2014年安徽省中考数学模拟试卷(二)内含详细答案

合集下载

2014届中考二模数学试题含答案

2014届中考二模数学试题含答案

2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。

2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。

3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。

4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卷的整洁。

考试结束时,将试卷和答题卷一并交回。

一、选择题(本大题共10小题,每小题3分,共30分。

在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。

2014年安徽省中考数学二模试卷

2014年安徽省中考数学二模试卷

2014年安徽省中考数学二模试卷一、选择题(共10小题,每小题4分,满分40分)每小题都给出四个选项,其中只有一个是正确的。

233.(4分)自2008年来国家启动农村危房改造工程,到2012年,全国改造危房500万户,累计投入资金731.72亿,一千多万贫困户搬了新居.731.72亿这个数用科学记数法可表示4.(4分)把不等式组的解集表示在数轴上,如图正确的是()..C.D.5.(4分)如图,A、B、C是⊙O上三点,的度数是50°,∠A=15°,∠B的等于()6.(4分)如图是由若干个相同的小立方体搭成的几何体的三视图,那么小立方块的个数是()7.(4分)若代数式5x2+4xy﹣1的值是11,则x2+2xy+5的值是()8.(4分)2013年合肥市中考理化实验操作考试有物理、化学、生物三科,考生从中随机抽取一科进行考试,不同场次的考生抽取某一科的机会均等,那么不同场次考试的小华和小丽B C D菱形ABCD的面积为()610.(4分)如图,正方形OABC,ADEF的顶点A、D、C在坐标轴上,点F在AB上,点B、E在函数y=(x>0)的图象上,则点E的坐标是()(,),,,二、填空题(共4小题,每小题5分,满分20分)11.(5分)将一块直角三角板ABC如图摆放,l1∥l2,已知∠B=60°,∠1=40°,则∠2=_________.12.(5分)计算:=_________.13.(5分)已知x、y是非负实数,x+2y﹣8=0,则xy的最大值是_________.14.(5分)如图,E、F是边长为4的正方形ABCD边AD、CD上的动点,若AE=EF,EF⊥FM 交BC于M,则△FMC的周长为_________.三、解答题(共2小题,满分16分)15.(8分)计算:()0+|﹣|+sin30°﹣2﹣1﹣2.16.(8分)将两块大小不一的透明的等腰直角三角板ABC和DCE如图所示摆放,直角顶点C重合,三角板DCE的一个顶点D在三角板ABC的斜边BA的延长线上,连结BE.(1)求证:BE=AD;(2)求证:BE⊥AD.四、解答题(共2小题,满分16分)17.(8分)在正方形网格中,建立如图所示的平面直角坐标系,图中△ABC的三个顶点都在格点上,点A、B、C的坐标分别是(3,3),(﹣1,﹣1),(5,1),(1)把△ABC绕点C按顺时针方向旋转90°后得到△A1B1C,画出△A1B1C,并写出点A1、B1的坐标;(2)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB2C2.18.(8分)如图,用边长为1的小正方形地砖铺广场,从中间往外铺,第1层用一块白色地砖,第2层在四周用彩色地砖将第一块围起来,第3层又在四周用白色地砖将第2层围起来,依此铺下去.五、解答题(共2小题,满分20分)19.(10分)如图,在一次海上联合作战演习中,红方一艘侦察艇在A处发现在其北偏东30°方向,相距12海里的B处水面上,有蓝方一艘小艇正以每小时8海里的速度沿南偏东75°方向前进.若侦察艇以每小时16海里的速度,沿北偏东60°方向拦截蓝方的小艇.试问能否成功拦截?(≈1.7,)20.(10分)某经销商到水果生产基地批发水果,某种水果的批发单价p(元/kg)与批发数量t(吨)(t≥1)之间的函数关系如图象所示.(1)当1≤t≤4时,写出p与t的函数关系式;(2)经销商某次进货共花了1.2万元,求他共批发水果多少吨?六、解答题(共1小题,满分12分)21.(12分)初中生对待学习的态度一直是教育工作者关注的问题之一,为此某事教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整)(1)此次抽样调查中,共调查了多少名学生?(2)求B级的学生占总调查人数的百分比?(3)C级的学生数为多少人,C级所占的圆心角的度数是多少?(4)估计该市八年级20000名初中生大约有多少名学生对学习不感兴趣?请你给他们提出两条好的建议?七、解答题(共1小题,满分12分)22.(12分)已知:二次函数y=﹣x2﹣2x+m的图象与x轴交于点A(1,0),另一交点为B,与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点P(x,y),满足S△ABP=S△ABC,试求点P的坐标.八、解答题(共1小题,满分14分)23.(14分)将等边三角形纸片ABC折叠,使点A落在对边BC上的点D处,折痕交AB 于点E,交AC于点F.(1)如图1,当BD=CD时,求证:AE=AF;(2)如图2,当=时,求的值;(3)若=,请直接写出的值(不需要过程).。

2014年安徽省合肥市中考模拟数学试卷及答案

2014年安徽省合肥市中考模拟数学试卷及答案

安徽省合肥市2014年中考模拟数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每一个小题都给出代号A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中。

每一小题:选对得4分,不选、选错或选出的代号超过一个的一律得0分。

.2.在十二届全国人大二次会议上,李克强总理在政府工作报告中表示,2014年中央预算内4.为了备战2014年体育中考,某中学举行了第一次中考体育模拟测试,如表是该校九(4)这组数据中,众数和中位数分别是()5.如图,己知AB∥CD,BE平分∠ABC,∠CBD=30°,则∠CDE的度数是())7.如图是某正六棱柱形的三视图及相关数据,则判断正确的是()8.市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x 天,根据题意列出了方程:,则方案③程的9.把抛物线y=﹣x 2+x 沿x 轴向右平移1个单位后,再沿x 轴翻折得到抛物线C 1称为第一次操作,把抛物线C 1沿x 轴向右平移1个单位后,再沿x 轴翻折得到抛物线C 2称为第二次操作,…,以此类推,则抛物线y=﹣x 2+x 经过第2014此操作后得到的抛物线C 2014的解析 ﹣+10.如图,AB 为⊙O 直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD ,若点D 与圆心O 不重合,∠BAC=20°,则∠DCA 的度数是( )二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:3x2﹣6x+3= _________.12.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为_________.13.设函数y=与y=x﹣2的图象的交点坐标为(a,b),则的值为_________.14.如图,△ABC中,AB>AC,AD是中线,AE是角平分线,CF⊥AE于F,连接DF,给出以下结论:①DF∥AB;②∠DAE=(∠ACB﹣∠ABC);③DF=(AB﹣AC);④(AB﹣AC)<AD<(AB+AC).其中正确的是_________(把所有正确判断的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:.16.观察下列等式,探究其中的规律:①+﹣1=,②+﹣=,③+﹣=,④+﹣=,….(1)按以上规律写出第⑧个等式:_________;(2)猜想并写出第n个等式:_________;(3)请证明猜想的正确性.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的顶点坐标是A(﹣5,﹣5),B(﹣1,﹣3),C(﹣3,﹣1).(1)按要求画出变换后的图形:①画出△ABC关于y轴对称的△A1B1C1;②以原点O为旋转中心,把△A1B1C1逆时针旋转90°,得到△A2B2C2;(2)若将△ABC向右平移m个单位,向上平移n个单位,使点C落在△A2B2C2内部,指出m、n的取值范围.18.某房地产公司在全国一、二、三线城市都有房屋开发项目,在去年的房屋销售中,一线城市的销售金额占总销售金额的40%.由于两会召开国家对房价实施分类调控,今年二线、三线城市的销售金额都将比去年减少15%,因而房地产商决定加大一线城市的销售力度.若要使今年的总销售金额比去年增长5%,求今年一线城市销售金额比去年增加的百分率.五、(本大题共2小题,每小题10分,满分20分)19.某单位为治理乱停车现象,出台了规范使用停车位的管理办法.如图,矩形ABCD是供一辆机动车停放的车位示意图,已知BC=2m,CD=5.6m,∠DCF=30°,请你计算车位所占的宽度EF为多少m?(结果保留根号)20.如图,已知反比例函数y1=的图象与正比例函数y2=ax(a≠0)的图象相交于点A(2,2)和点B.(1)写出点B的坐标,并求k,a的值;(2)根据图象,比较y1和y2的大小;(3)将直线AB向右平移n(n>0)个单位长度,得到的图象记为l,若点M(3,﹣2)关于直线l的对称点M′落在坐标轴上,请直接写出n的值.六、(本题满分12分)21.2014年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.(1)填空:m= _________,n= _________.扇形统计图中E组所占的百分比为_________%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?七、(本题满分12分)22.某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)已知每生产1千件合格的元件可以盈利1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x(千件)的函数解析式;(2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量x(千件)为多少时所获得的利润最大,最大利润为多少?八、(本题满分14分)23.如图,正方形ABCD的边长为2,P是△BCD内一动点,过点P作PM⊥AB于M,PN⊥AD 于N,分别于对角线BD相交于点E,F.记PM=a,PN=b,当点P运动时,ab=2.(1)求证:EF2=BE2+DF2;(2)求证:△ABF∽△EDA,并求∠EAF的度数;(3)设△AEF的面积为S,试探究S是否存在最小值?若存在,请求出S的最小值;若不存在,请说明理由.参考答案1-10、DDBCD ACDDC11、3(x﹣1)212、9:413、﹣14、①③④.15、﹣416、17、解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)由图可知,4<m<7,2<n<5.18、解:设今年一线城市销售金额比去年增加x,根据题意得40%x﹣(1﹣40%)×15%=5%,解得:x=35%.答:今年一线城市销售金额比去年增加35%.19、解:在Rt△DCF中,∵CD=5.6m,∠DCF=30°,∴sin∠DCF===,∴DF=2.8,∵∠CDF+∠DCF=90°∠ADE+∠CDF=90°,∴∠ADE=∠DCF,∵AD=BC=2,∴cos∠ADE===,∴DE=,∴EF=ED+DF=2.8+(米),答:车位所占的宽度EF为(2.8+)m.y,得C组的频数n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比是:×100%=15%;(2)750×=225(万人);(3)随机抽查一人,则此人关注C组话题的概率是=.故答案为40,100,15.22、解:(1)根据表格中的数据可以得出:p与x是二次函数关系,且图象经过的顶点坐标为(6,0.6),设函数解析式为p=a(x﹣6)2+0.6,把(8,1)代入,的4a+0.6=1解得a=0.1,所以函数解析式为p=0.1(x﹣6)2+0.6=0.1x2﹣1.2x+4.2;(2)y=10[1.6(x﹣p)﹣0.4p]=16x﹣20p=16x﹣20(0.1x2﹣1.2x+4.2)=﹣2x2+40x﹣84(4≤x≤12)y=﹣2x2+40x﹣84=﹣2(x﹣10)2+116,∵4≤x≤12∴当x=10时,y取得最大值,最大利润为116千元答:当每台机器的日产量为10千件时,所获得的利润最大,最大利润为116千元.23、(1)证明:∵四边形ABCD是边长为2的正方形,∴AB=AD=2,∠ABF=∠ADE=45°,∵PM⊥AB,PN⊥AD,∴四边形AMPN是矩形,∴△BME、△DNF、△PEF均为等腰直角三角形,∵PM=a,PN=b,∴BM=EM=2﹣b,DN=FN=2﹣a,PE=PF=a+b﹣2,∴DF2=2(2﹣a)2=2a2﹣8a+8,BE2=2(2﹣b)2=2b2﹣8b+8,EF2=2(a+b﹣2)2=2a2+4ab+2b2﹣8a﹣8b+8,∵ab=2,∴EF2=2a2+2b2﹣8a﹣8b+16,∴EF2=BE2+DF2;(2)证明:∵四边形ABCD是边长为2的正方形,∴AB=AD=2,∠ABF=∠ADE=45°,∵PM⊥AB,PN⊥AD,∴四边形AMPN是矩形,∴PM∥AN,NP∥AM,∴==,==,∴DE=AM,BF=AN,∴DE•BF=AM•AN=2ab,∵ab=2,∴DE•BF=4,∴DE•BF=AB•AD,即=,又∵∠ABF=∠EDA=45°,∴△ABF∽△EDA,∴∠BAF=∠AED,∵∠BAF=∠EAF+∠BAE,∠AED=∠ABF+∠BAE,∴∠EAF=∠ABF=45°;(3)解:S=S△ABD﹣S△ABE﹣S△ADF=AB2﹣AB•ME﹣AD•FN=×22﹣×2×(2﹣b)+×2×(2﹣a)=a+b﹣2=()2+()2﹣2+2﹣2=(﹣)2+2﹣2∵ab=2,∴S=(﹣)2+2﹣2,∵(﹣)2≥0,∴当﹣=0,即a=b=时,S有最小值,且S最小=2﹣2.。

2014年安徽省中考数学模拟试卷(含详细解析及答案)

2014年安徽省中考数学模拟试卷(含详细解析及答案)

2014年安徽省中考数学模拟试卷一、选择题(本题共10题,每小题4分,共40分)1.抛物线y=3(x+4)2 -9的顶点坐标是( )A .(4,9)B .(4,-9)C .(-4,9)D .(-4,-9)2.二次函数y=2x 2+4x+1向左平移7个单位,再向下平移6个单位得到的解析式为( )A .y=2(x-6)2 -7B .y=2(x+8)2 -7C .y=2(x+8)2 +5D .y=2(x-6)2 +53.b 是a 、c 的比例中项,且a :b=7:3,则b :c=( )A .9:7B .7:3C .3:7D .7:94.已知α为锐角,sin (α-20°)=23 ,则α=( )A .20°B .40°C .60°D .80° 5.如图,已知D 、E 分别是△ABC 的AB ,AC 边上的点,DE ∥BC ,且S △ADE :S 四边形DBCE=1:8,那么AE :AC 等于( )A .1:9B .1:3C .1:8D .1:26.过圆内一点M 的最长弦为50,最短弦长为14,则圆心O 到M 的距离为( )A . 39B .24C .18D .297.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象,且与x 轴交点的横坐标分别为x 1,x 2,其中-2<x1<-1,0<x2<1,下列结论:(1)b 2-4ac >0;(2)abc <0;(3)a-b+c >0;(4)2a-b >0;(5)5a-b+2c >0.正确的个数有( )A .1B .2C .3D .48.已知AB 、CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD=( )A .45°B .60°C .90°D .30°9.在平行四边形ABCD 中E 为CD 上一点,DE :EC=1:2,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF =( )A .1:3:9B .1:5:9C .2:3:5D .2:3:910.如图,AB 为⊙O 的直径,弦AC ,BD 交于点P ,若AB=3,CD=1,则sin ∠APD=( )A .31B .241C .22D .232二、填空题(本题共4题,每题5分,共20分)11.已知抛物线y=2x 2+mx-6的顶点坐标为(4,-38),则m 的值是 .12.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB=50°,点D 是优弧BAC 上一点,∠D= .13.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,AC=12m ,cosA =1312,则 tan ∠BCD= .第5题图第7题图 第8题图第10题图14.已知二次函数的图象经过原点及点(-2,-2),且图象与x 轴的另一个交点到原点的距离为4,那么该二次函数的解析式为 .三、(本题共4题,每题8分,共32分)15.︒-︒︒+︒︒-︒45tan 30cos 60sin 60tan ·45cos 30sin 216.已知一次函数y=2x-3的图象与反比例函数y =xk 3+的图象相交,其中有一个交点的纵坐标为-4,求k 的值及反比例函数的解析式.17.如图,△ABC 在方格纸中(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S .18.如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD=8m ,坝高9m ,迎水坡BC 的坡度i 1=1:3,背水坡AD 的坡度i 2=1:1,求斜坡AD 的坡角∠A 及坝底宽AB .第17题图第18题图四、(本题共2题,每题10分,共20分)19.某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直固定.小明为了测量此条幅的长度,他先在楼前D 处测得楼顶A 点的仰角为31°,再沿DB 方向前进16米到达E 处,测得点A 的仰角为45°.已知点C 到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).20.如图,已知⊙O 的半径为2,弦BC 的长为32,点A 为弦BC 所对优弧上任意一点(B ,C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值.(参考数据:sin60°=23,cos30°= 23,tan30°=23.)五、(本题共2题,每题12分,共24分)21.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?第19题图第20题图22.如图,在Rt △ABC 中,∠ACB=90°,D 是BC 边上一点,AD ⊥DE ,且DE 交AB 于点E ,CF ⊥AB 交AD 于点G ,F 为垂足,(1)求证:△ACG ∽△DBE ;(2)CD=BD ,BC=2AC 时,求AD DE .五、(本题共14分) 23.如图,抛物线42342--=x x y 与x 轴交于A 、B 两点,与y 轴交于C 点, (1)求点A ,B 的坐标;(2)判断△ABC 的形状,并证明你的结论;(3)点M (m ,0)是OB 上的一个动点,直线ME ⊥x 轴,交BC 于E ,交抛物线于点F ,求当EF 的值最大时m 的值.第22题图第23题图答案一、1.考点:二次函数的性质.分析:已知解析式为抛物线的顶点式,可直接写出顶点坐标.解答:解:∵y=3(x+4)2-9是抛物线解析式的顶点式,∴根据顶点式的坐标特点可知,顶点坐标为(-4,-9).故选D .点评:此题主要考查了求抛物线的顶点坐标的方法.利用解析式化为y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h 得出是解题关键.2.考点:二次函数图象与几何变换.分析:根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.解答:解:∵y=2x 2+4x+1=2(x+1)2-1,∴二次函数y=2x 2+4x+1向左平移7个单位,再向下平移6个单位得到的解析式为: y=2(x+8)2-7.故选:B .点评:此题主要考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.3.考点:比例线段.分析:由b 是a 、c 的比例中项,根据比例中项的定义,即可求得a :b=b :c ,又由a :b=7:3,即可求得答案.解答:解:∵b 是a 、c 的比例中项,∴b 2=ac ,∴a :b=b :c ,∵a :b=7:3,∴b :c=7:3.故选B .点评:此题考查了比例中项的定义,比较简单,解题的关键是熟记比例中项的定义及其变形. 考点:特殊角的三角函数值.分析:根据特殊角的三角函数值直接解答即可.4.解答:解:∵α为锐角,sin (α-20°)=23, ∴α-20°=60°,∴α=80°,故选D .点评:本题考查的是特殊角的三角函数值,属较简单题目.5.考点:相似三角形的判定与性质.分析:由题可知:△ADE ∽△ABC ,相似比为AE :AC ,由S △ADE :S 四边形DBCE =1:8, 得S △ADE :S △ABC =1:9,根据相似三角形面积的比等于相似比的平方.解答:解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE :S △ABC =AE 2:AC 2,∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,故选B .点评:此题的关键是理解相似三角形面积的比等于相似比的平方.6.考点:垂径定理;勾股定理.专题:计算题.分析:根据题意画出图形,利用垂径定理和勾股定理进行解答.解答:解:根据题意画出图形连接OD ,∵AB 为最长的弦,CD 为最短的弦,∴AB ⊥CD ,∴MD=14×21=7,∵AB=50,∴OD=25,在Rt △OBD 中,OB=22BD -OD =22725-=24.故选B .点评:本题考查了垂径定理和勾股定理,构造直角三角形是解题的关键.7.考点:二次函数图象与系数的关系.分析:根据函数图象可知判别式△>0;根据抛抛物线开口向下,与y 轴的正半轴相交,对称轴在y 轴左侧可得a 、b 、c 的取值范围,从而得到abc 的取值范围;观察图形得到x=-1时,二次函数y 的值在x 轴上方,可得a-b+c 的取值范围;根据对称轴即可判断2a-b >0;由于当x=1时,y=a+b+c <0;当x=-2时,y=4a-2b+c <0;两式相减即可作出判断. 解答:解:∵抛物线和x 轴有2个交点,∴△>0,故(1)正确;∵抛抛物线开口向下,∴a <0,∵与y 轴的正半轴相交,∴c >0,∵对称轴在y 轴左侧,∴b <0,∴abc >0,故(2)不正确;当x=-1时,y=a-b+c >0,即a-b+c >0,故(3)正确;∵对称轴-1<x=ab 2-<0,∴2a-b <0,故(4)不正确; ∵当x=1时,y=a+b+c <0;当x=-2时,y=4a-2b+c <0;∴5a-b+2c <0,故(5)不正确. 故正确的有2个.故选B .点评:本题考查了抛物线和x 轴的交点问题,二次函数的图象与系数的关系,二次函数与x 轴有2个交点,则△>0.8.考点:圆周角定理.分析:利用同弧所对的圆周角相等得到∠B=∠D ,然后利用半径相等即可求得所求. 解答:解:∵∠D 与∠B 所对的弧相同,∴∠B=∠D=30°,∵OA=OD∴∠D=∠A=30°,故选D .点评:本题考查了圆周角定理,解题的关键是根据图形发现同弧所对的角并利用圆周角定理求解.9.考点:相似三角形的判定与性质;平行四边形的性质.分析:根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.解答:解:由题意得△DFE ∽△BFA∴DE :AB=1:3,DF :FB=1:3∴S △DEF :S △EBF :S △ABF =1:3:9.故选A .点评:本题用到的知识点为:相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比.10.考点:圆周角定理;勾股定理;相似三角形的判定与性质;特殊角的三角函数值.分析:连接BC .根据直径所对的圆周角是直角,得∠ACB=90°;根据两角对应相等,得△APB ∽△DPC ,则PC :PB=CD :AB=1:3;再根据勾股定理求得BC :PB 的值,即为sin ∠APD 的值.解答:解:连接BC .∵AB 为⊙O 的直径,∴∠ACB=90°.∵∠CAB=∠BDC ,∠APB=∠DPC ,∴△APB ∽△DPC .∴PC :PB=CD :AB=1:3,∴BC :PB=22:3.∴sin ∠APD=sin ∠BPC=232. 故选D .点评:此题综合运用了圆周角定理的推论、相似三角形的判定和性质、勾股定理以及锐角三角函数的概念.二、11.考点:二次函数的性质.分析:把顶点坐标代入函数解析式计算即可得解.解答:解:∵抛物线y=2x 2+mx-6的顶点坐标为(4,-38),∴2×42+4m-6=-38,解得m=-12.故答案为:-12.点评:本题考查了二次函数的性质,把顶点坐标代入函数解析式计算即可,比较简单.12.考点:圆周角定理.专题:压轴题.分析:欲求∠D 的度数,需先求出同弧所对的∠A 的度数;Rt △ABC 中,已知∠ACB 的度数,即可求得∠A ,由此得解.解答:解:∵AC 是⊙O 的直径,∴∠ABC=90°;∴∠A=180°-90°-50°=40°,∴∠D=∠A=40°.点评:此题主要考查圆周角定理的应用.13.考点:解直角三角形.分析:利用“同角的余角相等”推知∠BCD=∠A ,所以将所求的角的正切函数值转化为求∠A 的正切函数值.解答:解:∵在Rt △ABC 中,∠ACB=90°,AC=12m ,cosA =1312, ∴1312AC AD =,即131212AD =, ∴AD=13144. 又∵CD ⊥AB ,∴CD=13601314412AD AC 2222=-=-)(. ∵∠BCD=∠A , ∴tan ∠BCD=tan ∠A=3615131441360AD CD ==. 故答案是:3615. 点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.14.考点:待定系数法求二次函数解析式.专题:计算题.分析:根据与x 轴的另一交点到原点的距离为4,分这个交点坐标为(-4,0)、(4,0)两种情况,利用待定系数法求函数解析式解答即可.解答:解:∵图象与x 轴的另一个交点到原点的距离为4,∴这个交点坐标为(-4,0)、(4,0),设二次函数解析式为y=ax 2+bx+c ,①当这个交点坐标为(-4,0)时, ⎪⎩⎪⎨⎧=+-=+-=04160240c b a c b a c, 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===0221c b a , 所以二次函数解析式为x x y 2212+=, ②当这个交点坐标为(4,0)时,⎪⎩⎪⎨⎧=++=+-=04160240c b a c b a c ,解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=03261c b a , 所以二次函数解析式为x x y 32612+-=, 综上所述,二次函数解析式为x x y 2212+=或x x y 32612+-=. 故答案为:x x y 2212+=或x x y 32612+-=. 点评:本题考查了待定系数法求二次函数解析式,注意另一个交点要分两种情况讨论求解,避免漏解而导致出错.15.考点:特殊角的三角函数值.专题:计算题.分析:代入特殊角的三角函数值进行计算即可.2641112641123233·22212-=-+-=-+-=)(解答:原式点评:本题考查了特殊角的三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.16.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:将交点的纵坐标代入一次函数解析式中求出横坐标,确定出交点坐标,代入反比例解析式中求出k 的值,即可确定出反比例解析式.解答:解:将y=-4代入y=2x-3中得:-4=2x-3,解得:21-=x , ∴两函数的交点坐标为(21-,-4), 将交点坐标代入反比例解析式得:2134-+=-k ,即k+3=2, 解得:k= -1.则反比例解析式为y=x1-. 点评:此题考查了反比例函数与一次函数的交点问题,求出交点坐标是解本题的关键.17.考点:作图-位似变换;三角形的面积.专题:压轴题.此建立直角坐标系,读出B 点坐标;(2)连接OA ,OB ,OC ,并延长到OA′,OB′,OC′,使OA′,OB′,OC′的长度是OA ,OB ,OC 的2倍.然后顺次连接三点;(3)从网格上可看出三角形的底和高,利用三角形的面积公式计算.解答:解:(1)画出原点O ,x 轴、y 轴.(1分)B (2,1)(2分)(2)画出图形△A′B′C′.(5分)(3)168421S =⨯⨯=.(7分) 点评:本题综合考查了直角坐标系,位似图形,三角形的面积.18.考点:解直角三角形的应用-坡度坡角问题.分析:首先过点E 作DE ⊥AB 于点E ,过点C 作CF ⊥AB 于点F ,可得四边形CDEF 是矩形,又由迎水坡BC 的坡度i 1=1:3,背水坡AD 的坡度i 2=1:1,根据坡度的定义,即可求得A 与BF 的长,又由tanA=i 2=1:1,则可求得坡角∠A 的度数.解答:解:过点E 作DE ⊥AB 于点E ,过点C 作CF ⊥AB 于点F ,∵CD ∥AB ,∴四边形CDEF 是矩形,∵坝顶宽CD=8m ,坝高9m ,∴EF=CD=8m ,DE=CF=9m ,∵迎水坡BC 的坡度i 1=1:3,背水坡AD 的坡度i 2=1:1,∴tan ∠A=DE :AE=1:1=1,CF :BF=1:3,∴∠A=45°,AE=DE=9(m ),BF=3CF=27(m ),∴AB=AE+EF+CF=9+8+27=44(m ).答:斜坡AD 的坡角∠A=45°,坝底宽AB 为44m .点评:此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.19.考点:解直角三角形的应用-仰角俯角问题.分析:设AB=x 米.根据∠AEB=45°,∠ABE=90°得到BE=AB=x ,然后在Rt △ABD 中得到tan31°16+=x x .求得x=24.然后在Rt △ABC 中,利用勾股定理求得AC 即可. 解答:解:设AB=x 米.∵∠AEB=45°,∠ABE=90°,∴BE=AB=x 米在Rt △ABD 中,tan ∠D=BDAD , 即tan31°16+=x x . ∴246.016.01631tan 131tan 16=-⨯≈︒-︒=x . 即AB≈24米AC= B C2+AB22524722=+≈米.答:条幅的长度约为25米.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.20.考点:垂径定理;圆周角定理;解直角三角形.专题:几何综合题;压轴题.分析:(1)连接OB 、OC ,作OE ⊥BC 于点E ,由垂径定理可得出BE=EC=3,在Rt △OBE 中利用锐角三角函数的定义及特殊角的三角函数值可求出∠BOE 的度数,再由圆周角定理即可求解;(2)因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 应落在优弧BC 的中点处,过OE ⊥BC 于点E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点,连接AB ,AC ,则AB=AC ,由圆周角定理可求出∠BAE 的度数,在Rt △ABE 中,利用锐角三角函数的定义及特殊角的三角函数值可求出AE 的长,由三角形的面积公式即可解答.解答:解:(1)解法一:连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC=32,∴BE =EC =3.(1分)在Rt △OBE 中,OB=2,∵sin ∠BOE =OB BE =23, ∴∠BOE=60°,∴∠BOC=120°,∴∠BAC =21∠BOC =60°.(4分) 解法二:连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD=4,∠DCB=90°.在Rt △DBC 中,sin ∠BDC =BD BC =432=23, ∴∠BDC=60°,∴∠BAC=∠BDC=60°.(4分)(2)解:因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处.(5分)过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB=AC ,∠BAE =21∠BAC =30°. 在Rt △ABE 中,∵BE =3,∠BAE =30°,∴AE =︒30tan BE =333=3. ∴S △ABC=3333221=⨯⨯. 答:△ABC 面积的最大值是33.(7分)点评:本题考查的是垂径定理、圆周角定理及解直角三角形,能根据题意作出辅助线是解答此题的关键.21.考点:一元二次方程的应用;二次函数的应用.分析:本题的关键是根据题意列出一元二次方程,再求其最值.解答:解(1)设涨价x 元时总利润为y ,则y=(10+x )(400-20x )=-20x 2+400x+4000=-20(x-5)2+4500当x=5时,y 取得最大值,最大值为4500.(2)设每千克应涨价x 元,则(10+x )(400-20x )=4420解得x=3或x=7,为了使顾客得到实惠,所以x=3.点评:本题考查了二次函数的应用及一元二次方程的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x 2-2x+5,y=3x 2-6x+1等用配方法求解比较简单.22.考点:相似三角形的判定与性质.分析:(1)由在Rt △ABC 中,∠ACB=90°,AD ⊥DE ,CF ⊥AB ,根据等角的余角相等,易证得∠CAD=∠BDE ,∠ACF=∠B ,继而可证得△ACG ∽△DBE ;(2)首先过点E 作EH ⊥BC 于点H ,易证得△BEH ∽△BAC ,然后根据相似三角形的对应边成比例,可得EH :AC=BH :BC=DE :AD ,易证得△DEH 是等腰直角三角形,则可求得BH :BC=1:3,则可求得答案.解答:(1)证明:∵在Rt △ABC 中,∠ACB=90°,AD ⊥DE ,CF ⊥AB ,∴∠ACF+∠BCF=90°,∠B+∠BCF=90°,∠ADC+∠BDE=90°,∠CAD+∠ADC=90°, ∴∠CAD=∠BDE ,∠ACF=∠B ,∴△ACG ∽△DBE ;(2)解:过点E 作EH ⊥BC 于点H ,∵∠ACB=90°,∴EH ∥AC ,∴△BEH ∽△BAC ,∴EH :AC=BH :BC=DE :AD ,∴AC :BC=EH :BH ,∵CD=BD ,BC=2AC ,BC=CD+BD ,∴AC=CD=BD ,∴∠ADC=45°,∵AD ⊥DE ,∴∠EDH=45°,∴DH=EH ,∴EH :BH=AC :BC=1:2,∴EH=DH=21BH , ∴BH :BC=3162=, 即EH :AC=1:3, ∴31AD DE =. 点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.考点:二次函数综合题.专题:代数几何综合题.分析:(1)令y=0,解关于x 的一元二次方程即可得到A 、B 的坐标;(2)根据抛物线解析式求出点C 的坐标,再根据勾股定理求出AC 、BC 的长,然后利用勾股定理逆定理解答;(3)利用待定系数法求出直线BC 的解析式,然后表示出EF 的长,再根据二次函数的最值问题解答.解答:解:(1)令y=0,则042342=--x x , 整理得,x 2-6x-16=0,解得x 1= -2,x 2=8,所以,点A (-2,0),B (8,0);(2)△ABC 是直角三角形.理由如下:x=0时,y=-4,所以,点C (0,-4),根据勾股定理,AC 2=OA 2+OC 2=22+42=20,BC 2=OB 2+OC 2=82+42=80,∴AC 2+BC 2=20+80=100,∵AB 2=(8+2)2=100,∴AB 2=AC 2+BC 2,∴∠ACB=90°,∴△ABC 是直角三角形;(3)设直线BC 的解析式为y=kx+b ,∵点B (8,0),C (0,-4),∴⎩⎨⎧-==+408b b k , 解得⎪⎩⎪⎨⎧-==421b k ,所以,直线BC 的解析式为421-=x y , ∵点M (m ,0), ∴EF=4)4(4124)4234(421222+--=+-=----m m m m m m , ∴当m=4时,EF 的值最大,为4.点评:本题是二次函数综合题型,主要考查了抛物线与x 轴的交点的求解,勾股定理以及勾股定理逆定理的应用,待定系数法求一次函数解析式,二次函数的最值问题,综合题,但难度不大,(3)用m 表示出EF 的长度是解题的关键.。

安徽2014年中考数学模拟试卷

安徽2014年中考数学模拟试卷

安徽2014年中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分) 1、3-的绝对值是【 】A .3B .3-C .13D .13-2、下列运算正确的是 【 】A .3a 2-a 2=3B .(a 2)3=a 5C .a 3·a 6=a 9D .(2a 2)2=4a 23、长丰县是享誉全国的“草莓之乡”,2013年草莓种植面积达到了20万亩,品牌价值10.58亿元。

10.58亿用科学记数法表示为 【 】A .1.058×1010B .1.058×109C .10.58×109D .10.58×1084、如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上 小立方块的个数,那么该几何体的主视图为 【 】A B C D 5、如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为 【 】A .20°B .40°C .50°D .60°第5题图 第9题图 第10题图 第13题图 6、把不等式组110+⎧⎨-⎩x x ≤的解集表示在数轴上,正确的为下图中的【 】A B C D7、已知一个等腰三角形的两边长a 、b 满足方程组2a b 3a b 3-=⎧⎨+=⎩则此等腰三角形的周长为【 】A .5B .4C .3D .5或48、若关于x 的一元二次方程x 2+(k+3)x+2=0的一个根是2-,则另一个根是 【 】 A .2 B .1 C .1- D .09、如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为 【 】A. 210B. 213C. 215D. 810、如右图是一个高为10cm 的圆柱形烧杯,内有一个倒立的化学滤纸做的圆锥,圆锥的高与圆柱的高相等,圆锥的底面积与圆柱的底面积相等。

安徽省2014年初中数学中考模拟试卷及答案

安徽省2014年初中数学中考模拟试卷及答案

2014年安徽省初中毕业学业考试模拟卷二数 学时间120分钟 满分150分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列各数中,最小的数是 ( ) A.0.5B.0C.12- D.-1 2.下列各式计算正确的是( ) A.235325a a a += B.22(2)4a a -=- C.22(3)9a a =D.33a a a ÷=3.如图,直线c 与直线a ,b 相交,且a ∥b ,有下列结论:(1)12∠=∠;(2)13∠=∠;(3)32∠=∠.其中正确的个数为 ( )A.0B.1C.2D.34.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为 ( ) A.0.83510⨯B.3.7510⨯C.3.6510⨯D.3.9510⨯5.下图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是 ( )6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是 ( )A.12x x ≥-⎧⎨<⎩B.12x x ≤-⎧⎨>⎩C.12x x <-⎧⎨≥⎩D.12x x >-⎧⎨≤⎩7.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是 ( )A.3∶1B.8∶1C.9∶1D. 18.A ,B 两地相距10千米,甲、乙二人同时从A 地出发去B 地,甲的速度是乙的速度的2倍,结果甲比乙早到13小时.设乙的速度为x 千米/时,则可列方程为 ( ) A.1010123x x -= B. 1010123x x -= C. 101123x x += D. 1011032x x+= 9.如图,EF 是圆O 的直径,OE =5 cm,弦MN =8 cm,则E ,F 两点到直线MN 的距离之和等于 ( )A.12 cmB.6 cmC.8 cmD.3 cm10.如图,点P 是等边△ABC 的边上的一个做匀速运动的动点,其由点A 开始沿AB 边运动到点B ,再沿BC 边运动到点C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是 ( )二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:210m m -= .12.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第 象限. 13.矩形OABC 有两边在坐标轴的正半轴上,如图所示,双曲线6y x=与边AB ,BC 分别交于D ,E 两点,OE 交双曲线2y x=于点G ,若DG ∥OA ,OA =3,则CE 的长为 .第13题图 第14题图14.如图,正方形纸片ABCD 的边长为3,点E ,F 分别在边BC ,CD 上,将AB ,AD 分别沿AE ,AF 折叠,点B ,D 恰好都落在点G 处.已知BE =1,则EF 的长为 .三、(本大题共2小题,每小题8分,满分16分)15.计算:2014)452-⎛⎫⎪⎝⎭.16.先化简后求值:当1x =时,求代数式221121111x x x x x -+-∙+-+的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在97⨯的小正方形网格中,△ABC 的顶点A ,B ,C 在网格的格点上.将△ABC 向左平移3个单位、再向上平移3个单位得到△A ′B ′C ′.将△ABC 按一定规律顺次旋转,第1次,将△ABC 绕点B 顺时针旋转90得到△11A BC ;第2次,将△11A BC 绕点1A 顺时针旋转90得到△112A B C ;第3次,将△112A B C 绕点2C 顺时针旋转90得到△222A B C ;第4次,将△222A B C 绕点2B 顺时针旋转90得到△323A B C ,依次旋转下去.(1)在网格中画出△A′B′C′和△222A B C;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.18.同学们,我们曾经研究过n n⨯的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道:011223⨯+⨯+⨯+…1(1)(1)(1)3n n n n n+-⨯=+-时,我们可以这样做:(1)观察并猜想:2212(10)1(11)2101212(12)(0112) +=+⨯++⨯=+⨯++⨯=++⨯+⨯; 222123++(10)1(11)2(12)3=+⨯++⨯++⨯=101212323+⨯++⨯++⨯=(123)(011223)+++⨯+⨯+⨯;22221234+++(10)1(11)2(12)3=+⨯++⨯++⨯+=101212323+⨯++⨯++⨯+=(1234)++++( );…(2)归纳结论:222123+++…2n +(10)1(11)2(12)3=+⨯++⨯++⨯+…[1(1)]n n ++-⨯=101212323+⨯++⨯++⨯+…(1)n n n ++-⨯ =( )+[ ] = + =16⨯ .(3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是 . 五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,一次函数y =kx -2的图象与x ,y 轴分别交于点A ,B ,与反比例函数3(0)2y x x =-<的图象交于点32M n ⎛⎫-, ⎪⎝⎭. (1)求A ,B 两点的坐标;(2)设点P 是一次函数y =kx -2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.20.如图,一艘核潜艇在海面下500米的A点处测得俯角为30 正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60 正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度.(保留根号)六、(本题满分12分)21.2013年3月28是第18个全国中小学生安全教育日.某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制成了如下“频数分布直方图”.请回答:(1)参加全校安全知识测试的学生有名;(2)中位数落在分数段内;(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段均分,请你估算本次测试成绩全校平均分约是多少.七、(本题满分12分)22.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?八、(本题满分14分)23.在面积为24的△ABC 中,矩形DEFG 的边DE 在AB 上运动,点F ,G 分别在边BC ,AC 上. (1)若AB =8,DE =2EF ,求GF 的长;(2)若90ACB ∠=,如图2,线段DM ,EN 分别为△ADG 和△BEF 的角平分线,求证:MG =NF ; (3)求出矩形DEFG 的面积的最大值.2014年安徽省初中毕业学业考试模拟卷二1.D 【解析】本题考查了有理数大小的比较.因为正数都大于0,负数都小于0,所以正数大于一切负数.又因为两个负数比较大小时,绝对值大的其值反而小,所以最小值为-1.2.C 【解析】本题考查合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则.23a 与32a 不是同类项,不能合并,故A 错误;22(2)44a a a -=-+,故B 错误;22(3)9a a =,故C 正确; 3a ÷2a a =,故D 错误.3.D 【解析】本题重点考查了平行线的性质及对顶角相等.根据对顶角相等得12∠=∠;因为 a ∥b ,所以3213∠=∠,∠=∠,故正确的个数为3.4.C 【解析】本题考查了科学记数法的表示形式.科学记数法的表示形式为10n a ⨯,其中1≤|a |<10,n 为整数.故350万=3500000=3.6510⨯.5.B 【解析】本题考查了三视图的知识.俯视图是从物体的上面看得到的,观察选项可知B 项确.6.D 【解析】本题考查了在数轴上表示不等式解集的知识.由数轴上表示的不等式组的解集为-1<x ≤2,观察选项可知D 项正确.7.A 【解析】本题考查了概率的应用,相似多边形面积之比等于相似比的平方.根据针扎到小正方形(阴影部分)的概率是 19,可得19S S =,大小故大、小正方形的边长之比为3∶1. 8.A 【解析】本题考查了由实际问题抽象出分式方程.根据时间找出等量关系是解决本题的关键.由题可知,甲的速度是2x 千米/时,根据题意可得1010123xx ,-=.9.B 【解析】本题主要考查了垂径定理、勾股定理以及梯形中位线定理的综合应用.过O,E,F 点分别作OK ,EG ,FH 垂直于MN ,垂足为点K ,G ,H ,连接OM .则OK ∥EG ∥FH ,因为O 是EF 的中点,因此OK 是梯形EGHF 的中位线,欲求EG +FH 的值,需求出OK 的长.在Rt △OMK 中, OM =5,MK =4,所以3OK ==,故EG +FH =6.10.C 【解析】本题考查了动点问题的函数图象.当P 点在边AB 上运动时,S 随着t 的增大而增大;当P 在BC 运动时,S 随着t 的增大而减小,又由等边三角形的性质可知两者增加和减小的速度相等,故C 项正确.11.m (m -10) 【解析】本题主要考查了提公因式法分解因式.210m m -=m (m -10).12.四 【解析】本题考查了一次函数的图象与系数的关系.∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.又∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.【解析】本题考查反比例函数与一次函数的交点问题、用待定系数法求一次函数的解析式等知识.由OA =3得,直线AB 的解析式为x =3,把x =3代入反比例函数y =6x 可得D 点坐标为(3,2),由DG ∥OA 可得,直线DG 的解析式为y =2,把y =2代入2x y =可得G 点坐标为(1,2).设直线OE 的解析式为y =kx ,因为G 点在OE 上,所以2=k ,故直线OE 的解析式为y =2x .由 62x y x y =,⎧⎪⎨=⎪⎩可得,E点坐标为.故CE =14.52 【解析】本题考查了正方形的性质、翻折变换以及勾股定理.∵正方形纸片ABCD 的边长为3,∴90C ∠=,BC =CD =3,根据折叠的性质得EG =BE =1,GF =DF ,设DF =x ,则EF =EG + GF =1+x ,FC =CD -DF =3-x ,EC =BC -BE =3-1=2.在Rt △EFC 中222EF EC FC ,=+,即222(1)2(3)x x +=+-,解得32x =,∴32DF =,35122EF =+=. 15.解:()20124)45-431=-+ 6分=1. 8分16.解:原式222(1)111(1)(1)(1)(1)121(1)x x x x x x x x x --+-+++++=-=-=, 6分当1x =时,原式=1. 8分17.解:(1)△A ′B′C ′和△222A B C 的图象如图所示:4分(2)通过画图可知,△ABC 至少在第8次旋转后得到△A ′B ′C ′. 8分 18.解:(1)(13)4+⨯ 434+⨯ 01122334⨯+⨯+⨯+⨯ 3分 (2)1+2+3+…+n 01122⨯+⨯+⨯+…(1)n n +-⨯12(1)n n +()1(1)1n n n+- n (n +1)(2n +1) 6分 (3)338350 8分19.解:(1)∵点()32M n -,在反比例函数32(0)x y x =-<的图象上. ∴n =1,∴()321M -,. 2分 ∵一次函数y =kx -2的图象经过点()321M -,,∴3212k =--,解得k =-2,∴一次函数的解析式为y =-2x -2. 5分 ∴A (-1,0),B (0,-2). 6分12(2)(34)(14)P P -,,,-. 10分 20.解:如图,过点C 作CE DE ⊥,交A B 的延长线于F ,交DE 于E .∵60FBC ∠=30BAC ,∠= ,∴BAC BCA ∠=∠,∴BC =AB =3000. 3分在Rt △BCF 中,BC =3000,60FBC ∠=,∴sin60CF BC =⋅=7分∴500CE =. 9分答:海底黑匣子C 点处距离海面的深度为500)米. 10分21.解:(1)由频数分布直方图可知,学生总人数为(0.1+0.7+1.3+2.8+3.1+4.0)1001200⨯=. 3分 (2)由频数分布直方图可知,在分数段0.5 15.5的人数为450,在分数段15.5 20.5的人数为400,6分 故所求中位数落在15.5 20.5分数段内.7分(3)x 112(0=⨯.131⨯+.383⨯+.1134⨯+.0182⨯+.8⨯23+0.728)⨯ 2071217.25==, 11分 所以本次测试成绩全校平均分约为17.25分. 12分 22.解:(1)设今年三月份甲种电脑每台售价x 元. 由题意可得方程100000800001000x x +=,解得x =4000. 2分经检验,x =4000是原方程的根,所以甲种电脑今年每台售价4000元. 4分(2)设购进甲种电脑x 台,则购进乙种电脑(15-x )台.由题意可得不等式4800035003000(15)50000x x ≤+-≤,解得610x ≤≤. 6分因为x 是正整数,所以x 的可能取值有6,7,8,9,10,所以共有5种进货方案. 8分(3)设总获利为W 元,W =(4000-3500)x +(3800-3000-a )(15-x )=(a -300)x +12 000-15a , 10分当a =300时,(2)中所有方案获利相同.所以购买甲种电脑6台、乙种电脑9台时对公司更有利(利润相同,成本最低). 12分23.解:(1)∵△ABC 的面积为24,AB =8,∴△ABC 边AB 上的高h =6. 1分设EF =x ,则GF =DE =2x .∵GF ∥A B,∴△CGF ∽△CAB , ∴GF h EF AB h -=,即2686x x -=,解得x =2.4. 3分∴GF =4.8. 4分(2)过点G 作GP ∥BC ,过点D 作DP ∥EN ,GP ,DP 交于点P ,在DM 的延长线上截取DQ =DP ,连接QG . ∵DP ∥EN ,∴PDE NEB ∠=∠,又∵90GDB FEB ∠=∠= ,∴GDP FEN ∠=∠.同理可得DGP EFN ∠=∠.又∵GD =FE ,∴△GPD ≌△FNE ,∴45PG NF GDP FEN =,∠=∠= . 6分∵45GDQ GDP ∠=∠=,∴△GQD ≌△GPD ,∴QG PG GQD GPD =,∠=∠. 7分 ∵90MGP MDP ∠=∠= ,∴180GMD GPD ∠+∠= .又∵180GMQ GMD ∠+∠= ,∴GMQ GPD GQM ∠=∠=∠. 9分∴MG =QG .∴MG =NF . 10分(3)作CH AB ⊥于点H ,交GF 于点I .设AB =a ,AB 边上的高为h ,DG =y ,GF =x ,则CH =h ,CI =h -y ,ah =48. 由(1)知,△CGF ∽△CAB , ∴GF CI AB CH =,即h y x a h -=,则xh 48xh a ah ay y -=-,=,12分则矩形DEFG 的面积248x x h a S xy -==,即()222448576h h h a a a ahS x x x =-+=--+. 由二次函数的有关性质知,当24h x =时,S 取得最大值为5765764812ah==. ∴矩形DEFG 的面积的最大值为12. 14分。

安徽省2014年中考数学模拟试卷(含答案)

安徽省2014年中考数学模拟试卷(含答案)

2014年安徽省中考数学一模试卷一、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论中,其中只有一个是正确的,把正确结论的代号写在题后的括号。

每一小题:选对得4分,不选、错选或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.5的相反数是(的相反数是( )A .B . ﹣5C .D . 5 2.2013年安徽省粮食总产比上年增产30.7亿斤,亿斤,实现连续“七年增、实现连续“七年增、实现连续“七年增、九年丰”,九年丰”,九年丰”,30.730.7亿用科学记数法表示为(示为( )A . 3.07×108B . 30.7×108C . 3.07×109D . 0.307×10103.估计的大小在(的大小在( )A . 2与3之间之间B . 3与4之间之间C . 4与5之间之间D . 5与6之间之间4.下列事件中,属于必然事件的是(.下列事件中,属于必然事件的是( )A . 抛掷一枚1元硬币落地后,有国徽的一面向上元硬币落地后,有国徽的一面向上B . 打开电视任选一频道,正在播放襄阳新闻开电视任选一频道,正在播放襄阳新闻C . 到一条线段两端点距离相等的点在该线段的垂直平分线上一条线段两端点距离相等的点在该线段的垂直平分线上D . 某种彩票的中奖率是10%10%,则购买该种彩票,则购买该种彩票100张一定中奖张一定中奖 5.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则它的主视图是(,则它的主视图是( )A . 图①B . 图②C . 图③D . 图④ 6.两圆的半径分别为a ,b ,圆心距为3.若.若|a+b |a+b |a+b﹣﹣5|+a 2﹣4a+4=04a+4=0,则两圆的位置关系为(,则两圆的位置关系为(,则两圆的位置关系为( )A . 内含B . 相交C . 外切D . 外离7.把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x 2﹣3x+53x+5,,则(则( )A . b =3=3,,c=7B . b =6=6,,c=3C . b =﹣9,c=c=﹣﹣5D . b =﹣9,c=21 8.如图,点F 是▱ABCD 的边CD 上一点,直线BF 交AD 的延长线与点E ,则下列结论错误的是(,则下列结论错误的是( )A .B .C .D .9.如图,在△ABC 中,∠C=90°,中,∠C=90°,AC=8AC=8AC=8,,AB=10AB=10,点,点P 在AC 上,上,AP=2AP=2AP=2,若⊙O ,若⊙O 的圆心在线段BP 上,且⊙O 与AB AB、、AC 都相切,则⊙O 的半径是(的半径是( )A . 1B . C.D .1010.如图,正△ABC .如图,正△ABC 的边长为3cm 3cm,动点,动点P 从点A 出发,以每秒1cm 的速度,沿A→B→C 的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为(的函数的图象大致为( ) A . B . C .D .二、填空题(本题共4小题,每小题5分,满分20分)1111.函数.函数中x 的取值范围是的取值范围是 .1212.如图,△ABC .如图,△ABC 的三个顶点都在正方形网格中的格点上,则tanB 的值为的值为 1 .1313.如图,⊙O .如图,⊙O 是△ABC 的外接圆,的外接圆,CD CD 是直径,∠B=40°,则∠ACD 的度数是的度数是 50°50° .1414.抛物线.抛物线y=ax 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表:的对应值如下表:x … ﹣2 ﹣1 0 1 2 …y … 0 4 6 6 4 …从上表可知,下列说法中正确的是从上表可知,下列说法中正确的是 ①③④①③④ .(填写序号)(填写序号)①抛物线与x 轴的一个交点为(轴的一个交点为(33,0); ②函数y=ax 2+bx+c 的最大值为6; ③抛物线的对称轴是直线; ④在对称轴左侧,④在对称轴左侧,y y 随x 增大而增大.增大而增大.三、(本题共2小题,每小题8分,满分16分)1515..(8分)解不等式组:,并把它的解集在数轴上表示出来.,并把它的解集在数轴上表示出来.1616..(8分)一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm AB=50cm,拉杆最大伸长距离,拉杆最大伸长距离BC=30cm BC=30cm,点,点A 到地面的距离AD=8cm AD=8cm,旅行箱与水平面,旅行箱与水平面AE 成60°角,求拉杆把手处C 到地面的距离(精确到1cm 1cm)).(参考数据:)四、(本题共2小题,每小题8分,满分16分)1717..(8分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用8天;天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?1818..(8分)如图,在矩形ABCD 中,中,AB=3AB=3AB=3,,AD=6AD=6,点,点E 在AD 边上,且AE=4AE=4,EF⊥BE ,EF⊥BE 交CD 于点F .(1)求证:△ABE∽△DEF;)求证:△ABE∽△DEF;(2)求EF 的长.的长.五、(本题共2小题,每小题10分,满分20分)1919..(10分)如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A′B′C′是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心O ,并直接写出△ABC 与△A′B′C′的相似比;与△A′B′C′的相似比;(2)以位似中心O 为旋转中心,把△A′B′C′按顺时针方向旋转90°得到△A″B″C″,画出△A″B″C″.2020..(10分)如图每个正方形是由边长为1的小正方形组成.的小正方形组成.(1)观察图形,请填与下列表格:)观察图形,请填与下列表格:正方形边长正方形边长 1 3 5 7 … n (奇数)(奇数)红色小正方形个数红色小正方形个数…正方形边长正方形边长 2 4 6 8 … n (偶数)(偶数)红色小正方形个数红色小正方形个数… (2)在边长为n (n≥1)的正方形中,设红色小正方形的个数为P 1,白色小正方形的个数为P 2,问是否存在偶数n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.的值;若不存在,请说明理由.六、(本题满分12分)2121..(12分)一个黑布袋中有五个完全相同的小球,分别标有数字1、2、﹣、﹣11、﹣、﹣22、和﹣、和﹣33.小明二次从黑布袋中随机个摸出一个小球,第一次摸出的球其标有的数字作为点Q (x ,y )的横坐标,第二次摸出的球其标有的数字作为点Q (x ,y )的纵坐标,且第一次摸出的球不在放回黑布袋中.)的纵坐标,且第一次摸出的球不在放回黑布袋中.(1)试用列表或画树形图的方法列举出点Q (x ,y )的所有情形;)的所有情形;(2)求点Q (x ,y )落在直线y=x y=x﹣﹣3上的概率.上的概率.七、(本题满分12分)2222..(12分)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资量x 成正比例关系,如图①所示;种植花卉的利润y 2与投资量x 成二次函数关系,如图②所示(注:利润与投资量的单位:万元)成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,万元资金投入种植花卉和树木,他至少获得多少利润,他至少获得多少利润,他能获取的最大利润是多少?八、(本题满分14分)2323..(14分)(2012•舟山)将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′C′,即如图①,我们将这种变换记为即如图①,我们将这种变换记为[[θ,n]n]..(1)如图①,对△ABC 作变换[60°,]得△AB′C′,则S △AB′C′:S △ABC = 3 ;直线BC 与直线B′C′所夹的锐角为所夹的锐角为 60 度;度;(2)如图②,△ABC 中,中,∠BAC=30°,∠ACB=90°,对△ABC 作变换∠BAC=30°,∠ACB=90°,对△ABC 作变换∠BAC=30°,∠ACB=90°,对△ABC 作变换[[θ,n]n]得△AB′C′,使点得△AB′C′,使点B 、C 、C′在同一直线上,且四边形ABB'C'ABB'C'为矩形,求为矩形,求θ和n 的值;的值;(3)如图③,如图③,△ABC △ABC 中,中,AB=AC AB=AC AB=AC,,∠BAC=36°,∠BAC=36°,BC=l BC=l BC=l,,对△ABC 作变换作变换[[θ,n]n]得△AB′C′,得△AB′C′,得△AB′C′,使点使点B 、C 、B′在同一直线上,且四边形ABB'C'ABB'C'为平行四边形,求为平行四边形,求θ和n 的值.的值.参考答案:一:选择题 B C D C B B A D A C二:填空题: : (11)(11)x >2 (12) 1 (13) 2 (12) 1 (13) 50°50°50° (14) (14) (14) ①③④.①③④.①③④.三:三:1515解:不等式可化为:,即;在数轴上表示为:在数轴上表示为:故不等式组的解集为:﹣2≤x<故不等式组的解集为:﹣2≤x<11.16解:作CD⊥AE 于点D .在直角△ACD 中,中,AC=AB+BC=50+30=80cm AC=AB+BC=50+30=80cm AC=AB+BC=50+30=80cm..sin∠CAD=,∴CD=AC•sin∠CAD=80×=40≈69.2(≈69.2(cm cm cm)). 则拉杆把手处C 到地面的距离是:69.2+8=77.2≈77cm.到地面的距离是:69.2+8=77.2≈77cm.四:四:17解:设甲工厂每天加工新产品x 件,件,根据题意得:﹣=8=8,,解得:解得:x=50x=50x=50,,经检验x=50时是原方程的解且符合实际,时是原方程的解且符合实际,1.5x=1.5×50=75,1.5x=1.5×50=75,答:甲工厂每天生产50件,乙工厂每天生产75件.件. 1818((1)证明:在矩形ABCD 中,∠A=∠D=90°,中,∠A=∠D=90°,∴∠1+∠2=90°,∴∠1+∠2=90°,∵EF⊥BE,∵EF⊥BE,∴∠2+∠3=180°﹣90°=90°,∴∠2+∠3=180°﹣90°=90°,∴∠1=∠3,∴∠1=∠3,又∵∠A=∠D=90°,又∵∠A=∠D=90°,∴△ABE∽△DEF;(2)解:∵AB=3,)解:∵AB=3,AE=4AE=4AE=4,,∴BE===5=5,,∵AD=6,∵AD=6,AE=4AE=4AE=4,,∴DE=AD﹣∴DE=AD﹣AE=6AE=6AE=6﹣﹣4=24=2,,∵△ABE∽△DEF,∵△ABE∽△DEF,∴=, 即=,解得EF=.五:五:19 19解:(1)图中点O 为所求;△ABC 与△A′B′C′的位似比等于2:1;(2)如图所示:△A″B″C″为所求;20解:(1)1,5,9,1313,…,则(奇数),…,则(奇数)2n 2n﹣﹣1;4,8,1212,,1616,…,则(偶数),…,则(偶数)2n 2n..(2)由()由(11)可知n 为偶数时P 1=2n =2n,白色与红色的总数为,白色与红色的总数为n 2, ∴P 2=n 2﹣2n 2n,,根据题意假设存在,则n 2﹣2n=5×2n,﹣2n=5×2n,n 2﹣12n=012n=0,,解得n=12n=12,,n=0n=0(不合题意舍去)(不合题意舍去). 存在偶数n=12使得P 2=5P 1.六:六:2121解:(1)列表如下:)列表如下:1 2 ﹣1 ﹣2 ﹣31 ﹣﹣﹣﹣﹣﹣ (1,2) (1,﹣,﹣11) (1,﹣,﹣22) (1,﹣,﹣33)2 (2,1) ﹣﹣﹣﹣﹣﹣ (2,﹣,﹣11) (2,﹣,﹣22) (2,﹣,﹣33)﹣1 (﹣(﹣11,1) (﹣(﹣11,2) ﹣﹣﹣﹣﹣﹣ (﹣(﹣11,﹣,﹣22) (﹣(﹣11,﹣,﹣33)﹣2 (﹣(﹣22,1) (﹣(﹣22,2) (﹣(﹣22,﹣,﹣11) ﹣﹣﹣﹣﹣﹣ (﹣(﹣22,﹣,﹣33)﹣3 (﹣(﹣33,1) (﹣(﹣33,2) (﹣(﹣33,﹣,﹣11) (﹣(﹣33,﹣,﹣22) ﹣﹣﹣﹣﹣﹣所有等可能的Q (x ,y )坐标情况有20种;(2)落在y=x y=x﹣﹣3的情况有2种,种,则P 点Q 落在y=x y=x﹣﹣3==.七:七:2222解:(1)设y 1=kx =kx,由图①所示,函数,由图①所示,函数y 1=kx 的图象过(的图象过(11,2), 所以2=k•1,2=k•1,k=2k=2k=2,,故利润y 1关于投资量x 的函数关系式是y 1=2x =2x,,∵该抛物线的顶点是原点,∵该抛物线的顶点是原点,∴设y 2=ax 2,由图②所示,函数y 2=ax 2的图象过(的图象过(22,2), ∴2=a•22,,故利润y 2关于投资量x 的函数关系式是:的函数关系式是:y=y=x 2;(2)设这位专业户投入种植花卉x 万元(0≤x≤8),则投入种植树木(投入种植树木(88﹣x )万元,他获得的利润是z 万元,根据题意,万元,根据题意,得z=2z=2((8﹣x )+x 2=x 2﹣2x+16=(x ﹣2)2+14+14,,当x=2时,时,z z 的最小值是1414,,∵0≤x≤8,∵0≤x≤8,∴﹣2≤x﹣2≤6,∴﹣2≤x﹣2≤6,∴(∴(x x ﹣2)2≤36,≤36,∴(x ﹣2)2≤18,≤18,(()∴n==2=2;=1=1((1+AB 1+AB)AB=,∴n==.。

2014年安徽省安庆市中考数学二模试卷含答案解析(word版)

2014年安徽省安庆市中考数学二模试卷含答案解析(word版)

2014年安徽省安庆市中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分)1.(4分)实数0,,π,﹣1中,无理数是()A.0 B.C.πD.﹣1分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无限不循环小数,故选:C.点评:本题考查了无理数,无理数是无限不循环小数.2.(4分)2013年12月2日凌晨1:30,“嫦娥三号”探测器在四川省西昌卫星发射中心发射升空,它携“玉兔号”月球车首次实现月球软着落和月面巡视勘察,并开展月球形貌与地质构造调查等科学探测,地球到月球的平均距离是384400千米,把384400这个数用科学记数法表示为()A.3844×103B.38.44×103C.3.844×104D.3.844×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将384400用科学记数法表示为:3.844×105.故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)如图,该几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:左视图有2列,从左往右依次有2,1个正方形,其左视图为:.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(4分)数轴上点A表示的实数可能是()A. B.C.D.考点:估算无理数的大小;实数与数轴.分析:根数轴上点A的位置可得出点A表示的数比3大比4小,从而得出正确答案.解答:解:∵3<<4,∴数轴上点A表示的实数可能是;故选B.点评:本题考查实数与数轴上的点的对应关系,应先看这个点在哪两个相邻的整数之间,进而得出答案.5.(4分)下列运算正确的是()A.a2•a4=a8B.3x+4y=7xy C.(x﹣2)2=x2﹣4 D.2a•3a=6a2考点:完全平方公式;合并同类项;同底数幂的乘法;单项式乘单项式.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用单项式乘以单项式法则计算得到结果,即可做出判断.解答:解:A、原式=a6,错误;B、原式不能合并,错误;C、原式=x2﹣4x+4,错误;D、原式=6a2,正确,故选D点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及单项式乘以单项式,熟练掌握公式及法则是解本题的关键.6.(4分)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠CDB的度数为()A.55° B.50° C.45°D.30°考点:平行线的性质.专题:计算题.分析:先根据平行线的性质由CD∥AB得到∠CBA=180°﹣∠BCD=110°,再根据角平分线定义得∠ABD=∠CBA=55°,然后根据平行线的性质得∠CDB=∠ABD=55°.解答:解:∵CD∥AB,∴∠BCD+CBA=180°,∴∠CBA=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=∠CBA=55°,而AB∥CD,∴∠CDB=∠ABD=55°.故选A.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.(4分)如图,AB是⊙O的弦,AB=6,OD⊥AB于点D,且交于点C,若OB=5,则CD的长度是()A.0.5 B. 1 C. 1.5 D. 2考点:垂径定理;勾股定理.分析:首先连接OB,由垂径定理可求得BD的长,然后由勾股定理求得OD的长,继而求得答案.解答:解:连接OB,∵OD⊥AB,∴BD=AB=×6=3,∴OD==4,∴CD=OC﹣OD=5﹣4=1.故选B.点评:此题考查了垂径定理与勾股定理的应用.此题难度不大,注意掌握数形结合思想的应用.8.(4分)已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.解答:解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y=kx+k﹣1的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx+k﹣1的图象过一、三、四象限,无符合选项.故选C.点评:本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.9.(4分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1,2]=1,[3]=3,[﹣2,5]=﹣3,若[]=5,则x的取值可以是()A.51 B.45 C.40 D.56考点:解一元一次不等式组.专题:新定义.分析:先根据[x]表示不大于x的最大整数,列出不等式组,再求出不等式组的解集即可.解答:解:根据题意得:5≤<5+1,解得:46≤x<56,故选:A.点评:此题考查了一元一次不等式组的应用,关键是根据[x]表示不大于x的最大整数,列出不等式组,求出不等式组的解集.10.(4分)(已知,如图,边长为2cm的等边△ABC(BC落在直线MN上,且点C与点M 重合),沿MN所在的直线以1cm/s的速度向右作匀速直线运动,MN=4cm,则△ABC和正方形XYNM重叠部分的面积S(cm2)与运动所用时间t(s)之间函数的大致图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据题意,将平移过程分为5个阶段,依次求出这个阶段中得面积,分析选项可得答案.解答:解:根据题意,将平移过程分为4个阶段,①A在正方形之左时,C点在MN的中点以左,即0≤t≤1时,则根据三角形的面积计算方法,易得S=t2;②A和M重合之前,未到达MN中点时,即1≤t<2时,有S=﹣t2+t+;③A在MN的中点与C之间时,即2≤t≤4时,有S=;④N是AC的中点之前,4≤t≤5时,S=﹣(6﹣t)2;⑤A与N重合之前,过MN点右边,5≤t≤6时,有S=(t﹣4)2.故选:A.点评:此题考查动点问题中函数的变化关系,解决本题的关键是读懂图意,明确横轴与纵轴的意义.二、填空题11.(3分)分解因式:a3﹣10a2+25a=a(a﹣5)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续分解.解答:解:a3﹣10a2+25a,=a(a2﹣10a+25),(提取公因式)=a(a﹣5)2.(完全平方公式)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后可以利用完全平方公式继续进行二次分解,分解因式一定要彻底.12.(3分)在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外均相同,充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这2个球上的数字之和为偶数的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个球上的数字之和为奇数的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,这两个球上的数字之和为偶数的有2种情况,∴这两个球上的数字之和为偶数的概率为:=,故答案为:点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.13.(3分)如图所示,△ABC中,E、F、D分别是边AB、AC、BC上的点,且满足,则△EFD与△ABC的面积比为2:9.考点:相似三角形的判定与性质.分析:先设△AEF的高是h,△ABC的高是h′,由于,根据比例性质易得==.而∠A=∠A,易证△AEF∽△ABC,从而易得h′=3h,那么△DEF的高就是2h,再设△AEF的面积是s,EF=a,由于相似三角形的面积比等于相似比的平方,那么S△AEF:S△ABC=1:9,于是S△ABC=9s,根据三角形面积公式易求S△DEF=2s,从而易求S△DEF:S△ABC的值.解答:解:设△AEF的高是h,△ABC的高是h′,∵,∴==.又∵∠A=∠A,∴△AEF∽△ABC,∴=,===,∴h′=3h,∴△DEF的高=2h,设△AEF的面积是s,EF=a,∴S△ABC=9s,∵S△DEF=•EF•2h=ah=2s,∴S△DEF:S△ABC=2:9.故答案是:2:9.点评:本题考查了相似三角形的判定和性质,解题的关键是先证明△AEF∽△ABC,并注意相似三角形高的比等于相似比,相似三角形的面积比等于相似比的平方.14.(3分))如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△ABD是正三角形;②若AF=2DF,则EG=2DG;③△AED≌△DFB;④S四边形BCDG=CG2;其中正确的结论是①③④.考点:菱形的性质;全等三角形的判定与性质.分析:①由ABCD为菱形,得出AB=AD,AB=BD,得出ABD为等边三角形;②过点F作FP∥AE于P点,根据题意有DP:PE=DF:DA=1:2,而点G与点P不重合,否则与与原题矛盾,所以EG=2DG错误;③△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;④证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C 作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积.解答:解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.故本小题正确;②过点F作FP∥AE于P点,DP:PE=DF:DA=1:2,而点G与点P不重合,否则与与原题矛盾,所以EG=2DG错误;③∵△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB,故本小题正确;④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.则△CBM≌△CDN,(AAS)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2,故本小题正确;综上所述,正确的结论有①③④.故答案为:①③④.点评:此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.三、解答题(共2小题,满分16分)15.(8分)计算:|3﹣|+2sin60°.考点:实数的运算;特殊角的三角函数值.分析:分别根据绝对值的性质、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=(3﹣)+2×=3﹣+=3.点评:本题考查的是实数的运算,熟知绝对值的性质及特殊角的三角函数值是解答此题的关键.16.(8分)解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.点评:本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.四、(共2小题,每小题8分,满分16分)17.(8分)为了满足铁路交通的快速发展,安庆火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.求甲、乙两队单独完成这项工程各需几个月?考点:一元二次方程的应用.分析:设甲队单独完成这项工程需要x个月,则乙队单独完成这项工程需要(x﹣5)个月,根据两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍建立方程求出其解即可.解答:解:设甲队单独完成这项工程需要x个月,则乙队单独完成这项工程需要(x﹣5)个月,由题意,得x(x﹣5)=6(x+x﹣5),解得:x1=2(舍去),x2=15.∴乙队单独完成这项工程需要15﹣5=10个月答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月.点评:本题考查了工程问题的数量关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍建立方程是关键.18.(8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)先将△ABC向右平移3个单位后得到△A1B1C1,再将△A1B1C1绕点B1按逆时针方向旋转90°后得到△A2B1C2;试在正方形网格中画出上述二次变换所得到的图形;(2)求线段A1C1旋转得到A2C2的过程中,线段A1C1所扫过的面积.考点:作图-旋转变换;作图-平移变换.分析:(1)分别利用图形的平移以及旋转得出对应点坐标位置即可得出答案;(2)根据线段A1C1旋转得到A2C2的过程中,线段A1C1所扫过的面积为S扇形B1C1C2﹣S扇,进而求出即可.形B1A1A2解答:解:(1)如图所示:;(2)A1C1所扫过的面积=.点评:此题主要考查了图形的平移与旋转和扇形面积公式应用,将图形变换后一般图形转化为特殊图形是解题关键.五、(共2小题,每小题10分,共20分)19.(10分)今年植树节,安庆某中学组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).植树数量(棵)频数(人)频率3 5 0.14 20 0.456 10 0.2合计50 1(1)将统计表和条形统计图补充完整;(2)求抽样的50名学生植树数量的众数和中位数,并从描述数据集中趋势的量中选择一个恰当的量来估计该校1200名学生的植树数量.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.专题:计算题.分析:(1)求出植树量为5棵的人数,进而求出对应的频率,补全统计表与条形统计图即可;(2)根据题意得种3棵的有5人,种4棵的有20人,种5棵的有15人,种6棵的有10人,找出植树棵数最多的为4棵,即为众数,找出最中间的两个数,求出平均数得到中位数,求出平均每个学生植树的棵数,乘以1200即可得到结果.解答:解:(1)统计表和条形统计图补充如下:植树量为5棵的人数为:50﹣5﹣20﹣10=15,频率为:15÷50=0.3,植树数量(棵)频数(人)频率3 5 0.14 20 0.45 15 0.36 10 0.2合计50 1(2)根据题意知:种3棵的有5人,种4棵的有20人,种5棵的有15人,种6棵的有10人,∴众数是4棵,中位数是=4.5(棵);∵抽样的50名学生植树的平均数是:==4.6(棵),∴估计该校1200名学生参加这次植树活动的总体平均数是4.6棵,∴4.6×1200=5520(棵),则估计该校1200名学生植树约为5520棵.点评:此题考查了频数(率)分布直方图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.20.(10分)如图,已知AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于点D.(1)证明:直线PB是⊙O的切线;(2)若BD=2PA,OA=3,PA=4,求BC的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OB.利用SAS证明△POB≌△POA,根据全等三角形对应角相等得出∠PBO=∠PAO=90°,即直线PB是⊙O的切线;(2)根据△POB≌△POA得出PB=PA,由已知条件“BD=2PA”、等量代换可以求得BD=2PB;然后由相似三角形(△DBC∽△DPO)的对应边成比例可以求得BC=PO,然后由勾股定理求出PO即可.解答:(1)证明:连接OB.∵BC∥OP,∴∠BCO=∠POA,∠CBO=∠POB.又OC=OB,∴∠BCO=∠CBO,∴∠POB=∠POA.在△POB与△POA中,,∴△POB≌△POA(SAS),∴∠PBO=∠PAO=90°,∴PB是⊙O的切线;(2)解:∵△POB≌△POA,∴PB=PA.∵BD=2PA,∴BD=2PB.∵BC∥OP,∴△DBC∽△DPO,∴,∴BC=PO=.点评:本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了全等三角形、相似三角形的判定与性质及勾股定理.六、共3小题,每小题12分,共24分21.(12分)如图,游客从某旅游景区的景点A处下山至C处有两种路径,一中是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客同时从A处下山,甲沿AC匀速步行,速度为45m/min.乙开始从A乘缆车到B,在B处停留5min后,再从B匀速步行到C,两人同时到达.已知缆车匀速直线运动的速度为180m/min,山路AC长为2430m,经测量,∠CAB=45°,∠CBA=105°.(参考数据: 1.4,1.7)(1)求索道AB的长;(2)为乙的步行速度.考点:解直角三角形的应用.分析:(1)如图,过B点作BD垂直于AC,垂足为D点.通过解Rt△BDC得到CD=,则由CD+AD=AC求得x=900,所以AB==900=1260m;(2)分别求得甲沿AC匀速步行到C所用时间、乙从A乘缆车到B所用时间,则易求乙从B匀速步行到C所用的时间为,故乙的步行速度为m/min.解答:解:(1)过B点作BD垂直于AC,垂足为D点,设BD=xm,则AD=xm,在Rt△BDC中,tan∠BCA=,即tan30°=,∴CD=,∵CD+AD=AC,∴+x=2430,解得x=900,所以AB==900=1260m.(2)甲沿AC匀速步行到C所用时间为,乙从A乘缆车到B所用时间为,∴乙从B匀速步行到C所用的时间为54﹣2﹣7﹣5=40min,∴乙的步行速度为m/min.点评:本题给出实际应用问题,求索道的长并研究甲、乙二人到达时间的问题.着重考查了同角三角函数的基本关系、正余弦定理解三角形和解三角形的实际应用等知识,属于中档题.22.(12分)对于任意的实数x,记f(x)=.例如:f(1)==,f(﹣2)==(1)计算f(2),f(﹣3)的值;(2)试猜想f(x)+f(﹣x)的值,并说明理由;(3)计算f(﹣2014)+f(﹣2013)+…+f(﹣1)+f(0)+f(1)+…+f(2013)+f(2014).考点:分式的混合运算.专题:新定义.分析:(1)将x=2,3分别代入求出f(2)与f(3)的值即可;(2)猜想f(x)+f(﹣x)=0,证明即可;(3)利用(2)中的结论,将原式结合后,计算即可得到结果.解答:解:(1)f(2)==,f(﹣3)==;(2)猜想:f(x)+f(﹣x)=1,证明:f(x)+f(﹣x)=+=+==1;(3)f(﹣2014)+f(﹣2013)+…+f(﹣1)+f(0)+f(1)+…+f(2013)+f(2014)=f(﹣2014)+f(2014)+f(﹣2013)+f(2013)…+f(﹣1)+f(1)+f(0)=1+1+…1+=2014.点评:此题考查了分式的混合运算,弄清题中的规律是解本题的关键.23.(14分)如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC中点,E为AB 边上一动点,F为BC边上一动点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1;(1)求证:∠APE=∠CFP;(2)记△CPF的面积为S2,CF=x,y=.①求y关于x的函数解析式和自变量的取值范围,并求y的最大值.②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.考点:几何变换综合题.分析:(1)分别证出∠APE+∠FPC=∠CFP+∠FPC=135°,即可得出∠APE=∠CFP;(2)①先证出=,再根据AP=CP=2,得出AE==,过点P作PH⊥AB于点H,PG⊥BC于点G,求出S△APE=PH•AE=,S2=S△PCF=CF×PG=x,再根据S1=S△ABC﹣S△APE﹣S△PCF求出S1=8﹣﹣x,再代入y=得出y=﹣8(﹣)2+1,最后根据2≤x≤4,得出时,y取得最大值,最后将x=2代入y=即可求出y最大=1.②根据图中两块阴影部分图形关于点P成中心对称,得出阴影部分图形自身关于直线BD对称,AE=FC,从而得出=x,求出x=2,最后把代入y=﹣+﹣1即可.解答:解:(1)∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;在等腰直角△ABC中,∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CFP,则=.在等腰直角△ABC中,AC=AB=4,又∵P为AC的中点,则AP=CP=2,∴AE===.如图1,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE=PH•AE=×2×=,S2=S△PCF=CF×PG=×x×2=x,∴S1=S△ABC﹣S△APE﹣S△PCF=×4×4﹣﹣x=8﹣﹣x,∴y===﹣+﹣1=﹣8(﹣)2+1,∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.即时,y取得最大值.而x=2在x的取值范围内,将x=2代入y==﹣8(﹣)2+1,得y最大=1.则y关于x的函数解析式为:y=﹣+﹣1,(2≤x≤4),y的最大值为1.②如图2所示:图中两块阴影部分图形关于点P成中心对称,则阴影部分图形自身关于直线BD对称,此时EB=BF,即AE=FC,则=x,解得x1=2,x2=﹣2(舍去),将代入y=﹣+﹣1,得y=2﹣2.点评:此题考查了几何变换,用到的知识点是二次函数的最值、相似三角形的判定与性质、一元二次方程、三角形的面积,关键是根据题意做出辅助线,注意x的取值范围.。

2014年安徽省中考数学试卷附详细答案(原版+解析版)

2014年安徽省中考数学试卷附详细答案(原版+解析版)

2014年安徽省中考数学试卷本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分) 1.()32⨯-的结果是( )A.-5B.1C.-6D.62.=⋅42x x ( )A.x 5B.x 6C.x 8D.x 73.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )第3题图AB DC4.下列四个多项式中,能因式分解的是( )A.12+aB. 962+-a aC.y x 52+D. y x 52-5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm )的数据分布如右表,则棉花纤维长度的数据在8≤x <32这个范围的频率为( ) 棉花纤维长度x频数 0≤x <8 1 8≤x <16 2 16≤x <24 8 24≤x <32 6 32≤x <403A.0.8B.0.7C.0.4D.0.2 6.设n 为正整数,且n <65<1+n ,则n 的值为( ) A.5 B.6 C.7D.87.已知0322=--x x ,则x x 422-的值为( )A.-6B.6C.-2或6D. -2或308.如图,在Rt △ABC 中,AB =9,BC =6,∠B =90°.将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.35B. 25C.4D.5A第8题图DBCMN9.如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的图象大致是( )第9题图ABCDPOA y x543OBy x543O Cy x543ODy x54310.如图,正方形ABCD 的对角线BD 长为22,若直线l 满足:①点D 到直线l 的距离为3;②A 、C 两点到直线l 的距离相等.则符合题意的直线l 的条数为( )A.1B.2C.3D.4第10题图BCAD二、填空题(本大题共4小题,每小题5分,满分20分)11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 .12.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y = . 13.方程32124=--x x 的解是x = . 14.如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 .(把所有正确结论的序号填在横线上) ①∠DCF =21∠BCD ;②EF=CF ;③CEF BEC S S ∆∆=2;④∠DFE =3∠AEF . 第14题图E FA BDC三.(本大题共2题,每题8分,满分16分) 15.计算:()20133250+----π16.观察下列关于自然数的等式: 514322=⨯- ① 924522=⨯- ② 1334722=⨯- ③ … …根据上述规律解决下列问题:(1)完成第四个等式:⨯-492( )2=( )(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1. (2)请画出一个格点△A 2B 2C 2 ,使△A 2B 2C 2∽△ABC ,且相似比不为1.第17题图ACB18.如图,在同一平面内,两条平行高速公路l 1与l 2间有一条“Z ”型道路连通,其中AB 段与高速公路l 1成30°角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ;CD 段长为30km.求两条高速公路间的距离(结果保留根号).第18题图l 2l 130°DBAC五、(本大题共2小题,每小题10分,满分20分)19.如图,在⊙O 中,半径OC 与弦AB 垂直,垂足为E .以OC 为直径的圆与弦AB 的一个交点为F ,D 是CF 延长线与⊙O 的交点.若OE=4,OF=6,求⊙O 的半径和CD 的长.第19题图E DFCOAB20.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨、建筑垃圾处理费30元/吨,若该企业2014年处理的这两种垃圾的数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?六、(本题满分12分)21.如图,管中放置着三根同样的绳子AA 1、BB 1、CC 1 .(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少? (2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.第21题图C 1B 1A 1CB A七、(本题满分12分)22.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数1242221++-=m mx x y 和522++=bx ax y ,其中1y 的图象经过点A (1,1),若21y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当0≤x ≤3时,2y 的最大值.八、(本题满分14分)23.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N . (1)①∠MPN = °;②求证:PM +PN =3a ;(2)如图2,点O 是AD 的中点,连结OM 、ON . 求证:OM=ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,判断四边形OMGN 是否为特殊四边形?并说明理由.第23题图1NM D E F AC BP 第23题图2ONMD E FA CBP 第23题图3GONMDE FACBP2014年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2014年安徽省)(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D. 6【考点】有理数的乘法.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2.(4分)(2014年安徽省)x2•x3=()A.x5B.x6C.x8D. x9【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.【解答】解:x2•x3=x2+3=x5.故选A.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.(4分)(2014年安徽省)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看所得到的图形.【解答】解:从几何体的上面看俯视图是,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2014年安徽省)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D. x2﹣5y【考点】因式分解的意义【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.【点评】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2014年安徽省)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D. 0.2【考点】频数(率)分布表.【分析】求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.【解答】解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.【点评】本题考查了频数分布表,用到的知识点是:频率=频数÷总数.6.(4分)(2014年安徽省)设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D. 8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2014年安徽省)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30【考点】代数式求值.菁优网版权所有【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2014年安徽省)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D. 5【考点】翻折变换(折叠问题).菁优网版权所有【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.【点评】考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2014年安徽省)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B.C.D.【考点】动点问题的函数图象.菁优网版权所有【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC 上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【解答】解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.10.(4分)(2014年安徽省)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2 C.3 D. 4【考点】正方形的性质.菁优网版权所有【分析】连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.【解答】解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.【点评】本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O的距离小于是本题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2014年安徽省)据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.【考点】科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2014年安徽省)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.【考点】根据实际问题列二次函数关系式.菁优网版权所有【分析】由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.【解答】解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.【点评】此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2014年安徽省)方程=3的解是x=6.【考点】解分式方程.菁优网版权所有专题:计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.(5分)(2014年安徽省)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.【考点】平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.菁优网版权所有【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2014年安徽省)计算:﹣|﹣3|﹣(﹣π)0+2013.【考点】实数的运算;零指数幂.菁优网版权所有专题:计算题.【分析】原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.【解答】解:原式=5﹣3﹣1+2013=2014.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(8分)(2014年安徽省)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】规律型:数字的变化类;完全平方公式.菁优网版权所有【分析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.【解答】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2014年安徽省)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.【考点】作图—相似变换;作图-平移变换.菁优网版权所有【分析】(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相似图形的性质,将各边扩大2倍,进而得出答案.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.【点评】此题主要考查了相似变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2014年安徽省)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).【考点】解直角三角形的应用.菁优网版权所有【分析】过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.【解答】解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2014年安徽省)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.【考点】垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.菁优网版权所有专题:计算题.【分析】由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.【解答】解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.20.(10分)(2014年安徽省)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网版权所有【分析】(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.【解答】解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.【点评】本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2014年安徽省)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.【考点】列表法与树状图法.菁优网版权所有专题:计算题.【分析】(1)三根绳子选择一根,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这三根绳子能连结成一根长绳的情况数,即可求出所求概率.【解答】解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2014年安徽省)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.【考点】二次函数的性质;二次函数的最值.菁优网版权所有专题:新定义.【分析】(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.【解答】解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.【点评】本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.八、(本题满分14分)23.(14分)(2014年安徽省)如图1,正六边形ABCDEF的边长为a,P是BC 边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.【考点】四边形综合题.菁优网版权所有【分析】(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,【解答】解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.【点评】本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.。

2014年中考二模数学试卷及答案

2014年中考二模数学试卷及答案

xABB.初三数学第二次模拟试题(考试时间120分钟满分150分)第一部分选择题(共24分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.2012年元月的某一天,我市的最低气温为-3℃,最高气温为4℃,那么这一天我市的日温差是A.3℃B.4℃C.-7℃D.7℃2.下列运算,结果正确的是A.422aaa=+B.()222baba-=-C.()()aabba222=÷D.()422263baab=3.图中圆与圆之间不同的位置关系有A.2种B.3种C.4种D.5种4.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A.25°B.35°C.40°D.60°5.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C.丙D.丁6.如右图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是A.π24B.π21C.π20D.π157.反比例函数ky=的图象如左图所示,那么二次函数y = kx2-k2x —1图象大致为8.下列说法正确的个数是①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程232x mx+=-的解是正数,那么m的取值范围为6m>-A.5 B.4 C.3 D.2第二部分选择题(共126分)二、填空题(每小题3分,共30分)9.在函数xy32-=中,自变量x的取值范围是.10.我市今年初中毕业生为12870人,将12870用科学记数法表示为______(保留两个有效数字).11.如图,人民币旧版壹角硬币内部的正九边形每个内角的度数是______.12.如图,直线1l:11y x=+与直线2l:2y mx n=+相交于点),1(bP.当12y y>时,x的取值范围为.13.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为.14.如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,-4) ,若以原点O为位似中心,在第二象限内画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的位似比等于12,则点A'的坐标为.第11题第12题第14题15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.定义:如图,若双曲线xky=(0>k)与它的其中一条对称轴y x=相交于两点A,B,则线段AB的长称为双曲线xky=(0>k)的对径.若某双曲线xky=(0>k)的对径是26,则k的值为.17.如图,已知四边形ABCD是菱形,∠A=70°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度.18.在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边与G,则折痕FG=_____________第4题第5题第3题第15题第16题第17题三、简答题(共96分) 19.(8分)(1)计算:121(2)3-⎛⎫- ⎪⎝⎭-12sin30° (2)解方程:120112x x x x -+=+- 20.(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 21.(8分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35.(1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n -,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 22.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图: 请根据以上不完整的统计图提供的信息, 解答下列问题:(1)扇形统计图中a = ,b = ; 并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少? 23.(10分)如图,自来水公司的主管道从A 小区向北偏东 60° 直线延伸,测绘员在A 处测得要安装自来水的M 小区在A 小区 北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M 位于C 的北偏西60°方向,(1)请你找出支管道连接点N ,使得N 到该小区铺设的管道最短. (在图中标出点N 的位置) (2)求出AN 的长.24.(10分)如图,在△ABC 中,AD 平分∠BAC ,交BC 于D ,将 A 、D 重合折叠,折痕交AB 于E ,交AC 于F ,连接DE 、DF , (1)判断四边形AEDF 的形状并说明理由; (2)若AB=6,AC=8,求DF 的长.25.(10分)已知四边形ABCD 的外接圆⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ²AC ,BD=8, (1)判断△ABD 的形状并说明理由;(2)求△ABD 的面积.26.(10分)某种商品在30天内每件销售价格P (元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q (件)与时间t(天) 之间的函数关系是Q=-t+40(0<t≤30,t 是整数).(1)求该商品每件的销售价格P 与时间t 的函数关系式,并写出自变量t 的取值范围; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中 的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)如图,矩形ABCD 中,AD=8,AB=4,点E 沿A→D 方向在线段AD 上运动,点F 沿D→A 方向在线段DA 上运动,点E 、F 速度都是每秒2个长度单位,E 、F 两点同时出发,且当E 点运动到D 点时两点都停止运动,设运动时间是t(秒). (1)当 0<t<2时,判断四边形BCFE 的形状,并说明理由(2)当0<t<2时,射线BF 、CE 相交于点O ,设S △FEO =y ,求y 与t 之间的函数关系式. (3)问射线BF 与射线CE 所成的锐角是否能等于60°?若有可能,请求出t 的值,若不能,请说明理由.28.(12分)如图(1),分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上)交y 轴于另一点Q ,抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,B 点坐标为(2,2).(1)求抛物线的函数解析式和点E 的坐标;(2)求证:ME 是⊙P 的切线;(3)如图(2),点R 从正方形CDEF 的顶点E 出发以1个单位/秒的速度向点F 运动,同时点S 从点Q 出发沿y 轴以5个单位/秒的速度向上运动,连接RS ,设运动时间为t 秒(0<t<1),在运动过程中,正方形CDEF 在直线RS 下方部分的面积是否变化,若不变,说明理由并求出其值;若变化,请说明理由;初三数学二模试题参考答案1-5 DCACB 6-8 DBD9.x ≤32 10.1.3³104 11.140 12.x >1 13.10% 14.(-21,2) 15.(-2,1) 16.917.95 18.55或45 19.(1)419 (2)5120.a 2+1 (a ≠±1) 21.(1)5 (2)209 22.(1)a=20% b=12% (2)700 (3)66分 23.(1)菱形 理由略 (2)724 24.(1)画MN ⊥AC 即可 (2)503 25.(1)等腰(略) (2)826.(1)P=⎩⎨⎧≤≤+-<<+)3025(100)250(20t t t t(2)W=QP①0<t <25 ②25≤t ≤30W=(-t+40)(t+20) W=(-t+40)(-t+100) =-(t -10)2+900 =t 2-140t+4000 t=10 W 大=900 =(t -70)2-900t=25 W 大=1125 综上所述, 最大值1125 第25天27.(1)等腰梯形 略 (2)y=t t --4)2(82 (3)①t=4-23 ②t =4-33228.(1)y=41x 2-23x+2 E(3,1)(2)证明略(3)不变 21。

2014安徽省中考数学试卷(含答案和解释)

2014安徽省中考数学试卷(含答案和解释)

2014安徽省中考数学试卷(含答案和解释)2014年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.(4分)(2014年安徽省)(�2)×3的结果是() A.�5 B. 1 C.�6 D. 6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=�2×3 =�6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算. 2.(4分)(2014年安徽省)x2•x3=()A. x5 B. x6 C. x8 D. x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am•an=am+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键. 3.(4分)(2014年安徽省)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是() A. B. C. D.考点:简单几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. 4.(4分)(2014年安徽省)下列四个多项式中,能因式分解的是() A. a2+1 B. a2�6a+9 C. x2+5y D. x2�5y考点:因式分解的意义.分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解; B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键. 5.(4分)(2014年安徽省)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x 频数0≤x<8 1 8≤x<16 2 16≤x<24 8 24≤x<32 6 32≤x<40 3A. 0.8 B. 0.7 C. 0.4 D. 0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的知识点是:频率=频数÷总数. 6.(4分)(2014年安徽省)设n为正整数,且n<<n+1,则n的值为() A. 5 B. 6 C. 7 D. 8 考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵ <<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键. 7.(4分)(2014年安徽省)已知x2�2x�3=0,则2x2�4x的值为() A.�6 B. 6 C.�2或6 D.�2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2�4x 求值.解答:解:x2�2x�3=0 2×(x2�2x�3)=0 2×(x2�2x)�6=0 2x2�4x=6 故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2�4x. 8.(4分)(2014年安徽省)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为() A. B. C. 4 D. 5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9�x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9�x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9�x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大. 9.(4分)(2014年安徽省)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ = ,即 = ,∴y= ,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论. 10.(4分)(2014年安徽省)如图,正方形ABCD的对角线BD长为2 ,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为() A. 1 B. 2 C. 3 D. 4考点:正方形的性质.分析:连接AC与BD相交于O,根据正方形的性质求出OD= ,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD 的对角线BD长为2 ,∴OD= ,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O的距离小于是本题的关键.二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2014年安徽省)据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法―表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值. 12.(5分)(2014年安徽省)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= a(1+x)2 .考点:根据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元, 2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a (1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题. 13.(5分)(2014年安徽省)方程 =3的解是x= 6 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x�12=3x�6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 14.(5分)(2014年安徽省)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF= ∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD 中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF= ∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC 故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°�x,∴∠EFC=180°�2x,∴∠EFD=90°�x+180°�2x=270°�3x,∵∠AEF=90°�x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)(2014年安徽省)计算:�|�3|�(�π)0+2013.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5�3�1+2013 =2014.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 16.(8分)(2014年安徽省)观察下列关于自然数的等式: 32�4×12=5 ① 52�4×22=9 ②72�4×32=13 ③ … 根据上述规律解决下列问题:(1)完成第四个等式:92�4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32�4×12=5 ① 52�4×22=9 ② 72�4×32=13 ③ … 所以第四个等式:92�4×42=17;(2)第n个等式为:(2n+1)2�4n2=2(2n+1)�1,左边=(2n+1)2�4n2=4n2+4n+1�4n2=4n+1,右边=2(2n+1)�1=4n+2�1=4n+1.左边=右边∴(2n+1)2�4n2=2(2n+1)�1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2014年安徽省)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.考点:作图―相似变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相似图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相似变换和平移变换,得出变换后图形对应点位置是解题关键. 18.(8分)(2014年安徽省)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF 中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20× =10km,在Rt△BCF中,BF=BC÷cos30°=10÷ = km,CF=BF•sin30°= × = km, DF=CD�CF=(30�)km,在Rt△DFG中,FG=DF•sin30°=(30�)× =(15�)km,∴EG=BE+BF+FG=(25+5 )km.故两高速公路间的距离为(25+5 )km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2014年安徽省)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=3 ,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6 .解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF= =3 ,∵OF⊥CD,∴CF=DF,∴CD=2CF=6 .点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质. 20.(10分)(2014年安徽省)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60. a=100x+30y=100x+30(240�x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分) 21.(12分)(2014年安徽省)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这三根绳子能连结成一根长绳的情况数,即可求出所求概率.解答:解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是;(2)列表如下: A B C A1 (A,A1)(B,A1)(C,A1) B1 (A,B1)(B,B1)(C,B1) C1 (A,C1)(B,C1)(C,C1)所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P= = .点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分) 22.(12分)(2014年安徽省)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2�4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x�h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x�3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x�3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x�3)2+4与y=3(x�3)2+4顶点相同,开口都向上,∴两个函数y=2(x�3)2+4与y=3(x�3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x�3)2+4与y=3(x�3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12�4×m×1+2m2+1=1.整理得:m2�2m+1=0.解得:m1=m2=1.∴y1=2x2�4x+3 =2(x�1)2+1.∴y1+y2=2x2�4x+3+ax2+bx+5 =(a+2)x2+(b�4)x+8 ∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x�1)2+1 =(a+2)x2�2(a+2)x+(a+2)+1.其中a+2>0,即a>�2.∴ .解得:.∴函数y2的表达式为:y2=5x2�10x+5.∴y2=5x2�10x+5 =5(x�1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0�1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3�1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.八、(本题满分14分) 23.(14分)(2014年安徽省)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠M PN= 60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°�∠BPM�∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN 求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG 是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120° 又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°�∠BPM�∠NPC=180°�60°�60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN 于点L,DK⊥PN于点K, MP+PN=MG+GH+HP+PL+LK+KN ∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM= AM,HL= BP,PL= PM,NK= ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE (SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE ∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°�∠EON,∠DON=60°�∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.。

2014年安徽省中考最新模拟考试数学试卷

2014年安徽省中考最新模拟考试数学试卷

2014年安徽初中毕业学业考试数 学本卷共8大题,23小题,满分150分,考试时间120分钟。

一、选择题(本题共10小题,每小题4分,满分40分)。

每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内。

每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.的倒数是………………………………………………………………………【 】 A .—2B .C 。

2D .2。

不等式组的解集是…………………………………………………【 】 A .B .C .D .无解3。

视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E"之间的变换是…………………………………………………………………………【 】 A .平移 B .旋转 C .对称 D .相似4。

图中圆与圆之间不同的位置关系有 ……………………………………………【 】 A . 2种 B . 3种C . 4种D . 5种5.如图,绕点逆时针旋转得到,若,,则的度数是……………………………………………………………………【 】 A .80°B .40°C .50°D .110°6。

在直角坐标系中, 点在第四象限内, 且与轴正半轴的夹角的正切值是2, 则的值是……………………………………………………………【 】 A . 2 B .8 C .-2 D .-8 7。

芜湖某快餐店用米饭加配不同炒菜配制了一批盒饭(每盒米饭只配一种炒菜),配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有标准对数视力0.1 4.0 0.1 4.1 0.14.2第3题图第4题图第5题图得分 评卷人15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是…………………………………………………………………………………【 】 A .B .C .D .8.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长…………………………………………………………………………………【 】 A 。

安徽省安庆市2014年中考模拟考试(二模)数学试题及答案(word版

安徽省安庆市2014年中考模拟考试(二模)数学试题及答案(word版

2014 年安庆市中考模拟考试(二模) 数学试题参考答案及评分标准
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
C
D
D
B
D
A
B
C
A
C
11. a(a 5)2
1
12.
3
2
13.
9
14.①③④
15. 解: |3- 3 |+2sin60 . °
3 = (3- 3 )+2 × ……6分
2
=3- 3 + 3 =3. ………………8 分
。( 1)将统计表和
条形统计图补充完整; ( 2)求抽样的 50 名学生植树数量的众数和中位数;并从描述数据集中趋势的
量中选择一个恰当的量来估计该校 1200 名学生的植树数量。
22、对于任意的实数 x,记 f ( x)
2x
x
,例如: f (1)
21
( 1 ) 计 算 f (2) , f (-3) 的 值 ;( 2 ) 试 猜 想 f ( x)
地球到月球的平均距离是 384400 千米,把 384400 这个数用科学记数法表示为(

A 、 3844 10 3 B、 38.44 103
C、 3.844 10 4
D、 3.844 10 5
3、如图,该几何体的左视图是(

4、数轴上点 A 表示的实数可能是(

A 、 7 B、 10
Байду номын сангаас
C、 17
D 、 21
匀后,先摸出 1 个球后不放回,再摸出
1 个球,那么这两个球上的数字之和为偶数的概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年安徽省中考数学模拟试卷(二)一、选择题(本大题共10小题,每题4分,共40分) 1.-2013的相反数是( ) A .2013 B .-2013 C .20131 D .20131- 2.下列各式计算正确的是( ) A 532a a a=+ B 1)1(22+=+a a C 628)(a a a =-÷ D 12322=-a a3. 2014年人们对于PM2.5关注度达到前所未有的高度,PM2.5就是指大气中直径小于或等于2.5微米(即为0.0000025米)的颗粒物,0.0000025这个数用科学记数法可表示为( ) A .51025.0-⨯ B .61025-⨯ C .5105.2-⨯ D .6105.2-⨯4.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( ) A .115° B .105° C .75° D .65°5.一个几何体的三视图如图所示,若其俯视图为正方形,则这个几何体的侧面积是( )A .32;B .16;C .216;D .28;6.如图,实数38-在数轴上表示的点大致位置是( )A .点A ;B . 点B ;C . 点C ;D . 点D ;7.2014年芜湖市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( ) A.方差是135;B.平均数是170;C.中位数是173.5;D.众数是177; 8.如图,AB 为⊙O 直径,BC 是⊙O 切线,∠CAB=50°,点P 在边BC 上(点P 不与点B 、点C 重合)的一个动点。

某学习小组根据对点P 的不同位置的探究,给出下列结论,其中一定错误的是( ) A. ∠ABC=90°; B. ∠APB=40°; C.PA=PC ; D. PA=2PB9.已知二次函数y=ax 2+bx+c 的图象如左图所示,那么一次函数y=bx+c 和反比例函数y=在同一平面直角坐标系中的图象大致是( )A .B .C .D .10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,则坐标轴上a 、b 、c 的值为( )A .a=8,b=40,c=48;B .a=6,b=40,c=50;C .a=8,b=32,c=48;D .a=6,b=32,c=50; 二、填空题(每空5分,共20分) 11.计算:201301)1()2(2-+-+-π=12.方程x x x 3)2(=-的解为13.观察下列图形:第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第n 个图形中共有 个★.14.在平面直角坐标系中.过一点分別作x 轴与y 轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.给出以下结论:①点M (2,4)是和谐点;②不论a 为何值时,点P (2,a )不是和谐点;③若点P (a,3)是和谐点,则a=6;④若点F 是和谐点,则点F 关于坐标轴的对称点也是和谐点。

正确结论的序号是 。

三、(本大题共2小题,每题8分,满分16分)15.解不等式组⎪⎩⎪⎨⎧-≤+421121<x x ,并求出不等式组的非负整数解。

16.先化简,再求值:)211(342--⋅--a a a ,其中a =-1 . 四、(本大题共2小题,每题8分,满分16分) 17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为(-4,1),点B 的坐标为(-2,1)。

(1)请以A 、B 、C 为顶点画四边形,且四边形为中心对称图形(只需画一个即可),并写出顶点D 的坐标。

(2)以原点O 为位似中心,位似比为2,在第二象限内作△ABC 的位似图形△A 1B 1C 1,并写出C 1的坐标。

18.已知一次函数b kx y +=与反比例函数xmy =的图象相交于点A (-4,-1),B (-1,n )。

(1)求反比例函数和一次函数的关系式。

(2)根据图象回答:当x 为何值时,一次函数与反比例函数的值都小于-1? 五、(本大题共2小题,每题10分,满分20分)19.已知:如图,斜坡AP 的长为13米,高AH 为5米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 测得该塔的塔顶B 的仰角为76°,求古塔BC 的高度(结果精确到1米)(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)20.在矩形ABCD 中,AB=8cm ,AD=10cm ,将四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH 。

(1)证明四边形EFGH 是矩形; (2)试计算线段AH 的长度。

六、(本大题满分12分)21.2014年5月31日是第27个“世界无烟日”,校学生会书记小明同学就“戒烟方式”的了解程度对本校九年级学生进行了一次随机问卷调查,下图是他采集数据后绘制的两幅不完整的统计图(A :了解较多,B :不了解,C :了解一点,D :非常了解)。

请你根据图中提供的信息解答以下问题: (1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整。

(2)2014年该初中九年级共有学生400人,按此调查,可以估计2014年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?(3)在问卷调查中,选择“A ”的是1名男生,1名女生,选择“D ”的有2名女生。

校学生会要从选择“A 、D ”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率。

七、(本大题满分12分)22.芜湖市中小学生阳光体育运动会即将举行,2014年四月份芜湖市市某工艺厂设计了一款体育工艺品投放市场进行试销.根据市场调查,这种工艺品一段时间内每周的销售量y (个)与销售单价x (元/个)之间的对应关系如下图所示(x 为大于6的整数) (1)试判断y 与x 的函数关系,并直接写出函数关系式;(2)已知体育工艺品的进价为10元/个,按照上述销售规律,当销售单价x 定为多少时,试销该工艺品每周获得的利润w (元)最大?最大利润是多少? (3)芜湖市某体育超市每周购进该种体育工艺品的进货成本不超过1000元,要想每周获得的利润最大,试确定该工艺品的销售单价(规定取整数),并求出此时每周获得的最大利润。

八、(本大题满分14分)23.如图,在△ABC 中,∠BAC=90°,AB=AC=10,小明同学将一个足够大的透明的三角板的直角顶点放在BC 的中点D 处。

(1)若三角板的两边与△ABC 的边AB 、AC 分别交于点E 、F , 求证:△DEF 是等腰三角形。

(2)小明同学将三角板绕点D 旋转,三角板的两边与△ABC 的边AB 、AC 分别交于点E 、F ,请你探究四边形AEDF 的面积是否变化?若没有变化,请求出四边形AEDF 的面积,若有变化,请说明理由。

(3)小明同学继续旋转三角板,如图,当点E 、F 分别在AB 、CA 延长线上时,设BE 的长为X ,四边形ADEF 的面积为S ,请探究S 与x 的函数关系式。

数学试题参考答案一、每题4分1.A2.C3.D4.B5.C6.C7.A8.B9.D 10.C 二、每题5分11、21; 12.x 1=0,x 2=5; 13. 301; 14. ②、④;三、解答题15、解①得:x≤1; -----------------------------------------------------2分解②得:x >23-.-------------------------------------4分所以不等式组的解集是:23-<x≤1.----------------------------------6分故该不等式组的非负整数解是:0,1.---------------------------------8分16、原式=(2)(2)3a a a +--•23--a a =-------------------------------------4分=a+2. …………………………………---------------------6 分当a=﹣1时,原式=a+2=1.…………………………………-------8 分 17.(1)图略,---------------------------------------2分D (﹣5,0)或D (1,2)或D (﹣3,2),写对其中的一种即可;-------------------4分 (2)图略,------------------------------------------6分; C 1(﹣2,4)------------------------------------------8分.18、(1)把A 点坐标代入反比例函数解析式得:m =(- 1)×(- 4)= 4 ;∴y =x4…………………………………2分把B 点坐标代入反比例函数解析式得:n =41-=﹣4; 故B (﹣1,﹣4), 把A 、B 两点坐标代入一次函数y =kx +b 得,-4-1,--4.k b k b +=⎧⎨+=⎩,解得15k b =-⎧⎨=-⎩,故一次函数的关系式为:y =﹣x ﹣5; …………………………6分 (2)如图所示:∵两者图象都在直线y=—1的下方,∴当—4<x <0时,一次函数的值和反比例函数的值都小于﹣1.…………… 8分19、延长BC 交PQ 于点D .∵BC ⊥AC ,AC ∥PQ ,∴BD ⊥PQ . 则AH=CD=5.由勾股定理可得PH=12.--------------------------------------------------3分∵∠BPD=45°,∴PD=BD . -------------------------------------------------------------5分 设BC=x ,则x+5=12+DH . ∴AC=DH=x -7. 在Rt △ABC 中,AC BC=︒76tan ,即7-x x ≈4.0.----------------------- 8分 解得xx 28=,即x ≈9. 答:古塔BC 的高度约为9米.----------------------------------------------------------10分 20、(1)由折叠可知:∠AEH=∠LEH ∠BEF=∠LEF , ∠AEH+∠BEF=∠LEH+∠LEF ,即∠AEH+∠BEF=∠HEF ,∵∠AEH+∠BEF+∠HEF=1800 ∴∠HEF=900 同理可得:∠EFG=900,∠FGH=900 ,∠EHG=900.∴四边形EFGH 是矩形.………………………………4分(2)由折叠可知:AE 与EL 重合,BE 与EL 重合,所以AE=BE=4易证△AEH ∽ △DHG , ……………………………6分 ∴AH:AE=DG:DH , 即AH:4 = 4:(10-AH)∴AH=2或8, ……………………………9分 如图这样折叠,8舍去,取AH=2.………………………………10分 21、(1)由条形统计图中A 对应的数据和扇形统计图中A 对应的百分比可知,抽取的样本容量为2÷10%=20,故选B 的有20×30%=6(人),选D 的有20-2-6-8=4.故C 占8÷20=0.4=40%,D 占4÷20=20%; …………………………………4分 (2)因为选项“了解较多”以上的学生占抽取样本容量的:(2+4)÷20=30%,故M 初中九年级学生中对羽毛球知识“了解较多”以上的学生约有400×30%=120人;……… 7 分 (3)选A 的是一男一女,记作男1、女1,根据题意可知选择D 的有4人且有2男2女,分别记作男2、男3、女2、女3.列表如下:………………………………10 分由上面可知共有4种可能,其中,1男1女的由4种,故选择1名男生1名女生的概率为41=82. …………………………… 12 分 22、⑴y 是x 的一次函数, y 与x 之间的函数关系式为y=-30x+600.----------------3分⑵w=(x-10)(-30x+600)=﹣30(x -15)2+750.-------------------------------------------------------------------------6分∵a=-30<0,∴抛物线开口向下,其顶点(15,750)为抛物线最高点,即当x=15时,w 有最大值,最大销售利润为750元.-------------------------------------------------------------------------------8分⑶由题意得10(-30x+600)≤1000,解得x ≥350.------------------------------------------10分 由(2)知图象对称轴为x=15,∵a=-30<0, ∴抛物线开口向下,当x ≥350时,w 随x 增大而减小, 又x 为整数,故当x=17时,w 最大=(17-10)(﹣30×17+600)=630元.即以17元/个的价格销售这批体育工艺品可获得最大利润630元.----------------------------12分 23.(1)∵∠BAC=90°,AB=AC ,D 为BC 中点, ∵∠BAC =90°, AB=AC=6,D 为BC 中点∴∠BAD=∠DAC=∠B=∠C=45°∴AD=DC=DB ------------------------------2分 ∵∠EDA+∠ADF=90°,∠FDC+∠ADF=90°, ∴∠EDA=∠FDC,∴△AED ≌△CFD,∴ED=FD, ∴△DEF 为等腰三角形;……………………4分(2)四边形AEDF 的面积没有变化.-----------------------------------------5分理由: ∵△AED ≌△CFD∴ADF CFD ADF AED AEDFS S S S S ∆∆∆∆+=+=四边形 =S △ADC ····································· 7分=21S △ABC=50 --------------------------------------------------------9分(3)由(1)中证明知∠ADF=∠BDE ,∠FAD=∠EBD=135°,AD=BD ,∴△AFD ≌△BED ,∴BE=AF=x-------------------------------------------------------11分 过点D 作DM ⊥AB ,垂足为M ,则DM=21题目中AB =10. DM =21AB =5 -----------12分故四边形ADEF 的面积S=S △AEF +S △AED=21AE •AF+21AE •DM =21(x+10)x +21(x +10)×5=21x 2+215x +25.-----------------------------------------14分。

相关文档
最新文档