全等三角形分级练习-第二级

合集下载

人教版初二上数学全等三角形专题练习二(含解析)

人教版初二上数学全等三角形专题练习二(含解析)

全等三角形1.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A、6B、4C、23D、52.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个3.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.55.如图,已知在△ABC中,CD是AB边上的高线, BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD =3,BD=5,则四边形ABCD的面积为_______.7.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED 的面积是.8.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是2,那么△A1B1C1的面积是.9.如图,AB=AD,只需添加一个条件,就可以判定△ABC≌△ADE.10.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.11.如图,∠A=90°,∠ABC的角平分线交AC于E,AE=3,则E到BC的距离为.12.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=4,O为AC的中点,OE⊥OD 交AB于点E.若AE=3,则OD的长为.13.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.15.(1)如图1,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE 相交于点P,求证:BE = AD;(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,连接AD,BE和CF交于点P,下列结论正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.16.已知:如图,E、F是□ABCD的对角线AC上的两点,AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.17.如图,在△ABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,CD⊥AE于点F,BD⊥BC于点B.(1)试说明:AE=CD;(2)若AC=10cm,求线段BD的长.18.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=12AC,则四边形ABCD是什么特殊四边形?请证明你的结论.19.如图,阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.20.如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.(1)请写出与A点有关的三个正确结论;(2)DE 与DF在数量上有何关系?并给出证明.21.已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.22.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF ≌△CEB ;(2)AF=2CD .23.在△ABC 中, ∠C=90°,BD 是△ABC 的角平分线,P 是射线AC 上任意一点(不 与A,D,C 三点重合),过P 作PQ ⊥AB,垂足为Q,交直线BD 于E.(1)如图①,当点P 在线段AC 上时,说明∠PDE=∠PED.(2)如图②,作∠CPQ 的角平分线交直线AB 于点F,则PF 与BD 有怎样的位置关系?24.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD 。

全等三角形的提高拓展训练经典题型50题(含答案)

全等三角形的提高拓展训练经典题型50题(含答案)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB AND【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NC D EB M A F E DCBA O ED CBA【例5】 (北京市、天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°, 求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =, 求BDC ∠.DCB A NM D CB AC EDBADCBA NMC【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.全等三角形证明经典20题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBDADBCM CA B即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC3. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD又∵AE=AB ,AD=AD∴⊿AED ≌⊿ABD (SAS ) ∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C4. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE ,CDB ABA CDF2 1 E所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC所以△ADC ≌△AFC (SAS ) 所以AD =AF所以AE =AF +FE =AD +BE5. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

全等三角形二次全等训练习题

全等三角形二次全等训练习题

二次全等过程训练(一)1.已知:如图,∠A=∠D=90°,AE=DE.求证:△ABC≌△DCB.2.已知:如图,AD=BC,AC=BD.求证:△AOD≌△BOC.3. 3.已知:如图,AB=EF,BC=FG,AC=EG,D为BC中点,H为FG中点.求证:AD=EH.4.已知:如图,四边形ABCD的对角线AC,BD相交于点O,∠1=∠2,∠3=∠4.求证:△ABO≌△ADO.5.已知:如图,AB=AC,DB=DC,F是AD延长线上的一点.求证:△ABF≌△ACF.6.已知:如图,∠E=∠D,AM=CN,ME=ND.求证:△ABE≌△CBD.二次全等过程训练(二)一、单选题1.已知:如图,AD∥BC,AB,CD相交于点O,AO=BO,过点O作EF交AD于点E,交CB 于点F.求证:△EOD≌△FOC.2.已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:Rt△DEB≌Rt△DFC.3.已知:如图,在四边形ABCD中,AB=CD,AB∥CD,E,F分别是DA,BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:△EOD≌△FOB.4.已知:如图,点C,D在线段BE上,且BD=EC,CA⊥AB于A,DF⊥EF于F,且AB=EF.求证:△ABD≌△FEC.5.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,AB=AC.BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠FAB.求证:△EAM≌△FAN.二次全等过程训练(三)1.已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DF⊥AB于F,DE⊥AC于E.求证:△BDF≌△CDE.2.已知:如图,点A,E,F,C在同一直线上,AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,连接AB,CD,BD,BD交AC于点G,AB=CD.求证:△DEG≌△BFG.3.已知:如图,在Rt△ACD中,∠ADC=90°,BE⊥AC于E,交CD于点F,AE=AD.求证:△CEF≌△BDF.4.已知:如图,在四边形ABCD中,AB=BC=CD=AD,BD平分∠ABC,E为BD上任意一点,连接AE,CE.求证:△ADE≌△CDE.55..已知:如图,在△ABC中,∠ACB=∠ABC=60°,∠EDF=60°,BD=CD,∠DBC=∠DCB=30°,∠BDC=120°,延长AC到点G,使CG=BE.求证:△EFD≌△GFD.二次全等过程训练(四)1.已知:如图,点A,C在直线EF上,BC=AD,AB=CD,AE=CF.求证:∠E=∠F.2.已知,如图,AE=BF,AD=BC,CE=DF.求证:AO=BO.已知:如图,∠D=∠E,AM=ME=CN=DN.试猜想AB和BC的数量关系,并证明你的猜想.4.已知:如图,在△ABC中,点D是BC的中点,DF⊥AB于F,DE⊥AC于E,DF=DE.求证:AB=AC.5.如图,在正方形ABCD中,∠ABC=∠BCD=90°,AB=BC=CD=AD.E为BC边上一点,且AE=DE,AE与对角线BD交于点F,∠ABF=∠CBF,连接CF交DE于点G.求证:DE⊥CF.。

专题 全等三角形(三) 课后练习二及详解

专题 全等三角形(三) 课后练习二及详解

题一题面:已知:如图,在梯形ABCD 中,AD ∥BC ,BC =DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。

求证:(1)△BFC ≌△DFC ;(2)AD =DE题二题面:如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B=60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

O P AM N E B C DF A E F BD图① 图② 图③题三题面:我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等。

那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C l,∠C=∠C l。

求证:△ABC≌△A1B1C1。

(请你将下列证明过程补充完整。

)证明:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论。

题四题面:下列4个判断:(1)有两边及其中一边上的高对应相等的两个三角形全等;(2)有两边及第三边上的高对应相等的两个三角形全等;(3)三角形6个边、角元素中,有5个元素分别相等的两个三角形全等;(4)一边及其他两边上的高对应相等的两个三角形全等。

全等三角形的判定ASA、AAS-练习题

全等三角形的判定ASA、AAS-练习题

14.4(2)全等三角形的判定ASA、AAS一、探究现在,我们讨论:如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?这时同样应有两种不同的情况:如图所示,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.ASA AAS二、检测反馈,学以致用1.如图,已知AO=DO,∠AOB与∠DOC是对顶角,还需补充条件______________=_______________,就可根据“ASA”说明△AOB≌△DOC;或者补充条件_______________=_______________,就可根据“AAS”,说明△AOB≌△DOC。

(若把“AO=DO”去掉,答案又会有怎样的变化呢?)2. 如图,OP是∠MON的角平分线,C是OP上一点,CA⊥OM,CB⊥ON,垂足分别为A、B,△AOC≌△BOC吗?为什么?3、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.三、巩固练习1、如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.第1题2、已知:如图 , ∠1=∠2 , ∠3=∠4求证:AC=AB.3.如图,AB⊥BC,AD⊥DC,∠BAC=∠CAD.试说明:AB=AD .4、已知:如图 , FB=CE , AB∥ED , AC∥FD.F、C在直线 BE上.求证:AB=DE , AC=DF.5、如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明:AB=AC+AD6、已知:如图,AB=DC,∠A=∠D.试说明:∠1=∠2.7.如图,ΔABC中,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G.⑴图中有全等三角形吗?请找出来,并证明你的结论.⑵若连结DE,则DE与AB有什么关系?并说明理由.。

人教版八年级数学上册第12章12.1全等三角形知识水平测试题含答案

人教版八年级数学上册第12章12.1全等三角形知识水平测试题含答案

人教版八年级数学上册第12章知识水平测试题含答案12.1 全等三角形一.选择题1.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°6.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°7.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CA C.AB=AD D.∠B=∠D 8.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D9.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°10.如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°二.填空题11.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.13.如图,△ABC≌△DEF,则EF=.14.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.三.解答题15.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB 和∠DGB的度数.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,AD=DC=2.5,BC=4.(1)求∠CBE的度数.(2)求△CDP与△BEP的周长和.18.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA =OB;(2)AB∥CD.19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.20.如图所示,已知△ABC≌△FED,AF=8,BE=2.(1)求证:AC∥DF.(2)求AB的长.21.如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.22.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.23.如图,△ABF≌△CDE,∠B和∠D是对应角,AF和CE是对应边.(1)写出△ABF和△CDE的其他对应角和对应边;(2)若∠B=30°,∠DCF=40°,求∠EFC的度数;(3)若BD=10,EF=2,求BF的长.参考答案一.选择题1.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠F AC=∠EAB≠∠F AB,故②错误;EF=BC,故③正确;∠EAB=∠F AC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.2.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,故选:B.4.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.解:∵△ABC≌△AED,∴∠AED=∠B,AE=AB,∠BAC=∠EAD,∴∠1=∠BAE=40°,∴△ABE中,∠B==70°,∴∠AED=70°,故选:A.6.解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.7.解:∵△ABC≌△CDA,BC=DA∴AB=CD,∠1=∠2,AC=CA,∠B=∠D,∴A,B,D是正确的,C、AB=AD是错误的.故选:C.8.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D ∴第三个选项∠ACB=∠ECD是错的.故选:C.9.解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选:B.10.解:∵,△ABC≌△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.二.填空题11.解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.12.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.13.解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.14.解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=(180°﹣∠BAD)=70°,故答案为:70°.三.解答题15.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠F AB+∠B=∠F AC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.16.解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.17.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=5,BE=BC=4,∴△CDP与△BEP的周长和=DC+DP+PC+BP+PE+BE=DC+DE+BC+BE=2.5+5+4+4=15.5.18.证明:(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.(2)∵△ABC≌△BAD,∴AC=BD,又∵OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD,∴∠OCD=∠ODC,∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴AB∥CD.19.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.20.证明:(1)∵△ABC≌△FED,∴∠A=∠F.∴AC∥DF.(2)∵△ABC≌△FED,∴AB=EF.∴AB﹣EB=EF﹣EB.∴AE=BF.∵AF=8,BE=2∴AE+BF=8﹣2=6∴AE=3∴AB=AE+BE=3+2=521.解:∵△OAD≌△OBC,∴∠C=∠D,∠OBC=∠OAD,∵∠0=65°,∴∠OBC=180°﹣65°﹣∠C=115°﹣∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°﹣∠C+135°+115°﹣∠C=360°,解得∠C=35°.22.解:(1)∵∠A=85°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=8﹣2=6;(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B,∴AB∥DE.23.解:(1)其他对应角为:∠BAF和∠DCE,∠AFB和∠CED;其他对应边为:AB和CD是对应边,BF和DE是对应边;(2)∵△ABF≌△CDE,∠B=30°,∴∠D=∠B=30°,∵∠DCF=40°,∴∠EFC=∠D+∠DCF=30°+40°=70°;(3)∵△ABF≌△CDE,∴BF=DE,∴BF﹣EF=DE﹣EF,∴DF=BE,∵BD=10,EF=2,∴DF=BE=4,∴BF=BE+EF=4+2=6.12.2 全等三角形一、选择题1. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠42. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是()A .∠ADB =∠ADC B .∠B =∠CC .DB =DCD .AB =AC3. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .24. 如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠DD .BF =EC5. 如图所示,在△ABC 和△ABD 中,∠C=∠D=90°,要利用“HL”判定Rt △ABC ≌Rt △ABD成立,还需要添加的条件是 ( )A.∠BAC=∠BADB.BC=BD或AC=ADC.∠ABC=∠ABDD.AC=BD6. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对7. 如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c9. 观察图中的尺规作图痕迹,下列说法错误的是()A.∠DAE=∠EAC B.∠C=∠EACC.AE∥BC D.∠DAE=∠B10. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC二、填空题11. 要测量河岸相对两点A ,B 之间的距离,已知AB 垂直于河岸BF ,先在BF上取两点C ,D ,使CD =CB ,再过点D 作BF 的垂线段DE ,使点A ,C ,E 在一条直线上,如图,测出DE =20米,则AB 的长是________米.12. 如图K -10-10,CA =CD ,AB =DE ,BC =EC ,AC 与DE 相交于点F ,ED与AB 相交于点G .若∠ACD =40°,则∠AGD =________°.13. 如图,小明和小丽为了测量池塘两端A ,B 两点之间的距离,先取一个可以直接到达点A 和点B 的点C ,沿AC 方向走到点D 处,使CD =AC ;再用同样的方法确定点E ,使CE =BC .若量得DE 的长为60米,则池塘两端A ,B 两点之间的距离是______米.14. 如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△__________.15. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.三、解答题16. 如图,AB=AD,BC=DC,点E在AC上.求证:(1)AC平分∠BAD;(2)BE=DE.17. 已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC. (1)如图①,若点O 在边BC 上,求证:AB =AC;(2)如图②,若点O 在△ABC 的内部,求证:AB =AC ;(3)若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示.图① 图②18. (2019•桂林)如图,AB AD BC DC ==,,点E 在AC 上.(1)求证:AC 平分BAD ∠;.(2)求证:BE DE19. 如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD.求证:CF=DE.20. 如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.(1)在同一平面内,△ABC与△ADE按图②所示的方式放置,其中∠B=∠D=90°,AB =AD ,BC 与DE 相交于点F ,请你判断四边形ABFD 是不是筝形,并说明理由;(2)请你结合图①,写出筝形的一个判定方法(定义除外):在四边形ABCD 中,若________________,则四边形ABCD 是筝形.人教版 八年级数学 12.2 全等三角形 针对训练 -答案一、选择题1. 【答案】C [解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).2. 【答案】C [解析] 当添加条件A 时,可用“ASA”证明△ABD ≌△ACD ;当添加条件B 时,可用“AAS”证明△ABD ≌△ACD ;当添加条件D 时,可用“SAS”证明△ABD ≌△ACD ;当添加条件C 时,不能证明△ABD ≌△ACD.3. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .4. 【答案】C [解析] 选项A 中添加AB =DE 可用“AAS”进行判定,故本选项不符合题意;选项B 中添加AC =DF 可用“AAS”进行判定,故本选项不符合题意;选项C 中添加∠A =∠D 不能判定△ABC ≌△DEF ,故本选项符合题意; 选项D 中添加BF =EC 可得出BC =EF ,然后可用“ASA”进行判定,故本选项不符合题意.故选C.5. 【答案】B [解析] 要添加的条件为BC=BD 或AC=AD.理由:若添加的条件为BC=BD ,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL);若添加的条件为AC=AD ,在Rt △ABC 和Rt △ABD 中,∴Rt △ABC ≌Rt △ABD (HL).6. 【答案】C [解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB , ∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中, ⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS). ③设BE 与CF 相交于点O.∵BE ⊥AC ,CF ⊥AB ,∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF.∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).7. 【答案】C [解析] A .∠A =∠D ,∠ABC =∠DCB ,BC =BC ,符合“AAS”,即能推出△ABC ≌△DCB ,故本选项不符合题意;B .∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,符合“ASA”,即能推出△ABC ≌△DCB ,故本选项不符合题意;C .∠ABC =∠DCB ,AC =DB ,BC =BC ,不符合全等三角形的判定条件,即不能推出△ABC ≌△DCB ,故本选项符合题意;D .AB =DC ,∠ABC =∠DCB ,BC =CB ,符合“SAS”,即能推出△ABC ≌△DCB ,故本选项不符合题意.故选C.8. 【答案】D [解析] ∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠CED =∠AFB =90°,∠A =∠C.又∵AB =CD ,∴△CED ≌△AFB.∴AF =CE =a ,DE =BF =b ,DF =DE -EF =b -c.∴AD =AF +DF =a +b -c.故选D.9. 【答案】A[解析] 根据图中尺规作图的痕迹,可得∠DAE=∠B,故D选项正确,∴AE∥BC,故C选项正确.∴∠EAC=∠C,故B选项正确.∵∠DAE=∠B,∠EAC=∠C,而∠C与∠B的大小关系不确定,所以∠DAE 与∠EAC的大小关系不确定.故选A.10. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°.∴∠ADF=∠ABF=∠C.∴FD∥BC.二、填空题11. 【答案】2012. 【答案】40[解析] 在△ABC和△DEC中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,∴△ABC ≌△DEC(SSS).∴∠A =∠D.又∵∠AFG =∠DFC ,∴∠AGD =∠ACD =40°.13. 【答案】60 [解析] 在△ACB 和△DCE 中,⎩⎨⎧AC =DC ,∠ACB =∠DCE ,BC =EC ,∴△ACB ≌△DCE(SAS).∴DE =AB.∵DE =60米,∴AB =60米.14. 【答案】12【解析】由作法得BD 平分ABC ∠,∵90C =︒∠,30A ∠=︒,∴60ABC ∠=︒,∴30ABD CBD ∠=∠=︒,∴DA DB =,在Rt BCD △中,2BD CD =,∴2AD CD =, ∴12BCD ABD S S =△△.故答案为:12.15. 【答案】3 [解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°.∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE.∵AE =AC -CE ,BC =2 cm ,EF =5 cm ,∴AE =5-2=3(cm).三、解答题16. 【答案】证明:(1)在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC ,即AC 平分∠BAD.(2)由(1)知∠BAE =∠DAE.在△BAE 与△DAE 中,⎩⎨⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS).∴BE =DE.17. 【答案】(1)证明:如图①,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF ,OB =OC ,解图①∴Rt △OEB ≌Rt △OFC ,∴∠B =∠C ,从而AB =AC.(2)证明:如图②,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF.在Rt △OEB 和Rt △OFC 中,∵OE =OF ,OB =OC ,解图②∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF,又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立.(注:当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图③)解图③18. 【答案】(1)在ABC △与ADC △中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩,∴ABC ADC △≌△,∴BAC DAC ∠=∠,即AC 平分BAD ∠.(2)由(1)BAE DAE ∠=∠,在BAE △与DAE △中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴BAE DAE △≌△,∴BE DE =.19. 【答案】证明:∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE.∵AC ∥BD ,∴∠CAF =∠DBE.在△ACF 和△BDE 中,⎩⎨⎧AC =BD ,∠CAF =∠DBE ,AF =BE ,∴△ACF ≌△BDE(SAS).∴CF =DE.20. 【答案】解:(1)四边形ABFD 是筝形.理由:连接AF.在Rt △AFB 和Rt △AFD 中,⎩⎨⎧AF =AF ,AB =AD , ∴Rt △AFB ≌Rt △AFD(HL).∴BF =DF.又∵AB =AD ,∴四边形ABFD 是筝形.(2)答案不唯一,如AD =CD ,∠ADB =∠CDB12.3角平分线的性质一.选择题1.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =20,且BD :DC =3:2,则点D 到AB 边的距离为( )A .8B .12C .10D .152.如图已知OC 平分∠AOB ,P 是距离是OC 上一点,PH ⊥OB 于点H ,若PH =5,则点 P 到射线OA 的距离是( )A.6B.5C.4D.33.如图,四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=8,BD=13,BC=12,则四边形ABCD的面积为()A.30B.40C.50D.604.如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE =3,则△ABE的面积等于()A.15B.12C.10D.145.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1B.2C.3D.46.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB =∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.1.5C.2D.2.57.如图,AD∥BC,BG,AG分别平分∠ABC与∠BAD,GH⊥AB,GH=5,则AD与BC 之间的距离是()A.5B.8C.10D.158.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=5,AB=12,则△ABD的面积是()A.15B.30C.45D.6010.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM ∥AB ,BE 和MN 分别平分∠ABC 和∠EMC .下列结论中不正确的是( )A .∠MBE =∠MEBB .MN ∥BEC .S △BEM =S △BEND .∠MBN =∠MNB二.填空题 11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =5cm ,BD :DC =3:2,则点D 到AB 的距离为 .12.如图点D 是△ABC 的两外角平分线的交点,下列说法:①AD =CD ;②AB =AC ;③D 到AB 、BC 所在直线的距离相等;@点D 在∠B 的平分线上;其中正确的说法的序号是 .13.已知如图,OP平分∠MON,P A⊥ON于点A,P A=4,点Q是射线OM上的一个动点,则线段PQ的最小值是.14.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是点.15.如图,已知△ABC的周长是16.MB和MC分别平分∠ABC和∠ACB.过点M作BC 的垂线交BC于点D,且MD=4.则△ABC的面积是.三.解答题16.如图,直线AC分别与射线DE交于A,与射线BF交于C,连接AB,连接DC,∠1+∠2=180°,AD=BC.若DC平分∠ACF,证明AB平分∠EAC.17.如图,三角形ABC中,点D在AC上.(1)请你过点D做DE平行BC,交AB于E.如果点E在∠C的平分线上,∠C=44°,那么∠DEC=.18.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.19.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.参考答案与试题解析一.选择题1.【解答】解:∵BC=20,BD:DC=3:2,∴CD=8,∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=8.故选:A.2.【解答】解:作PQ⊥OA于Q,如图,∵OC为∠AOB的平分线,PH⊥OB,PQ⊥OA,∴PQ=PH=5,即点P到射线OA的距离为5.故选:B.3.【解答】解:过D 作DE ⊥AB ,交BA 的延长线于E ,则∠E =∠C =90°,∵∠BCD =90°,BD 平分∠ABC ,∴DE =DC ,在Rt △BCD 中,由勾股定理得:CD ===5, ∴DE =5,在Rt △BED 中,由勾股定理得:BE ===12, ∵AB =8,∴AE =BE ﹣AB =12﹣8=4,∴四边形ABCD 的面积S =S △BCD +S △BED ﹣S △AED=+﹣ =+﹣=50,故选:C . 4.【解答】解:过点E 作EF ⊥AB 于点F ,如图:∵BD是AC边上的高,∴ED⊥AC,又∵AE平分∠CAB,DE=3,∴EF=3,∵AB=8,∴△ABE的面积为:8×3÷2=12.故选:B.5.【解答】解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,=ACBC=×ABOE+ACOD+BCOM,∴S△ABC∴=+OM+,∴OM=2,故选:B.6.【解答】解:过点D作DE⊥BC于E,则DE即为DP的最小值,∵∠BAD=∠BDC=90°,∠ADB=∠C,∴∠ABD=∠CBD,∵∠ABD=∠CBD,DA⊥AB,DE⊥BC,∴DE=AD=2,故选:C.7.【解答】解:作GE⊥AD于E,EG的延长线交BC于F,如图,则∠DEG=90°,∵AD∥BC,∴∠BFG=∠DEG=90°,∴EF⊥BC,∵BG,AG分别平分∠ABC与∠BAD,∴GE=GH=5,GF=GH=5,∴EF=5+5=10,即AD与BC之间的距离为10.故选:C.8.【解答】解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,所以A选项错误,不符合题意;B.因为直线不能反向延长,所以B选项错误,不符合题意;C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角.C选项正确,符号题意;D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.所以D选项错误,不符合题意.故选:C.9.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.10.【解答】解:∵EM∥AB,BE和MN分别平分∠ABC和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A正确),∠EBM=∠NMC,∴MN∥BE(故B正确),∴MN和BE之间的距离处处相等,∴S△BEM =S△BEN(故C正确),∵∠MNB=∠EBN,而∠EBN和∠MBN的关系不知,∴∠MBN和∠MNB的关系无法确定,故D错误,故选:D.二.填空题11.【解答】解:作DE⊥AB于E,如图,∵BC=5cm,BD:DC=3:2,∴BD=3,CD=2,∵AD是△ABC的角平分线,∴DC=DE=2,即点D到AB的距离为2.故答案为2.12.【解答】解:AD与CD不能确定相等,AB与AC也不能确定相等,所以①②错误;作DE⊥BA于E,DF⊥BC于F,DH⊥AC于H,如图,∵AD平分∠EAC,∴DE=DH,同理可得DH=DF,∴DE=DF,即D到AB、BC所在直线的距离相等,所以③正确;∴点D在∠B的平分线上;所以④正确.故答案为③④.13.【解答】解:当PQ⊥OM时,PQ有最小值.∵OP平分∠MON,P A⊥ON于点A,P A=4,∴PQ =P A =4,故答案为4.14.【解答】解:点P 、Q 、M 、N 中在∠AOB 的平分线上是Q 点.故答案为Q .15.【解答】解:连接AM ,过M 作ME 于E ,MF ⊥AC 于F , ∵MD ⊥BC ,MB 和MC 分别平分∠ABC 和∠ACB ,MD =4,∴ME =MD =4,MF =MD =4,∵△ABC 的周长是16,∴AB +BC +AC =16,∴△ABC 的面积S =S △ABM +S △BCM +S △ACM=+==2AB +2BC +2AC=2(AB +BC +AC )=2×16=32,故答案为:32.三.解答题16.【解答】证明:∠1+∠2=180°,∠1+∠ACB=180°,∴∠2=∠ACB,∴AD∥BC,又∵AD=BC,∴四边形ABCD为平行四边形,∴DC∥AB,∴∠DCF=∠B,∠DCA=∠BAC,∵DC平分∠ACF,∴∠DCF=∠DCA,∴∠B=∠BAC,∵AD∥BC,∴∠EAB=∠B,∴∠BAC=∠EAB,即AB平分∠EAC.17.【解答】解:(1)如图1所示:作∠ADE=∠C交AB于E,DE即为所求;(2)如图2所示:∵DE∥BC,∴∠DEC=∠BCE,∵EC平分∠ACB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DC=DE,∴△DEC是等腰三角形,∴∠DEC=∠C=22°;故答案为:22°.18.【解答】解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;。

人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

人教版数学八年级上册:第十二章《全等三角形》专题练习

人教版数学八年级上册:第十二章《全等三角形》专题练习

第十二章《全等三角形》专题练习专题1证明三角形全等的解题思路思路一:找边边相等呈现的方式:①公共边(包括全部公共和部分公共);②中点.类型1已知两边对应相等,找第三边相等1.如图,已知AB=DE,AD=EC,D是BC的中点,求证:△ABD≌△EDC.类型2已知两角对应相等,找夹边相等2.如图,∠ABD=∠CDB,∠ADB=∠DBC,求证:△ABD≌△CDB.类型3已知两角对应相等,找其中一角的对边相等3.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF 的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?类型4已知直角三角形的直角边(或斜边)相等,找斜边(或直角边)相等4.如图,∠A=∠D=90°,AB=DF,BE=CF.求证:△ABC≌△DFE.思路二:找角角相等呈现的方式:①公共角;②对顶角;③角平分线;④垂直;⑤平行.类型5已知两边对应相等,找夹角相等5.如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:△ABC≌△ADE.6.如图,已知AD=AE,AB=AC,求证:△ABE≌△ACD.7.如图,已知AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.类型6已知一边一角对应相等,找另一角相等8.如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:△ABC≌△DAE.9.如图,已知∠BDC=∠CEB=90°,BE,CD交于点O,且AO平分∠BAC,求证:(1)△ADO≌△AEO;(2)△BDO≌△CEO.专题2全等三角形的基本模型类型1平移模型1.如图,AC=DF,AD=BE,BC=EF.求证:(1)△ABC≌△DEF;(2)AC∥DF.类型2对称模型2.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F,求证:∠A=∠D.3.如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:BE=CD.4.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.类型3旋转模型5.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.求证:BC=DE.6.如图,四边形ABCD的对角线相交于点O,AB∥CD,O是BD的中点.(1)求证:△ABO≌△CDO;(2)若BC=AC=4,BD=6,求△BOC的周长.类型4一线三等角模型7.如图,AD⊥AB于点A,BE⊥AB于点B,点C在AB上,且CD⊥CE,CD=CE.求证:AD=CB.类型5综合模型平移+旋转模型:平移+对称模型:8.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.小专题3构造全等三角形的常用方法方法1利用“角平分线”构造全等三角形因角平分线本身已经具备全等的三个条件中的两个(角相等和公共边相等),故在处理角平分线问题时,常作以下辅助线构造全等三角形:(1)在角的两边截取两条相等的线段;(2)过角平分线上一点作角两边的垂线段.1.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,求证:PM=PN.【拓展1】OM+ON的值是否为定值?请说明理由.【拓展2】四边形PMON的面积是否为定值?请说明理由.方法2利用“截长补短法”构造全等三角形截长补短法的具体做法:在某一条线段上截取一条线段与特定线段相等,或将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种方法适用于证明线段的和、差、倍、分等题目.2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD.3.如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG.先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由.方法3利用“倍长中线法”构造全等三角形将中线延长一倍,然后利用“SAS”判定三角形全等.4.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.方法4利用“三垂直”构造全等三角形如图,若AB=AC,AB⊥AC,则可过斜边的两端点B,C向过A点的直线作垂线构造△ABD≌△CAE.在平面直角坐标系中,过顶点A的直线常为x轴或y轴.5.已知在△ABC中,∠BAC=90°,AB=AC,将△ABC放在平面直角坐标系中,如图所示.(1)如图1,若A(1,0),B(0,3),求C点坐标;(2)如图2,若A(1,3),B(-1,0),求C点坐标;(3)如图3,若B(-4,0),C(0,-1),求A点坐标.参考答案专题1 证明三角形全等的解题思路1.证明:∵D 是BC 的中点,∴BD =CD.在△ABD 和△EDC 中,⎩⎪⎨⎪⎧AB =ED ,AD =EC ,BD =DC ,∴△ABD ≌△EDC(SSS ).2.证明:在△ABD 和△CDB 中,⎩⎪⎨⎪⎧∠ABD =∠CDB ,BD =DB ,∠ADB =∠CBD ,∴△ABD ≌△CDB(ASA ).3.解:全等.理由:∵两三角形纸板完全相同,∴BC =BF ,AB =BD ,∠A =∠D.∴AB -BF =BD -BC ,即AF =DC.在△AOF 和△DOC 中,⎩⎪⎨⎪⎧∠A =∠D ,∠AOF =∠DOC ,AF =DC ,∴△AOF ≌△DOC(AAS ).4.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF.在Rt △ABC 和Rt △DFE 中,⎩⎪⎨⎪⎧AB =DF ,BC =FE ,∴Rt △ABC ≌Rt △DFE(HL ).5.证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC.∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS ).6.证明:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△ABE ≌△ACD(SAS ).7.证明:∵AD 是△ABC 的中线,∴BD =CD.在△ACD 和△EBD 中,⎩⎪⎨⎪⎧CD =BD ,∠ADC =∠EDB ,DA =DE ,∴△ACD ≌△EBD(SAS ).8.证明:∵DE ∥AB ,∴∠CAB =∠EDA.在△ABC 和△DAE 中,⎩⎪⎨⎪⎧∠CAB =∠EDA ,AB =DA ,∠B =∠DAE ,∴△ABC ≌△DAE(ASA ).9.证明:(1)∵AO 平分∠BAC ,∴∠DAO =∠EAO.∵∠BDC =∠CEB =90°,∴∠ADO =∠AEO.在△ADO 和△AEO 中,⎩⎪⎨⎪⎧∠ADO =∠AEO ,∠DAO =∠EAO ,AO =AO ,∴△ADO ≌△AEO(AAS ).(2)∵△ADO ≌△AEO ,∴DO =EO.在△BDO 和△CEO 中,⎩⎪⎨⎪⎧∠BDO =∠CEO ,DO =EO ,∠DOB =∠EOC ,∴△BDO ≌△CEO(ASA ).小专题2 全等三角形的基本模型1.证明:(1)∵AD =BE ,∴AD +DB =BE +DB ,即AB =DE.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF(SSS ).(2)∵△ABC ≌△DEF ,∴∠A =∠EDF.∴AC ∥DF.2.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =FE.在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF ,∠B =∠F ,BC =FE ,∴△ABC ≌△DFE(SAS ).∴∠A =∠D.3.证明:在△AEB 和△ADC 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△AEB ≌△ADC(SAS ).∴BE =CD.4.解:添加∠BAC =∠DAC(答案不唯一),理由:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(AAS ).5.证明:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD.∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS ).∴BC =DE.6.解:(1)证明:∵AB ∥CD ,∴∠BAO =∠DCO ,∠ABO =∠CDO.∵O 是DB 的中点,∴BO =DO.在△ABO 和△CDO 中,⎩⎪⎨⎪⎧∠BAO =∠DCO ,∠ABO =∠CDO ,BO =DO ,∴△ABO ≌△CDO(AAS ).(2)∵△ABO ≌△CDO ,∴AO =CO =12AC =2. ∵BO =12BD =3, ∴△BOC 的周长为BC +BO +OC =4+3+2=9.7.证明:∵AD ⊥AB ,BE ⊥AB ,∴∠A =∠B =90°.∴∠D +∠ACD =90°.∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°.∴∠D =∠BCE.在△ACD 和△BEC 中,⎩⎪⎨⎪⎧∠A =∠B ,∠D =∠BCE ,CD =EC ,∴△ACD ≌△BEC(AAS ).∴AD =CB.8.解:(1)证明:在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF ,∠A =∠D ,AC =DE ,∴△ABC ≌△DFE(SAS ).∴∠ACB =∠DEF.∴AC ∥DE.(2)∵△ABC ≌△DFE ,∴BC =EF.∴BE =CF =12(BF -EC)=4.∴BC =BE +EC =9.专题3 构造全等三角形的常用方法1.证明:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∴∠PEO =∠PFO =90°.∴∠EPF +∠AOB =180°.∵∠MPN +∠AOB =180°,∴∠EPF =∠MPN.∴∠EPM =∠FPN.∵OP 平分∠AOB ,PE ⊥OA ,PF ⊥OB ,∴PE =PF.在△PEM 和△PFN 中,⎩⎪⎨⎪⎧∠EPM =∠FPN ,PE =PF ,∠PEM =∠PFN ,∴△PEM ≌△PFN(ASA ).∴PM =PN.【拓展1】 解:OM +ON 的值是定值.理由:∵△PEM ≌△PFN ,∴ME =NF.易证△EPO ≌△FPO ,∴OE =OF.∴OM +ON =OE +EM +ON =OE +NF +ON =OE +OF =2OE =定值.【拓展2】 解:四边形PMON 的面积是定值.理由:∵△PEM ≌△PFN ,∴S △PEM =S △PFN .∴S 四边形PMON =S 四边形PEOF =定值.2.证明:在BC 上截取BF =AB ,连接EF.∵BE 平分∠ABC ,CE 平分∠BCD ,∴∠ABE =∠FBE ,∠FCE =∠DCE.在△ABE 和△FBE 中,⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE(SAS ).∴∠A =∠BFE.∵AB ∥CD ,∴∠A +∠D =180°.∴∠BFE +∠D =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠D.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠D ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE(AAS ).∴CF =CD.∴BC =BF +CF =AB +CD.3.(1)EF =BE +DF ;(2)解:EF =BE +DF 仍然成立.理由:延长FD 到G ,使DG =BE ,连接AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎪⎨⎪⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ).∴AE =AG ,∠BAE =∠DAG.∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF.在△AEF 和△AGF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG.∵FG =DG +DF =BE +DF ,∴EF =BE +DF.4.证明:延长AM 至N ,使MN =AM ,连接BN.∵点M 为BC 的中点,∴BM =CM.在△AMC 和△NMB 中,⎩⎪⎨⎪⎧AM =NM ,∠CMA =∠BMN ,CM =BM ,∴△AMC ≌△NMB(SAS ).∴AC =BN =AD ,∠C =∠NBM ,∠ABN =∠ABC +∠NBM =∠ABC +∠C =180°-∠BAC =∠EAD.在△ABN 和△EAD 中,⎩⎪⎨⎪⎧AB =EA ,∠ABN =∠EAD ,BN =AD ,∴△ABN ≌△EAD(SAS ).∴DE =NA =2AM.5.解:(1)过点C 作CD ⊥x 轴,垂足为D.则∠CAD +∠ACD =90°.∵∠BAC =90°,∴∠BAO +∠CAD =90°.∴∠BAO =∠ACD.在△ABO 和△CAD 中,⎩⎪⎨⎪⎧∠AOB =∠CDA ,∠BAO =∠ACD ,AB =CA ,∴△ABO ≌△CAD(AAS ).∴BO =AD ,OA =CD.∵A(1,0),B(0,3),∴OA =1,OB =3.∴AD =3,CD =1.∴OD =OA +AD =4.∴C(4,1).(2)过点A 作AD ⊥x 轴,垂足为D ,过点C 作CE ⊥AD ,垂足为E.同(1)可证△ACE ≌△BAD , ∴AE =BD ,CE =AD.∵A(1,3),B(-1,0),∴BD =2,AD =3.∴CE =3,DE =AD -AE =1.∴C(4,1).(3)过点A 作AD ⊥x 轴,AE ⊥y 轴,垂足分别为D ,E. 同(1)可证△BAD ≌△CAE ,∴CE =BD ,AE =AD.∵B(-4,0),C(0,-1),∴OB =4,OC =1.∴AE =OB -BD =OB -CE =OB -(OC +OE)=3-AE.∴AE =32. ∴A(-32,32).。

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)
∴△ABD≌△C'DB (HL) ,
同理△DCB≌△C'DB,
∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,
∴△AOB≌△C'OD (AAS) ,
所以共有四对全等三角形.
故答案为4.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
故选D.
二.填空题(本大题共8小题,共24.0分)
9.如图,在 和 中, ,若利用“HL”证明 ≌ ,则需要加条件______.
【答案】 ,
【解析】
【分析】
添加∠C=∠D=90°,由HL证明△ABC≌△ABD即可.
【详解】添加∠C=∠D=90°,理由如下:
∵∠C=∠D=90°,
∴在Rt△ABC和Rt△ABD中,
A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB= CD
【答案】D
【解析】
【分析】
根据垂直定义求出∠CFD=∠AEB=90°,由已知 ,再根据全等三角形的判定定理推出即可.
【详解】添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
在Rt△ABE和Rt△DCF中,
【详解】①∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,

∴Rt△ARP≌Rt△ASP(HL),
∴AR=AS,∴①正确;

初中数学人教版八年级上册第十二章 全等三角形单元复习-章节测试习题(2)

初中数学人教版八年级上册第十二章 全等三角形单元复习-章节测试习题(2)

章节测试题1.【题文】如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.【答案】△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明见解答【分析】由AB=AC,AD是角平分线,即可利用(SAS)证出△ABD≌△ACD,同理可得出△ABE≌△ACE,△EBD≌△ECD.【解答】△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).2.【题文】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【答案】20米.【分析】已知AB∥CD,根据平行线的性质可得∠ABO=∠CDO,再由垂直的定义可得∠CDO=90°,可得OB⊥AB,根据相邻两平行线间的距离相等可得OD=OB,即可根据ASA定理判定△ABO≌△CDO,由全等三角形的性质即可得CD=AB=20m.【解答】∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)3.【题文】我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD. 对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【答案】证明见解答.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.4.【题文】已知△ABN和△ACM的位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【答案】(1)证明见解答(2)证明见解答【分析】(1)由SAS证明△ADB≌△AEC,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)在△ADB和△AEC中,∴△ADB≌△AEC∴BD=CE(2)∵∴即又△ADB≌△AEC∴180°-即.5.【题文】如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【答案】(1)FE=FD(2)答案见解答【分析】(1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;(2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),进而得出FE=FD.【解答】(1)FE与FD之间的数量关系为:FE=FD.理由:如图,在AC上截取AG=AE,连结FG,∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF与△AGF中,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,∴2∠2+2∠3+∠B=180°,∴∠2+∠3=60°,又∵∠AFE为△AFC的外角,∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,∴∠CFG=180°-60°-60°=60°,∴∠GFC=∠DFC,在△CFG与△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD;(2)结论FE=FD仍然成立.如图,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴∠2+∠3=60°,F是△ABC的内心,∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,∵F是△ABC的内心,即F在∠ABC的角平分线上,∴FG=FH,又∵∠HDF=∠B+∠1=60°+∠1,∴∠GEF=∠HDF,在△EGF与△DHF中,,∴△EGF≌△DHF(AAS),∴FE=FD.6.【答题】下列说法正确的是()A. 两个面积相等的图形一定是全等形B. 两个长方形是全等图形C. 两个全等图形形状一定相同D. 两个正方形一定是全等图形【答案】C【分析】根据全等图形的概念即可得出答案.【解答】A、面积相等,但图形不一定完全重合,故错误,B、两个长方形,图形不一定完全重合,故错误;C、全等图形∵完全重合,∴形状一定相同,故正确,D、两个正方形,面积不相等,也不是全等图形,故答案选C.7.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】根据全等三角形对应角相等可知∠α是a、c边的夹角,然后写出即可.【解答】∵两个三角形全等,∴∠α的度数是50°.选D.8.【答题】如图,在下列条件中,不能证明△ABD≌△ACD的是().A. BD=DC,AB=ACB. ∠ADB=∠ADC,BD=DCC. ∠B=∠C,∠BAD=∠CADD. ∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.【解答】∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.选D.9.【答题】如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A. SASB. ASAC. AASD. HL【答案】D【分析】本题考查了直角三角形全等的判定.【解答】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),选D.10.【答题】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3m,则BD等于()A. 6cmB. 8cmC. 10cmD. 4cm【答案】B【分析】由题中条件求出∠BAC=∠DCE,可得直角三角形ABC与CDE全等,进而得出对应边相等,即可得出结论.【解答】∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=3cm,CD=AB=5cm,∴BD=BC+CD=3+5=8cm,故答案选B.11.【答题】如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A. AD=BCB. ∠DAB=∠CBAC. △ACE≌△BDED. AC=CE【答案】D【分析】本题考查了全等三角形的判定与性质.【解答】在和中,,∴≌,∴,正确,,正确,在和中,,∴在≌,∴正确.无从得证.选.12.【答题】如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A. SSSB. SASC. ASAD. AAS【答案】B【分析】本题考查了全等三角形的应用.【解答】解:如图,连接AB,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE选B13.【答题】如图,在△ABC中,点O到三边的距离相等,∠BAC=60°,则∠BOC =()A. 120°B. 125°C. 130°D. 140°【答案】A【分析】由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A).在△BOC中利用三角形的内角和定理可求得∠BOC.【解答】∵O到三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A).∵∠A=60°,∴∠OBC+∠OCB=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.选A.14.【答题】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为()A. 12B. 6C. 7D. 8【答案】B【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△DEF=S△DGH,然后列式求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△DEF=S△DGH,∵△ADG和△AED的面积分别为40和28,∴△EDF的面积=×(40-28)=6.选B.15.【答题】如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. ①②③④B. ①②④C. ①②③D. ②③④【答案】A【分析】根据等腰三角形、全等三角形的判定与性质即可得到答案.【解答】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.16.【答题】已知△ADF≌△CBE,∠A=20°,∠B=120°,则∠BCE=______.【答案】20°【分析】根据全等三角形的基本性质即可得到答案.【解答】∵△ADF≌△CBE,∴∠BCE=∠DAF=∠A=20°,故答案为20°.17.【答题】如图,△ABC≌△CDA,则AB与CD的位置关系是______.【答案】AB∥CD【分析】根据全等三角形的性质得出边和角的关系,进一步可得到AB与CD的关系即可得到答案.【解答】∵△ABC≌△CDA,则∠ACD=∠BAC,∴AB∥CD,故答案为AB∥CD.18.【答题】如图,在中,点A的坐标为,点B的坐标为,点C 的坐标为,点D在第二象限,且与全等,点D的坐标是______.【答案】(-4,2)或(-4,3)【分析】本题考查了全等三角形的性质、点的坐标.【解答】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC 全等.故答案为(-4,2)或(-4,3).19.【答题】如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若加条件∠B=∠C,则可用______判定.【答案】AAS【分析】根据全等三角形的判定从而得到答案.【解答】已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS,故答案为AAS.20.【答题】如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③DA=DC;④△ABC≌△ADC,其中正确结论的序号是______.【答案】①②④【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,AB=AD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故④正确∴BC=DC,故②正确;故答案为①②④.。

人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)

人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)
解得∠DGB=70°.
故答案为:70°.
【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.
12.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________.
【答案】7
【解析】
分析】
先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据 ,可得 ,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得 = =7.
【详解】如图,
过点P作PF⊥AB于G,
因为∠ABC和∠ACB的外角平分线BP,CP交于P,
【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.
2.如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )
A. 3B. -3C. 2D. -2
【答案】A
【解析】
【分析】
过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得:DE=OD=3,即点D到AB的距离是3.
【答案】16
【解析】
四边形FBCD周长=BC+AC+DF;当 时,四边形FBCD周长最小为5+6+5=16
三、解答题(共52分)
17.如图,已知 ,用尺规过点 作直线 ,使得 .(保留作图痕迹,不写做法)
【答案】见解析

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案) (45)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案) (45)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)某中学七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.有一位同学设计了如下测量方案:先在平地上取一个可直接到达A、B的点E(A、B为池塘的两端),连接AE、BE并分别延长AE 至D,BE至C,使ED=AE,EC=EB,测出CD的长作为AB之间的距离.(1)他的方案可行吗?请说明理由.(2)若测得CD=10m,则池塘两端的距离是多少?【答案】(1)该方案可行;理由见解析;(2)10【解析】【分析】(1)这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB=CD.方案的操作性强,需要测量的线段和角度在陆地一侧即可实施;(2)利用全等三角形的性质即可得.【详解】(1)可行,理由如下:在△AEB和△DEC中AE ED AEB DEC EB CE =⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△DEC (SAS );∴AB=CD (全等三角形的对应边相等).(2)测得CD=10m ,则池塘两端的距离AB=10m ,答:池塘两端的距离是10米.【点睛】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.42.在直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图①,以A 点为顶点,AB 为腰在第三象限作等腰Rt △ABC .若已知A (﹣2,0)B (0,﹣4),试求C 点的坐标;(2)如图②,若点A 的坐标为(﹣0),点B 的坐标为(0,a ),点D 的纵坐标为b ,以B 为顶点,BA 为腰作等腰Rt △ABD ,当B 点沿y 轴负半轴向下运动且其他条件都不变时,求b ﹣a 的值;(3)如图③,E 为x 轴负半轴上的一点,且OB =OE ,OF ⊥EB 于点F ,以OB 为边在第四象限作等边△OBM ,连接EM 交OF 于点N ,探究EM-ON 与EN 的数量关系.【答案】(1)C(﹣6,﹣2);(2)(3)EN=1(EM﹣ON),理由见解析【解析】【分析】(1)作CQ⊥OA于点Q,可以证明△AQC≌△BOA,由QC=AO,AQ=BO,再由条件就可以求出C的坐标;(2)作DP⊥OB于点P,可以证明△AOB≌△BPD,则有AO=BP=OB-PO=-a-(-b)=b-a为定值;(3)作BH⊥EB于B,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明△ENO≌△BGM,则GM=ON,就有EM-ON=EM-GM=EG,最后由平行线分线段成比例定理就可以得出EN=EM-ON的一半.【详解】(1)如图(1)作CQ⊥OA于点Q,∴∠AQC=90°∵△ABC是等腰Rt△,∴AC=AB,∠CAB=90°,∴∠ACQ=∠BAO,在△AQC 与△BOA 中,AQC AOB QAC ABO AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AQC ≌△BOA ,∴CQ =AO ,AQ =BO .∵A (﹣2,0),B (0,﹣4),∴OA =2,OB =4,∴CQ =2,AQ =4,∴OQ =6,∴C (﹣6,﹣2).(2)如图(2)作DP ⊥OB 于点P ,∴∠BPD =90°,∵△ABD 是等腰Rt △,∴AB =BD ,∠ABD =∠ABO+∠OBD =90°,∴∠ABO =∠BDP ,在△AOB 与△BPD 中,AOB DPB ABO PDB AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB≌△BPD,∴AO=BP,∵BP=OB﹣PO=﹣a﹣(﹣b)=b﹣a,∴A(﹣0),∴OA=∴b﹣a=2,∴当B点沿y轴负半轴向下运动时AO=BP=b﹣a=(3)如图(3)在ME上截取MG=ON,连接BG,∵△OBM是等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM.∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=45°∴∠EOF=∠BME,在△ENO与△BGM中,0E BM EON BMG ON MG =⎧⎪∠=∠⎨⎪=⎩, ∴△ENO ≌△BGM ,∴BG =EN .∵ON =MG ,∴∠2=∠3,∴∠2=15°,∴∠EBG =90°∴BG =12EG , ∴EN =12EG , ∵EG =EM ﹣GM ,∴EN =12(EM ﹣GM ), ∴EN =12(EM ﹣ON ). 【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,正确的作出辅助线是解题的关键.43.(问题)(1)如图1,锐角△ABC 中分别以AB 、AC 为边向外作等腰△ABE 和等腰△ACD ,使AE =AB ,AD =AC ,∠BAE =∠CAD ,连接BD 、CE ,试猜想BD 与CE 的大小关系,并说明理由.(迁移)(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC =∠ACD=∠ADC=45°,求BD的长.甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算。

2022年人教版初中数学8年级上册全等三角形判定二(SSS,AAS)(基础)巩固练习及答案

2022年人教版初中数学8年级上册全等三角形判定二(SSS,AAS)(基础)巩固练习及答案

2022年人教版初中数学8年级上册【巩固练习】一、选择题1.(2020•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45° B.∠BAC=90° C.BD=AC D.AB=AC2.如图,已知AB=CD,AD=BC,则下列结论中错误的是()A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC3.下列判断正确的是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF相交于O,且被O点平分,DF=CE,BF=AE,则图中全等三角形的对数共有()A.1对B.2对C.3对D.4对5.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC6.如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED+AB=DBD.DC=CB二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8.如图,已知:∠1=∠2,∠3=∠4,要证BD=CD,需先证△AEB≌△AEC,根据是,再证△BDE≌△,根据是.9.(2020秋•大同期末)如下图∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是.10.如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B=20°,则∠C=_______.12.已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌.三、解答题13.(2020•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.14.如图,已知D、E、B三点共线,AE=CE,AE⊥CE,∠D=∠B=90°.求证:CD+AB=DB.15.如图,已知AB=DC,AC=DB,BE=CE求证:AE=DE.【答案与解析】一.选择题1.【答案】D;【解析】解:当AB=AC时,△ABD≌△ACD,∵AD是△ABC的边BC上的高,AB=AC,∴BD=CD,∵在△ABD 和△ADC 中,∴△ABD≌△ACD(SSS).2.【答案】D;【解析】连接AC 或BD 证全等.3.【答案】D;4.【答案】C;【解析】△DOF≌△COE,△BOF≌△AOE,△DOB≌△COA.5.【答案】A;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA='OA ,OB='OB ,再由对顶角相等可证.6.【答案】D;【解析】△ABC≌△EDC,∠ECD+∠ACB=∠CAB+∠ACB=90°,所以EC⊥AC,ED +AB =BC+CD=DB.二.填空题7.【答案】66°;【解析】可由SSS 证明△ABC≌△DCB,∠OBC=∠OCB=82412︒=︒,所以∠DCB=∠ABC=25°+41°=66°.8.【答案】ASA,CDE,SAS;【解析】△AEB ≌△AEC 后可得BE=CE.9.【答案】∠B=∠C.【解析】解:由图可知,只能是∠B=∠C,才能组成“AAS”.故填∠B=∠C.10.【答案】56°;【解析】∠CBE=26°+30°=56°.11.【答案】20°;【解析】△ABE≌△ACD(SAS).12.【答案】△DCB,△DAB;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD 中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC 和△DEC 中,,∴△ABC≌△DEC(AAS).14.【解析】证明:∵AE⊥CE,∴∠AEB+∠CED=90°,又∵∠B=90°∴∠A+∠AEB=90°,∴∠A=∠CED,在△AEB 与△ECD 中,A CEDB DAE CE ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△AEB≌△ECD(AAS)∴AB=DE ,BE=CD∵DE+BE=DB∴CD+AB=DB15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC≌△DCB(SSS)∴∠ABC=∠DCB,在△ABE 和△DCE 中ABC DCB AB DC BE CE =∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△DCE(SAS)∴AE=DE.全等三角形的判定二(SSS,AAS)(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB,''A C =AC,''B C =BC,则△ABC≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、已知:如图,△RPQ 中,RP=RQ,M 为PQ 的中点.求证:RM平分∠PRQ.【思路点拨】由中点的定义得PM=QM,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM=QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM≌△RQM(SSS).∴∠PRM=∠QRM(全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中.把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.【答案】证明:连接DC,在△ACD 与△BDC 中()AD BC AC BD CD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD≌△BDC(SSS)∴∠CAD=∠DBC(全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”2、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC=AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C、B 分别作AD 及AD 的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD 为△ABC 的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED 和△CFD 中BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF3、(2020春•雅安期末)如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有()种.A.1B.2C.3D.4【思路点拨】本题要证明△ABC≌△A′B′C′,已知了AB=A′B′,∠A=∠A′,可用的判别方法有ASA,AAS,及SAS,所以可添加一对角∠B=∠B′,或∠C=∠C′,或一对边AC=A′C′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A′C′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA);若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS);若添加AC=A′C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH≌△DFH(SSS)∴∠DEH=∠DFH.【总结升华】证明△DEH≌△DFH,就可以得到∠DEH=∠DFH,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS”定理就能解决问题.举一反三:【变式】(2020秋•紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE 与△AOF 中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.【巩固练习】一、选择题1.如图,∠A=∠D,∠B=∠E,BF=CE,下列结论错误的是()A.△ABC≌△DEFB.BF=ECC.AC∥DED.AC=DF2.如图,AB∥EF,DE∥AC,BD=CF,则图中不是全等三角形的是()A.△BAC≌FEDB.△BDA≌FCEC.△DEC≌CADD.△BAC≌FCE3.如图,AB=BD,∠1=∠2,要用AAS判定△ABC≌△DBE,则添加的条件是()A.AE=ECB.∠D=∠AC.BE=BCD.∠DEB=∠C4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.(2020•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC二、填空题7.(2020春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件________________时,就可得到△ABC≌△FED.(只需填写一个即可)8.如图,点D在AB上,点E在AC上,且∠B=∠C,在条件①AB=AC,②AD=AE,③BE=CD,④∠AEB=∠ADC中,不能使△ABE≌△ACD的是_______.(填序号)9.已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.10.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF的长是___________.12.在△ABC 和△DEF 中(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F 从这六个条件中选取三个条件可判定△ABC 与△DEF 全等的方法共有________种.三、解答题13.(2020秋•景洪市校级期中)如图,O 为码头,A,B 两个灯塔与码头的距离相等,OA,OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行时是否偏离预定航线,请说明理由.14.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =.15.如图,DC∥AB,∠BAD 和∠ADC 的角平分线相交于E,过E 的直线分别交DC、AB 于C、B 两点.求证:AD=AB+DC.【答案与解析】一、选择题1.【答案】C;2.【答案】D;3.【答案】D;【解析】满足判定定理AAS的只有D选项.4.【答案】B;【解析】C选项和D选项都可以由SSS定理证全等.5.【答案】D;【解析】解:A、∵在△ABD和△ACD中,∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中,∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.6.【答案】C;【解析】可证∠BAC=∠E,∠BCA=∠DCE,所以△ABC≌△EDC,DE=AB.二、填空题7.【答案】BC=ED.8.【答案】④【解析】三个角对应相等不能判定三角形全等.9.【答案】6;【解析】△ABF≌△CDE,BE=CF=2,EF=10-2-2=6.10.【答案】6;【解析】△ABO≌△CDO,△AFO≌△CEO,△DFO≌△BEO,△AOD≌△COB,△ABD≌△CDB,△ABC≌△CDA.11.【答案】3;【解析】由AAS证△ABF≌△CBE,EF=FB+BE=CE+AF=2+1=3.12.【答案】13;【解析】ASA类型3种,AAS类型6种,SAS类型3种,SSS类型一种,共13种.三、解答题13.【解析】解:此时轮船没有偏离航线.理由:由题意知:假设轮船在D处,则DA=DB,AO=BO,在△ADC和△BDC中,,∴△ADO≌△BDO(SSS),∴∠AOD=∠BOD,即DO 为∠AOB 的角平分线,∴此时轮船没有偏离航线.14.【解析】证明:∵CD AB⊥∴90BDC CDA ∠=∠=︒∵45ABC ∠=︒∴45DCB ABC ∠=∠=︒∴DB DC=∵BE AC⊥∴90AEB ∠=︒∴90A ABE ∠+∠=︒∵90CDA ∠=︒∴90A ACD ∠+∠=︒∴ABE ACD∠=∠在BDF ∆和CDA ∆中BDC CDADB DC ABE ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆(AAS)∴BF AC =.15.【解析】证明:延长DE 交AB 的延长线于F∴∠CDE=∠F,∠CDA+∠BAD=180º∵DE 平分∠CDA,AE 平分∠DAB ∴∠CDE=∠ADE=21∠CDA,∠DAE=∠EAF=21∠BAD∴∠ADE=∠F,∠EDA+∠DAE=90º∴∠AED=∠AEF=90º在△ADE 与△AFE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AE AE FEA DEA F ADE ∴△ADE≌△AFE (AAS)∴DE=EF,AD=AF在△DCE 与△FBE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠FEB DEC FE DE F CDE ∴△DCE≌△FBE(ASA)∴DC=BF,∴AD=AB+DC.全等三角形的判定二(SSS,AAS)(提高)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB,''A C =AC,''B C =BC,则△ABC≌△'''A B C.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SASSSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、如图,在△ABC 和△ADE 中,AB=AC,AD=AE,BD=CE,求证:∠BAD=∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD≌△ACE(SSS)∴∠BAD=∠CAE(全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质.要证∠BAD=∠CAE,先找出这两个角所在的三角形分别是△BDA 和△CAE,然后证这两个三角形全等.【变式】(2020•静海县模拟)已知点A、D、C、F 在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需添加一个条件是.【答案】AC=DF.解:理由是:∵在△ABC 和△DEF中,∴△ABC≌△DEF(SSS),故答案为:AC=DF.类型二、全等三角形的判定4——“角角边”2、已知:如图,∠ACB=90°,AC=BC,CD 是经过点C 的一条直线,过点A、B 分别作AE⊥CD、BF⊥CD,垂足为E、F.求证:CE=BF【答案与解析】证明:∵AE⊥CD、BF⊥CD,∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF 和△CAE 中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC ∴△BCF≌△CAE(AAS)∴CE=BF.【总结升华】要证CE=BF,只需证含有这两个线段的△BCF≌△CAE.同角的余角相等是找角3、平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C 作CE⊥MN 于点E,过点B 作BF⊥MN 于点F.当点E 与点A 重合时(如图1),易证:AF+BF=2CE.当三角板绕点A 顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.【思路点拨】过B 作BH⊥CE 与点H,易证△ACE≌△CBH,根据全等三角形的对应边相等,即可证得AF+BF=2CE.【答案与解析】解:图2,AF+BF=2CE 仍成立,证明:过B 作BH⊥CE 于点H,∵∠CBH+∠BCH=∠ACE+∠BCH=90°∴∠CBH=∠ACE在△ACE 与△CBH 中,90ACH CBH AEC CHB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ACE≌△CBH.(AAS)∴CH=AE,BF=HE,CE=EF,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.【总结升华】正确作出垂线,构造全等三角形是解决本题的关键.举一反三:【变式】已知Rt△ABC 中,AC=BC,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕D 点旋转,它的两边分别交AC、CB 于E、F.当∠EDF 绕D 点旋转到DE⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.图2ADBC E M N F 【答案】解:图2成立;证明图2:过点D 作DM AC DN BC⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD≌△DNB(AAS)∴DM=DN∵∠MDE+∠EDN=∠NDF+∠EDN=90°,∴∠MDE=∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME≌△DNF(ASA)∴DME DNFS S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△.类型三、全等三角形判定的实际应用4、(2020秋•内丘县期中)如图,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点D 的竖直高度DB 的长度,欢欢在D 处立上一竹竿CD,并保证CD⊥AD,然后在竿顶C 处垂下一根绳CE,与斜坡的交点为点E,他调整好绳子CE 的长度,使得CE=AD,此时他测得DE=2米,求DB 的长度.【思路点拨】延长CE交AB于F,根据等角的余角相等求出∠A=∠C,再利用“角角边”证明△ABD和△CDE全等,根据全等三角形对应边相等可得DB=DE.【答案与解析】解:如图,延长CE交AB于F,则∠A+∠1=90°,∠C+∠2=90°,∵∠1=∠2(对顶角相等),∴∠A=∠C,在△ABD和△CDE中,,∴△ABD≌△CDE(AAS),∴DB=DE,∵DE=2米,∴DB的长度是2米.【总结升华】本题考查了全等三角形的应用,仔细观察图形求出∠A=∠C是解题的关键.。

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试题(答案解析)(2)

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试题(答案解析)(2)

一、选择题1.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°2.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .73.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 4.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对 5.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 6.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 7.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .98.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 9.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ 10.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 11.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC12.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题13.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .14.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .15.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.16.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.17.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.18.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____19.如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若9PE =,则两平行线AD 与BC 间的距离为_______.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.三、解答题21.如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.22.如图,Rt △ABC 中,∠ACB=90°,D 是AB 上的一点,过D 作DE ⊥AB 交AC 于点E ,CE=DE .连接CD 交BE 于点F .(1)求证:BC=BD ;(2)若点D 为AB 的中点,求∠AED 的度数.23.在平面直角坐标系中,点A 坐标(5,0)-,点B 坐标(0,5),点 C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为(3,0),求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上运动,且5OC <,其它条件不变,连接DO ,求证:DO 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当OC CD AD +=时,则OBC ∠的度数为________. 24.已知:如图,AC =BD ,BD ⊥AD 于点D ,AC ⊥BC 于点C .求证:∠ABC =∠BAD .25.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?26.命题:有两个内角相等的三角形必有两条高线相等,写出它的逆命题,并判断逆命题的真假,若是真命题,给出证明;若是假命题,请举反例.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:C .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 2.C解析:C【分析】先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.3.D解析:D【分析】根据垂直关系,可以判断△AEF 与△CEB 有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE .A.在Rt △AEF 和Rt △CEB 中AEF CEB EAF BCE EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;B.在Rt △AEF 和Rt △CEB 中 AEF CEB EA ECEAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF ≌CEB △(ASA ),故正确;C.在Rt △AEF 和Rt △CEB 中 AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确;故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.4.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.5.B解析:B【分析】根据AAS 定理或ASA 定理即可得.【详解】在ABC 和DEF 中,,A C F D ∠∠∠=∠=,∴要使ABC DEF ≅,只需增加一组对应边相等即可,即需增加的条件是AB DE =或AC DF =或BC EF =,观察四个选项可知,只有选项B 符合,故选:B .【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题关键. 6.B解析:B【分析】先分别写出这些定理的逆命题,再进行判断即可.【详解】解:A .直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B .全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C .两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D.角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题.故选:B.【点睛】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D.【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可;【详解】题意已知:∠A=∠D,∠B=∠E,∴①根据“ASA”可添加AB=DE,故①正确;②根据“AAS” 可添加AC=DF,故②正确;③根据“AAS” 可添加BC=EF,故③错误;④根据“ASA”可添加AB=DE,故④错误;所以补充①②可判定两三角形全等;故选:A.【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;9.B解析:B【分析】根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD,根据∠ADC 是△BDC的外角,得到∠ADC=∠B+∠BCD,由三角形外角的性质得到∠MAC=∠B+∠ACB,于是得到结果.【详解】解:∵EF∥AB,∠EFC=β,∴∠B=∠EFC=β,∵CD平分∠BCA,∴∠ACB=2∠BCD,∵∠ADC是△BDC的外角,∴∠ADC=∠B+∠BCD,∵∠ADC=γ,∴∠BCD=γ-β,∵∠MAC是△ABC的外角,∴∠MAC=∠B+∠ACB,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B.【点睛】本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.10.D解析:D【分析】设点Q的运动速度是x cm/s,有两种情况:①AP=BP,AC=BQ,②AP=BQ,AC=BP,列出方程,求出方程的解即可.【详解】解:设点Q的运动速度是x cm/s,∵∠CAB=∠DBA,∴△ACP与△BPQ全等,有两种情况:①AP=BP,AC=BQ,则1×t=4-1×t ,则3=2x ,解得:t=2,x=1.5;②AP=BQ ,AC=BP ,则1×t=tx ,4-1×t=3,解得:t=1,x=1,故选:D .【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.11.B解析:B【分析】本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等;【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角;12.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.二、填空题13.6【分析】根据CF ∥AB 得到∠DAE=∠FCE 结合AE=CE ∠AED=∠FEC 可得△AED ≌△CEF 根据即可得出结果【详解】解:∵CF ∥AB ∴∠DAE=∠FCE 又∵AE=CE ∠AED=∠FEC ∴△A解析:6【分析】根据CF ∥AB ,得到∠DAE=∠FCE ,结合AE=CE ,∠AED=∠FEC ,可得△AED ≌△CEF ,AED CEF S S =,根据 ABC AED CEF DBCE DBCE DBCF S S S S S S =+=+=四边形四边形四边形,即可得出结果.【详解】解:∵CF ∥AB ,∴∠DAE=∠FCE ,又∵AE=CE ,∠AED=∠FEC ,∴△AED ≌△CEF ,∴AED CEF SS =, ∴26ABC AED CEF DBCE DBCE DBCF S S S S S S cm =+=+==四边形四边形四边形,故答案为:6.【点睛】本题考查全等三角形的判定与性质,解题的关键是证得△AED ≌△CEF .14.10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CDAC =AE 加上BC =AC 三角形的周长为BE+BD+DE =BE+CB =AE+BE 于是周长可得【详解】解:∵AD 平分∠BAC 交B解析:10【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE =CD ,AC =AE ,加上BC =AC ,三角形的周长为BE+BD+DE =BE+CB =AE+BE ,于是周长可得.【详解】解:∵AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,∠C =90°,∴CD =DE ,∵AD=AD ,∴ACD AED ≅,∴AC=AE ,又∵AC =BC , ∴△DEB 的周长=DB+DE+BE =AC+BE =AB =10.故填:10.【点睛】本题主要考查角平分线的性质以及全等三角形的证明,解题的关键是理解并掌握角平分线的性质以及全等三角形的证明方法.15.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全 解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中, A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.16.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.17.6【分析】过点P 作PH ⊥AMPQ ⊥AN 连接AP 根据角平分线上的点到角两边的距离相等可得PH=PE=PQ 再根据三角形的面积求出BC 然后求出AC+AB 再根据S △ABC=S △ACP+S △ABP-S △BPC解析:6【分析】过点P 作PH ⊥AM ,PQ ⊥AN,连接AP ,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ ,再根据三角形的面积求出BC ,然后求出AC+AB ,再根据S △ABC= S △ACP+ S △ABP -S △BPC 即可得解.【详解】解:如图,过点P 作PH ⊥AM ,PQ ⊥AN ,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S△ABC=12×3×9-7.5=6 cm2【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S△ABC的面积的表示.18.18【分析】过点D作DE⊥AB于点E由角平分线的性质可得出DE的长再根据三角形的面积公式即可得出结论【详解】解:过点D作DE⊥AB于点E∵D (0-3)∴OD=3∵AD是Rt△OAB的角平分线OD⊥O解析:18【分析】过点D作DE⊥AB于点E,由角平分线的性质可得出DE的长,再根据三角形的面积公式即可得出结论.【详解】解:过点D作DE⊥AB于点E,∵D(0,-3)∴OD=3,∵AD是Rt△OAB的角平分线,OD⊥OA,DE⊥AB,∴DE=OD=3,∴S△ABD=12AB•DE=12×12×3=18.故答案为:18.【点睛】本题考查了坐标与图形的性质,角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.19.;【分析】过点P作MN⊥AD根据角平分线的性质以及平行线的性质即可得出PM=PE=2PE=PN=2即可得出答案【详解】过点P作MN⊥AD∵AD∥BC∠ABC的角平分线BP与∠BAD的角平分线AP相交解析:18;【分析】过点P作MN⊥AD,根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】过点P作MN⊥AD∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E∴AP⊥BP,PN⊥B C∴PM=PE=9,PE=PN=9∴MN=9+9=18故答案为18.【点睛】此题主要考查了角平分线的性质以及平行线的性质,根据题意作出辅助线是解决问题的关键.20.或【分析】对点P和点Q是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或7 2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.(1)证明见解析;(2)证明见解析【分析】(1)结合题意得:ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,推导得ABF ACD ∠=∠;通过证明ABF ACD △≌△,即可完成证明;(2)根据(1)的结论ABF ACD △≌△得:BAF CAD ∠=∠;根据题意得90BAE ∠=;再通过证明AEF ABD △≌△,即可完成证明.【详解】(1) ∵ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,90BAC BCD ︒∠=∠=∴ABF ACD ∠=∠∵BF BC =,CB CD =∴BF BC CD ==即AB AC ABF ACD BF CD =⎧⎪∠=∠⎨⎪=⎩∴ABF ACD △≌△∴AF AD =;(2)∵90BAC ︒∠=∴18090BAE BAC ∠=-∠=结合(1)的结论ABF ACD △≌△∴BAF CAD ∠=∠∵90EAF BAE BAF BAF ∠=∠-∠=-∠,90BAD BAC CAD CAD ∠=∠-∠=-∠ ∴EAF BAD ∠=∠∵AE AC =,AB AC =∴AE AC AB ==即AF AD EAF BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴AEF ABD △≌△∴BD EF =.【点睛】本题考查了三角形外角、全等三角形的知识;解题的关键是熟练掌握三角形外角、全等三角形的性质,从而完成求解.22.(1)见详解;(2)60°.【分析】(1)利用HL 直接证明Rt △DEB ≌Rt △CEB ,即可解决问题.(2)首先证明△ADE ≌△BDE ,进而证明∠AED=∠DEB=∠CEB ,即可解决问题.【详解】证明:(1)∵DE ⊥AB ,∠ACB=90°,∴△DEB 与△CEB 都是直角三角形,在△DEB 与△CEB 中,EB EB DE CE =⎧⎨=⎩, ∴Rt △DEB ≌Rt △CEB (HL ),∴BC=BD .(2)∵DE ⊥AB ,∴∠ADE=∠BDE=90°;∵点D 为AB 的中点,∴AD=BD ;在△ADE 与△BDE 中,AD BD ADE BDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BDE (SAS ),∴∠AED=∠DEB ;∵△DEB ≌△CEB ,∴∠CEB=∠DEB ,∴∠AED=∠DEB=∠CEB ;∵∠AED+∠DEB+∠CEB=180°,∴∠AED=60°.【点睛】该命题以三角形为载体,以考查全等三角形的判定及其应用为核心构造而成;解题的关键是灵活运用全等三角形的判定及其性质,来分析、判断或推理.23.(1)(0,3)E ;(2)见解析;(3)30OBC ∠=︒.【分析】(1)先根据AAS 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(3,0),得到OC=OE=3,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OBC=30°.【详解】证明:(1)AD BC ⊥,AO BO ⊥,90AOE BDE BOC ∠∠∠∴===︒.又AEO BED ∠=∠,OAE OBC ∴∠=∠.(5,0)A -,(0,5)B , 5OA OB ∴==.在AOE △和BOC 中OAE OBC OA OBAOE BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, (ASA)AOE BOC ∴≌,OE OC ∴=. C 点坐标(3,0),3OE OC ∴==,(0,3)E ∴.(2)过O 作OM AD ⊥于M ,ON BC ⊥于N ,AOE BOC ≌,AOE BOC S S ∴=,AE BC =,1122AE OM BC ON ∴⨯⨯=⨯⨯, OM ON ∴=,OM AD ⊥,ON BC ⊥,DO ∴平分ADC ∠.(3)如所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,∴△OPD ≌△OCD ,∴OC=OP ,∠OPD=∠OCD ,∵OC CD AD +=,∴OC=AD-CD∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∵OAP OBC ∠=∠∴∠OBC=∠PAO =30°.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.24.详见解析【分析】利用HL 证明Rt △ABD ≌Rt △BAC ,即可得到结论.【详解】∵BD ⊥AD ,AC ⊥BC ,∴∠D=∠C=90︒,在Rt △ABD 和Rt △BAC 中,AB BA BD AC=⎧⎨=⎩, ∴Rt △ABD ≌Rt △BAC (HL ),∴∠ABC =∠BAD .【点睛】此题考查全等三角形的判定及性质,根据题中的已知条件确定两个三角形的对应相等的条件,根据全等的判定定理证得这两个三角形全等是解题的关键.25.(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=, ∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 26.逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;证明见解析.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题,再得出命题的正确性.【详解】解:有两个内角相等的三角形必有两条高线相等的逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;在Rt BCE 与Rt CBD △中,BD CE BC CB =⎧⎨=⎩∴()Rt BCE Rt CBD HL ≌,∴DCB EBC ∠=∠.【点睛】此题主要考查了命题与定理的证明,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,进而利用全等三角形的证明方法求出即可.。

中考全程演练(第02期)第18课时:全等三角形(含答案)

中考全程演练(第02期)第18课时:全等三角形(含答案)

三角形第18课时全等三角形基础达标训练1. (2021合肥长丰县模拟)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带①去B. 带②去C. 带③去D. 带①和②去第1题图2. 如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()第2题图A. 75°B. 70°C. 65°D. 60°3. (8分)(2021合肥期末)如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.第3题图4. (8分)(2021泸州) 如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.求证:AB=DE.第4题图5. (8分)(2021广安)如图,四边形ABCD是正方形,E、F分别是AB、AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.第5题图6. (8分)(2021恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.第6题图7. (10分)(2021温州)如图,在五边形ABCDE中,∠BCD=∠EDC =90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.第7题图8. (10分)(2021常州)如图,已知在四边形ABCD中,点E在AD 上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.第8题图9. (10分)(2021连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .第9题图能力提升拓展1. (10分)(2021合肥肥城三模)已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F .(1)求证:BF =AC ; (2)求证:CE =12BF .第1题图2. (12分)(2021合肥模拟)已知,△ABC 中,AB =AC ,∠BAC =90°,E 为边AC 任意一点,连接BE .(1)如图①,若∠ABE =15°,O 为BE 中点,连接AO ,且AO =1,求BC 的长;(2)如图②,F 也为AC 上一点,且满足AE =CF ,过A 作AD ⊥BE 交BE 于点H ,交BC 于点D ,连接DF 交BE 于点G ,连接AG .若AG 平分∠CAD ,求证:AH=12AC.第2题图教材改编题1. (沪科八上P95习题14.1第2题改编)如图,已知CE⊥AB于E,BD⊥AC于D,AC=AB=6,BE=2,则AD的长为()第1题图A. 2B. 3C. 4D. 52.教材母题(沪科八上P150A组复习题第10题)已知:如图,AD⊥DE,BE⊥DE,AC,BC分别平分∠DAB,∠ABE,点C在线段DE上.求证:AB=AD+BE.第2题图变式1:(8分)如图,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,求证:DE=BD+CE;变式1题图拓展变式:(8分)将直线m绕点A旋转,使其与BC边相交,则结论DE=BD+CE是否还成立?如果成立,请你给出证明;若不成立,请写出所有可能的结论,并在图中画出相应的图形.拓展变式题图变式2:(8分)如图,已知△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角,请问结论DE=BD+CE是否成立?请说明理由;变式2题图变式3:(8分)如图,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF 和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.变式3题图拓展变式:(8分)如图,过△ABC 的边AB 、AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高,延长HA 交EG 于点I ,求证:I 是EG 的中点.拓展变式题图答案基础达标训练 1. C2. C 【解析】∵AB =AC ,∴∠B =∠C ,在△DBE 和△ECF 中,⎪⎩⎪⎨⎧=∠=∠=CF EB C B EC BD ∴△DBE ≌△ECF (SAS),∴∠EFC =∠DEB ,∵∠A =50°,∴∠C =(180°-50°)÷2=65°,∴∠CFE +∠FEC =180°-65°=115°,∴∠BED +∠FEC =115°,∴∠DEF =180°-115°=65°.3. 证明:∵∠1=∠2, ∴∠1+∠EAC =∠2+∠EAC , ∴∠BAC =∠DAE , 又∵∠C =∠E ,∴在△ABC 和△ADE 中,⎩⎪⎨⎪⎧∠C =∠E ∠BAC =∠DAE AC =AE, ∴△ABC ≌△ADE (ASA). 4. 证明:∵BC ∥EF , ∴∠ACB =∠DFE , 又∵AF =DC , ∴AF +FC =DC +FC , 即AC =DF .在△ABC 与△DEF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠DFE ACB DFAC D A ∴△A B C ≌△DEF (ASA), ∴AB =DE .5. 证明:∵四边形ABCD 是正方形, ∴AB =BC ,∠A =∠ABC =90°, ∴∠AFB +∠ABF =90°, ∵BF ⊥CE ,垂足为G , ∴∠BEC +∠A B F =90°, ∴∠AFB =∠BEC , 在△AFB 和△BEC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠BC AB BEC AFB ABC A , ∴△AFB ≌△BEC (AAS), ∴AF =BE.6. 证明:∵△ABC 、△CDE 为等边三角形, ∴∠ACB =∠ECD =60°, ∴∠ACE =∠BCD , 在△ACE 与△BCD 中,⎪⎩⎪⎨⎧=∠=∠=CD CE BCD ACE BC AC , ∴△ACE ≌△BCD (SAS), ∴∠CAE =∠CBD ,∵∠AOB +∠CBD +∠BPO =180°, ∠BCA +∠C A E +∠A PC =180°, 且∠BPO =∠APC , ∴∠AOB =∠BCA =60°. 7. (1)证明:∵AC =AD , ∴∠ACD =∠ADC , ∵∠BCD =∠EDC =90°,∴∠BCD -∠ACD =∠EDC -∠ADC , 即∠BCA =∠ADE , 在△ABC 与△AED 中,⎪⎩⎪⎨⎧=∠=∠=AD AC ADE BCA ED BC , ∴△ABC ≌△AED (SAS); (2)解:∵△ABC ≌△AED , ∴∠E =∠B =140°,∵五边形ABCDE 内角和为(5-2)×180°=540°, ∴∠BAE =540°-2×90°-2×140°=80°.8. (1)证明:∵∠BCE =∠ACD =90°,∠BCE =∠ACB +∠ACE , ∠ACD =∠ACE +∠DCE , ∴∠ACB =∠DCE , 在△ABC 和△DEC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE BC DCE ACB D BAC , ∴△ABC ≌△DEC (AAS),∴AC =CD ;(2)解:由(1)知AC =CD , ∵∠ACD =90°, ∴∠CAD =45°, ∵AC =AE ,∴∠ACE =∠AEC =12(180°-45°)=67.5°, ∴∠DEC =180°-67.5°=112.5°. 9. (1)解:∠ABE =∠ACD.理由:∵AB =AC ,∠BAE =∠CAD ,AE =AD ,∴△ABE ≌△ACD (SAS),∴∠ABE =∠ACD ;(2)证明:∵AB =AC ,∴∠ABC =∠ACB.由(1)可知∠ABE =∠ACD ,∴∠FBC =∠FCB ,∴FB =FC.又∵AB =AC ,∴点A 、F 均在线段BC 的垂直平分线上,即过点A 、F 的直线垂直平分线段BC.能力提升拓展1. (1)证明:∵CD ⊥AB ,∠ABC =45°,∴△BCD 是等腰直角三角形.∴BD =CD.∵∠DBF =90°-∠BFD ,∠DCA =90°-∠EFC ,且∠BFD =∠EFC ,∴∠DBF =∠DCA .在Rt △DFB 和Rt △DAC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DC BD DFBA CDA BDF , ∴Rt △DFB ≌Rt △DAC (AAS),∴BF =AC.(2)证明:∵BE 平分∠ABC ,∴∠ABE =∠CBE.在Rt △BEA 和Rt △BEC 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CBE ABE BEBE CEB AEB , ∴Rt △BEA ≌Rt △BEC (ASA).∴CE =AE =12AC ,又∵BF =AC,∴CE =12BF .2. (1)解:如解图①,在AB 上取一点M ,使得BM =ME ,连接ME .第2题解图①在Rt △ABE 中,∵OB =OE ,∴BE =2OA =2,∵MB =ME ,∴∠MBE =∠MEB =15°,∴∠AME =∠MBE +∠MEB =30°,设AE =x ,则ME =BM =2x ,AM =3x , ∵AB 2+AE2=BE 2,∴(2x +3x )2+x 2=22,∴x =2-3(负根已经舍弃),∴AB =AC =(2+3)·2-3=2+3,∴BC =2AB =4+23=(3+1)2=3+1.第2题解图②(2)证明:如解图②中,作CP ⊥AC ,交AD 的延长线于P ,GM ⊥AC 于点M .∵BE ⊥AP , ∴∠AHB =90°,∴∠ABH +∠BAH =90°,∵∠BAH +∠P AC =90°,∴∠ABE =∠P AC ,在△ABE 和△CAP 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ACP BAE ACAB PAC ABE , ∴△ABE ≌△CAP (ASA),∴AE =CP =CF ,∠AEB =∠P ,在△DCF 和△DCP 中,⎪⎩⎪⎨⎧=∠=∠=CP CF DCP DCF CD CD ,∴△DCF ≌△DCP (SAS),∴∠DFC =∠P ,∴∠GFE =∠GEF ,∴GE =GF ,∵GM ⊥EF ,∴FM =ME ,∵AE =CF ,∴AF =CE ,∴AM =CM , 在△GAH 和△GAM 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AG AG AMG AHG GAM GAH ,∴△AGH ≌△AGM (AAS),∴AH =AM =CM =12AC .教材改编题1. C 【解析】∵CE ⊥AB 于E ,BD ⊥AC 于D ,∴∠AEC =∠ADB =90°,∵AC =AB ,∠A =∠A ,∴△ADB ≌△AEC (AAS),∴AD =AE ,∵AB =6,BE =2,∴AE =4,∴AD =4.2.变式1 :证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°.∵∠BAC =90°,∴∠BAD +∠CAE =90°.∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD.∵∠CAE =∠ABD ,∠ADB =∠CEA =90°,AB =AC ,∴ △ADB ≌△CEA (AAS),∴ AE =BD ,AD =CE ,∴ DE =AE +AD =BD +CE .拓展变式解::当m ⊥BC 时,根据D 和E 重合,则DE =0,BD =CE ;当m 与AC 的夹角小于45°时,如解图,拓展变式题解图∵∠BAD +∠CAE =90°,在Rt △ADB 中,∠ABD +∠BAD =90°, ∴∠CAE =∠ABD ,∴△ABD 和△CAE 中,⎪⎩⎪⎨⎧=∠=∠︒=∠=∠AC AB CAEABD AEC BDA 90, ∴△ABD ≌△CAE (AAS),∴BD =AE ,EC =DA ,又∵DE =AE -AD ,∴DE =BD -CE ;同理,当m与AC的夹角大于45°小于90°时,DE=CE-BD. 变式2:解:成立,理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BDA=∠BAC+∠CAE,∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,∠ABD=∠CAE,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.变式3:解:△DEF为等边三角形,理由如下:由(2)知,△ADB≌△CEA,∴BD=AE,∠BDA=∠CEA.∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE.∵B F=AF,∠DBF=∠F AE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.拓展变式:证明:如解图,过E作EM⊥HI于M,GN⊥HI的延长线于N.拓展变式解题图∴∠EMI =∠GNI =90°,由(1)和(2)的结论可以知道EM =AH =GN , ∴EM =GN ,在△EMI 和△GNI 中,⎪⎩⎪⎨⎧∠=∠=∠=∠GNI EMI GNEM GIN EIM , ∴△EMI ≌△GNI (AAS),∴EI =GI ,∴I 是EG 的中点.。

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》检测(答案解析)(2)

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》检测(答案解析)(2)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .643.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .14.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°5.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA6.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50° 7.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS8.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD 9.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:410.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF11.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 12.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个二、填空题13.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.14.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.15.如图,ABC 的三边AB 、BC 、CA 长分别是10、15、20,三条角平分线交于O 点,则::ABO BCO CAO S S S 等于__________.16.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.17.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 18.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.19.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.20.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题21.在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△;(2)如图②,当PD AB ⊥于点F 时,求此时t 的值.22.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,若9AD =,6DE =,求BE 的长.23.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .24.求证:全等三角形对应边上的中线相等.(根据图形写出已知,求证并完成证明)25.如图,点B ,F ,C ,E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD .求证:AB=DE .26.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当EP ⊥BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可.【详解】解:当EP ⊥BC 时,EP 最短,∵AB ∥CD ,AD ⊥AB ,∴AD ⊥CD ,∵BE 平分∠ABC ,AE ⊥AB ,EP ⊥BC ,∴EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】 本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是解题关键.2.B解析:B【分析】过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.3.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 4.B解析:B【分析】由SAS 证明△BDE ≌△CFD ,得出∠BDE=∠CFD ,∠EDF 可由180°与∠BDE 、∠CDF 的差表示,进而求解即可.【详解】解:在△BDE 与△CFD 中,BD CF B C BE CD ⎧⎪∠∠⎨⎪⎩===,∴△BDE ≌△CFD (SAS );∴∠BDE=∠CFD ,∴∠EDF=180°-(∠BDE+∠CDF )=180°-(∠CFD+∠CDF )=180°-(180°-∠C )=50°; 故选:B .【点睛】本题主要考查了全等三角形的判定及性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 5.C解析:C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.6.D解析:D【分析】依据SAS 即可得判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠D =∠E =25°,由三角形内角和定理可求出答案.【详解】解:在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠D =∠E ,∵∠D =25°,∴∠E =25°,∴∠ABE =180°﹣∠A ﹣∠E =180°﹣105°﹣25°=50°.故选:D .【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.7.D解析:D【分析】求出∠PDA=∠PEA=90°,∠DAP=∠EAP ,根据AAS 推出两三角形全等即可.【详解】解:∵PD ⊥AB ,PE ⊥AF ,∴∠PDA=∠PEA=90°,∵AP 平分∠BAF ,∴∠DAP=∠EAP ,在△APD 和△APE 中DAP EAP PDA PEA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△APE (AAS ),故选:D .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .8.B解析:B【分析】根据角平分线上的点到角的两边的距离相等可得DE =DC ,然后利用AAS 证明△ACD ≌△AED ,再对各选项分析判断后利用排除法.【详解】解:∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE =DC ,A 、BD +ED =BD +DC =BC ,故本选项正确;在△ACD 与△AED 中,90DAC DAE ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴∠ADC =∠ADE ,∴AD 平分∠EDC ,故C 选项正确;但∠ADE 与∠BDE 不一定相等,故B 选项错误;D 、∵△ACD ≌△AED ,∴AE =AC ,∴ED +AC =ED +AE >AD (三角形任意两边之和大于第三边),故本选项正确.故选:B .【点睛】本题考查了角平分线的性质,角平分线上的点到角的两边的距离相等,证明ACD AED △≌△是解题的关键.9.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.10.A解析:A【分析】欲使△AED ≌△BFC ,已知AC=DB ,AE ∥BF ,可证明全等三角形判定定理AAS 、SAS 、ASA 添加条件,逐一证明即可;【详解】∵ AC=BD ,∴ AD=CE ,∵ AE ∥BF ,∴ ∠A=∠E ,A 、如添加ED=CF ,不能证明△AED ≌△BFC ,故该选项符合题意;B 、如添加AE=BF ,根据SAS ,能证明△AED ≌△BFC ,故该选项不符合题意;C 、如添加∠E=∠F ,利用AAS 即可证明△AED ≌△BFC ,故该选项不符合题意; D 、如添加ED ∥CF ,得出∠EDC=∠FCE ,利用ASA 即可证明△AED ≌△BFC ,故该选项不符合题意;故选:A .【点睛】本题考查了全等三角形的判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理;11.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.12.D解析:D【分析】根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【详解】解:∵∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,① 符合题意;∵PD ⊥OA ,PE ⊥OB ,PD =PE ,∴OC 是∠AOB 的角平分线,② 符合题意;在Rt △POD 和Rt △POE 中,OD DE OP OP =⎧⎨=⎩, ∴Rt △POD ≌Rt △POE ,∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,③ 符合题意;∵∠DPO=∠EPO ,PD ⊥OA ,PE ⊥OB∴在△POD 和△POE 中,DPO EPO PDO PEO OP OP =⎧⎪=⎨⎪=⎩∠∠∠∠∴△POD ≌△POE (AAS ),∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,④ 符合题意,故选:D .【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键;二、填空题13.50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E 先证明∠CBE=∠ACD 从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键. 14.4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD 再求出AD 的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE ≌△CFE 是解答此题的关键. 15.【分析】由角平分线的性质可得点O 到三角形三边的距离相等即三个三角形的ABBCCA 上的高相等利用面积公式即可求解【详解】解:过点O 作OD ⊥AC 于DOE ⊥AB 于EOF ⊥BC 于F ∵O 是三角形三条角平分线的解析:2:3:4【分析】由角平分线的性质可得,点O 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 上的高相等,利用面积公式即可求解.【详解】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD =OE =OF .∵AB =10,BC =15,CA =20,∴::ABO BCO CAO S S S =(12•AB•OE ):(12•BC•OF ):(12•CA•OD )=::AB BC CA =2:3:4.故答案为:2:3:4.【点睛】本题主要考查了角平分线的性质,掌握角平分线的性质定理和三角形面积的计算方法是解题的关键.16.AB//CD 【分析】先利用SSS 证明△ABF ≌△CDE 然后根据全等三角形的性质得到∠DCE=∠BAF 最后根据内错角相等两直线平行即可解答【详解】解:∵AE=CF ∴AE+EF=CF+EF 即AF=EC 在解析:AB//CD【分析】先利用SSS 证明△ABF ≌△CDE ,然后根据全等三角形的性质得到∠DCE=∠BAF ,最后根据内错角相等、两直线平行即可解答.【详解】解:∵AE=CF ,∴AE+EF=CF+EF,即AF=EC在△ABF 和△CDE 中,,,,AB CD AF EC BF DE =⎧⎪=⎨⎪=⎩∴△ABF ≌△CDE (SSS ),∴∠DCE=∠BAF .∴AB//CD .故答案为:AB//CD .【点睛】本题主要考查了全等三角形的判定与性质以及平行线的判定,运用全等三角形的知识得到∠DCE=∠BAF成为解答本题的关键.17.【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可【详解】解:∵点P(2mm-1)在二四象限的角平分线上∴2m=-(m-1)解得m=故答案为:【点睛】本题考查了点的坐标熟记第解析:1 3【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P(2m,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13.故答案为:13.【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.18.3【分析】由AD⊥CEBE⊥CE可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD从而求得△CEB≌△ADC然后利用全等三角形的性质可以求得BE的长【详解】解:∵∠A解析:3【分析】由AD⊥CE,BE⊥CE,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD,从而求得△CEB≌△ADC,然后利用全等三角形的性质可以求得BE的长.【详解】解:∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD,在△CEB和△ADC中,BCE CADBEC CDA AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB≌△ADC(AAS);∴BE=CD,CE=AD=9.∵DC=CE-DE,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.22【分析】由三角形全等性质可得mn中有一边为5pq中有一边为3mn与pq中剩余两边相等再由三角形三边关系可知mn与pq中剩余两边最大为7如此即可得到m+n+p+q的最大值【详解】∵△ABC≌△DE解析:22【分析】由三角形全等性质可得m、n中有一边为5,p、q中有一边为3,m、n与p、q中剩余两边相等,再由三角形三边关系可知m、n与p、q中剩余两边最大为7,如此即可得到m+n+p+q的最大值.【详解】∵△ABC≌△DEF,∴m、n中有一边为5,p、q中有一边为3,m、n与p、q中剩余两边相等,∵3+5=8,∴两三角形剩余两边最大为7,∴m+n+p+q的最大值为:3+5+7+7=22.【点睛】本题考查三角形全等与三角形三边关系的综合运用,灵活运用三角形全等的性质及三角形三边关系的应用是解题关键.20.4cm【分析】由DE⊥AB可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm.【分析】由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC,AC=BE,由E是BC的中点,得到BE=12BC=12BD=4.【详解】解:∵DE⊥AB,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.(1)见解析;(2)8秒【分析】(1)根据垂直及角之间的关系证明出PDA CBD ∠=∠,又有90PAD C ∠=∠=︒,=6AD BC =,根据三角形全等的判定定理则可证明PDA DBC △≌△.(2)根据垂直及角之间的关系证明APF DAF ∠=∠,又因为90PAD C ∠=∠=︒,AD BC =,则可证明PAD ACB △≌△,所以8cm AP AC ==,即t=8秒.【详解】(1)证明:PD BD ⊥,90PDB ∴∠=︒,即90BDC PDA ∠+∠=︒又90C ∠=︒,90BDC CBD ∠+∠=︒ PDA CBD ∴∠=∠又AE AC ⊥,90PAD ∴∠=︒90PAD C ∴∠=∠=︒又6cm BC =,6cm AD =AD BC ∴= 在PAD △和DCB 中PAD C AD CBPDA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()PDA DBC ASA ∴△≌△(2)PD AB ⊥,90AFD AFP ∴∠=∠=︒,即90PAF APF ∠+∠=︒又AE AC ⊥,90PAF DAF ∴∠+∠=︒ APF DAF ∴∠=∠又90PAD C ∠=∠=︒,AD BC =在APD △和CAB △中APD CAB PAD C AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PAD ACB AAS ∴△≌△8cm AP AC ∴==即8t =秒.【点睛】本题主要考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用角之间的关系是解题关键.22.3【分析】根据同角的余角相等可得EBC DCA ∠=∠,根据“AAS”可证CEB △≌ADC ,可得9AD CE ==,即可求BE 的长.【详解】解:∵BE CE ⊥,AD CE ⊥,∴90E ADC ∠=∠=︒,∴90EBC BCE ∠+∠=︒.∵90BCE ACD ∠+∠=︒,∴EBC DCA ∠=∠.在CEB △和ADC 中,E ADC EBC ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CEB △≌ADC (AAS ),∴BE CD =,9AD CE ==,∴963BE CD CE DE ==-=-=.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练运用全等三角形的判定是本题的关键.23.见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE =⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.24.见解析【分析】利用SAS 证明ABD ≌A B D '''△,即可证得结论.【详解】 解:已知:如图,ABC ≌A B C ''',AD 和A D ''分别是BC 和B C ''上的中线,求证:AD =A D ''.证明:∵ABC ≌A B C ''', ∴AB =A B '',∠B =∠B ',BC =B C '',∵AD 、A D ''是 BC 和B C ''上的中线,∴BD =12BC ,12B D B C ''''=, ∴BD =B D '',∴在ABD 与A B D '''△中 AB A B B B BD B D =⎧⎪∠=∠⎨⎪=''''⎩' ∴ABD ≌A B D '''△(SAS ),∴AD =A D ''.【点睛】本题考查了全等三角形的判定与性质,证明线段相等的问题,基本的思路是转化成三角形全等.25.见详解【分析】先根据条件求出BC=EF ,根据平行线性质求出∠B=∠E ,∠ACB=∠DFE ,根据ASA 推出△ABC ≌△DEF 即可.【详解】∵FB =CE ,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FEACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.26.(1)3;(2)2【分析】(1)根据同角的余角相等证得∠1=∠3,再利用AAS 证明()ABP PCD AAS ∆≅∆,然后根据全等三角形的性质解答即可;(2)过P 作PH AD ⊥于H ,利用角平分线的性质进行解答即可.【详解】解:(1)如图,∵AP PD ⊥,∴1290∠+∠=︒,∵PC CD ⊥,∴2390∠+∠=︒∴13∠=∠,∵3,4BP BC ==,∴1PC BC BP =-=,又∵1AB =,∴AB PC =,又∵AB BP ⊥,∴90B C ∠=∠=︒,∴()ABP PCD AAS ∆≅∆,∴3CD BP ==;(2)作PH AD ⊥于H ,如图2,∵DP 平分ADC ∠,∴∠1=∠2,∵90C ∠=︒,PH AD ⊥∴∠HDP=∠CDP ,∴PH PC =,又∵1390∠+∠=︒,2490∠+∠=︒,∴34∠=∠,又∵90B ∠=︒,PH AD ⊥∴∠HAP=∠BAP ,∴PH BP =, ∴122BP PC BC ===. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质、同角的余角相等、直角三角形的两锐角互余,熟练掌握全等三角形的判定与性质,添加辅助线灵活运用角平分线的性质是解答的关键.。

全等三角形模型总结及经典练习题

全等三角形模型总结及经典练习题

全等三角形模型及习题练习第一部分全等模型图一、平移模型特征:可看成是三角形在一边所在直线上移动构成的,故在同一直线上的对应边的相等关系一般可由加(减)公共边证得,对应角的相等关系可由平行线的性质证得。

二、平行模型(X型)特征:平行线所形成的同位角、内错角相等三、折叠轴对称模型(翻转型,部分X型)特征:图形关于某一条直线对称,则这条直线两边的部分能完全重合,重合的顶点就是全等三角形的对应点。

图①中有公共角∠A;图②中对顶角相等(∠AOC=∠BOD);图③④中分别有公共边AB,BD四、旋转模型特征:可看成是以三角形某一个顶点为中心旋转构成的,故一般有一对相等的角隐含在对顶角、某些角的和或差中五、角平分线模型旋转有重叠特征:角平分线形成的两个角相等,若把角平分线看成一条公共边,在角的两边再截取相等的线段,就可根据SAS得到全等三角形(如图①,ΔA1BD1≌ΔC1BD1),或者利用角平分线上的点到角两边的距离相等找到一组相等的边,就可根据HL得到全等三角形(如图②,ΔA2BD2≌ΔC2BD2)六、双直角三角形模型特征:证明多数可以用到同(等)角的余角相等这个定理,相等的角就是对应角七、一线三等角模型(K型)特征:如图①,,三个等角指的是α(图②中,α=90°),利用外角定理可证得∠1=∠2或∠3=∠4第二部分精选例题例1.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM 交DA的延长线上于E.交BC于N,求证:AE=CN.思路分析:欲证AE=CN.看它们在哪两个三角形中,设法证这两个三角形全等即可.结合图形可发现△AME≌△FCN可证.题设告知AM=CF,AD∥BC,AB∥CD.由两平行条件,可找两对角相等.∵∠1=∠2(对顶角相等)∴∠2=∠E(等量代换)∴AE=CN (全等三角形的对应边相等)例2.△ABC中,∠ACB=90°,AC=BC,过C的一条直线CE⊥AE于E,BD⊥CE的延长线于D,求证:AE=BD+DE.思路分析:从本例的结论知是求线段和的问题,由此入手,很难找到突破口.此时可迅速调整思维角度,可仔细观察图形,正确的图形是证题的“向导”,由此可发现△ACE与△CBD好像(猜测)全等.那么AE=CD=CE+DE.又BD=CE.那么,此时已水落石出.AC=BC(已知)∠1=∠3 (已证)∠AEC=∠CDB(已证)∴△ACE≌△CBD(AAS)∴BD=CE,AE=CD(全等三角形的对应边相等)∵AE=CE=CE+DE∴AE=BD+DE(等量代换)例3.如图,AD是△ABC的中线,DE,DF分别平分∠ADB和∠ADC,连接EF,求证:EF<BE+CF. 定对象:△ABC定角度:三角形全等分析:由结论EF<BE+CF很容易与定理“三角形两边之和大于第三边”联系在一块,观察图形,BE,CF,EF 条件分散,不在一个三角形中,必须设法(平移,旋转,翻转等)把三者集中在一个三角形中,是打开本例思路的关键.由角的平分线这一线索,可将△BDE沿角平分线翻转180°,即B点落在AD的点B'上(如图)(也就是在DA上截取DB'=BD),连结EB',B'F,此时△BDE与△B'DE完全重合,所以△BDE≌△B'DE(两个三角形能够完全重合就是全等三角形,所以BE=B'E(全等三角形的对应边相等).在△EFB'中,EF<B'E+B'F(三角形的两边之和大于第三边).∴EF<BE+CF(等量代换).例4 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.定对象:如图定角度:三角形全等分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD 和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.例5已知:如图,△ABC≌△ADE,BC的延长线交DA于F,交 DE于G,∠ACB=105°,∠CAD=10°,∠D=25°.求∠EAC,∠DFB,∠DGB的度数.例6.在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=20 cm,则△DBE的周长等于多少?分析:对象:△DBE的周长角度:(1)BD,DE,BE的长解:因为DE⊥AB,所以AED ACD∠=∠因为AD是∠BAC的平分线,所以EAD CAD≅则AE=AC ∠=∠又因为AD为公共边所以AED ACD DE=DC所以△DBE的周长=BE+DE+BD=AB-AE+BC=20例7如图13—3—8所示,已知在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:EF⊥AD.分析:对象:△ABC 角度:(1)AD是∠BAC的平分线,(2)DE⊥AB于E,DF⊥AC于F证明:因为DE⊥AB于E,DF⊥AC于F,所以0∠=∠=又因AED AFD90为AD是∠BAC的平分线,所以EAD FAD∠=∠由于AD是公共边所以AED AFD≅则AE=AF 因为AD是∠BAC的平分线所以EF⊥AD。

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(答案解析)(2)

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(答案解析)(2)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 3.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 4.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对 5.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .17.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA9.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 10.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°11.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b 12.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题13.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.14.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.15.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.16.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 17.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.18.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =5,若点Q 是射线OB 上一点,OQ =4,则△ODQ 的面积是__________.19.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)20.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.三、解答题21.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度22.如图,∠ACB 和∠ADB 都是直角,BC =BD ,E 是AB 上任意一点.(1)求证:△ABC ≌△ABD .(2)求证:CE =DE .23.如图,在四边形ABCD 中,//AD BC ,E 为AC 的中点,连接DE 并延长,交BC 于点F .(1)求证:DE EF =.(2)若12AD =,:2:3BF CF =,求BC 的长.24.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.25.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.26.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH 于点G .(1)若∠DBE =40°,∠EBC =35°,求∠BDE 的度数;(2)求证:∠EGH >∠ADE ;(3)若点E 是AC 和FG 的中点,△AFE 与△CEG 全等吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB 即可得出∠BAD 的度数.【详解】解:∵△ABC ≌△ADE ,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D .【点睛】本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.2.D解析:D【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.3.A解析:A【分析】当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键. 4.B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD ,BC=BD ,OC=OD ,然后根据”HL”可判断Rt △AOC ≌Rt △AOD ,Rt △BOC ≌Rt △BOD ;根据“SSS”可判断△ABC ≌△ABD .【详解】解:∵AB 是线段CD 的垂直平分线,∴AC=AD ,BC=BD ,OC=OD ,∴Rt △AOC ≌Rt △AOD (HL ),Rt △BOC ≌Rt △BOD (HL ),△ABC ≌△ABD (SSS ).故选:B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.5.D解析:D【分析】求出∠PDA=∠PEA=90°,∠DAP=∠EAP ,根据AAS 推出两三角形全等即可.【详解】解:∵PD ⊥AB ,PE ⊥AF ,∴∠PDA=∠PEA=90°,∵AP 平分∠BAF ,∴∠DAP=∠EAP ,在△APD 和△APE 中DAP EAP PDA PEA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△APE (AAS ),故选:D .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .6.D解析:D【分析】根据三角形的高线、角平分线的性质及全等三角形的判定分析各个选项即可.【详解】解:①只有当三角形是锐角三角形时,三条高才在三角形的内部,此选项错误; ②有两边及一角对应相等的两个三角形全等,此选项错误;③有两角和一边对应相等,满足AAS 或ASA ,此选项正确;④在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点; 在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.则到三角形三边所在直线距离相等的点有4个,此选项错误;⑤两边及第三边上的高对应相等的两个三角形不一定全等,此选项错误.正确的有一个③,故选:D .【点睛】本题考查了全等三角形的判定方法及三角形的角平分线,垂心等概念,熟练掌握概念和性质是解题的关键.7.B解析:B【分析】根据正方形的性质得到AB=AD,∠BAD=90︒,由旋转的性质推出ADE≌ABF,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90︒,由旋转得ADE≌ABF,∴∠FAB=∠EAD,∴∠FAB+∠∠BAE=∠EAD+∠BAE,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B.【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键.8.C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.9.C解析:C【分析】利用全等三角形的判断方法进行求解即可.【详解】A、因为 BM∥CN,所以∠ABM=∠DCN,又因为∠A=∠D, AM=DN,所以△ABN≅△DCN(AAS),故A选项不符合题意;B、因为∠M=∠N ,∠A=∠D, AM=DN,所以△ABN≅△DCN(ASA),故B选项不符合题意;C、BM=CN ,不能判定△ABN≅△DCN,故C选项符合题意;D、因为AB=CD,∠A=∠D, AM=DN,所以△ABN≅△DCN(SAS),故D选项不符合题意.故选:C.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A、根据AB=3,BC=4,∠C=40°,不能画出唯一三角形,故本选项不合题意;B、∠A=60°,AB=4,∠B=45°,能画出唯一△ABC,故此选项符合题意;C、∠C=90°,AB=6,不能画出唯一三角形,故本选项不合题意;D、AB=4,BC=3,∠A=30°,不能画出唯一三角形,故本选项不合题意;故选:B.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.11.B解析:B【分析】在线段AC上作AF=AB,证明△AEF≌△AEB可得∠AFE=∠B,∠AEF=∠AEB,再证明△CEF≌△CED可得CD=CF,即可求得四边形ABDC的周长.【详解】解:在线段AC上作AF=AB,∵AE 是BAC ∠的平分线,∴∠CAE=∠BAE ,又∵AE=AE ,∴△AEF ≌△AEB (SAS ),∴∠AFE=∠B ,∠AEF=∠AEB ,∵AB ∥CD ,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE ,∵AE CE ⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED ,在△CEF 和△CED 中∵D CFE CEF CED CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEF ≌△CED (AAS )∴CE=CF ,∴四边形ABDC 的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b +,故选:B .【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键. 12.D解析:D【分析】根据HL 定理分别证明Rt △ABC ≌Rt △ADE 和Rt △AEO ≌Rt △ACO ,根据全等三角形的性质可判断各选项.【详解】解:解:∵90,,ACB AED AB AD AC AE ∠=∠===,∴Rt△ABC≌Rt△ADE(HL)=,∠BAC=∠DAE,∴BC DE故A选项正确;∠=∠,∴∠BAC-∠EAC=∠DAE-∠EAC,即BAE DAC故B选项正确;连接AO,∵AE=AC,AO=AO,∴Rt△AEO≌Rt△ACO(HL),∴OC OE=,故C选项正确;∠=∠,故D选项错误;无法得出EAC ABC故选:D.【点睛】本题全等三角形的性质与判断.掌握证明直角三角形全等的HL定理是解题关键.二、填空题13.21【分析】如图作DHBA交BA的延长线于H作DFBC的延长线于F作DEAC于E首先证明利用面积法求出DE即可解决问题【详解】解:作DHBA交BA的延长线于H作DFBC的延长线于F作DEAC于E设则解析:21【分析】如图,作DH⊥BA交BA的延长线于H,作DF⊥BC的延长线于F,作DE⊥AC于E,首先==,利用面积法求出DE,即可解决问题.证明DH DE DF【详解】解:作DH⊥BA交BA的延长线于H,作DF⊥BC的延长线于F,作DE⊥AC于E,∠+∠=︒∠+∠=︒,180,180BAD CAD BAD DAHCAD DAH∴∠=∠,180,180 BCD ACD BCD DCF∠+∠=︒∠+∠=︒,ACD DCF∴∠=∠,,,DH BH DE AC DF BF⊥⊥⊥,DH DE DF∴==,设DH DE DF x===,则有:11112222AB DH BC DF AB BC AC DE ⋅⋅+⋅⋅=⋅⋅+⋅⋅,∴34125x x x+=+,6x∴=,∴S四边形ABCD=1111345621 2222AB CB AC DE⋅+⋅=⨯⨯+⨯⨯=.故答案为:21.【点睛】本题考查了角平分线的性质、三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.14.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS∆,即12×AB×2+12×7×2=12,解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;15.5【分析】根据角平分线的性质及垂线段最短解答【详解】根据垂线段最短可知:当PM ⊥OC 时PM 最小∵OP 平分PD=5∴PM=PD=5故答案为:5【点睛】此题考查角平分线的性质垂线段最短掌握点到直线的所有解析:5【分析】根据角平分线的性质及垂线段最短解答.【详解】根据垂线段最短可知:当PM ⊥OC 时,PM 最小,∵OP 平分AOC ∠,PD OA ⊥,PD=5,∴PM=PD=5,故答案为:5.【点睛】此题考查角平分线的性质,垂线段最短,掌握点到直线的所有连线中垂线段最短是解题的关键.16.【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可【详解】解:∵点P (2mm-1)在二四象限的角平分线上∴2m=-(m-1)解得m=故答案为:【点睛】本题考查了点的坐标熟记第 解析:13【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P (2m ,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13. 故答案为:13. 【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.17.4:3【分析】利用角平分线的性质可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等根据三角形的面积公式即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵AD 是△ABC 的角平分线∴设△解析:4:3【分析】利用角平分线的性质,可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等,根据三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵ AD 是△ABC 的角平分线,∴ 设△ABD 的边AB 上的高与△ACD 的边AC 的高分别为1h ,2h ,∴ 1h =2h ,∴△ABD 与△ACD 的面积之比=AB :AC=8:6=4:3,故答案为:4:3.【点睛】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键;18.10【分析】作DH ⊥OB 于点H 根据角平分线的性质得到DH=DP=5根据三角形的面积公式计算得到答案【详解】解:作DH ⊥OB 于点H ∵OC 是∠AOB 的角平分线DP ⊥OADH ⊥OB ∴DH=DP=5∴△OD解析:10【分析】作DH ⊥OB 于点H ,根据角平分线的性质得到DH=DP=5,根据三角形的面积公式计算,得到答案.【详解】解:作DH ⊥OB 于点H ,∵OC 是∠AOB 的角平分线,DP ⊥OA ,DH ⊥OB ,∴DH=DP=5,∴△ODQ 的面积=12×OQ×DH=12×4×5=10; 故答案为:10.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 19.AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC =AC 然后即可得到使得△ABC ≌△ADC 需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC =AC ∴若添加条件AB =A解析:AB =AD (答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC =AC ,然后即可得到使得△ABC ≌△ADC需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC=AC,∴若添加条件AB=AD,则△ABC≌△ADC(SAS);若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.20.6【分析】过点P作PH⊥AMPQ⊥AN连接AP根据角平分线上的点到角两边的距离相等可得PH=PE=PQ再根据三角形的面积求出BC然后求出AC+AB再根据S△ABC=S△ACP+S△ABP-S△BPC解析:6【分析】过点P作PH⊥AM,PQ⊥AN,连接AP,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC= S△ACP+ S△ABP-S△BPC即可得解.【详解】解:如图,过点P作PH⊥AM,PQ⊥AN,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB )-7.5 ∵AC+AB+BC=14,BC=5∴AC+AB=9∴S △ABC=12×3×9-7.5=6 cm 2 【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S △ABC 的面积的表示.三、解答题21.(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.22.(1)见解析;(2)见解析.【分析】(1)利用“HL ”证明Rt △ACB ≌Rt △ADB 即可;(2)由Rt △ACB ≌Rt △ADB 得到∠CAB =∠DAB ,AC =AD ,然后利用“SAS ”可证明△ACE ≌△ADE ,从而得到CE =DE .【详解】证明:(1)在Rt △ACB 和Rt △ADB 中,AB AB BC BD =⎧⎨=⎩, ∴Rt △ACB ≌Rt △ADB (HL );(2)∵Rt △ACB ≌Rt △ADB ,∴∠CAB =∠DAB ,AC =AD ,在△ACE 和△ADE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ADE (SAS ),∴CE =DE .【点睛】此题考查全等三角形的判定及性质,根据图形的特点确定对应相等的条件,利用:SSS 、SAS 、ASA 、AAS 或HL 证明两个三角形全等由此解决问题是解题的关键.23.(1)见解析;(2)20【分析】(1)根据平行线的性质可得:EAD ECF ∠=∠,EDA EFC ∠=∠,继而根据全等三角形的判定证得()ADE CFE AAS ≅△△,继而即可求证结论;(2)由全等三角形的性质可得:12AD CF ==,求得8BF =,继而即可求解.【详解】(1)证明:∵//AD BC ,∴EAD ECF ∠=∠,EDA EFC ∠=∠.∵E 为AC 的中点,∴AE CE =.在ADE 和CFE 中,,,,EAD ECF EDA EFC AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADE CFE AAS ≅△△.∴DE EF =.(2)解:∵ADE CFE ≅,∴12AD CF ==.∵:2:3BF CF =,∴8BF =,∴81220BC BF CF =+=+=.【点睛】 本题考查全等三角形的判定和性质,平行线的性质,解题的关键是熟练掌握全等三角形的判定方法和性质.24.添加AB=CD ;证明见解析.【分析】根据线段的和差关系可得BF=CE ,故添加AB=CD 即可利用SAS 证明△ABF ≌△DCE ,根据全等三角形的性质即可得出AF=DE .【详解】可添加AB=CD ,理由如下:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE ,∵AB CB ⊥,DC CB ⊥,∴∠B=∠C=90°,在△ABF 和△DCE 中,AB CD B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE ,∴AF=DE .【点睛】本题考查全等三角形的判断与性质,全等三角形的判定方法有:SSS 、SAS 、AAS 、ASA 、HL 等;注意:AAA 、SSA 不能判定两个三角形全等,当利用SAS 判定两个三角形全等时,角必须是两边的夹角;熟练掌握并灵活运用适当判定方法是解题关键.25.(1)见解析;(2)A(32,52)或(52,-32). 【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=.即点A坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.26.(1)∠BDE=105°;(2)见解析;(3)全等,理由见解析.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形的内角和定理即可得到结论;(2)根据三角形的外角性质得出∠EGH>∠ABC,又根据平行线的性质得出∠ABC=∠ADE,即可得出答案;(3)根据全等三角形判定的“SAS”定理即可得到结论.【详解】(1)解:∵DE//BC,∠EBC=35°,∴∠DEB=∠EBC=35°,又∵∠BDE+∠DEB+∠DBE=180°,∠DBE=40°,∴∠BDE=105°;(2)证明:∵∠EGH是△FBG的外角,∴∠EGH>∠ABC,又∵DE//BC,∴∠ABC=∠ADE,∴∠EGH >∠ADE ;(3)全等.证明:E 是AC 和FG 的中点,∴AE =CE ,FE =GE ,在△AFE 和△CEG 中,AE CE AEF CEG FE GE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△CGE (SAS ).【点睛】本题考查了三角形的外角性质,平行线的性质的应用,全等三角形的判定,三角形内角和定理,能运用三角形外角性质进行推理是解此题的关键.。

12.2三角形全等的判定(二)(“SAS”)练习题人教版八年级数学上册

12.2三角形全等的判定(二)(“SAS”)练习题人教版八年级数学上册

第2课时三角形全等的判定(二)(“SAS”)【基础练习】知识点 1 判定两个三角形全等的基本事实——“边角边”1.如图1所示,点D在AB上,点E在AC上,AB=AC,AD=AE,则≌△AEB,理由是.图12.图2中全等的三角形是 ()图2A.①和②B.②和③C.②和④D.①和③3.如图3,AB平分∠DAC,要用“SAS”判定△ABC≌△ABD,还需添加条件 ( )图3A.CB=DBB.AB=ABC.AC=ADD.∠C=∠D4.已知:如图4,AC与BD相交于点O,且OA=OC,OB=OD.求证:△AOB≌△COD.图45.如图5所示,CD=CA,∠1=∠2,EC=BC.求证:△ABC≌△DEC.图56.如图6所示,AD=BE,AC=DF,AC∥DF.求证:△ABC≌△DEF.图6知识点 2 全等三角形的判定(SAS)的简单应用7.如图7所示,AA',BB'表示两根长度相同的木条.若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为 ( )图7A.8 cmB.9 cmC.10 cmD.11 cm8.[2020·镇江]如图8,AC是四边形ABCD的对角线,∠1=∠B,点E,F分别在AB,BC 上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.图8【能力提升】9.如图9所示,在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将其中的两个论断作为条件,另一个论断作为结论写出一个真命题为.(写成“如果 ,那么 ”的形式,写一个即可)图910.[2020·江西]如图10,CA平分∠DCB,CB=CD,DA的延长线交BC于点E.若∠EAC=49°,则∠BAE的度数为.图1011.如图11,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.有下列说法:①CE=BF;②△ABD≌△ACD;③BF∥CE;④△BDF和△CDE的面积相等.其中正确的是.(填序号)图1112.:[2020·宜宾]如图12,在△ABC中,D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.图12 变式:在△ABC中,AB=7,AC=3,AD是中线,求AD的取值范围.第2课时 三角形全等的判定(二)(“SAS ”)1.△ADC SAS2.D [解析] 从图中可以看到①和③符合“SAS ”.3.C [解析] 由题意可得,在△ABC 和△ABD 中,{AC =AD,∠CAB =∠DAB,AB =AB,∴△ABC ≌△ABD (SAS).选项C 正确,其余选项都不正确. 4.证明:在△AOB 和△COD 中,{OA =OC,∠AOB =∠COD,OB =OD,∴△AOB ≌△COD (SAS).5.证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA ,即∠ACB=∠DCE.在△ABC 和△DEC 中,{CA =CD,∠ACB =∠DCE,BC =EC,∴△ABC ≌△DEC (SAS).6.证明:∵AD=BE ,∴AB+BD=DE+BD ,即AB=DE.∵AC ∥DF ,∴∠A=∠FDE.在△ABC 和△DEF 中,{AB =DE,∠A =∠FDE,AC =DF,∴△ABC ≌△DEF (SAS).7.B8.解:(1)证明:在△BEF 和△CDA 中,{BE =CD,∠B =∠1,BF =CA,∴△BEF ≌△CDA (SAS).∴∠D=∠2.(2)∵∠D=∠2,∴∠2=78°.∵EF∥AC,∴∠BAC=∠2=78°.9.答案不唯一,如:如果①②,那么③(或如果①③,那么②)[解析] (1)已知AB=AD,∠BAC=∠DAC,AC=AC,可得△ABC≌△ADC(SAS),所以BC=DC;(2)已知AB=AD,BC=DC,AC=AC,可得△ABC≌△ADC(SSS),所以∠BAC=∠DAC.10.82°[解析] ∵CA平分∠DCB,∴∠BCA=∠DCA.又∵CB=CD,AC=AC,∴△ABC≌△ADC(SAS).∴∠B=∠D.∴∠B+∠ACB=∠D+∠ACD.∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°.∴∠BAE=180°-∠B-∠ACB-∠CAE=82°.故答案为82°.11.①③④[解析] ∵AD是△ABC的中线,∴BD=CD.又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底同高,∴△ABD和△ACD的面积相等,但不一定全等,故②错误;由△BDF≌△CDE,可知∠FBD=∠ECD,∴BF∥CE,故③正确.故答案为①③④.12.解:(1)证明:∵D是边BC的中点,∴BD=CD.在△ABD 和△ECD 中,{BD =CD,∠ADB =∠EDC,AD =ED,∴△ABD ≌△ECD (SAS).(2)∵在△ABC 中,D 是边BC 的中点,∴S △ABD =S △ACD .∵△ABD ≌△ECD ,∴S △ABD =S △ECD . ∵S △ABD =5,∴S △ACE =S △ACD +S △ECD =5+5=10,即△ACE 的面积为10.变式:解:如图,延长AD 到点E ,使ED=AD ,连接BE.∵AD 是△ABC 的中线,∴BD=CD.又ED=AD ,∠ADC=∠EDB ,∴△BED ≌△CAD (SAS). ∴BE=AC=3. ∵DE=AD ,∴AE=2AD.在△ABE 中,AB-BE<AE<AB+BE , 即AB-BE<2AD<AB+BE ,∴7-3<2AD<7+3. ∴2<AD<5.。

全等三角形分级练习-第二级

全等三角形分级练习-第二级

全等三角形分级练习(第二级/共六级)
第二级转化所给条件证明三角形全等
全等三角形分级训练要求:
第二级:能够利用题目中所给出的“平行”、“中点”、“中线”、“垂直”转换成边相等或者角相等这样的证明三角形全等所需要的条件。

或者通过证明三角形全等,利用三角形全等后的性质,证明边相等,角相等,从而得到“平行”、“平分”等结论。

1. 中点:
若点M为线段AB的中点,则
若,则点M为线段AB的中点
2. 中线:
若AD是△ABC的中线,则
若,则AD是△ABC的中线
3. 角平分线:
若AD平分∠BAC,则
若,则AD平分∠BAC
4. 平行:
若AD//BC,则∠=∠
若AB//CD,则∠=∠
5. 如图,
①点O为BC的中点,AB//CD,求证:点O为AD
②点O为AD、BC的中点,求证:AB//CD
6. 如图:若∠
A=∠D,BC//EF,AB=DE
求证:∠C=∠F
7.如图,若BC⊥AD,EF⊥AD,
AB=DE,BC=EF
求证:AC//DF
8.在四边形ABCD中,
①若
AB//CD,AD//BC 求证:AB=CD,AD=BC
②若AB=CD,AD=BC 求证:AB//CD,AD//BC
9. 若AD为△ABD的中线,AB=AC,求证:AD⊥BC,AD平分∠BAC A
B
C
B
B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形分级练习(第二级/共六级)
第二级转化所给条件证明三角形全等
全等三角形分级训练要求:
第二级:能够利用题目中所给出的“平行”、“中点”、“中线”、“垂直”转换成边相等或者角相等这样的证明三角形全等所需要的条件。

或者通过证明三角形全等,利用三角形全等后的性质,证明边相等,角相等,从而得到“平行”、“平分”等结论。

1. 中点:
若点M为线段AB的中点,则
若,则点M为线段AB的中点
2. 中线:
若AD是△ABC的中线,则
若,则AD是△ABC的中线
3. 角平分线:
若AD平分∠BAC,则
若,则AD平分∠BAC
4. 平行:
若AD//BC,则∠=∠
若AB//CD,则∠=∠
5. 如图,
①点O为BC的中点,AB//CD,求证:点O为AD
②点O为AD、BC的中点,求证:AB//CD
6. 如图:若∠A=∠D,BC//EF,AB=DE
求证:∠C=
∠F
7.如图,若BC⊥AD,EF⊥AD,AB=DE,BC=EF
求证:AC//DF
8.在四边形ABCD中,
①若AB//CD,AD//BC 求证:AB=CD,AD=BC
②若AB=CD,AD=BC
求证:AB//CD,AD//BC
9. 若AD为△ABD的中线,AB=AC,求证:AD⊥BC,AD平分∠
BAC A
B
C
B
B。

相关文档
最新文档