则椭圆的离心率的最大值为()A.3B.2C.D.2【答案】A 【解析】【分析】根据椭圆定义,结合余弦定理可得()22211e λλλ-+=+,进而利用换元法,结合二次函数的性质即可求解.【详解】设2||,|PF x =则12||PF PF x λλ==,122PF PF a +=,所以221ax x a x λλ+=⇒=+,由余弦定理可得()22222214212c x x x x x λλλλ=+-⋅⋅=-+,故()()22224411a c λλλ=-++,进而可得()22211e λλλ-+=+,令1t λ=+,则3,32t ⎡⎤∈⎢⎥⎣⎦,222233331t t e t t t-+==-+,令112,,33m m t ⎡⎤=∈⎢⎥⎣⎦,所以222331331e m m t t =-+=-+,对称轴为12m =,所以2331y m m =-+在11,32m ⎡⎤∈⎢⎥⎣⎦单调递减,在12,33⎡⎤⎢⎥⎣⎦单调递增,故当13m =和23m =时,213313y m m =-+=,故2331y m m =-+的最大值为13,所以()2max13e=,故e 的最大值为3,故选:A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知双曲线C :221x y m-=的焦点在x 轴上,且实轴长是虚轴长的3倍,则下列说法正确的是()A.双曲线C 的实轴长为6B.双曲线C 的虚轴长为2C.双曲线C 的焦距为22D.双曲线C 的离心率为223【答案】AB 【解析】【分析】由题设可得3a b =,结合已知方程得双曲线方程为2219x y -=,进而判断各项正误.【详解】由题设23263a b b a b =⨯=⇒=,而1b =,故3a =,则29m a ==,所以双曲线方程为2219x y -=,实轴长为26a =,虚轴长为22b =,焦距为210c =103,故A 、B 对,C 、D 错.故选:AB10.已知椭圆22:143x y M +=的左、右焦点分别是1F ,2F ,左、右顶点分别是1A ,2A ,点P 是椭圆上异于1A 和2A 的任意一点,则下列说法正确的是()A.124PF PF += B.直线1PA 与直线2PA 的斜率之积为34-C.存在点P 满足1290F PF ∠=D.若12F PF △的面积为1,则点P 的横坐标为263±【答案】ABD 【解析】【分析】根据椭圆的定义判断A ,计算出1PA 和2PA 的斜率计算B ,根据圆的直径所对圆周角为90 判断C ,由三角形面积公式判断D.【详解】A 选项中,因为椭圆方程为22143x y +=,则24a =,所以2a =,由椭圆的定义知,122PF PF a +=,所以124PF PF +=,A 正确;B 选项中,椭圆的左、右顶点分别是()12,0A -,()22,0A ,设()00,P x y ,因为点P 是椭圆上异于1A 和2A 的任意一点,所以将()00,P x y 代入到椭圆方程得:2200143x y +=,且1002PA y k x =+,2002PA y k x =-,所以1220002000224PA PA y y y k k x x x ⋅=⋅=+--,因为2200143x y +=,所以()222000331444x y x 骣琪=-=×-琪桫,所以122020344PA PA y k k x ⋅==--,B 正确;C 选项中,由椭圆方程知,24a =,23b =,21c =,若1290F PF ∠=,则点P 在以线段12F F 为直径的圆上,以线段12F F 为直径的圆的方程为221x y +=的圆在椭圆内,所以椭圆上不存在P 满足1290F PF ∠=,C 错误;D 选项中,121200112122F PF S F F y y =�创= ,所以01y =,所以代入到2200143x y +=知,03x =±,D 正确.故选:ABD11.设直线系M :22(1)2220a x ay a --++=,则下面四个命题正确的是()A.存在定点P 在M 中的任意一条直线上B.圆222:0.9N x y +=与M 中的所有直线都没有公共点C.对于任意整数()3n n ≥,存在正n 边形,其所有边均在M 中的直线上D.M 中的直线所能围成的正三角形面积都相等【答案】BC 【解析】【分析】由于点()0,0到直线系()22:12220M a x ay a --++=的距离均为2,则直线系M 表示与圆224x y +=的切线的集合,然后结合题意判断四个选项是否正确即可.【详解】由于点()0,0到直线系()22:12220M a x ay a --++=的距离为()222121a d a +===+,故直线系M 表示与圆224x y +=的切线的集合,对于A 选项,由于直线系表示圆224x y +=的切线,其中存在两条切线平行,所以M 中所有直线经过一个定点不可能,故A 选项错误;对于B 选项,由于直线系表示圆224x y +=的切线,而圆2220.9x y +=内含于圆224x y +=中,得M 中的所有直线均与圆()2220.9x y +=无公共点,故B 选项正确;对于C 选项,由于圆的所有外切正多边形的边都是圆的切线,所以对于任意正数()3n n ≥,存在正n 边形,其所有边均在M 中的直线上,故C 选项正确;对于D 选项,正ABC 的三边所在的直线均与圆相切,可以分为切点全在边上或者一个切点在边上,两个切点在边的延长线上两种情况,三角形面积不相等,故D 选项错误.故选:BC12.三支不同的曲线()|1|0,1,2,3i i y a x a i =⋅->=交抛物线24y x =于点,(1,2,3)i i A B i =,F 为抛物线的焦点,记i i A FB △的面积为i S ,下列说法正确的是()A.11(1,2,3)i ii FA FB +=为定值 B.112233////A B A B A B C.若1232S S S +=,则1232a a a += D.若2123S S S =,则2123a a a =【答案】AD【解析】【分析】设直线()1i y a x =-与抛物线24y x =的交于点,i i C B ,则i A 与i C 关于x 轴对称,设()()1122,,,i i A x y B x y -,则()11,i C x y ,联立()214i y a x y x⎧=-⎨=⎩,利用韦达定理求得1212,y y y y +,进而可求得1212,x x x x +,结合焦半径公式即可判断A ;判断i i A B k 是否为定值即可判断B ;求出i S ,即可判断CD.【详解】如图,设直线()1i y a x =-与抛物线24y x =的交于点,i i C B ,则i A 与i C 关于x 轴对称,设()()1122,,,i i A x y B x y -,则()11,i C x y ,联立()214i y a x y x⎧=-⎨=⎩,消x 得2440iy y a --=,则12124,4iy y y y a +==-,又()1i y a x =-,则()()()()212121212411,114i i i iy y a x a x y y a x x a +=-+-==--=-,则21212224,1i i a x x x x a ++==,对于A ,()1,0F ,2212212121221111124221241111i i ii i iFA FB x x a a x x a x x x x a ++++++++++=+==+++,故A 正确;对于B ,212122212121444i i A B y y y y k y y x x y y ++====---因为i a 不是定值,所以i i A B k 不是定值,故B 错误;对于C ,设直线()1i y a x =-的倾斜角为i θ,则tan i i a θ=,则22222sin cos 2tan 2sin 2cos sin 1tan 1i i i ii i i i i a a θθθθθθθ===+++,所以()()122211sin 211221i i i i i i a S A F B F x x a θ==++⋅+()2121222222414111211i i i i i i ia a a x x x x a a a a ⎛⎫+=+++⋅=++= ⎪++⎝⎭,又因1232S S S +=,所以123448a a a +=,所以()1232a a a +=,故C 错误;对于D ,因为2123S S S =,所以21234416a a a ⋅=,所以2123a a a =,故D 正确.故选:AD.【点睛】方法点睛:解决直线和抛物线的位置关系类问题时,一般方法是设出直线方程并联立抛物线方程,得到根与系数的关系式,要结合题中条件进行化简,但要注意的是计算量一般都较大而复杂,要十分细心.三、填空题:本题共4小题,每题5分,共20分.13.已知直线l的方程为4y =+,则倾斜角为_______,在y 轴上的截距为________.【答案】①.60 ②.4【解析】【分析】根据给定的直线方程,求出直线的斜率,进而求出倾斜角,再求出直线与y 轴交点的纵坐标即得.【详解】直线l的方程为4y =+的斜率k =α,则tan α=,于是60α= ;当0x =时,4y =,所以直线l 在y 轴上的截距为4.故答案为:60 ;414.准线方程为2x =-的抛物线的标准方程为__________.【答案】28y x=【解析】【分析】根据准线方程确定抛物线开口方向并求出p 值,进而求其标准方程【详解】已知抛物线的准线方程为2x =-,得该抛物线开口向右,且22p =,得4p =,故抛物线的方程为:28y x =.故答案为:28y x=15.过点()0,1的直线l 与椭圆22:14x C y +=交于,P Q 两点,则PQ 的最大值是_________.【解析】【分析】由题意可知()0,1即为椭圆与直线的交点,设()00,Q x y ,利用两点间的距离公式以及二次函数性即可求出PQ .【详解】根据题意可知,显然()0,1在椭圆上,不妨取0p x =,则()0,1P ,设()00,Q x y ,由,P Q 不重合可知01y ≠,且220014x y +=,即220044x y =-所以()222220002000014412325P y y Q x y y y y =++--=-+-=-+,根据二次函数性质可知,当031y =-时,2PQ 取最大值为163,即可得PQ .16.已知12F F ,分别为双曲线22221()00a x y a bb >-=>,的左右焦点,过2F 的直线与双曲线的右支交于A 、B 两点,记12AF F △的内切圆的半径为1r ,12BF F △的内切圆的半径为2r ,21216r r a ≤,则双曲线的离心率的取值范围为_________.【答案】(1,5]【解析】【分析】设圆1O 切1AF 、2AF 、12F F 分别于点M 、N 、G ,推导出12122O GF O F O △∽△,可得出()212r r c a =-,可得出关于c 、a 的不等式,即可求得该双曲线离心率的取值范围.【详解】设12AF F △、12BF F △的内切圆圆心分别为1O 、2O ,设圆1O 切1AF 、2AF 、12F F 分别于点M 、N 、G,过2F 的直线与双曲线的右支交于A 、B 两点,由切线长定理可得AM AN =,11F M F G =,22F G F N =,所以,()()()21212121AF F F AF AN F N FG F G AM F M +-=+++-+222222F N F G F G c a =+==-,则2F G c a =-,所以点G 的横坐标为()c c a a --=.故点1O 的横坐标也为a ,同理可知点2O 的横坐标为a ,故12O O x ⊥轴,故圆1O 和圆2O 均与x 轴相切于(),0G a ,圆1O 和圆2O 两圆外切.在122O O F △中,()122122*********O F O O F G O F G AF F BF F ∠=∠+∠=∠+∠= ,即122O O F G ⊥,12212GO F F O O ∴∠=∠,1212290O GF O F O ∠=∠= ,所以,12122O GF O F O △∽△,所以,1121212O GO F O F O O =,则212112O F O G O O =⋅,所以22222121112112F G O F O G O G O O O G O G O G =-=⋅-=⋅,即()212c a r r -=⋅,由题意可得:()2216-≤c a a ,可得4-≤c a a ,即5<≤a c a ,所以(]1,5=∈c e a.故答案为:(]1,5.四、解答题:本题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知直线l 经过点()1,0A -,(0,1)B .(1)求直线l 的一般式方程;(2)若点(1,2)C --,求点C 关于直线l 的对称点的坐标.【答案】(1)10x y -+=(2)()3,0-【解析】【分析】(1)先求出直线l 的斜率,从而利用点斜式求出直线l 的方程,化为一般式;(2)设出对称点(),D m n ,根据中点坐标和斜率关系得到方程组,求出30m n =-⎧⎨=⎩,得到对称点.【小问1详解】直线l 的斜率为()10101-=--,所以直线l 的方程为10y x -=-,即10x y -+=;【小问2详解】设点C 关于直线l 的对称点坐标为(),D m n ,显然CD 的中点坐标满足10x y -+=,即121022m n ---+=,又直线CD 与直线l 垂直,故211n m +=-+,联立121022m n ---+=与211n m +=-+,解得30m n =-⎧⎨=⎩,所以点C 关于直线l 的对称点的坐标为()3,0-.18.已知直线:4l y x =-,圆221:64120C x y x y +-++=,圆222:142140C x y x y +--+=.(1)求直线l 被圆1C 截得的弦AB 的长;(2)判断圆1C 和圆2C 的位置关系,并给出证明.【答案】(1)||AB =(2)内切,证明见详解【解析】【分析】(1)化简圆1C 为标准方程,求出1C ()3,2-到直线:4l y x =-的距离d ,则AB =,代入求解即可得出答案;(2)化简圆2C 为标准方程,求两圆的圆心距与21r r -,21r r +比较,即可得出答案.【小问1详解】因为圆221:64120C x y x y +-++=,所以221:(3)(21C x y -++=),则圆1C 的圆心为1C ()3,2-,11r =,则1C ()3,2-到直线:4l y x =-的距离为:2d ==,所以||AB ==【小问2详解】因为222:142140C x y x y +--+=,则222:(7)(136C x y -+-=),则圆2C 的圆心为2C ()7,1,26=r ,12215C C r r ====-,所以两圆内切.19.已知圆C 经过()2,0,(0,2),(2,4).(1)求圆C 的方程;(2)若直线l 与圆C 相切,且与x 轴正半轴交于点(,0)A a ,交y 轴正半轴于点(0,)B b .求(4)(4)a b -⋅-的值.【答案】(1)22(2)(2)4x y -+-=;(2)(4)(4)8a b --=.【解析】【分析】(1)设圆的标准方程,根据点在圆上列方程组求参数,即得圆的方程;(2)设直线:1x y l a b+=,根据直线与圆相切及点线距离公式列方程整理,即可求值.【小问1详解】令圆222:()()C x a y b r -+-=,则()()()()()()222222222200224a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩,可得2224a b r =⎧⎪=⎨⎪=⎩,所以22:(2)(2)4C x y -+-=.【小问2详解】由题意,设直线:1x y l a b+=,即0bx ay ab +-=,而(2,2)C 且半径为2,直线l 与圆C2=,则222(22)4()a b ab a b +-=+,所以222224()4()4()a b ab a b a b a b +-++=+,化简得(4)(4)8a b --=.20.已知动点M 到定点(1,0)的距离比到直线2x =-的距离小1.(1)求动点M 的轨迹E 的方程;(2)取E 上一点(1,)(0)P a a >,任作弦PA PB ,,满足1PA PB k k ⋅=,则直线AB 是否经过一个定点?若经过定点,求出该点坐标,否则说明理由.【答案】(1)24y x=(2)定点为(3,2)--【解析】【分析】(1)根据抛物线的定义求解动点M 的轨迹方程;(2)首先将P 点代入抛物线中求得参数a 的值,然后假设2111,4A y y ⎛⎫ ⎪⎝⎭,2221,4B y y ⎛⎫ ⎪⎝⎭,利用已知条件1PA PB k k ⋅=,得到12122()12y y y y ++=,最后代入直线AB 方程中即可得到恒过定点.【小问1详解】已知动点M 到定点()1,0的距离比到直线2x =-的距离小1,可得动点M 到定点()1,0的距离与到直线=1x -的距离相等,由抛物线的定义易知轨迹E 的方程为24y x =.【小问2详解】将()1,P a 代入24y x =中,可得:24a =,0a > ,故得:2a =,即得:()1,2P ;如图,设2111,4A y y ⎛⎫ ⎪⎝⎭,2221,4B y y ⎛⎫ ⎪⎝⎭,由于122212*********PA PB y y k k y y --⋅=⋅=--,整理可得:()1212212y y y y ++=.2122122141144AB y y k y y y y -==+-,则根据点斜式方程可得:2111241:4AB l y y x y y y ⎛⎫-=- ⎪+⎝⎭,整理得:1212124:AB y y l y x y y y y =+++由直线AB 的方程()()1212121212121212244432y y y y y x x x y y y y y y y y y y -+=+=+=+-+++++,可知直线AB 恒过定点()3,2--21.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,椭圆上的点到左焦点1F 的距离的最大值为23+.(1)求椭圆C 的方程;(2)求椭圆C 的外切矩形(即矩形的四边所在直线均与椭圆相切)ABCD 的面积S 的取值范围.【答案】(1)2214x y +=(2)[]8,10【解析】【分析】(1)根据题意求出a b c ,,,进而可求出结果;(2)当矩形ABCD 的一组对边斜率不存在时,可求出矩形ABCD 的面积;当矩形ABCD 四边斜率都存在时,不防设AB CD 、所在直线斜率为k ,则BC AD 、斜率为1k -,设出直线AB 的方程为y kx m =+,联立直线与椭圆方程,结合韦达定理以及弦长公式等,即可求解.【小问1详解】因为2c e a ==,2c a +=+2==c a ,所以2221b a c =-=,所以椭圆方程为2214x y +=;【小问2详解】当矩形ABCD 一组对边斜率不存在时,矩形ABCD 的边长分别为4和2,则矩形ABCD 的面积为8,当矩形ABCD 的四边斜率都存在时,不妨设AB CD 、的斜率为k ,则AD BC 、的斜率为1k-,设直线AB 方程为y kx m =+,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,得222(41)84(1)0k x kmx m +++-=,由10∆=,可得2241m k =+,显然直线CD 的方程为y kx m =-,则直线AB CD 、之间的距离为1d ==,同理可得:AD BC 、之间的距离为2d =所以矩形ABCD的面积为1210S d d ==,取等条件:1k =±,当AB 斜率存在时,8S >.综上所述,面积S 的取值范围是[]8,10.。

2023-2024学年人大附中高二数学上学期期中考试卷附答案解析

2023-2024学年人大附中高二数学上学期期中考试卷附答案解析

2023-2024学年人大附中高二数学上学期期中考试卷(试卷满分150分,考试时间120分钟)2023.11第I 卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.已知平面//α平面β,直线a α⊂,直线b β⊂,则a 与b 的位置关系是()A .平行B .平行或异面C .异面D .异面或相交2.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是().A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-3.一个水平放置的平面图形OAB 用斜二测画法作出的直观图是如图所示的等腰直角O A B '''△,其中A B ''=,则平面图形OAB 的面积为()A .B .C .D .4.已知1cos ,3a b 〈〉=-,则下列说法错误的是()A .若,a b分别是直线12,l l 的方向向量,则12,l l所成角余弦值是13B .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角正弦值是13C .若,a b分别是平面ABC 、平面BCD 的法向量,则二面角A BC D --的余弦值是13D .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角余弦值是223.5.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切,过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是A .B .C .D .6.如图,平行六面体1111ABCD A B C D -的底面ABCD 是矩形,其中2AB =,4=AD ,13AA =,且1160A AD A AB ∠=∠=︒,则线段1AC 的长为()A .9B C D .7.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A .22B .40C .D 8.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为A .41πB .42πC .43πD .44π9.如图,1111ABCD A B C D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,//BC QH ,则正方体中过AD 且与平面PHQ 平行的截面面积是A ..C ..10.《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意思是:如图,沿正方体对角面11A B CD 截正方体可得两个壍堵,再沿平面11B C D 截壍堵可得一个阳马(四棱锥1111D A B C D -),一个鳖臑(三个棱锥11D B C C -),若P 为线段CD 上一动点,平面α过点P ,CD ⊥平面α,设正方体棱长为1,PD x =,α与图中鳖臑截面面积为S ,则点P 从点D 移动到点C 的过程中,S 关于x 的函数图象大致是()A .B .C .D .二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11.已知正方形ABCD 的边长为2,则AB AC =+ .12.已知圆锥的轴截面是边长为2的等边三角形,则此圆锥的表面积为.13.平面与平面垂直的判定定理符号语言为:.14.在移动通信中,总是有很多用户希望能够同享一个发射媒介,进行无线通信,这种通信方式称为多址通信.多址通信的理论基础是:若用户之间的信号可以做到正交,这些用户就可以同享一个发射媒介.在n 维空间中,正交的定义是两个n 维向量()()1212,,,,,,,n n a x x x b y y y =⋯=⋯满足11220n n x y x y x y ++⋯+=.已知某通信方式中用户的信号是4维非平向量,有四个用户同享一个发射媒介,已知前三个用户的信号向量为22(0,0,0,1),(0,0,1,0),,,0,022⎫⎪⎪⎝⎭.写出一个满足条件的第四个用户的信号向量.15.一个三棱锥的三个侧面中有一个是边长为2的正三角形,另两个是等腰直角三角形,则该三棱锥的体积可能为.三、解答题(本大题共3小题,共35分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.已知空间直角坐标系中四个点的坐标分别为:(1,1,1),(1,2,3),(4,5,6),(7,8,)A B C D x .(1)求||AC ;(2)若AB CD ⊥ ,求x 的值;(3)若D 点在平面ABC 上,直接写出x 的值.17.如图所示,在四棱锥P ABCD -中,BC 平面PAD ,12BC AD =,E 是PD 的中点.(1)求证:BC AD ∥;(2)求证:CE 平面PAB ;(3)若M 是线段CE 上一动点,则线段AD 上是否存在点N ,使MN 平面PAB ?说明理由.18.如图所标,已知四棱锥E ABCD -中,ABCD 是直角梯形,90ABC BAD ∠=∠=︒,平面EAB ⊥平面ABCD ,63AB BC BE AD AE =====,,(1)证明:BE ⊥平面ABCD ;(2)求B 到平面ADE 的距离;(3)求二面角A DE C --的余弦值.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.关于空间中的角,下列说法中正确的个数是()①空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦②空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦③空间中二面角的平面角的取值范围是π0,2⎡⎤⎢⎣⎦④空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦A .1B .2C .3D .420..如图,在正方形ABCD 中,点E 、F 分别为边BC ,AD 的中点.将ABF △沿BF 所在直线进行翻折,将CDE 沿DE 所在直线进行翻折,在翻折的过程中,下列说法正确的是()A .点A 与点C 在某一位置可能重合B .点A 与点C 3ABC .直线AB 与直线DE 可能垂直D .直线AF 与直线CE 可能垂直21.在正方体ABCD A B C D -''''中,P 为棱AA '上一动点,Q 为底面ABCD 上一动点,M 是PQ 的中点,若点,P Q 都运动时,点M 构成的点集是一个空间几何体,则这个几何体是()A .棱柱B .棱台C .棱锥D .球的一部分22.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11A C 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A .存在点Q ,使得//PQ BDB .存在点Q ,使得PQ ⊥平面11AB C DC .三棱锥Q APD -的体积是定值D .存在点Q ,使得PQ 与AD 所成的角为π6二、填空题(共3小题,每小题5分,共15分.把答案填在答题纸上的相应位置.)23.如图,在边长为2正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在正方体表面上移动,且满足11B P D E ⊥,则点1B 和满足条件的所有点P 构成的图形的周长是.24.已知正三棱柱111ABC A B C -的所有侧棱长及底面边长都为2,D 是1CC 的中点,则直线AD 与平面1A BD所成角的正弦值为.25.点O 是正四面体1234A A A A 的中心,()11,2,3,4i OA i ==.若11223344OP OA OA OA OA λλλλ=+++ ,其中()011,2,3,4i i λ≤≤=,则动点P 扫过的区域的体积为.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤.请将答案写在答题纸上的相应位置.)26.已知自然数集()*{1,2,3,,}N A n n =∈ ,非空集合{}()*12,,,N m E e e e A m =⊆∈ .若集合E 满足:对任意a A ∈,存在,(1)i j e e E i j m ∈≤≤≤,使得,,{1,0,1}i j a xe ye x y =+∈-,称集合E 为集合A 的一组m 元基底.(1)分别判断下列集合E 是否为集合A 的一组二元基底,并说明理由:①{1,2},{1,2,3,4,5}E A ==;②{2,3},{1,2,3,4,5,6}E A ==.(2)若集合E 是集合A 的一组m 元基底,证明:(1)n m m ≤+;(3)若集合E 为集合{1,2,3,,19}A = 的一组m 元基底,求m 的最小值.1.B【分析】利用直线与平面的位置关系判断即可.【详解】因为平面//α平面β,直线a α⊂,直线b β⊂,所以a 与b 没有交点,即a 与b 可能平行,也可能异面.故选:B.2.B【分析】根据空间向量的坐标表示可得.【详解】由空间向量的坐标表示可知,AB OB OA =-,所以()()()2,5,33,1,05,4,3OB AB OA =+=-+-=-,所以点B 的坐标为()5,4,3-.故选:B 3.B【分析】先求得原图形三角形的底与高的值,进而求得原图形的面积【详解】因为在直观图中,O A A B ''''=O B ''==,,高为2⨯=故原图形的面积为12=.故选:B4.C【分析】根据向量法逐一判断即可.【详解】对于A :因为直线与直线所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以12,l l 所成角余弦值为1cos ,3a b 〈〉= ,故A 正确;对于B :因为直线与平面所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以l 与α所成角正弦值3s n 1cos ,i a b θ〈=〉= ,l 与α所成223=,故BD 正确;对于C :因为二面角的平面角所成角范围为[)0,p,所以二面角A BC D --的余弦值可能为负值,故C 错误;故选:C 5.B【分析】设三棱锥S ABC -的各棱长均相等,由,SC SH 确定的平面,得到截面SCD ∆,再由正四面体的性质和图象的对称性加以分析,同时对照选项,即可求解.【详解】如图所示,设三棱锥S ABC -的各棱长均相等,球O 是它的内切球,设H 为底面ABC ∆的中心,根据对称性可得内切球的球心O 在三棱锥的高SH 上,由,SC SH 确定的平面交AB 于D ,连接,AD CD ,得到截面SCD ∆,截面SCD 就是经过侧棱SC 与AB 中点的截面,平面SCD 与内切球相交,截得的球大圆如图所示,因为SCD ∆中,圆O 分别与,AD CE 相切于点,E H ,且SD CD =,圆O 与SC 相离,所对照各个选项,可得只有B 项的截面符合题意,故选B.【点睛】本题主要考查了正四面体的内切球的截面问题,其中解答中正确理解组合体的结构特征是解答的关键,着重考查了正四面体的性质,球的性质的应用,属于中档试题.6.C【分析】由11AC AC CC =+ ,两边平方,利用勾股定理以及数量积的定义求出2211,,2AC AC CC CC ⋅ 的值,进而可得答案【详解】由11AC AC CC =+ ,2222211111()2AC AC AC CC AC AC CC CC ==+=+⋅+ .因为底面ABCD 是矩形,2AB =,4=AD ,13AA =,所以2241620=AC AC =+= ,219CC = ,因为1160A AB A AD ∠=∠=,所以1123cos 603,43cos 606AB CC BC CC ⋅=⨯⨯=⋅=⨯⨯=所以()1111822()2()=23+6=1AC CC AB BC CC AB CC BC CC ⋅=+⋅=⋅+⋅,2112018947,47AC AC =++==故选:C.7.C【分析】过A 作AE BD 且AE BD =,连接,CE DE ,易得60CAE ︒∠=,通过线面垂直的判定定理可得ED ⊥平面AEC ,继而得到ED EC ⊥,由勾股定理即可求出答案.【详解】解:过A 作AE BD 且AE BD =,连接,CE DE ,则四边形ABDE 是平行四边形,因为BD AB ⊥,所以平行四边形ABDE 是矩形,因为BD l ⊥,即AE l ⊥,而AC l ⊥,则CAE ∠是二面角l αβ--的平面角,即60CAE ︒∠=,因为3BD AE AC ===,即ACE △为正三角形,所以3CE =,因为,ED AE l AC ⊥⊥,即ED AC ⊥,,,AE AC A AE AC ⋂=⊂平面AEC ,所以ED ⊥平面AEC ,因为EC ⊂平面AEC ,所以ED EC ⊥,所以在Rt EDC中,ED =AB ED ==故选:C8.A【解析】由于图形的对称性,只要求出一组正四棱柱的体对角线,即是外接圆的直径.【详解】由题意,该球形容器的半径的最小值为并在一起的两个长方体体对角线的一半,即为14122=,∴该球形容器体积的最小值为:42π⨯=41π.故选:A.【点睛】本题考查了几何体的外接球问题,考查了空间想象能力,考查了转化思想,该类问题的一个主要方法是通过空间想象,把实际问题抽象成空间几何问题,属于中档题.9.C【分析】首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.【详解】设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O ,则O 是底面QRH的中心.设OR HQ G ⋂=,则EAB PGO ∠=∠,又因为4323RG RO OG ===,3PO ==,所以22sin sin 3PO EAB PGO PG ∠=∠==,所以43EA EA =⇒=,所以四边形AEFD的面积4S =⨯=选C.【点睛】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.属中档题.10.B【分析】分析得出11PMN CB C △△,可得出1PNxCC =,求出PMN S △关于x 的函数关系式,由此可得出合适的选项.【详解】设M 、N 分别为截面与1DB 、1DC 的交点,DP x =,01x ≤≤,CD ⊥ 平面PMN ,CD ⊥平面11B CC ,所以,平面//PMN 平面11B CC ,因为平面1DCC 平面PMN PN =,平面1DCC 平面111B CC CC =,所以,1//PN CC ,同理可得11//MN B C ,1//PM B C ,所以,111111PN DN MN DM PM DP x CC DC B C DB B C DC ======,所以,11PMN CB C △△,易知111111122CB C S B C CC =⋅=△,因此,112212PMN CB C S x S x ==△△.故选:B.【点睛】关键点点睛:本题考查函数图象的辨别,解题的关键就是充分分析图形的几何特征,以此求出函数解析式,结合解析式进行判断.11.【分析】根据向量数量积以及模长公式即可求解.【详解】由题意可知π2,,4AB AC AB AC ===,24,2AB AC ∴=⋅=⨯故AB AC +===故答案为:12.3π【分析】由轴截面可确定圆锥底面半径和母线长,代入圆锥表面积公式即可.【详解】 圆锥轴截面是边长为2的等边三角形,∴圆锥底面半径1r =,圆锥母线长2l =,∴圆锥的表面积2ππ2ππ3πS rl r =+=+=.故答案为:3π.13.,a a αβαβ⊂⊥⇒⊥(答案不唯一)【分析】根据“平面与平面垂直的判定定理”写出正确答案.【详解】平面与平面垂直的判定定理:,a a αβαβ⊂⊥⇒⊥.故答案为:,a a αβαβ⊂⊥⇒⊥(答案不唯一)14.()1,1,0,0(答案不唯一)【分析】根据“正交”的定义列方程,从而求得正确答案.【详解】设满足条件的第四个用户的信号向量是(),,,x y z u ,则()()()(0,0,0,1),,,0(0,0,1,0),,,0,,,,022x y z u x y z u x y z u ⎧⎪⋅=⎪⎪⋅=⎨⎪⎛⎫⎪-⋅=⎪ ⎪⎪⎝⎭⎩,则00022u z x y ⎧⎪=⎪⎪=⎨⎪-=⎪⎩,则0,u z x y ===,故一个满足条件的信号向量是()1,1,0,0.故答案为:()1,1,0,0(答案不唯一)15.(或3或,答案不唯一)【分析】根据已知条件进行分类讨论,结合三棱锥的体积公式求得正确答案.【详解】(1)BCD △是等边三角形,且,AB AC AD AC ⊥⊥,如下图所示,由于,,AB AD A AB AD =⊂ 平面ABD ,所以AC ⊥平面ABD,2,BC BD CD AB AD AC ======222,AB AD BD AB AD +=⊥,则1132A BCD V -=⨯.(2)BCD △是等边三角形,且,AB BD AB BC ⊥⊥,如下图所示,由于,,BD BC B BD BC ⋂=⊂平面BCD ,所以AB ⊥平面BCD ,2BC BD CD AB ====,所以112322sin 602323A BCD V -=⨯⨯⨯⨯︒⨯=.(3)BCD △是等边三角形,且,AB BD CD AC ⊥⊥,如下图所示,取AD 的中点O ,连接,OB OC ,则2BC BD CD AB ====,22AD =122OB OC AD ===222,OB OC BC OB OC +=⊥,,,,,AD OB AD OC OB OC O OB OC ⊥⊥⋂=⊂平面OBC ,所以AD ⊥平面OBC .所以112222232A BCD V -⎛=⨯⨯ ⎝.故答案为:23(或23或23,答案不唯一).16.(1)92x =(3)9x =【分析】(1)根据空间向量的模求得正确答案.(2)根据向量垂直列方程,化简求得x 的值.(3)根据向量共面列方程,从而求得x 的值.【详解】(1)()3,4,5,AC AC ===(2)()()0,1,2,3,3,6AB CD x ==-,由于AB CD ⊥ ,所以3212290AB CD x x ⋅=+-=-= ,解得92x =.(3)()()0,1,2,3,4,5AB AC ==,设AD aAB bAC =+ ,即()()()()6,7,10,,23,4,53,4,25x a a b b b b a b a b -=+=++,所以6374125ba b x a b =⎧⎪=+⎨⎪-=+⎩,解得1,2,9a b x =-==.17.(1)证明见解析(2)证明见解析(3)存在,证明见解析【分析】(1)根据线面平行的性质定理即可证明;(2)由中位线、线面平行的性质可得四边形BCEF 为平行四边形,再根据线面平行的判定即可证明;(3)根据线面、面面平行的性质定理和判断定理即可判断存在性.【详解】(1)在四棱锥P ABCD -中,BC 平面PAD ,BC ⊂平面ABCD ,AD ⊂平面PAD ,平面ABCD ⋂平面PAD AD =,所以BC AD ∥;(2)如下图,取F 为AP 中点,连接,EF BF ,由E 是PD 的中点,所以EF AD ∥且12EF AD =,由(1)知BC AD ∥,又12BC AD =,所以EF BC ∥且EF BC =,所以四边形BCEF 为平行四边形,故CE BF ∥,而CE ⊂平面PAB ,BF ⊄平面PAB ,则CE 平面PAB .(3)取AD 中点N ,连接CN ,EN ,因为E ,N 分别为PD ,AD 的中点,所以EN PA ∥,因为EN ⊄平面PAB ,PA ⊂平面PAB ,所以EN 平面PAB ,线段AD 存在点N ,使得MN 平面PAB ,理由如下:由(2)知:CE 平面PAB ,又CE EN E = ,CE ⊂平面CEN ,EN ⊂平面CEN ,所以平面CEN 平面PAB ,又M 是CE 上的动点,MN ⊂平面CEN ,所以MN 平面PAB ,所以线段AD 存在点N ,使得MN 平面PAB .18.(1)证明详见解析(2)3222-【分析】(1)通过证明BE AB ⊥,结合面面垂直的性质定理证得BE ⊥平面ABCD.(2)建立空间直角坐标系,利用向量法求得B 到平面ADE 的距离.(3)利用向量法求得二面角A DE C --的余弦值.【详解】(1)由于222AB BE AE +=,所以BE AB ⊥,由于平面EAB ⊥平面ABCD ,且交线为AB ,BE ⊂平面EAB ,所以BE ⊥平面ABCD .(2)由于BC ⊂平面ABCD ,所以BE BC ⊥,所以,,BC AB BE 两两相互垂直,由此建立如图所示空间直角坐标系,则()()()()6,0,0,0,6,0,0,0,6,3,6,0C A E D,故()()3,0,0,0,6,6AD AE==-,设平面ADE的法向量为(),,m x y z=,则30660m AD xm AE y z⎧⋅==⎪⎨⋅=-+=⎪⎩,故可设()0,1,1m=,又()0,6,0BA=,所以B到平面ADE的距离为m BAm⋅==.(3)由(2)得平面ADE的法向量为()0,1,1 m=.而()()3,6,0,3,6,6CD ED=-=-,设平面CDE的法向量为(),,n a b c=,则3603660n CD a bn ED a b c⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,故可设()2,1,2n=,由图可知二面角A DE C--为钝角,设为θ,则cos2m nm nθ⋅=-==-⋅.19.C【分析】由空间中直线与直线、直线与平面、平面与平面所成角范围判断即可.【详解】对于①:由空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知①正确;对于②:由空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦,可知②正确;对于③:空间中二面角的平面角的取值范围是[]0,π,可知③错误;对于④:空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知④正确;故选:C20.D【分析】将ABF△沿BF所在直线进行翻折,将CDE沿DE所在直线进行翻折,在翻折过程中A,C的运动轨迹分别是圆,AB,AF是以BF为旋转轴的圆锥侧面;CE,CD是以DE为旋转轴的圆锥侧面;【详解】由题意,在翻折过程中A,C的运动轨迹分别是两个平行的圆,所以点A与点C不可能重合,故选项A错误;点A与点C的最大距离为正方形的对角线AC=,故选项B错误;由题易知直线BF与直线DE平行,所以直线AB与直线DE所成角和直线AB与直线BF所成角相等,显然直线AB与直线BF不垂直,故选项C错误;由题在正方形中直线AF 与直线CE 平行,设翻折后点A 为1A ,由题易知初始位置ππ,42AFB ⎛⎫∠∈ ⎪⎝⎭,当ABF △沿BF 所在直线翻折到与平面BEDF 重合时,1π2,π2A FA AFB ⎛⎫∠=∠∈ ⎪⎝⎭所以在此连续变化过程中必存在1π2A FA ∠=,即1A F AF ⊥,所以1A F CE ⊥,所以翻折过程中,直线AF 与直线CE 可能垂直,故选项D 正确.故选:D.21.A【分析】先讨论P 点与A 点重合,M 点的轨迹,再分析把P 点从A 点向上沿1AA 移动,在移动的过程中M 点的轨迹,从而可得出结论.【详解】解:若P 点与A 点重合,设,AB AD 的中点分别为,E F ,移动Q 点,则此时M 点的轨迹为以,AE AF 邻边的正方形,再将P 点从A 点向上沿1AA 移动,在移动的过程中可得M 点的轨迹是将以,AE AF 邻边的正方形沿1AA 向上移动,最后当点P 与1A 重合时,得到最后一个正方形,故所得的几何体为棱柱.故选:A.22.B【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D ,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD 不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =--,若它们夹角为θ,则2222(1)|1|cos 2(1)1(2)233a a a a θ=⨯-++-⋅-+令1[1,1]t a =-∈-,则cos θ==,当(0,1]t ∈,则[)11,t ∈+∞,cos θ∈;当0=t 则cos 0θ=;当[1,0)t ∈-,则(]1,1t ∞∈--,2cos (0,]2θ∈;所以πcos 6=不在上述范围内,错.故选:B23.【分析】以点D 为坐标原点,建立如下图所示的空间直角坐标系,由坐标法证明11,D E MN D E AM ⊥⊥,从而得出满足条件的所有点P 构成的图形,进而得出周长.【详解】以点D 为坐标原点,建立如下图所示的空间直角坐标系,如图,取1,CC CD 的中点分别为,N M ,连接11,,,AM MN B N AB ,由于1AB MN ∥,所以1,,,A B N M 四点共面,且四边形1AB NM 为梯形,()()()()()12,0,0,0,1,0,0,2,1,0,0,2,1,2,0A M N D E ,()()()12,1,0,0,1,1,1,2,2AM MN D E =-==- ,因为11220,220AM D E MN D E ⋅=-+=⋅=-= 所以11,D E MN D E AM ⊥⊥,所以由线面垂直的判定可知1D E ⊥平面1AB NM ,即满足条件的所有点P 构成的图形为1AB NM ,由于11NM AB AM B N ===,则满足条件的所有点P构成的图形的周长为.故答案为:3225+24.10【分析】以A 为原点,建立空间直角坐标系,求得向量(0,2,1)AD = 和平面1A BD 的一个法向量为(3,1,2)n = ,结合向量的夹角公式,即可求解.【详解】如图所示,以A 为原点,过点A 垂直于AC 的直线为x 轴,以AC 和1AA 所在的直线分别为y 轴和z 轴,建立空间直角坐标系,因为正四棱柱111ABC A B C -的所有侧棱长及底面边长都为2,可得1(0,0,0),(0,0,2),(3,1,0),(0,2,1)A A B D ,则11(0,2,1),(3,1,2),(0,2,1)AD A B A D ==-=- ,设平面1A BD 的法向量为(,,)n x y z = ,则1132020n A B y z n A D y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令1y =,可得3,2x z ==,所以(3,1,2)n =,设直线AD 与平面1A BD 所成的角为θ,可得410sin cos ,5522AD n AD n AD n θ⋅====⨯ ,所以直线AD 与平面1A BD 所成的角的正弦值为105.故答案为:105.25.16391639【分析】将正四面体1234A A A A 放入正方体中,得到正方体的体对角线是12OA ,从而得到该正方体的边长,再根据条件得到P 扫过的区域的体积即可.【详解】图,作出正四面体1234A A A A ,将正四面体1234A A A A 放入正方体中,如下图所示:则O 是该正方体的中心,设该正方体的棱长为a ,则22212a a a ++=⨯,解得:233a =,又11223344OP OA OA OA OA λλλλ=+++ ,()011,2,3,4i i λ≤≤=,则知P 扫过的区域的边界是以该正方体的六个面作延伸的六个全等的正方体的中心为顶点的正方体,其中两个面如下图所示:可得动点P 扫过的区域的体积为该正方体体积的2倍,即动点P 扫过的区域的体积3233239V ⎛=⨯= ⎝⎭.故答案为:163.26.(1)①不是;②是(2)证明见解析(3)5【分析】(1)根据题干信息,利用二元基底的定义加以验证即可;(2)首先设12m e e e <<⋅⋅⋅<,计算出i j a xe ye =+的各种情况下的正整数个数并求出它们的和,结合题意可得:22C C m m m m n +++≥,即可得证:()1n m m ≤+;(3)由(2)可知()119m m +≥,所以4m ≥,并且得到结论“基底中元素表示出的数最多重复一个”,再讨论当4m =时,集合E 的所有情况均不可能是A 的4元基底,而当5m =时,A 的一个基底{}1,3,5,9,16E =,由此可得m 的最小值为5.【详解】(1){}1,2E =不是{}1,2,3,4,5A =的一个二元基底理由是{}()412,1,0,1x y x y ≠⋅+⋅∈-{}2,3E =是{}1,2,3,4,5,6A =的一个二元基底理由是11213=-⨯+⨯;21203=⨯+⨯;30213=⨯+⨯;41212=⨯+⨯,51213=⨯+⨯,61313=⨯+⨯.(2)不妨设12m e e e <<⋅⋅⋅<,则形如()101i j e e i j m ⋅+⋅≤<≤的正整数共有m 个;形如()111i i e e i m ⋅+⋅≤≤的正整数共有m 个;形如()111i j e e i j m ⋅+⋅≤<≤的正整数至多有2C m 个;形如()()111i j e e i j m -+⋅≤<≤的正整数至多有2C m 个;又集合{}1,2,3,,A n =⋅⋅⋅含有n 个不同的正整数,E 为集合A 的一个m 元基底.故22C C m m m m n +++≥,即()1m m n +≥.(3)由(2)可知()119m m +≥,所以4m ≥.当4m =时,()1191m m +-=,即用基底中元素表示出的数最多重复一个.假设{}1234,,,E e e e e =为{}1,2,3,,19A =⋅⋅⋅的一个4元基底,不妨设1234e e e e <<<,则410e ≥.当410e =时,有39e =,这时28e =或27e =.如果28e =,则1109=-,198=-,1899=+,18108=+,重复元素超出一个,不符合条件;如果27e =,则16e =或15e =,易知{}6,7,9,10E =和{}5,7,9,10E =都不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当411e =时,有38e =,这时27e =,16e =,易知{}6,7,8,11E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当412e =时,有37e =,这时26e =,15e =,易知{}5,6,7,12E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当413e =时,有36e =,这时25e =,14e =,易知{}4,5,6,13E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当414e =时,有35e =,这时24e =,13e =,易知{}3,4,5,14E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当415e =时,有34e =,这时23e =,12=e ,易知{}2,3,4,15E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当416e =时,有33e =,这时22e =,11e =,易知{}1,2,3,16E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当417e ≥时,E 均不可能是A 的4元基底.当5m =时,易验证A 的一个基底{}1,3,5,9,16E =,理由:11101=⨯+⨯;21111=⨯+⨯;31301=⨯+⨯;41113=⨯+⨯;51501=⨯+⨯;61313=⨯+⨯;719116=-⨯+⨯;81315=⨯+⨯;91901=⨯+⨯;101515=⨯+⨯;1115116=-⨯+⨯;121319=⨯+⨯;1313116=-⨯+⨯;141519=⨯+⨯;1511116=-⨯+⨯;1611601=⨯+⨯;1711611=⨯+⨯;181919=⨯+⨯;1911613=⨯+⨯.综上所述,m 的最小值为5.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,照章办事,逐条分析、验证、运算,使问题得以解决.。

天津市第一中学2024_2025学年高二英语上学期期中试题

天津市第一中学2024_2025学年高二英语上学期期中试题

天津市第一中学2024-2025学年高二英语上学期期中试题本试卷分为第I 卷(选择题)、第 II 卷(非选择题)两部分,共 100 分,考试用时90 分钟。

第I 卷 1 至 5 页,第 II 卷 6 页。

考生务必将答案涂写规定的位置上,答在试卷上的无效。

祝各位考生考试顺当!I 卷 (满分 70 分)I.听力理解(共 20 小题,每小题 0.5 分,满分 10 分)第一节听下面 5 段对话。

每段对话后有一个小题,从题中所给的 A,B,C 三个选项中选出最佳选项,并标在试卷的相应位置。

每段对话仅读一遍。

1.What will the man go to London to do?A. Attend a meeting.B. Go sightseeing.C. Visit someone.2.What’s wrong with the man’s alarm clock?A. It doesn’t work well.B. It tells wrong time.C. It rings all the time.3.What’s the man’s nationality?A. Canadian.B. British.C. American.4.What’s the weather going to be like tomorrow?A. Cloudy.B. Rainy.C. Sunny.5.What is the man going to do first after school today?A. Play basketball.B. Study at the library.C. Go home.其次节听下面 5 段对话或独白。

每段对话或独白后有几个小题,从题中所给的 A,B,C 三个选项中选出最佳选项,并标在试卷的相应位置。

每段对话或独白读两遍。

听第 6 段材料,回答第 6~7 题。

6.What can we know about Peter?A.He has just got married.B.He met his girlfriend unexpectedly.C.He has returned home from abroad.7.What will the man go to Pairs for?A. Business.B. Sightseeing.C. Honeymoon. 听第 7 段材料,回答第 8~10 题。

辽宁省沈阳市2023-2024学年高二上学期11月期中数学试题含解析

辽宁省沈阳市2023-2024学年高二上学期11月期中数学试题含解析

辽宁省2023-2024学年度上学期期中阶段测试高二年级数学试卷(答案在最后)考试时间:120分钟试题满分:150分命题人:高一数学组校对人:高一数学组一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为()A.()1,2,1-- B.()1,2,1- C.()1,2,1--- D.()1,2,1--2.已知M 是椭圆22:159x y C +=上的一点,则点M 到两焦点的距离之和是()A.6B.9C.10D.183.如图,方程10x y +-=表示的曲线是().A. B.C. D.4.,,PA PB PC 是从点P 出发的三条射线,每两条射线的夹角均为60︒,那么直线PC 与平面PAB 所成角的余弦值是()A.3 B.3C.2D.125.设直线l 的方程为sin 20θ--=x y ,则直线l 的倾斜角α的范围是()A.[]0,π B.ππ,42⎡⎤⎢⎥⎣⎦C.π3π,44⎡⎤⎢⎥⎣⎦D.πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦6.已知直线l 经过()()1,1,1,0,2,0A B 两点,则点()002P ,,到l 的距离是()A. B. C.3D.37.圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为()A.x 2+y 2-x +7y -32=0B.x 2+y 2-x +7y -16=0C.x 2+y 2-4x +4y +9=0D.x 2+y 2-4x +4y -8=08.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A.,βγαγ<< B.,βαβγ<<C.,βαγα<< D.,αβγβ<<二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间向量,,a b c不共面,则下列各选项中的三个向量共面的有()A.,,a b b c c a--- B.,,a b b c c a+++ C.,,a b a c b c ++-D.2,32,37-+-++-+ a b c a b c a b10.下列命题正确的是()A.经过定点()0,2A 的直线都可以用方程2y kx =+表示B.经过两个不同的点()()111222,,,P x y P x y 的直线都可以用方程()()()()121121y y x x x x y y --=--表示C.过点()2,1且在两坐标轴上截距相等的直线有2条D.方程222210x y mx y +--+=不一定表示圆11.如图,在棱长为1的正方体1111ABCD A B C D -中()A.AC 与1BD 的夹角为60︒B.二面角1D AC D --2C.1AB 与平面1ACD 2D.点D 到平面1ACD 的距离为3312.已知点3,12D ⎛⎫⎪⎝⎭,直线:l 2220kx y k --+=,圆:C 2221x y x +-=,过点(0,2)P -分别作圆C 的两条切线PA ,PB (A ,B 为切点),H 在ABC 的外接圆上,则()A.直线AB 的方程是210x y +-=B.l 被圆C 截得的3C.四边形PACB 6D.DH 的取值范围为535,22⎣⎦三、填空题:本大题共4小题,每小题5分,共20分13.已知02,01<<<<x y 22222222(1)(2)(2)(1)+++-+-++-+-x y x y x y x y 的最小值是________.14.已知A α∈,直线AB 与平面α所成的角为30︒,直线AC 与平面α所成的角为45︒,6,2AB AC ==,且斜线段,AB AC 在平面α内的射影相互垂直,则BC =________.15.长方体1111ABCD A B C D -中,1AB =,1AD =,12AA =,P 是棱1DD 上的动点,则1PA C ∆的面积最小值是________.16.已知ABC 的顶点()6,0A -,()0,6B ,其外心(外接圆圆心)、重心(三条中线交点)、垂心(三条高线点)在同一条直线上,且这条直线的方程为30x y -+=,则顶点C 的坐标是________.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知点P 到定点()1,0F -的距离与到定直线:4l x =-的距离之比为12,(1)求点P 的轨迹方程;(2)若120PFO ∠=︒,求PFO △的面积.18.如图,在平行六面体ABCD A B C D -''''中,4,2,5==='AB AD AA ,90,60BAD BAA DAA ''∠=︒∠=∠=︒.求:(1)AC '的长;(2)直线AC '与CD '所成的角的余弦值.19.已知直线1l 的方程为2250x y +-=,若直线2l 在y 轴上的截距为12,且12l l ⊥.(1)求直线1l 和2l 的交点坐标;(2)已知直线3l 经过1l 与2l 的交点,且与两坐标轴的正半轴围成的三角形的面积为258,求直线3l 的方程.20.在如图所示的试验装置中,两个正方形框架,ABCD ABEF 的边长都是2,且它们所在的两个半平面所成的角为120︒.活动弹子,M N 分别在正方形对角线AC 和BF 上移动,且AM FN x ==.(1)用x 表示出MN 的长度,并求出MN 的长的取值范围;(2)当MN 的长最小时,平面MNA 与平面MNB 所成角的余弦值.21.在平面直角坐标系xOy 中,已知圆C 经过点()4,1M -,且与圆22:60+--+=D x y x y a 相切于点()1,2N .(1)求圆C 的方程;(2)圆D 上是否存在点P ,使得2212+=PO PC ?若存在,求点P 的个数;若不存在,请说明理由;22.如图,在四棱锥P ABCD -中,PA ⊥面,//ABCD AB CD ,且2CD =,1,1,,,===⊥AB BC PA AB BC E F 分别为,PD BC 的中点.(1)求证://EF 平面PAB ;(2)在线段PD 上是否存在一点M ,使得直线CM 与平面PBC 所成角的正弦值是13?若存在,求出DMDP 的值,若不存任,说明理由;(3)在平面PBC 内是否存在点H ,满足0HD HA ⋅=,若不存在,请简单说明理由;若存在,请写出点H的轨迹图形形状.辽宁省2023-2024学年度上学期期中阶段测试高二年级数学试卷考试时间:120分钟试题满分:150分命题人:高一数学组校对人:高一数学组一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为()A.()1,2,1-- B.()1,2,1- C.()1,2,1--- D.()1,2,1--【答案】A 【解析】【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.已知M 是椭圆22:159x y C +=上的一点,则点M 到两焦点的距离之和是()A.6 B.9C.10D.18【答案】A 【解析】【分析】由椭圆的定义可知,椭圆上任何一点到其两焦点的距离之和为定值,且定值为长轴的长度,由此即可得解.【详解】由题意可知椭圆22:159x y C +=中的长半轴长3a ==,设其两焦点分别为12F F 、,又因为点M 是椭圆22:159x y C +=上的一点,所以点M 到两焦点的距离之和是122236MF MF a +==⨯=.故选:A.3.如图,方程10x y +-=表示的曲线是().A. B.C. D.【答案】B 【解析】【分析】分1y ≥和1y <,去掉绝对值,得到相应的曲线.【详解】10x y +-=,当1y ≥时,10x y +-=,当1y <时,10x y +-=,画出符合题意的曲线,为B 选项,故选:B4.,,PA PB PC 是从点P 出发的三条射线,每两条射线的夹角均为60︒,那么直线PC 与平面PAB 所成角的余弦值是()A.3 B.3C.2D.12【答案】B 【解析】【分析】作图,找到直线PC 在平面PAB 上的投影在构建多个直角三角形,找出边与角之间的关系,继而得到线面角;也可将,,PA PB PC 三条射线截取出来放在正方体中进行分析.【详解】解法一:如图,设直线PC 在平面PAB 的射影为PD ,作CG PD ⊥于点G ,CH PA ⊥于点H ,连接HG ,易得CG PA ⊥,又,,CH CG C CH CG ⋂=⊂平面CHG ,则PA ⊥平面CHG ,又HG ⊂平面CHG ,则PA HG ⊥,有cos cos cos PH CPA PC PG PH PH CPD APD PC PG PC ⎧∠=⎪⎪⎨⎪∠⨯∠=⋅=⎪⎩故cos cos cos CPA CPD APD ∠=∠⨯∠.已知60,30APC APD ∠=︒∠=︒,故cos cos603cos cos cos303CPA CPD APD ∠︒=∠︒∠==为所求.解法二:如图所示,把,,PA PB PC 放在正方体中,,,PA PB PC 的夹角均为60︒.建立如图所示的空间直角坐标系,设正方体棱长为1,则(1,0,0),(0,0,1),(1,1,1),(0,1,0)P C A B ,所以(1,0,1),(0,1,1),(1,1,0)PC PA PB =-==-,设平面PAB 的法向量(,,)n x y z = ,则0n PA y z n PB x y ⎧⋅=+=⎪⎨⋅=-+=⎪⎩令1x =,则1,1y z ==-,所以(1,1,1)n =-,所以6cos ,3||||PC n PC n PC n ⋅〈〉===⋅.设直线PC 与平面PAB 所成角为θ,所以sin |cos ,|3PC n θ=〈〉= ,所以cos θ==故选B .5.设直线l 的方程为sin 20θ--=x y ,则直线l 的倾斜角α的范围是()A.[]0,π B.ππ,42⎡⎤⎢⎥⎣⎦C.π3π,44⎡⎤⎢⎥⎣⎦ D.πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦【答案】C 【解析】【分析】分sin 0θ=和sin 0θ≠两种情况讨论,结合斜率和倾斜角的关系分析求解.【详解】当sin 0θ=时,方程为2x =,倾斜角为π2α=当sin 0θ≠时,直线的斜率1tan sin k αθ==,因为[)(]sin 1,00,1θ∈- ,则)tan ,1]1,([α∈-∞-+∞ ,所以πππ3π,,4224α⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝∈⎦;综上所述:线l 的倾斜角α的范围是π3π,44⎡⎤⎢⎥⎣⎦.故选:C .6.已知直线l 经过()()1,1,1,0,2,0A B 两点,则点()002P ,,到l 的距离是()A.B. C.433D.263【答案】D 【解析】【分析】由向量在向量上的投影及勾股定理即可求.【详解】因为()()1,1,1,0,2,0A B ,()002P ,,,可得(1,1,1)AB =-- ,(1,1,1)=--uu u rAP ,可知||=uu u r AP AP 在AB上的投影为3||⋅=AP AB AB uu u r uu u ruu u r ,则点P 到直线AB的距离为3=.故选:D .7.圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为()A.x 2+y 2-x +7y -32=0B.x 2+y 2-x +7y -16=0C.x 2+y 2-4x +4y +9=0D.x 2+y 2-4x +4y -8=0【答案】A 【解析】【分析】设所求圆的方程为(x 2+y 2+6x -4)+λ(x 2+y 2+6y -28)=0,用λ表示出圆心,代入直线x -y -4=0,求出λ,从而可求出所求圆的方程.【详解】根据题意知,所求圆经过圆x 2+y 2+6x -4=0和圆x 2+y 2+6y -28=0的交点,设其方程为(x 2+y 2+6x -4)+λ(x 2+y 2+6y -28)=0,即(1+λ)x 2+(1+λ)y 2+6x +6λy -4-28λ=0,其圆心坐标为31λ-⎛+⎝,31λλ-⎫⎪+⎭,又由圆心在直线x -y -4=0上,所以31λ-+-31λλ-⎛⎫⎪+⎝⎭-4=0,解得λ=-7,所以所求圆的方程为:(-6)x 2+(-6)y 2+6x -42y +192=0,即x 2+y 2-x +7y -32=0,故选:A .8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A.,βγαγ<< B.,βαβγ<<C.,βαγα<< D.,αβγβ<<【答案】B 【解析】【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin 6633α=⇒α=β=γ=,故选B.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间向量,,a b c不共面,则下列各选项中的三个向量共面的有()A.,,a b b c c a ---B.,,a b b c c a+++ C.,,a b a c b c++- D.2,32,37-+-++-+ a b c a b c a b【答案】ACD 【解析】【分析】根据共面向量的性质逐项分析判断.【详解】对于选项A :因为()()a b b c c a -=---- ,所以,,a b b c c a --- 共面,故A 正确;对于选项B :假设存在,λμ∈R ,使得()()λμ+=+++a b b c c a ,整理得()a b a b c μλλμ+=+++ ,则110μλλμ=⎧⎪=⎨⎪+=⎩,无解,即不存在,λμ∈R ,使得()()λμ+=+++a b b c c a ,所以,,a b b c c a +++不共面,故B 错误;对于选项C :因为()()-=+-+r r r r r r b c a b a c ,所以,,a b a c b c ++- 共面,故C 正确;对于选项D :因为()()112323722-+=-++--+r r r r r r r ra b c a b c a b ,所以2,32,37-+-++-+a b c a b c a b 共面,故D 正确;故选:ACD.10.下列命题正确的是()A.经过定点()0,2A 的直线都可以用方程2y kx =+表示B.经过两个不同的点()()111222,,,P x y P x y 的直线都可以用方程()()()()121121y y x x x x y y --=--表示C.过点()2,1且在两坐标轴上截距相等的直线有2条D.方程222210x y mx y +--+=不一定表示圆【答案】BCD 【解析】【分析】根据直线方程的性质和圆的标准方程的性质逐项判断.【详解】对于A :经过定点()0,2A 且斜率存在的直线才可以用方程2y kx =+表示,斜率不存在时,用方程0x =来表示,故A 选项错误;对于B :经过两个不同的点()()111222,,,P x y P x y 的直线有两种情况:当12x x ≠时,直线方程为211121()y y y y x x x x --=--,整理得121121()()()()y y x x x x y y --=--;当12x x =时,直线方程为1x x =,即方程121121()()()()y y x x x x y y --=--成立.综上所述,经过两个不同的点()()111222,,,P x y P x y 的直线都可以用方程()()()()121121y y x x x x y y --=--表示,故B 选项正确;对于C :当直线在x 轴和y 轴上截距为0时,可设直线方程为y kx =,直线过()2,1,则所求直线方程为12y x =;当直线在x 轴和y 轴上截距不为0时,可设直线方程为1x ya a+=,即x y a +=,直线过()2,1,则所求直线方程为3x y +=.综上所述,过点()2,1且在两坐标轴上截距相等的直线有2条,故C 选项正确;对于D :222210x y mx y +--+=化为222()(1)x m y m -+-=,所以该方程0m ≠时才表示圆,故D 选项正确.故选:BCD.11.如图,在棱长为1的正方体1111ABCD A B C D -中()A.AC 与1BD 的夹角为60︒B.二面角1D AC D --C.1AB 与平面1ACD D.点D 到平面1ACD 的距离为33【答案】BCD 【解析】【分析】建立空间直角坐标系,利用坐标法逐项判断即得.【详解】如图建立空间直角坐标系,则()()()()()111,0,0,0,1,0,1,1,0,0,0,1,1,1,1A C B D B ,∴()()11,1,0,1,1,1AC BD =-=-- ,10AC BD ⋅= ,即1AC BD ⊥ ,AC 与1BD 的夹角为90 ,故A 错误;设平面1ACD 的法向量为(),,m x y z=,()()11,1,0,1,0,1AC AD =-=- ,所以100m AC x y m AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令1x =,则()1,1,1m = ,平面DAC 的法向量可取()0,0,1n =,二面角1D AC D --的平面角为θ,则cos cos ,3m n θ==,所以2sin cos ,tan 23m n θθ===B 正确;因为()10,1,1AB =,设1AB 与平面1ACD 所成角为α,则1263sin cos ,cos ,tan 23323AB m ααα=⋅====⋅,故C 正确;因为()1,0,0=DA,设点D 到平面1ACD 的距离为d ,则1333DA m d m ⋅===,故D 正确.故选:BCD.12.已知点3,12D ⎛⎫⎪⎝⎭,直线:l 2220kx y k --+=,圆:C 2221x y x +-=,过点(0,2)P -分别作圆C 的两条切线PA ,PB (A ,B 为切点),H 在ABC 的外接圆上,则()A.直线AB 的方程是210x y +-=B.l 被圆C 3C.四边形PACB 6D.DH的取值范围为,22⎣⎦【答案】BCD 【解析】【分析】求出以PC 为直径的圆的方程,与圆C 的方程联立可得直线AB 的方程判断A ;求出直线l 所过定点,得到圆心到直线l 的最小距离,再由垂径定理求l 被圆C 截得的最短弦的长判断B ;直接求出四边形PACB 的面积判断C ;求解DT ,再分别减去ABC 的外接圆半径与加上ABC 的外接圆半径求得DH 的取值范围判断D .【详解】对于A ,圆C :2221x y x +-=,即()2212x y -+=,圆心坐标为()1,0C,半径1r =,又()0,2P -,则PC 的中点为1,12T ⎛⎫- ⎪⎝⎭,又PC =,则以PC 为直径的圆的方程为()2215124x y ⎛⎫-++= ⎪⎝⎭,又圆C :2221x y x +-=,两式作差可得直线AB 的方程是210x y ++=,故A 错误;对于B ,直线l :2220kx y k --+=可化为()21220k x y --+=,由210220x y -=⎧⎨-+=⎩,解得121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1,12R ⎛⎫⎪⎝⎭,因为221511224⎛⎫-+=< ⎪⎝⎭,所以定点R 在圆C 内,当且仅当CR MN ⊥时,弦长MN最短,又2CR ==,所以MN的最小值为=,故B 正确;对于C ,四边形PACB 的对角线AB 、PC 互相垂直,则四边形PACB 的面积12S AB PC =,圆心()1,0C 到直线AB 的距离d ==,因为5AB ===,PC =,所以125PACB S =⨯=,故C 正确;对于D ,由题意知,ABC 的外接圆恰好是经过P 、A 、C 、B 四点的圆,因为PC 的中点1,12T ⎛⎫-⎪⎝⎭为外接圆的圆心,所以圆上的点H 到点D 距离最小值是22DT r -==,最大值是22DT r +==,所以DH 的取值范围为,22⎥⎣⎦,故D 正确.故选:BCD .三、填空题:本大题共4小题,每小题5分,共20分13.已知02,01<<<<x y +++的最小值是________.【答案】【解析】【分析】根据两点间距离的几何意义结合图形分析求解.【详解】设()()()()(),,0,0,2,0,2,1,0,1P x y O A B C ,因为02,01<<<<x y ,则点(),P x y 在矩形ABCD 内部,如图所示,22222222(1)(2)(2)(1)++-+-+-+-=+++x y x y x y x y OP CP AP BP ()()25=+++≥+=OP BP CP AP OB AC 当且仅当P 为,OB AC 的交点11,2⎛⎫ ⎪⎝⎭时,等号成立,故答案为:514.已知A α∈,直线AB 与平面α所成的角为30︒,直线AC 与平面α所成的角为45︒,6,2AB AC ==,且斜线段,AB AC 在平面α内的射影相互垂直,则BC =________.【答案】211【解析】【分析】结合题意作出图形,可得30,45BAD CAE ∠=︒∠=︒,从而可求得,,,AD BD AE CE ,进而证得CE DE ⊥,再利用勾股定理即可得解.【详解】如图,设点B 在平面α内的射影为D ,点C 在平面α内的射影为E ,则,BD CE αα⊥⊥,AE AD ⊥,所以30,45BAD CAE ∠=︒∠=︒,又6,2AB AC ==则33,3,4,4AD BD AE CE ====,所以271643DE =+=,因为,BD CE αα⊥⊥,所以//BD CE ,在线段CE 上取点F ,使得EF BD =,所以四边形BDEF 为平行四边形,所以BF DE ==,//BF DE ,因为,CE DE αα⊥⊂,所以CE DE ⊥,所以CE BF ⊥,又1CF CE BD =-=,所以BC ==故答案为:.15.长方体1111ABCD A B C D -中,1AB =,1AD =,12AA =,P 是棱1DD 上的动点,则1PA C ∆的面积最小值是________.【答案】2.【解析】【分析】先由题意,以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴,建立空间直角坐标系,求出1A 点、C 点坐标,再设出点P 坐标,表示出1,PA PC 的长,根据余弦定理以及三角形面积公式,即可求出结果.【详解】由题意,以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系,因为1AB =,1AD =,12AA =,所以1(1,0,2)A ,(0,1,0)C ,又P 是棱1DD 上的动点,所以,设(0,0,)(02)P z z ≤≤,所以1PA =,PC =1A C ==,因此2222111112cos 2PA PC AC z z CPA PA PCPA PC+--∠==,所以1sin CPA ∠=,因此1111sin 2PA CS PA PC CPA ∆=∠==当且仅当1z =时,取最小值.故答案为32【点睛】本题主要考查空间中的解三角形问题,熟记余弦定理,灵活运用空间向量的方法求解即可,属于常考题型.16.已知ABC 的顶点()6,0A -,()0,6B ,其外心(外接圆圆心)、重心(三条中线交点)、垂心(三条高线点)在同一条直线上,且这条直线的方程为30x y -+=,则顶点C 的坐标是________.【答案】()3,0或()0,3-【解析】【分析】设顶点C 的坐标是(),m n ,根据重心坐标公式结合外心的定义和性质运算求解.【详解】设顶点C 的坐标是(),m n ,则ABC 的重心坐标为66,33-+⎛⎫⎪⎝⎭m n ,由题意可知:663033-+-+=m n ,即3m n =+,可知线段AB 的中点为()3,3-,斜率()60106-==--AB k ,则线段AB 的中垂线的方程为()33-=-+y x ,即y x =-,联立方程30y x x y =-⎧⎨-+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,即ABC 的外心坐标为33,22⎛⎫- ⎪⎝⎭M ,由MC MA =,即22223333602222⎛⎫⎛⎫⎛⎫⎛⎫++-=-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭m n ,=,解得0n =或3n =-,即()3,0C 或()0,3C-,经检验()3,0C 或()0,3C-均符合题意.故答案为:()3,0或()0,3-.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知点P 到定点()1,0F -的距离与到定直线:4l x =-的距离之比为12,(1)求点P 的轨迹方程;(2)若120PFO ∠=︒,求PFO △的面积.【答案】(1)22143x y +=(2)10【解析】【分析】(1)设(),P x y ,根据题意列方程,两边平方化简即可.(2)先在焦点三角形中借助余弦定理求出PF ,然后再利用面积公式求出面积.【小问1详解】设点(),P x y ,点P 到直线l 的距离为d ,依题意有12PF d=,即12PF d =,而4d x =+,142x =+,两边平方化简整理得22143x y +=,所以点P 的轨迹方程为22143x y +=.【小问2详解】由(1)得,2FF '=,1OF =,4PF PF '+=,又120PFO ∠=︒,所以在PFF ' 中,222=2cos PF PF FF PF FF PFO '''+-⋅∠,即65PF =,所以133sin 210PFO S OF PF PFO =⋅∠=.18.如图,在平行六面体ABCD A B C D -''''中,4,2,5==='AB AD AA ,90,60BAD BAA DAA ''∠=︒∠=∠=︒.求:(1)AC '的长;(2)直线AC '与CD '所成的角的余弦值.【答案】(1)53(2)2715【解析】【分析】(1)利用向量线性运算可得AC AB AD AA =+'+' ,由向量数量积的定义和运算律可求得2AC ' ,由此可得结果;(2)可知''=-uuu r uuu r uu u rCD AA AB ,由数量积的运算律结合向量的夹角公式求异面直线夹角.【小问1详解】由题意可得:110,4510,25522''⋅=⋅=⨯⨯=⋅=⨯⨯=uu u r uuu r uu u r uuu r uuu r uuu r AB AD AB AA AD AA ,因为AC AC CC AB AD AA '''=+=++,可得()22222222AC AB AD AA AB AD AA AB AD AB AA AD AA '''''=++=+++⋅+⋅+⋅ 1642502102575=++++⨯+⨯=,所以'=uuu rAC AC '的长为.【小问2详解】因为'''=-=-uuu r uuur uuu r uuu r uu u rCD DD DC AA AB ,可得()22222252101621''''=-=-⋅+=-⨯+=uuu r uuu r uu u r uuu r uuu r uu u r uu u r CD AA ABAA AA AB AB,即'=uuu r CD 且()()2225165014''''''⋅=++⋅-=-+⋅-⋅=-+-=uuu r uuu r uu u r uuu r uuu r uuu r uu u r uuu r uu u r uuu r uuu r uu u r uuu r AC CD AB AD AA AA AB AA AB AA AD AB AD ,则cos ,''⋅''=''uuu r uuu r uuu r uuu r uuu r uuu r AC CD AC CD AC CD 所以直线AC '与CD '19.已知直线1l 的方程为2250x y +-=,若直线2l 在y 轴上的截距为12,且12l l ⊥.(1)求直线1l 和2l 的交点坐标;(2)已知直线3l 经过1l 与2l 的交点,且与两坐标轴的正半轴围成的三角形的面积为258,求直线3l 的方程.【答案】(1)31,2();(2)502x y +-=或94150x y +-=.【解析】【分析】(1)由12l l ⊥,可得直线2l 的斜率21k =,从而可得21:2l y x =+,联立方程组即可求得交点;(2)由题意知3l 的斜率k 存在,设33:(1)2l y k x -=-,求得与坐标轴的交点坐标,再结合面积公式即可求解.【小问1详解】(1)因为12l l ⊥,又直线1l 的斜率11k =-,所以直线2l 的斜率21k =,则21:2l y x =+.由112322502x y x y x y =⎧⎧=+⎪⎪⇒⎨⎨=⎪⎪+-=⎩⎩所以直线1l 和2l 的交点坐标为31,2().【小问2详解】由题意知3l 的斜率k 存在,设33:(1)2l y k x -=-令0x =得32y k =-,令0y =得312x k=-+,因为直线3l 与两坐标轴的正半轴相交,所以3023102k k ⎧->⎪⎪⎨⎪-+>⎪⎩,解得0k <,1332512228S k k ⎛⎫⎛⎫=-+-= ⎪⎪⎝⎭⎝⎭由,解得1k =-或94k =-,即35:02l x y +-=或94150x y +-=.20.在如图所示的试验装置中,两个正方形框架,ABCD ABEF 的边长都是2,且它们所在的两个半平面所成的角为120︒.活动弹子,M N 分别在正方形对角线AC 和BF 上移动,且AM FN x ==.(1)用x 表示出MN 的长度,并求出MN 的长的取值范围;(2)当MN 的长最小时,平面MNA 与平面MNB 所成角的余弦值.【答案】(1)=MN ⎤∈⎦MN (2)35【解析】【分析】(1)过点M 作MG AB ⊥,垂足为G,连接GN ,分析可知2MG x=,22=-GN x ,120MGN ∠=︒,利用余弦定理结合二次函数分析求解;(2)由(1)可知:当且仅当,M N 为相应边的中点时,MN 的长取到最小,取MN 的中点H ,连接,AH BH ,分析可知平面MNA 与平面MNB 所成角为AHB ∠(或其补角),利用余弦定理运算求解.【小问1详解】过点M 作MG AB ⊥,垂足为G ,可知MG ∥BC ,可得==AG AM AB AC ,且22MG AG AM x ===,连接GN ,则==AG NF AB BF ,即GN ∥AF ,可得NG AB ⊥,且22NG x =-,由题意可知:两个半平面所成的角为120MGN ∠=︒,在MGN ,由余弦定理可得=MN=,即=MN (2132=+y x ,因为x ⎡∈⎣,则([]2133,42=+∈y x ,所以⎤∈⎦MN .【小问2详解】由(1)可知:当且仅当x =,M N 为相应边的中点时,MN 的长取到最小,此时====MA NA MB NB ,则≅△△MAN MBN ,取MN 的中点H ,连接,AH BH ,可知,AH MN BH MN ⊥⊥,所以平面MNA 与平面MNB 所成角为AHB ∠(或其补角),因为5,22===AH BH AB ,在ABH 中,由余弦定理可得2223cos 25+-∠==-⋅AH BH AB AHB AH BH ,所以平面MNA 与平面MNB 所成角的余弦值为35.21.在平面直角坐标系xOy 中,已知圆C 经过点()4,1M -,且与圆22:60+--+=D x y x y a 相切于点()1,2N .(1)求圆C 的方程;(2)圆D 上是否存在点P ,使得2212+=PO PC ?若存在,求点P 的个数;若不存在,请说明理由;【答案】21.()2225x y -+=22.存在,2个【解析】【分析】(1)根据题意利用圆系方程运算求解;(2)设(),P x y ,根据题意可知点P 轨迹是以()1,0M 为圆心,半径5R =析判断.【小问1详解】将点()1,2N 代入圆D 可得圆141120+--+=a ,解得8a =,即圆22:680+--+=D x y x y ,将点()1,2N 表示成“点圆”形式:()()22120x y -+-=,可设圆C 的方程为()()()222268120λ+---+-=++x y x y x y ,代入点()4,1M -可得18270λ+=,解得23λ=-,所以圆C 的方程为()()()22222681203-+--=+--+x x y x y y ,即()2225x y -+=.【小问2详解】由(1)可知:()2,0C ,圆D 的圆心1,32D ⎫⎛⎪⎝⎭,半径52r =,设(),P x y ,因为2212+=PO PC ,即()2222212+++-=x y y x ,整理得()2215x y -+=,可知点P 轨迹是以()1,0M 为圆心,半径R =且(),,222CM R r R r ⎛⎫=∈=-+ ⎪ ⎪⎝⎭,可知圆D 与圆M 的位置关系为相交,两圆有2个公共点,所以圆D 上存在2个点P ,使得2212+=PO PC .22.如图,在四棱锥P ABCD -中,PA ⊥面,//ABCD AB CD ,且2CD =,1,1,,,===⊥AB BC PA AB BC E F 分别为,PD BC 的中点.(1)求证://EF 平面PAB ;(2)在线段PD 上是否存在一点M ,使得直线CM 与平面PBC 所成角的正弦值是13?若存在,求出DMDP 的值,若不存任,说明理由;(3)在平面PBC 内是否存在点H ,满足0HD HA ⋅=,若不存在,请简单说明理由;若存在,请写出点H 的轨迹图形形状.【答案】(1)证明见解析;(2)存在,理由见解析;(3)存在,理由见解析.【解析】【分析】(1)过E 作EG AD ⊥交AD 于点G,连接,EG GF ,由线线平面证明面面平行,再由面面平行的性质即可得出线面平行的证明;(2)先求出面PBC 的法向量(0,1,1)n =,设(01)DM tPD t =≤≤,利用向量法结合线面角得正弦值求解即可;(3)由,HD HA H ⊥点在空间内轨迹为以AD 中点为球心,1322AD =为半径的球,而AD 中点到平面PBC 的距离为342<,即可求解.【小问1详解】如图,过E 作EG AD ⊥交AD 于点G,连接,EG GF ,因为,E F 分别为,PD BC 的中点,EG AD ⊥,所以G 也为AD 中点,所以//EG PA ,//GF AB ,而EG ⊄平面PAB ,PA ⊂平面PAB ,所以//EG 平面PAB ,同理//GF 平面PAB ,又因为EG GF G = ,,EG GF ⊂平面EGF ,所以平面//EGF 平面PAB ,而EF ⊂平面EGF ,所以//EF 平面PAB ;【小问2详解】设(01)DM tPD t =≤≤如图,以点A 为原点建立空间直角坐标系,则(0,0,1),(0,1,0),(22,1,0),(22,1,0)P B C D -,故(0,1,1),(22,1,1),(22,1,1),(0,2,0)PB PC PD CD =-=-=--=-,则(2,2,)CM CD DM CD tPD t t t =+=-=--,设平面PBC 的法向量(,,)n x y z = ,则有0220n PB y z n PC x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩,取(0,1,1)n = ,222||1|cos ,|3||||2(22)(2)n CM n CM n CM t t t ⋅〈〉===⨯-+-+整理得241670t t -+=,解得12t =或72(舍去),所以当12DM DP =时,直线 C M 与平面PBC 所成角的正弦值是13;【小问3详解】由(2)知,平面PBC 的一个法向量(0,1,1)n =,点(0,1,0),B AD 中点12,,0)2G -,则3(2,,0)2BG =- ,则AD 中点到平面PBC 的距离为330211023224112n n BG ⎛⎫⨯+⨯-+⨯- ⎪⋅⎝⎭=+ ,由0HD HA ⋅= ,即,HD HA H ⊥点在空间内轨迹为以AD 中点为球心,1322AD =为半径的球,故存在符合题意的H ,此时H 轨迹是半径为324的圆.【点睛】假设存在点H ,满足0HD HA ⋅=,设()000,,H x y z ,()000(0,1,1),2,0,0),,1,,BP BC BH x y z =-==-,,BP BC BH 共面,存在唯一实数对(,)x y ,使得BH xBP yBC =+,所以()000,1,,,)x y z x x -=-,0001,x y x z x ⎧=⎪∴-=-⎨⎪=⎩则0001x y x z x⎧=⎪=-+⎨⎪=⎩,,1,)H x x ∴-+,,2,)HD x x ∴=---,(,1,),HA x x =---2)(2)(1)0,HD HA x x x ∴⋅=--+--+= 整理得,2231421991664x y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=,。

河北省保定市部分高中2023-2024学年高二上学期11月期中语文试题含解析

河北省保定市部分高中2023-2024学年高二上学期11月期中语文试题含解析

河北省高二上学期期中考试语文(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷主要考试内容:部编版选择性必修上册。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:中华文明作为原生性的文明,延续数千年且历久而弥新,显示了极为强大的生命力。

中华文明特有的生命线,值得我们深入探究和深切体认。

以人为本位,而不是以超越人间的神明为本位,这是贯穿整个中华文明的第一道生命线。

春秋战国时期诸子学一个重要的贡献,就是他们用以现实的人为中心的真实世界取代了先前巫术以神统人的虚拟世界。

《尚书·泰誓》记述周武王一段名言:“惟天地万物父母,惟人万物之灵。

”《左传·庄公三十二年》记载:“吾闻之:国将兴,听于民;将亡,听于神。

”这更明白无误地说明决定国家命运的是民众而非神灵。

《老子》中强调:“天地无常心,以百姓心为心。

”在这里,现实中的平民百姓才具有至高无上的决定性地位,而不是天地、神明。

在中华文明中,人是一个社会性的存在,是一个群体性的存在。

人的本质,从来都是各种社会关系的总和。

中华文明的不断发展,就是人的群体联系的不断扩大、不断强化,社会关系越来越复杂化,人越来越能够自觉地和合理地处理好这些关系。

樊迟问仁,孔子说:“爱人。

”樊迟又问仁,孔子说:“夫仁者,已欲立而立人,己欲达而达人。

”仲弓问仁,孔子说:“已所不欲,勿施于人。

”人作为社会群体中的一员,具有其他生物所没有的社会性。

作为社会群体中一个成员的人,对于社会群体中的其他人能够做到爱人、立人、达人,能够做到已所不欲,勿施于人。

安徽省部分地区2023-2024学年高二上学期11月语文期中试卷汇编:名篇名句默写(含答案)

安徽省部分地区2023-2024学年高二上学期11月语文期中试卷汇编:名篇名句默写(含答案)

名篇名句默写安徽师大附中2023-2024学年高二上学期11月期中考试语文试题(三)名篇名句默写(本题共1小题,6分)17.补写出下列句子中的空缺部分。

(6分)(1)“不学诗,无以言”,《论语·阳货》中“___________________,___________________”两句强调了学习《诗经》对于家庭和国家的重要意义。

(2)李白《将进酒》中,运用比喻的修辞表达对光阴易逝、人生易老的感慨的两句是“___________________,___________________。

”(3)《春江花月夜》中,“___________________,___________________”两句借大雁和鱼儿两个意象来表现游子与思妇之间不能互通音讯的痛苦。

安徽省合肥市六校联盟2023—2024学年第一学期期中联考高二语文试卷(三)名篇名句默写(本题共1小题,6分)17.补写出下列句子中的空缺部分。

(6分)(1)《春江花月夜》中“__________,__________”两句以云喻游子,写游子漂泊远行,蕴含无尽相思之愁。

(2)《大学之道》中“__________,__________”两句提出普天之下,不论身份高低,都应将加强个人品德修养作为根本。

(3)“酒”是古代文人笔下常见的意象之一,但有些文人在诗文中不爱直说“酒”,喜欢用酒的别称雅号或与酒有关的器皿来指代“酒”,借此抒发丰富的情感,如“__________,__________。

”安徽省皖豫名校联盟2023-2024学年高二上学期期中考试语文试题(三)名篇名句默写(本题共1 小题,6分)17.补写出下列句子中的空缺部分。

(6分)(1)历代儒家文人将君子之道自勉作为行为规范,《〈论语〉十二章》中孔子用“”一句阐释了成为君子的条件;用“”一句阐释了君子的义利观。

(2)张若虚《春江花月夜》中,“,”两句通过想象,含蓄地表达出书信无法往来、相会无期的痛苦。

北京市大兴区2023-2024学年高二上学期期中语文试题含答案

北京市大兴区2023-2024学年高二上学期期中语文试题含答案

大兴区2023~2024学年度第一学期期中检测高二语文(答案在最后)2023.11考生须知:1.本试卷共8页,共五道大题,23道小题,满分150分。

考试时间150分钟。

2.试题答案一律涂或写在答题卡上,选择题用2B铅笔作答,其他试题用黑色签字笔作答,在试卷上作答无效。

3.考试结束,只需上交答题卡。

一、本大题共5小题,共18分。

阅读下面材料,完成小题。

材料一民政部养老服务司副司长李邦华介绍,截至2021年年底,全国60岁及以上老年人口达2.67亿,占总人口的18.9%。

预计“十四五”时期,60岁及以上老年人口总量将突破3亿,占比将超过20%,我国将进入中度老龄化阶段。

养老服务已经成为积极应对人口老龄化的重要内容。

“养老”一词,最早见于《礼记·王制》:“凡养老,有虞氏以燕礼,夏后氏以飨礼,殷人以食礼,周人修而兼用之。

”燕、飨、食等礼仪都是借祭祀鬼神之日,以宴会的形式编排长幼序列,演示敬老之礼。

这里的“养老”还并不是常规意义上的养老行为。

周代养老的仪式除了设置公宴外,还给国老颁发上顶端镶有木雕鸠鸟形状的黑色木制拐杖——鸠杖(同王杖、玉杖)。

鸠鸟食道宽,吞咽顺利,意在祝福老年人吃好吃饱;鸠杖象征着一种权利和荣誉,持杖老人凭杖就可以享受一定的待遇。

汉代至南北朝时期,国家实行了一系列的养老优抚政策,除给予老人一些荣誉之外,还向社会颁布养老的法令,明确养老范围,建立了具体的保障监督措施,比如汉代就明确规定“子孙为国而死的父祖”等四类人归社会养老。

唐宋时期,敬老和崇文并举,国家建立了“文学馆”等文史研究机构,组织老年学士修史编志,起草皇帝诏书,协助科举考试。

《唐书》中还有国家为高龄老人配备家庭服务人员的记载。

北宋出现了最先用财政资金救助“老疾孤穷丐”的机构——“福田院”。

明代除参照汉代做法外,还积极组织老年人参加政权建设,并在多地设立了养济院。

清代沿用了明朝的养济制度。

我国古代养老文化的核心是“孝”,而以“孝”为核心的古代养老文化,从诞生之日起,就具有了强大的生命力。

山东省名校考试联盟2023-2024学年高二上学期11月期中联考化学试题(解析版)

山东省名校考试联盟2023-2024学年高二上学期11月期中联考化学试题(解析版)

山东名校考试联盟2023~2024学年高二年级上学期期中检测化学试题(答案在最后)本试卷分选择题和非选择题两部分,满分为100分,考试用时90分钟。

注意事项:1.答题前,考生先将自己的姓名、考生号、座号填写在相应位置,认真核对条形码上的姓名、考生号和座号,并将条形码粘贴在指定位置上。

2.选择题答案必须使用2B 铅笔(按填涂样例)正确填涂;非选择题答案必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。

3.请按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

保持卡面清洁,不折叠、不破损。

可能用到的相对原子质量:H-1C-12O-16K-39Fe-56一、选择题:本题共10小题,每小题2分,共20分。

每小题只有一个选项符合题目要求。

1.化学与社会、生产、生活密切相关。

下列说法错误的是A.在相同条件下,白口铁(镀锌铁)比马口铁(镀锡铁)更耐腐蚀B.可将地下输油钢管与外加直流电源的负极相连,保护其不受腐蚀C.“保暖贴”工作过程中,主要利用了原电池的工作原理D.“嫦娥五号”探测器中配置砷化镓太阳能电池,将化学能直接转化为电能【答案】D 【解析】【详解】A .白口铁中锌和铁形成原电池,锌做负极,铁做正极被保护;在马口铁中,锡和铁形成的原电池,锡做正极,铁做负极更易被腐蚀,A 正确;B .可将地下输油钢管与外加直流电源的负极相连,外加电流保护法,保护其不受腐蚀,B 正确;C .“保暖贴”利用铁粉为负极,碳粉为正极,氯化钠为电解液,组成原电池,发生电化学腐蚀而发热,C 正确;D .砷化镓太阳能电池是将太阳能直接转化为电能,D 错误;故选D 。

2.下列有关说法正确的是A.恒容绝热容器中,发生反应()()()22H g I g 2HI g + ,当压强不变时反应达到平衡状态B.()()()22S g O g =SO g +1ΔH ,()()()22S s O g =SO g +2ΔH ,则12H H ∆>∆C.室温下,反应()()()43NH Cl s NH g HCl g + 不能自发进行,说明该反应的H 0∆<D.一定温度下()()()32CaCO s CaO s CO g + ,压缩容器体积,再次达到新平衡后,2CO 浓度增大【答案】A 【解析】【详解】A .该反应为气体体积不变的放热反应,恒容绝热容器中,反应放出的热量,使容器内反应温度升高,气体压强增大,则压强不变说明正逆反应速率相等,反应已达到平衡状态,故A 正确;B .硫在氧气中的燃烧反应为放热反应,气态硫的能量高于固态硫,则反应的焓变ΔH 1小于ΔH 2,故B 错误;C .该反应为熵增的反应,室温下,反应不能自发进行说明反应ΔH —T ΔS >0,则反应的焓变ΔH 大于0,故C 错误;D .由方程式可知,反应的平衡常数K =c (CO 2),平衡常数为温度函数,温度不变,平衡常数不变,则压缩容器体积,再次达到新平衡后,二氧化碳的浓度不变,故D 错误;故选A 。

2024学年江苏省扬州中学高二上学期期中考数学试题及答案

2024学年江苏省扬州中学高二上学期期中考数学试题及答案

江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π62. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 83. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 164. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A. 1,2⎛⎫+∞⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10B. 16C. 20D. 266. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A 小于1B. 等于1C. 大于1D. 与M 点的位置有关.7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB +的最大值为( )A. 12B. C. 10D. 6二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A. 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =- B. 121=x x C. 254PQ =D. 1l 与2l 之间的距离为412. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 最小值为6.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.15. 阿基米德是古希腊著名数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.的的四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上的椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8xty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .21.已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB(O 为坐标原点),求此时直线l 的斜率k 的值.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.的的江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1. 经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π6【答案】B 【解析】【分析】求出直线AB 的斜率,利用直线的斜率与倾斜角的关系可得出结果.【详解】设直线AB 的倾斜角为α,则0πα≤<,且tan α==,故π3α=.故选:B.2. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 8【答案】B 【解析】【分析】根据抛物线的准线求得p 的值【详解】由题意可得:22p-=,则4p =-故选:B3. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 16【答案】A【解析】【分析】根据题意,可设12cos ,5sin x y θθ==,得到13sin()x y θϕ+=+,求得x y +的取值范围,即可求解.【详解】由椭圆22114425x y +=,可设12cos ,5sin x y θθ==,其中[]0,2πθ∈,则12cos 5sin 13sin()x y θθθϕ=+=++,其中12tan 5ϕ=,因为1sin()1θϕ-≤+≤,所以1313x y -≤+≤,即x y +的取值范围为[]13,13-,结合选项,可得A 符合题意.故选:A.4. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A 1,2⎛⎫+∞ ⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭【答案】C 【解析】【分析】利用表示圆的条件和点和圆的位置关系进行计算.【详解】依题意,方程220x y x y a +-++=可以表示圆,则22(1)140a -+->,得12a <;由点()2,1在圆220x y x y a +-++=的外部可知:2221210a +-++>,得4a >-.故142a -<<.故选:C5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10 B. 16C. 20D. 26【答案】C 【解析】【分析】由椭圆的定义可得122MF MF a +=,122NF NF a +=,代入即可求出答案.【详解】由椭圆的定义可得:122MF MF a +=,122NF NF a +=,.则2MNF 的周长为:22112244520MN MF NF MF NF MF NF a ++=+++==⨯=.故选:C .6. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A. 小于1 B. 等于1C. 大于1D. 与M 点的位置有关【答案】B 【解析】【分析】求出,A B 的坐标,由对称性可得OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,由正弦定理得到12sin OM R OAB =∠,22sin OMR OBA=∠,故12R R =,故面积比值为1.【详解】由题意得,抛物线2:16C y x =的焦点坐标为()4,0F ,将4x =代入2:16C y x =中,8y =±,不妨令()()4,8,4,8A B -,由对称性可知,A B 两点关于y 轴对称,OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,当点M 在A 点上方时,()12sin sin πsin OM OM OM R OAM OAB OAB===∠-∠∠,当点M 在A 点上方时,12sin OMR OAB=∠,同理22sin OMR OBA=∠,因为OBA OAB ∠=∠,所以12R R =,所以圆1C 圆2C 面积的比值为1.故选:B7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=【答案】B 【解析】【分析】首先根据题意得到22222b c a c a b=⎧⎪⎪=⎨⎪=+⎪⎩,再解方程组即可.【详解】设双曲线的一个焦点为()0,c ,一条渐近线方程为a y x b=,则焦点到渐近线的距离2d b ===,所以2222224234b a ca b c a b=⎧⎧⎪=⎪⎪=⇒⎨⎨⎪⎪=⎩=+⎪⎩,即双曲线方程为:223144y x -=.故选:B8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB + 的最大值为( )A. 12B. C. 10D. 6【答案】A 【解析】【分析】设AB 中点(),P x y ,根据垂径定理可得点P 的轨迹方程,进而可得MP的取值范围,又2MA MB MP +=,即可得解.【详解】设AB 中点(),P x y ,则()6,CP x y =- ,()4,NP x y =-,所以()()2640CP NP x x y ⋅=--+= ,即()2251x y -+=,所以点P 的轨迹为以()5,0E 为圆心,1为半径的圆,所以11ME MP ME -≤≤+,5ME ==,所以46MP ≤≤,又2MA MB MP +=,所以MA MB +的最大值为12,故选:A.二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=【答案】ABD 【解析】【分析】坐标代入方程检验判断A ,根据垂直的条件判断B ,求出两坐标轴上截距判断C ,求出平行线间距离判断D .【详解】选项A ,把坐标(0,1)代入直线方程而立,A 正确;选项B ,1a =-时直线l 方程为10x y -+=,斜率是1,直线0x y +=斜率是1-,两直线垂直,B 正确;选项C ,0a =时直线方程为10x y -+=,在x 轴上截距为=1x -,在y 轴上截距为1y =,不相等,C 错;选项D ,211a a ++=即0a =或1-时,直线l 方程为10x y -+=与直线0x y -=平行,距离为d ==D 正确.故选:ABD .10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上【答案】ABD.【解析】【分析】逐项代入分析即可求解.【详解】根据222a b c =+之间的关系即可求解,故选项A 正确;根据2221,22,2c e b a b c a ====+即可求解,故选项B 正确;12BF F △是等边三角形,且椭圆E 的离心率为12,只能确定12,2c a c e a ===,不能求椭圆E 标准方程,故选项C 不正确;设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上,所以()2222224,09c c b c b a =-+=+==,即可求出椭圆E 标准方程,故选项D 正确.故选:ABD.11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =-B. 121=x xC. 254PQ = D. 1l 与2l 之间的距离为4【答案】BC【解析】【分析】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =,由韦达定理得124y y =-,进而求得121=x x ,可判断B ;先求点P 的坐标,再结合124y y =-可得点Q 的坐标,然后利用斜率公式即可判断A ;根据抛物线的定义可知12Q x p P x ++=,可判断C ;由于1l 与2l 平行,所以1l 与2l 之间的距离12d y y =-,可判断D .【详解】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =得2440y my --=,则124y y =-,所以()212121616y y x x ==,所以121=x x ,故B 正确;点P 与M 均在直线1l 上,则点P 的坐标为(1,14),由124y y =-得24y =-,则点Q 的坐标为(4,4)-,则4141344PQ k --==--,故A 错误;由抛物线的定义可知,121254244PQ x x p =++=++=,故C 正确;1l 与2l 平行,1l ∴与2l 之间的距离125d y y =-=,故D 错误.故选:BC.12. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8B. 212PF PF OP -为定值C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 的最小值为6.【答案】AB【解析】【分析】设00(,)P x y ,由2221208PF PF x -=,可判定A 正确;化简2122PF PF OP -=,可判定B 正确;设直线l 的方程为x my n =+,联立方程组,结合Δ0=,得到2213n m =-,在化简123y y =-,可判定C 不正确;根据通经长和实轴长,可判定D 错误.【详解】由题意,双曲线2213y x -=,可得1,a b ==2c ==,所以焦点12(2,0),(2,0)F F -,且1222PF PF a -==,设00(,)P x y ,则01x ≥,且220013y x -=,即220033=-y x ,双曲线C的两条渐近线的方程为y =,对于A 中,由()][()22222212000002288PF PF x y x y x ⎡⎤-=++--+=≥⎣⎦,所以A 正确;对于B中,2221200()PF PF OP x y -=-+2200(33)x x =-+-2000(21)(21)(43)2x x x =+---=(定值),所以B 正确;对于C 中,不妨设1122(,),(,)M x y N x y ,直线l 的方程为x my n =+,联立方程组2213x my n y x =+⎧⎪⎨-=⎪⎩,整理得222(31)6330m y mny n -++-=,若直线l 与双曲线C 相切,则22223612(31)(1)0m n m n ∆=---=,整理得2213n m =-,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =M的纵坐标为1y =,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =N的纵坐标为2y =,则点,M N的纵坐标之积为21222233(13)33113y n m mm y ---===-=--所以C 不正确;对于D 中,若点Q 在双曲线的右支上,则通经最短,其中通经长为226b a=,若点Q 在双曲线的左支上,则实轴最短,实轴长为226a =<,所以D 错误.故选:AB.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.【答案】y =【解析】【分析】由c e a ===b a =,即可求出双曲线的渐近线方程.【详解】因为双曲线22221x y a b-=()0,0a b >>c e a ===222b a =,所以b a =,双曲线22221x y a b-=()0,0a b >>渐近线方程为:b y x a =±=.故答案为:y =14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.【答案】1,14⎛⎫-⎪⎝⎭##()0.25,1-【解析】【分析】作出图象,结合题意可知A ,P 及P 到准线的垂足三点共线时,所求距离之和最小,此时P 点的纵坐标为1,代入抛物线即可求得P 点的坐标.【详解】根据题意,由y 2=-4x 得p =2,焦点坐标为(-1,0),作出图象,如图,.因为PF 等于P 到准线的距离PQ ,所以PF PA PQ PA AQ +=+≥,可知当A ,P 及P 到准线垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,此时点P 的纵坐标为1,将y =1代入抛物线方程求得14x =-,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭.故答案为:1,14⎛⎫- ⎪⎝⎭.15. 阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.【答案】【解析】【分析】利用作差法构建斜率、中点坐标相关方程2121221212y y x x b x x y y a-+=-⋅-+,再结合222a c b -=即可求解出a 、b ,进而求出面积.【详解】设()11,A x y ,()22,B x y ,记AB 的中点为M ,即(2,1)M -,因为AB 的中点为M ,所以由中点坐标公式得121242x x y y +=⎧⎨+=-⎩,因为直线AB 过椭圆焦点()3,0F ,所以直线AB 斜率为121201132y y k x x --===--,又因为A ,B 在椭圆22221x y a b+=上,的所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22221212220x x y y a b --+=,整理得2121221212y y x x b x x y y a-+=-⋅-+,代值化简得222b a =,因为椭圆22221x y a b+=的焦点为()3,0F ,所以22a b 9-=,得a =,3b =,由题意可知,椭圆的面积为ab π=.故答案为:.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.【答案】【解析】【分析】根据题意可设1(,)C ma a ,2(,)C mb b ,(0)m >,由P 在两圆上,将坐标代入对应圆的方程整理,易知,a b 是22(64)130m r m r -++=的两个根,进而求直线12C C 的斜率,再根据直线12C C 、(0)y kx k =>倾斜角的关系求k 值.【详解】由题设,圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,且一个交点P (3,2),∴1C 和2C 在第一象限,若,a b 分别是圆1C 和圆2C 的半径,可令1(,)C ma a ,2(,)C mb b ,(0)m >,∴222222(3)+(2){(3)+(2)ma a a mb b b --=--=,易知:,a b 是22(64)130m r m r -++=的两个根,又132ab =,∴213132m =,可得m =12C C k =,而直线12C C 的倾斜角是直线(0)y kx k =>的一半,∴1212221C C C C k k k ==-.故答案为:【点睛】关键点点睛:分析圆心的坐标并设1(,)C ma a ,2(,)C mb b ,结合已知确定,a b 为方程的两个根,应用韦达定理求参数m ,进而求12C C 斜率,由倾斜角的关系及二倍角正切公式求k 值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.【答案】(1)163m = (2)4m =-,()±【解析】【分析】(1)根据题中条件及离心率公式直接计算即可;(2)根据题中条件得4m =-,进一步计算得到c 的值,即可求解.【小问1详解】因为方程为焦点在y 轴上的椭圆,所以22,4a m b ==则离心率12c e a ===,解得163m =故163m =【小问2详解】由题意得 4m =-,c ===故焦点坐标为()±18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.【答案】(1)250x y +-=(2)2340x y -+=【解析】的.【分析】(1)联立方程求得交点坐标,再由两点式求出直线方程.(2)根据直线垂直进行解设方程,再利用交点坐标即可得出结果.【小问1详解】由341102380x y x y +-=⎧⎨+-=⎩得12x y =⎧⎨=⎩,即直线1l 和2l 的交点为(1,2)M .直线l 还经过点()3,1P ,∴l 的方程为211231y x --=--,即250x y +-=.【小问2详解】由直线l 与直线3250x y ++=垂直,可设它的方程为230x y n -+=.再把点(1,2)M 的坐标代入,可得260n -+=,解得4n =,故直线l 的方程为2340x y -+=.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上的截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.【答案】(1)()22116x y -+=(2)3x =或3490x y --=【解析】【分析】(1)根据题意,设圆的一般式方程,代入计算,即可得到结果;(2)根据题意,分直线的斜率存在与不存在讨论,结合点到直线的距离公式列出方程,即可得到结果.【小问1详解】设圆C 的方程为()2222040x y Dx Ey F D E F ++++=+->,令0y =,可得20x Dx F ++=,则122x x D +=-=,将()()1,4,5,0A B 代入可得,116402550D E F D F ++++=⎧⎨++=⎩,解得2015D E F =-⎧⎪=⎨⎪=-⎩,所以圆C 方程为222150x y x +--=,即()22116x y -+=.【小问2详解】圆C 的圆心()1,0C ,圆M 的圆心与()1,0C 关于10x y -+=对称,∴设圆M 的圆心为(),M a b 则11022111a b b a +⎧-+=⎪⎪⎨⎪⨯=-⎪-⎩,解得12a b =-⎧⎨=⎩,圆M 的标准方程为:()()221216x y ++-=,若过点()3,0的直线斜率不存在,则方程为3x =,此时圆心()1,2C -到直线3x =的距离为314r +==,满足题意;若过点()3,0且与圆C 相切的直线斜率存在,则设切线方程为()3y k x =-,即30kx y k --=,则圆心到直线30kx y k --=4,解得34k =,所以切线方程为39044x y --=,即3490x y --=,综上,过点()3,0且与圆C 相切的直线方程为3x =或3490x y --=.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8x ty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .【答案】(1)28y x =(2)见解析.【解析】【分析】(1)根据双曲线方程求出其焦点坐标,即也是抛物线焦点,得到抛物线方程.(2)直线l 与抛物线联立后,利用韦达定理求出0OA OB ⋅= 即可得证.【小问1详解】由双曲线方程()2211551x y m m m -=<<--知其焦点在x 轴上且焦点坐标为1(2,0)F -,2(2,0)F ,所以2(2,0)F 为抛物线C :()220y px p =>的焦点,得242p p =⇒=,所以抛物线C 的方程为28y x =.【小问2详解】设11(,)A x y ,22(,)B x y 联立22886408x ty y ty y x=+⎧⇒--=⎨=⎩,2644640t ∆=+⨯>由韦达定理得128y y t +=,1264y y =-所以12121212(8)(8)OA OB x x y y ty ty y y ⋅=+=+++ 21212(1)8()64t y y t y y =++++2(1)(64)8(8)640t t t =+-++=所以OA OB ⊥ ,所以以AB 为直径的圆经过原点O .得证21. 已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=的左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB (O 为坐标原点),求此时直线l 的斜率k 的值.【答案】(11k <<(2)k =【解析】【分析】(1)设点坐标,联立方程组,根据根与系数的关系求解;(2)通过OAB 面积求解出12x x -,从而求解出k 的值.【小问1详解】依题意,设()()1122,,,A x y B x y ,联立方程组22330y kx x y ⎧=+⎪⎨--=⎪⎩,整理得:()221390,k x ---=因为直线:R)l y kx k =∈,与双曲线22:13x C y -=的左支交于A ,B 两点,所以()2212212130361090130k k x x k x x ⎧-≠⎪=->⎪⎪⎪-⎨=>⎪-⎪⎪+=<⎪⎩ ,解得210,13k k ><<1k <<,【小问2详解】设点O到直线:R)l y kx k =∈的距离为d,则d =,212OAB S AB d x ==-=- ,又因为S =,所以1212,5x x -=又因为12125x x -==,代入12212913x x k x x -⎧=⎪-⎪⎨⎪+=⎪⎩125,整理得4236210k k+-=1k <<,解得k =,此时直线l的斜率k.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.【答案】(1)22:184x y C += (2)存在,1y =【解析】【分析】(1)由椭圆离心率可得222a b =,再将(2代入椭圆的方程可得228,4a b ==,即可求出椭圆的方程;(2)设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立直线MN 和椭圆的方程求出两根之积和两根之和,设直线AN 的方程和直线BM 的方程,两式联立求得交点的纵坐标的表达式,将两根之积和两根之和代入可证得交点在一条定直线上.【小问1详解】,即c e a ===,所以2212b a =,所以222a b =,又因为椭圆()2222:10x y C a b a b +=>>过点(2,所以224212b b +=,解得:228,4a b ==,所以椭圆C 方程为22184x y +=.【小问2详解】因为()()0,2,0,2A B -,设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立方程221844x y y kx ⎧+=⎪⎨⎪=+⎩,得()221216240k x kx +++=,()()222Δ164241264960,k k k =-⨯⋅+=->得232k >则1212221624,1212k x x x x k k -+=⋅=++直线AN 的方程为:2222y y x x --= ,直线BM 的方程为:1122y y x x ++=,联立两直线方程消元:()()2112112122222226y x kx x x y y y x kx x x -+-==+++ 法1:由()221216240k x kx +++=解得:12x x ==,代入化简,2123y y -===-+,解得:1y =,即直线,BM AN 的交点在定直线1y =上.法2:由韦达定理得1221612k x x k-=-+代入化简()()22222222224162824211212242324612612k k x k k x y k k k y k k x x k -⎛⎫+- ⎪--+-++⎝⎭===-+++++,得1y =,即直线,BM AN 的交点在定直线1y =上.法3:由1212221624,1212k x x x x k k -+=⋅=++,得()121232x x kx x -+=⋅代入化简()()1211223221232362x x x y y x x x -++-==-+-++,得1y =,即直线,BM AN 的交点在定直线1y =上.法4: 代()11,M x y 点进椭圆方程得2211184x y +=化简得()()221111221844y y x y +-=-=进而得到()()1111222y x y x -=+,代入化简()()121222222y y y y x x ----=+⋅转化为韦达定理代入()()()()1212121222222222y y kx kx y y x x x x ----++-==+⋅⋅()22221212122241622422412122412k k k k x x k x x k k x x k ⎛⎫-⋅-⋅+ ⎪⎡⎤-+++++⎣⎦⎝⎭==⋅+22222243248211224312k k k k k -++-⋅+=-+,得1y =,即直线,BM AN 的交点在定直线1y =上.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定直线问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量之间的关系,同时得到韦达定理的形式;③利用韦达定理表示出已知的等量关系,化简整理得到所求定直线.。

高二上学期期中考试试卷语文答案

高二上学期期中考试试卷语文答案

一、基础知识(每题2分,共20分)1. 【答案】A2. 【答案】B3. 【答案】C4. 【答案】D5. 【答案】A6. 【答案】B7. 【答案】C8. 【答案】D9. 【答案】A10. 【答案】B二、现代文阅读(每题3分,共15分)11. 【答案】(1)A. 美丽的风景(2)B. 精美的食物(3)C. 丰富的文化(4)D. 深厚的友谊12. 【答案】(1)作者通过对家乡的描写,表达了对家乡的热爱之情。

(2)通过引用诗句和描绘景物,使文章更具诗意和画面感。

(3)运用比喻、拟人等修辞手法,使文章生动形象。

13. 【答案】(1)文章通过对比手法,突出了科技发展对人们生活的影响。

(2)通过具体事例,展示了科技给人们带来的便利和挑战。

(3)作者呼吁人们要正确看待科技发展,既要享受科技带来的便利,也要警惕其带来的负面影响。

三、古诗文阅读(每题5分,共20分)14. 【答案】(1)A. 江南春(2)B. 渡荆门送别(3)C. 江雪(4)D. 酬乐天扬州初逢席上见赠15. 【答案】(1)日暮苍山远,天寒白屋贫。

(2)会当凌绝顶,一览众山小。

(3)床前明月光,疑是地上霜。

(4)独在异乡为异客,每逢佳节倍思亲。

16. 【答案】(1)作者通过描绘寒山、古寺、落日等景象,表达了对宁静、淡泊生活的向往。

(2)诗中运用了对比、夸张等手法,增强了诗歌的表现力。

(3)诗歌语言简洁,意境深远,富有哲理。

四、作文(50分)17. 【答案】标题:《科技的力量》开头:当今社会,科技发展日新月异,它改变了我们的生活方式,提高了我们的生活质量。

主体:1. 科技在医疗领域的应用,如人工智能辅助诊断、远程手术等,为患者带来了福音。

2. 科技在教育领域的应用,如在线教育、虚拟现实教学等,为教育资源共享提供了可能。

3. 科技在环保领域的应用,如太阳能、风能等清洁能源的开发,有助于缓解能源危机和环境污染。

结尾:科技是一把双刃剑,我们要正确看待科技发展,既要发挥其积极作用,也要警惕其负面影响,让科技为人类创造更美好的未来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东阿县实验高中2012—2013学年模块测试(二)高二语文试题第Ⅰ卷(24分)一.选择题:(每题2分,共10分)1.下列词语中加点的字,读音全都正确的一组是()A.叨.扰(tāo )戕.害(qiāng)按捺.不住(nài)亘.古不变(gèn)B.愧怍.(zhà)商榷.(qùe)皓.首穷经(hào)怏.怏不乐(yàng)C.桑梓.(zǐ)摭.拾(zhé)长歌当.哭(dàng)熠.熠生辉(yì)D.殷.红(yān)孝悌.(tì)悄.无声息(qiǎo)铩.羽而归(shā)2.下列词语中没有错别字的一组是()A.防犯势力眼蛛丝马迹天网恢恢,疏而不漏B.屠戳口头禅义气相投有则改之,无则加勉C.修禊局域网芸芸众生一着不慎,满盘皆输D.汲取紧箍咒弹冠相庆盛名之下,其实难符3.下列各句中,标点符号使用正确的一句是()A.张艺谋的《山楂树之恋》虽然不是什么大场面、大制作的商业片,但上映以来热度不减;对此片观众反应不一:有人热泪盈眶,有人陷入忧伤,还有人对张艺谋彻底失望了……等等。

B.连续几届世界杯上看不到中国男子足球队的身影,这与中国日益增长的国力和全球影响力,显然是不匹配的。

老百姓们不禁要问足球的“病灶”到底在哪里?现在看来,腐败毫无疑问是重要原因之一。

C.中秋节是影响深远的传统节日,它起源于祭拜月神、丰收秋报或文人玩月活动,至明清时已成为仅次于春节的第二大传统节日。

在中国传统文化中,中秋月的文化意象,供人吟咏,耐人寻味。

D.“我也不知道这道题怎么解,你还是去问问郭老师吧。

”小明鼓励他说:“郭老师对提问的同学从来都是很耐心的。

”4.下列各句中,加点的成语使用恰当的一句是()A.从纯粹制度理性来看,公车改革不应留漏洞,不能给既得利益者钻空子。

问题是,绝对完善的制度从来不是一挥而就....的。

B.目前很多电视台明年的剧排都已经排满,如何“消化”协调这些广告,寻找一种利益平衡是电视台目前的当务之急....。

C.在捷克布拉格举行的国际天文学联合会第26届大会上,2500多名科学家决定将太阳系第九大行星冥王星逐出行星行列。

天文学界多年的争论至此尘埃落定....,太阳系只剩下八大行星。

D.为了推销产品,商家打起了“绿色生活”“环保电视”的主意。

专家提醒,环保电视市场鱼龙混杂....,购买时须认清“中国环境标志”。

5.下列各句中,没有语病的一句是 ( )A.“女人坊散文精品赏析丛书”共收录铁凝及张抗抗、陈祖芬、毕淑敏、迟子建等五位女作家。

作品反映了女作家对生活、对生命、对自然的感性认知和理性思考。

B.好像一夜之间的事情,因劳动力配置不当以及内陆地区实行鼓励创造就业的措施,引发了广东省的“用工荒”现象的产生。

C.双汇瘦肉精事件进一步引发了人们对食品安全问题的高度关注,虽然双汇集团采取了货品下架等措施,但谁又敢确保这样的安全问题不会再次出现呢?D.《京华时报》爆出新闻,称已拍摄过半的长篇音乐电视剧《幽兰操》,是姜文最想要出演的人物。

该说法被质疑为炒作并引发网友的强烈不满。

二、阅读下面的文字,完成6~8题(6分,每小题2分)世界上最早出现律师行当的地方或许是中国。

据《吕氏春秋》一书说,春秋早期,郑国就有个叫邓析的人,专门帮人打官司,小案子要人一件衣服,大案子要人一条裤子作为报酬,教人“以非为是,以是为非”,委托人想打赢官司他就有办法让他赢,想让人罪名成立他也有办法使人身败名裂。

弄得郑国“是非无度”,郑国的执政大夫子产于是就把邓析杀了。

中国律师出现虽早,可是被禁止的时间也早。

儒家以为争讼是件不值得提倡的事,像邓析这样教导人们如何去打官司,为蝇头小利争论不休,是毒化人们的善良天性,必须要予以严惩。

后世的统治者继续着这一思路,把这一行当称之为“讼师”,或者叫做“讼棍”,立法严禁。

秦汉律严格规定,凡是诉讼活动都必须当事人自行进行诉讼活动,不得有代理人代为办理。

除了妇女、老幼、现任或退休官员及士大夫,可以由家人代为出庭应诉,其他人一律都要亲自出庭。

除了直接替人诉讼外,向人传授诉讼的知识更被视为大罪,南宋绍兴十三年敕规定:凡是聚集生徒教授辞讼文书者,处杖一百。

并允许告发。

再犯者,不得因大赦减免刑罚,一律要“邻州编管”。

从学者,各处杖八十。

明清律撰写“构讼之书”者,要比照“淫词小说例,杖一百流三千里”,如果是为人写作诉状没有增减情节,真实反映事实的,才是被允许的。

尽管法律如此严禁,可是民间诉讼活动总是需要有人帮助,所以这一行当还是禁止不了的,官府的禁令只不过是把这个行当变成了一种“地下行业”而已。

在民间从事诉讼指导的讼师,有不少人是正直的人士,尽力为委托人服务,“受人钱财,与人消灾”,为人们提供必要的法律诉讼知识,颇有点近代律师的作用,不能一概都斥为“讼棍”。

不过就总体上来说,讼师的素质确实不高。

大多数讼师确实是兴风作浪,惟恐天下不乱的无赖。

很多人不顾事实、法律,一味翻云覆雨,颠倒黑白。

由于讼师的名声太臭,到了近代,为了引进西方的法律,在翻译西文中lawyer一词,学者们还是动了脑筋的。

日本当初引进西方法律时,把律师翻译为“代言人”,后来又改为“辩护士”。

这个译法没有被中国的学者沿用。

就想出了“律师”这个词。

成书于1879年的薛福成《筹洋刍议》,大概是最早采用“律师”一词的。

以后律师一词被普遍接受。

民国成立后的不久就公布了第一部律师法律,这样在历史上第一个开业律师被杀两千五百多年后,中国才有了正式的律师。

——(摘自《豸的投影》,上海三联书店)6.下列有关“律师”的解说,不恰当的一项是()A.邓析是我国历史上有文字记载的最早的专门帮人打官司的专业“律师”。

B.律师是替人们进行诉讼活动的,古代把从事诉讼活动的人称之为“讼师”,或者叫做“讼棍”。

C.“律师”一词是由西文lawyer一词翻译而来的,翻译时故意避开了“讼师”这个恶名称。

D.薛福成《筹洋刍议》最早采用“律师”一词,以后“律师”一词被普遍使用。

7.下列表述不能说明“讼师”在我们古代遭歧视的原因的一项是()A.邓析这个我国历史上第一个从事从事诉讼活动的人,为了获得报酬混淆是非,弄得郑国“是非无度”。

B.由于受儒家的影响,后世的统治者认为争讼只是为了为蝇头小利,毒化了人们的善良天性。

C.讼师的行业是一种“地下行业”,我国古代法律上严令禁止专业性的“讼师”的存在。

D.讼师的素质总体上不高,大多数讼师确实是兴风作浪,惟恐天下不乱的无赖。

很多人不顾事实、法律,一味翻云覆雨,颠倒黑白。

8.下列表述,不符合原文意思的一项是()A.秦汉律虽然规定可以让家人为妇女、老幼、现任或退休官员及士大夫代为出庭应诉,但不允许专业讼师代理应诉。

B.明清律虽规定严禁写“构讼之书”,但允许替人写真实反映事实的诉状,说明此时已经允许讼师公开存在。

C.古代民间不少讼师不能一概认定为“讼棍”,他们为了生活,“受人钱财,与人消灾”,帮助不少需要帮助的人。

D.讼师这个行业在我国古代的漫长时期都戴着恶名,到了近代才为其正名,成为一种正式的行业而存在。

三、阅读下面的文言文,完成9~12题。

(8分,每小题2分)朱修之,字恭祖,义兴平氏人也。

曾祖焘,晋平西将军。

祖序,豫州刺史。

父谌,益州刺史。

修之自州主簿迁司徒从事中郎,文帝谓曰:“卿曾祖昔为王导丞相中郎,卿今又为王弘中郎,可谓不忝尔祖矣。

”后随到彦之北伐。

彦之自河南回,留修之戍滑台,为虏所围,数月粮尽,将士熏鼠食之,遂陷于虏。

拓跋焘嘉其守节,以为侍中,妻以宗室女。

修之潜谋南归,妻疑之,每流涕问其意,修之深嘉其义,竟不告也。

后鲜卑冯弘称燕王,拓跋焘伐之,修之与邢怀明并从。

又有徐卓者,复欲率南人窃发,事泄被诛。

修之、怀明惧奔冯弘,弘不礼。

留一年,会宋使传诏至,修之名位素显,传诏见即拜之。

彼国敬传诏,谓为“天子边人”,见其致敬于修之,乃始加礼。

时魏屡伐弘,或说弘遣人修之归求救,遂遣之。

元嘉九年,至京邑,以为黄门侍郎,累迁江夏内史。

雍州刺史刘道产卒,群蛮大动,修之为征西司马讨蛮,失利。

孝武初,为宁蛮校尉、雍州刺史,加都督。

修之在政宽简,士众悦附。

及荆州刺史南郡王义宣反,檄修之举兵;修之伪与之同,而遣使陈诚于帝。

帝嘉之,以为荆州刺史。

义宣闻修之不与己同,乃以鲁秀为雍州刺史,击襄阳。

修之命断马鞍山道,秀不得前,乃退。

及义宣败于梁山,单舟南走,修之率众南定遗寇。

时竺超民执义宣,修之至,乃杀之,以功封南昌县侯。

修之治身清约,凡所赠贶,一无所受。

有饷,或受之,而旋与佐吏分之,终不入己,唯以抚纳群蛮为务。

征为左民尚书,转领军将军。

去镇,秋毫不犯,计在州然油及牛马谷草,以私钱十六万偿之。

然性俭克少恩情,姊在乡里,饥寒不立,修之未尝供赡。

尝往视姊,姊欲激之,为设菜羹粗饭,修之曰:“此乃贫家好食。

”致饱而去。

——(节选自《宋书·朱修之列传》)9.对下列句子中加点词的解释,不正确的一项是()A.可谓不忝.尔祖矣忝:辱没 B.妻.以宗室女妻:妻子C.累迁.江夏内史迁:升职 D.时竺超民执.义宣执:捉拿10.下列各组句子中,加点词的意义和用法相同的一组是()A.留修之戍滑台,为.虏所围若属皆且为.所虏B.见其致敬于修之,乃.始加礼今其智乃.反不能及C.修之伪与之同,而.遣使陈诚于帝蟹六跪而.二螯D.乃以.鲁秀为雍州刺史犹不能不以.之兴怀11.下列句子中,全都表现朱修之能守节的一组是()①留修之戍滑台,为虏所围②修之潜谋南归③复欲率南人窃发④而遣使陈诚于帝⑤修之率众南定遗寇⑥凡所赠贶,一无所受A.①②⑤ B.②④⑤ C.②③④ D.③⑤⑥12.下列对原文有关内容的分析和概括,不正确的一项是()A.朱修之和他的曾祖父、祖父、父亲一样,都担任不小的官职。

后来跟随到彦之北伐,在留守滑台的时候,被敌人围困,虽坚持数月,但最终被俘。

B.虽然拓跋焘很赏识他,但朱修之毕竟是南方人而时时想着回去。

后来在随拓跋焘讨伐冯弘时,终于找机会逃走,最终在传诏的帮助下回到了宋国。

C.在平定义宣的叛乱中,朱修之先是假装同意和义宣一起叛乱,然后又断了鲁秀的进攻道路,让他无功而返,最终杀了被竺超民抓住的义宣。

D.朱修之虽然非常节约,但对生活贫困的姐姐显得薄情少恩。

他看望姐姐时,姐姐准备了很差的饭菜来激他,但他并没有为之所动。

第Ⅱ卷(共96分)四、(30分)13. 把第I卷文言文阅读材料中画横线的句子及课本中的句子翻译成现代汉语。

(16分)(1)有饷,或受之,而旋与佐吏分之,终不入己,唯以抚纳群蛮为务。

(4分)(2)其后二年,余久卧病无聊,乃使人复葺南阁子,其制稍异于前。

(4分)___________________________________________________________________(3)所以隐忍苟活,幽于粪土之中而不辞者,恨私心有所不尽,鄙陋没世,而文采不表于后世也。

相关文档
最新文档