2014年山东高考文科数学及参考答案
2014全国统一高考数学真题及逐题详细解析(文科)—山东卷
2014年普通高等学校招生全国统一考试(山东卷)文科数学一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi += A . 34i -B . 34i +C . 43i -D . 43i +2. 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =A . (0,2]B . (1,2)C . [1,2)D . (1,4)3.函数()f x =的定义域为A . (0,2)B . (0,2]C . (2,)+∞D . [2,)+∞4. 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是 A . 方程30x ax b ++=没有实根B . 方程30x ax b ++=至多有一个实根 C . 方程30x ax b ++=至多有两个实根D . 方程30x ax b ++=恰好有两个实根5. 已知实数,x y 满足(01)xya a a <<<,则下列关系式恒成立的是 A . 33x y >B . sin sin x y >C . 22ln(1)ln(1)x y +>+D .221111x y >++ 6. 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是A . 0,1a c >>B . 1,01a c ><<C . 01,1a c <<>D . 01,01a c <<<< 7. 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6π,则实数m = A .B .C . 0D .8. 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
2014年全国高考山东省数学(文)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。
满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
3. 第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i + (C) 43i -(D) 43i +(2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3)函数()f x =(A) (0,2)(B) (0,2](C) (2,)+∞(D) [2,)+∞(4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是(A) 方程30x ax b ++=没有实根(B) 方程30x ax b ++=至多有一个实根(C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根(5) 已知实数,x y 满足(01)xya a a <<<, 则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成(B) 1,01a c ><<(C) 01,1a c <<> (D) 01,01a c <<<<(7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6π,则实数m =(A)(B)(C) 0(D)(8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
2014年高考(山东卷)文科数学
2014年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分.考试用时120分钟. 参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014山东,文1)已知a ,b ∈R ,i 是虚数单位,若a +i =2-b i ,则(a +b i)2=( ). A .3-4i B .3+4i C .4-3i D .4+3i 答案:A解析:∵a +i =2-b i ,∴a +b i =2-i. 即(a +b i)2=(2-i)2=4-4i -1=3-4i.2.(2014山东,文2)设集合A ={x |x 2-2x <0},B ={x |1≤x ≤4},则A ∩B =( ). A .(0,2] B .(1,2) C .[1,2) D .(1,4) 答案:C解析:由已知可得A ={x |0<x <2}.又∵B ={x |1≤x ≤4},∴A ∩B ={x |1≤x <2}.3.(2014山东,文3)函数()f x =( ).A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞) 答案:C解析:∵f (x )有意义,∴2log 10,0.x x ->⎧⎨>⎩∴x >2,∴f (x )的定义域为(2,+∞).4.(2014山东,文4)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( ).A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 答案:A解析:“至少有一个”的否定为“没有”. 5.(2014山东,文5)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ).A .x 3>y 3B .sin x >sin yC .ln(x 2+1)>ln(y 2+1)D .221111x y >++ 答案:A解析:∵0<a <1,a x <a y ,∴x >y .∴x 3>y 3.6.(2014山东,文6)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠0)的图象如图,则下列结论成立的是( ).A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1 答案:D解析:由图象可知y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性易知0<a <1.7.(2014山东,文7)已知向量a =,b =(3,m ),若向量a ,b 的夹角为π6,则实数m =( ).A .BC .0D .答案:B解析:∵cos 〈a ,b 〉=||||a ba b ⋅⋅,∴πcos6=,解得m =8.(2014山东,文8)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ).A .6B .8C .12D .18 答案:C解析:设样本容量为n ,由题意得n ·(0.24+0.16)=20, ∴n =50.∴第三组的频数为50×0.36=18人. 则第三组中有疗效的人数为18-6=12.9.(2014山东,文9)对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数.下列函数中是准偶函数的是( ).A .()f x =B .f (x )=x 2C .f (x )=tan xD .f (x )=cos(x +1)答案:D解析:由f (x )为准偶函数的定义可知,若f (x )的图象关于x =a (a ≠0)对称,则f (x )为准偶函数,在D 中f (x )=cos(x +1)的图象关于x =k π-1(k ∈Z )对称,故选D.10.(2014山东,文10)已知x ,y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数z =ax +by (a>0,b >0)在该约束条件下取到最小值a 2+b 2的最小值为( ).A .5B .4CD .2答案:B 解析:约束条件10,230x y x y --≤⎧⎨--≥⎩满足可行域如图所示.由图可知目标函数z =ax +by (a >0,b >0)取最小值时,最优解为(2,1),即2+a b ,∴2b a .∴2222222)=54)+4a b a a a +=-+-.∴当a =a 2+b 2取最小值为4. 第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2014山东,文11)执行下面的程序框图,若输入的x 的值为1,则输出的n 的值为__________.答案:3解析:输入x =1,12-4+3≤0,执行是,x =2,n =1;返回22-8+3≤0,执行是,x =3,n =2; 返回32-12+3≤0,执行是,x =4,n =3; 返回42-16+3>0,执行否,输出n =3.12.(2014山东,文12)函数22cos y x x =+的最小正周期为__________. 答案:π解析:原式1cos2π1=sin 2262x x x +⎛⎫=+++ ⎪⎝⎭. ∴周期2π==π2T .13.(2014山东,文13)一个六棱锥的体积为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为__________.答案:12解析:根据题意得底面正六边形面积为h ,则1=3V Sh ,∴13⨯h =1. 设侧面高为h ′,则222='h h ,∴h ′=2. ∴正六棱锥的侧面积为1622=122⨯⨯⨯. 14.(2014山东,文14)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x轴所得弦的长为C 的标准方程为__________.答案:(x -2)+(y -1)2=4解析:∵圆心在直线x -2y =0上, ∴可设圆心为(2a ,a ).∵圆C 与y 轴正半轴相切,∴a >0,半径r =2a .又∵圆C 截x 轴的弦长为∴222=(2)a a ,解得a =1(a =-1舍去). ∴圆C 的圆心为(2,1),半径r =2. ∴圆的方程为(x -2)2+(y -1)2=4.15.(2014山东,文15)已知双曲线2222=1x y a b-(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为__________.答案:y =±x解析:由已知得|OA |=a ,∵|AF |=c ,∴OF b , ∴=2pb . ∴抛物线的准线==2py b --.把y =-b 代入双曲线2222=1x y a b-得x 2=2a 2,∴直线=2py -被双曲线截得的线段长为,从而=2c .∴c =,∴a 2+b 2=2a 2,∴a =b , ∴渐近线方程为y =±x .三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2014山东,文16)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.分析:(1)利用分层抽样在各层中的抽样比等于在总体中的抽样比求解.(2)先利用列举法求出在这6件样品中随机抽取2件的总的基本事件个数及所抽取的2件商品来自相同地区的基本事件个数,进而利用古典概型的概率公式即可求解.解:(1)因为样本容量与总体中的个体数的比是615015010050=++,所以样本中包含三个地区的个体数量分别是:150=150⨯,1150=350⨯,1100=250⨯. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的. 记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415. 17.(本小题满分12分)(2014山东,文17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =,π=+2B A .(1)求b 的值;(2)求△ABC 的面积.分析:(1)在△ABC 中,已知cos A =,π=+2B A ,相当于已知角A ,B ,又已知边a ,故可利用sin sin a b A B =求b .(2)由已知及(1)可知a ,b ,故根据1sin 2ABC S ab C ∆=,只需求sin C ,在△ABC 中,由C =π-(A +B ),可求sin C . 解:(1)在△ABC 中,由题意知sin A =, 又因为π2B A =+,所以πsin sin =cos 2 B A A ⎛⎫=+= ⎪⎝⎭.由正弦定理可得3sin =sin a Bb A=(2)由π=+2B A 得πcos cos =sin 23B A A ⎛⎫=+-=-⎪⎝⎭. 由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B13⎛=+= ⎝⎭. 因此△ABC的面积111sin 32232S ab C ==⨯⨯=. 18.(本小题满分12分)(2014山东,文18)如图,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,12AB BC AD ==,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .分析:(1)要证AP ∥平面BEF ,由线面平行的判定定理知,只需在平面BEF 内找到一条直线与AP 平行即可,而已知F 为PC 的中点.“由中点找中点”,故考虑利用三角形的中位线定理求解,即找AC 的中点,由已知可通过证明四边形ABCE 为菱形而达到目的.(2)要证BE ⊥平面P AC ,由线面垂直的判定定理知:只需证BE 垂直于平面P AC 内的两条相交直线即可.由(1)可知BE ⊥AC .又已知AP ⊥平面PCD ,则AP 垂直于平面PCD 内的所有直线,即AP ⊥CD ,故考虑通过证明BE ∥CD 来证明BE ⊥P A ,则由BE ⊥AC 且BE ⊥P A ,可证BE ⊥平面P AC .证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,12AB BC AD ==,AD ∥BC , 所以AE ∥BC ,AE =AB =BC , 因此四边形ABCE 为菱形, 所以O 为AC 的中点. 又F 为PC 的中点,因此在△P AC 中,可得AP ∥OF . 又OF ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)由题意知ED ∥BC ,ED =BC . 所以四边形BCDE 为平行四边形, 因此BE ∥CD .又AP ⊥平面PCD ,所以AP ⊥CD ,因此AP ⊥BE . 因为四边形ABCE 为菱形, 所以BE ⊥AC .又AP ∩AC =A ,AP ,AC ⊂平面P AC , 所以BE ⊥平面P AC .19.(本小题满分12分)(2014山东,文19)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设12=n n n b a (+),记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .分析:(1)已知等差数列{a n }的公差d ,要求其通项公式,只需求首项a 1即可,由已知a 22=a 1·a 4可求a 1.(2)由(1)中所求a n ,可求b n ,由T n 的特点,故考虑研究b n +1-b n 的通项.又(-1)n 表示各项的符号,故需对n 的奇偶性进行讨论.解:(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2,所以数列{a n }的通项公式为a n =2n . (2)由题意知12==(+1)n n n b a n n (+),所以T n =-1×2+2×3-3×4+…+(-1)n n ·(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =4222nn (+)=22n n (+), 当n 为奇数时,21111+()=(1)=22n n n n n n T T b n n -(-)(+)(+)=--+-.所以21,22,.2n n n T n n n ⎧(+)-⎪⎪=⎨(+)⎪⎪⎩为奇数,为偶数 20.(本小题满分13分)(2014山东,文20)设函数1()=ln 1x f x a x x -++,其中a 为常数. (1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性. 分析:(1)由已知可求切点坐标,故只需利用导数的几何意义求出斜率;则可求切线方程. (2)先求出函数f (x )的导函数f ′(x ).通过判断f ′(x )的符号来求f (x )的单调区间.由于导数中含有参数a ,所以要判断其符号,需要对参数a 进行分类讨论.同时,应注意函数的单调区间应是定义域的子区间,故需在定义域内研究其单调性.解:(1)由题意知当a =0时,1()=1x f x x -+,x ∈(0,+∞). 此时()22=1f x x '(+). 可得()11=2f ',又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞).()222222==11a ax a x af x x x x x +(+)+'+(+)(+). 当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1),①当12a =-时,Δ=0,()2211201x f x x x -(-)'=≤(+),函数f (x )在(0,+∞)上单调递减. ②当12a <-时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当102a -<<时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则1x =2x=.由10x ==>,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当12a ≤-时,函数f (x )在(0,+∞)上单调递减;当12a-<<时,f(x)在⎛⎝⎭,⎫+∞⎪⎪⎝⎭上单调递减,在⎝⎭上单调递增.21.(本小题满分14分)(2014山东,文21)在平面直角坐标系xOy中,椭圆C:22221x ya b+=(a>b>0)的离心率为2,直线y=x被椭圆C截得的线段长为5.(1)求椭圆C的方程;(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.①设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;②求△OMN面积的最大值.分析:(1)要求椭圆方程,只需求a,b,由e==.又直线y=x被椭圆C,故联立y=x与22221x ya b+=求线段长,,可得a,b的另一关系式,故可求a,b,则椭圆方程可求.(2)①要求λ的值,需求k1,k2,而直线BD的斜率k1由B,D两点的坐标确定,直线AM 的斜率k2由A,M两点的坐标确定,且A,B关于原点对称.M点是直线BD与x轴的交点,故本题的两个关键点是A,D,故只需设出A,D两点坐标,将k1,k2用此两点坐标表示,寻求这两点坐标间的关系即可.②S△OMN=1||||2OM ON,即S△OMN可用点M,N的坐标表示.又关系式为积的形式,由“和定积最大”,故考虑利用基本不等式求解.解:(1)由题意知2a=,可得a2=4b2. 椭圆C的方程可简化为x2+4y2=a2.将y=x代入可得x==a=2.因此b=1,所以椭圆C的方程为2214xy+=.(2)①设A(x1,y1)(x1y1≠0),D(x2,y2),则B(-x1,-y1),因为直线AB的斜率11ABykx=,又AB⊥AD,所以直线AD的斜率11xky=-. 设直线AD的方程为y=kx+m,由题意知k≠0,m≠0.由22,14y kx m x y =+⎧⎪⎨+=⎪⎩可得(1+4k 2)x 2+8mkx +4m 2-4=0. 所以122814mkx x k+=-+, 因此y 1+y 2=k (x 1+x 2)+2m =2214mk +.由题意知x 1≠-x 2, 所以1211121144y y y k x x k x +==-=+.所以直线BD 的方程为1111()4y y y x x x +=+. 令y =0,得x =3x 1,即M (3x 1,0).可得1212y k x =-. 所以1212k k =-,即12λ=-.因此存在常数12λ=-使得结论成立.②直线BD 的方程1111()4yy y x x x +=+,令x =0,得134y y =-,即130,4N y ⎛⎫- ⎪⎝⎭.由①知M (3x 1,0), 可得△OMN 的面积11111393248S x y x y =⨯⨯=. 因为22111114x x y y ≤+=,当且仅当11||2x y ==此时S 取得最大值98,所以△OMN 面积的最大值为98.。
2014年高考数学山东卷(文科)答案word版
2014年普通高等学校招生全国统一考试(山东卷)文科数学试题答案与解析1. 解析 因为i 2i a b +=-,所以i 2i a b +=-, 所以()()222i 2i 44i i 34i a b +=-=-+=-.2. 解析 因为{}{}22002A x x x x x =-<=<<,{}14B x x =剟,所以{}{}{}021412AB x x x x x x =<<=<剟?.3. 解析 要使函数()f x =有意义,需有2log 10x ->,即2log 1x >,解得2x >,即函数()f x 的定义域为()2,+∞.4. 解析 因为“方程30x ax b ++=至少有一个实根”等价于“方程30x ax b ++=的实根的个数大于或等于1”,所以要做的假设是“方程30x ax b ++=没有实根”.5. 解析 因为x ya a <且01a <<,所以x y >,所以33x y >.6. 解析 由题图可知,函数在定义域内为减函数,所以01a <<.又当0x =时,0y >, 即log 0a c >,所以01c <<.故选D.评注 本题考查对数函数的图像、单调性,考查识图及分析问题、解决问题的能力.7. 解析 因为(=a ,()3,m =b ,所以2=a,=b ,3⋅=a b ,又a ,b 的夹角为π6,所以πcos6⋅=⋅a b ab ,=,m =,解得m =8. 解析 由题图可知,第一组与第二组的频率之和为()0.240.1610.4+⨯=.因为第一组与第二组共有20人,所以该试验共选取志愿者20500.4=人,故第三组共有500.3618⨯=人,所以第三组中有疗效的人数为18612-=.评注 本题考查频率分布直方图的意义以及学生的识图、用图能力. 9. 解析 由()()2f x f a x =-,得函数()f x 的图像关于直线x a =对称,易知A ,C 错误.又因为0a ≠,而函数()2f x x =图像的对称轴为直线0x =,故B 错误,故选D.评注 本题以新定义的形式考查了函数图像的对称性,考查学生运用所学知识分析问题、解决问题以及知识迁移运用的能力.本题易错点有3处:①误把“准偶函数”当作“偶函数”而错选B ;②忽视条件0a ≠而错选B ;③不能从关系式()()2f x f a x =-得出函数()f x 的图像关于直线x a =对称而致错.10. 解析 不等式组10230x y x y --⎧⎨--⎩……表示的平面区域为图中的阴影部分.由于0a >,0b >,所以目标函数z ax by =+在点()2,1A处取得最小值,即2a b +=解法一:())2222222520444a b a a a +=+=-+=-+…,即22a b +的最小值为4.2a b +=2=,即22a b +的最小值为4.评注 本题考查线性规划与最值问题,考查学生运算求解的能力以及数形结合和转化与化归思想的应用能力.11. 解析 1x =,0n =,2141302x -⨯+=→=,1n =,22423103x -⨯+=-<→=,2n =,2343304x -⨯+=→=,3n =, 2444330-⨯+=>,输出3n =.12. 解析2c o s 2311i n 2c o s i n 2s i n 2c o s 2222x y x x x x x +=++++=π1sin 262x ⎛⎫++ ⎪⎝⎭,所以该函数的最小正周期为π.13. 解析 设六棱锥的高为h ,斜高为0h .因为该六棱锥的底面是边长为2的正六边形,所以底面面积为122sin 6062⨯⨯⨯⨯=,则13⨯=,得1h =,所以02h =,所以该六棱锥的侧面积为1226122⨯⨯⨯=.14. 解析 因为圆心在直线20x y -=上,且圆C 与y 轴相切,所以可设圆心坐标为()2,a a ,则()2222a a =+,解得1a =±.又圆C 与y 轴的正半轴相切,所以1a =,故圆C 的标准方程为()()22214x y -+-=.评注 本题考查直线与圆的位置关系以及圆的标准方程的求法,考查学生运算求解能力以及运用数形结合思想求解问题的能力.本题的易错点时忽视圆与y 轴的正半轴相切. 15. 解析 222c a b =+,①由双曲线截抛物线的准线所得线段长为2c 知,双曲线过点,2p c ⎛⎫- ⎪⎝⎭,即222214c p a b -=.②由FA c =,得2224p c a =+,③由①③得224p b =.④将④代入②,得222c a =.所以2222a b a +=,即1ba=,故双曲线的渐近线方程为y x =±,即0x y ±=.评注 本题考查抛物线,双曲线的标准方程及几何意义,考查学生的运算求解能力.16. 解析 (I )因为样本容量与总体中的个体数的比是615015010050=++,所以样本中包含三个地区的个体数量分别是:150150⨯=,1150350⨯=,1100250⨯=,所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(II )设6件来自A ,B ,C 三个地区的样品分别为:A ;1B ,2B ,3B ;1C ,2C ,则抽取的这件商品构成的所有基本事件为:{}1,A B ,{}2,A B ,{}3,A B ,{}1,A C ,{}2,A C ,{}12,B B ,{}13,B B ,{}11,B C ,{}12,B C ,{}23,B B ,{}21,B C ,{}22,B C ,{}31,B C ,{}32,B C ,{}12,C C ,共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”则事件D 包含的基本事件有{}12,B B ,{}13,B B ,{}23,B B ,{}12,C C ,共4个.所以()415P D =,即这2件商品来自相同地区的概率为415. 17. 解析 (I )在ABC △中,由题意知,sin 3A ==,因为π2B A =+,所以πsin sin cos 23B A A ⎛⎫=+== ⎪⎝⎭由正弦定理可得3sin sin a B b A ⨯===. (II )由π2B A =+得πcos cos sin 23B A A ⎛⎫=+=-=- ⎪⎝⎭.由πA B C ++=,得()πC A B =-+.所以()()sin sin πsin C A B A B =-+=+=⎡⎤⎣⎦1sin cos cos sin 3A B A B ⎛+=+= ⎝⎭. 因此ABC △的面积111sin 3223S ab C ==⨯⨯=. 18. 解析 (I )设A C B E O =,连接OF ,EC .由于E 为AD 的中点,12AB BC AD ==,//AD BC ,所以//AE BC ,AE AB BC ==,因此四边形ABCE 为棱形,所以O 为AC 的中点.又F 为PC 的中点,因此在PAC △中,可得//AP OF .又OF ⊂平面BEF ,AP ⊄平面BEF ,所以//AP 平面BEF .(II )由依题知//ED BC ,ED BC =,所以四边形BCDE 为平行四边形,因此//BE CD .又AP ⊥平面PCD ,所以AP CD ⊥,因此AP BE ⊥.因为四边形ABCE 为棱形,所以BE AC ⊥.又AP AC A =,AP ,AC ⊂平面PAC ,所以BE ⊥平面PAC .19. 解析 (I )由题意知()()21113a d a a d +=+,即()()211126a a a +=+,解得12a =,O FEC BAP所以数列{}n a 的通项公式为2n a n =.(II )由题意知()()121n n n b a n n +==+.所以()()12233411nn T n n =-⨯+⨯-⨯++-⨯+.因为()121n n b b n +-=+,所以当n 为偶数时,()()()()()1234142224812222n n n nn n n T b b b b b b n -++=-++-+++-+=++++==,当n 为奇数时,()()()()()21111122n n n n n n T T b nn --++=+-=-+=-.所以()()21,222n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数,,为偶数. 评注 本题考查等比数列和等差数列的综合应用、等差数列的通项公式及数列的求和,分类讨论思想和逻辑推理能力.20. 解析 (I )由题意知0a =时,()()10,1x f x x x -=∈+∞+, 此时()()221f x x '=+.可得()112f '=,又()10f =,所以曲线()y f x =在()()1,1f 处的切线方程为210x y --=.(II )函数()f x 的定义域为()0,+∞.()()()()22222211ax a x a a f x x x x x +++'=+=++. 当0a …时,()0f x '>,函数()f x 在()0,+∞上单调递增,当0a <时,令()()222g x ax a x a =+++,()()22224421a a a ∆=+-=+.①当12a =-时,0∆=,()()()2211201x f x x x --'=+…,函数()f x 在()0,+∞上单调递减. ②当12a <-时,0∆<,()0g x <,()0f x '<,函数()f x 在()0,+∞上单调递减. ③当102a -<<时,0∆>,设1x ,2x ()12x x <是函数()f x 的两个零点,则()11a x a -+=,()21a x a-+=.由于10x ==>, 所以()10,x x ∈时,()0g x <,()0f x '<,函数()f x 单调递减,()12,x x x ∈时,()0g x >,()0f x '>,函数()f x 单调递增, ()2,x x ∈+∞时,()0g x <,()0f x '<,函数()f x 单调递减,综上可得:当0a …时,函数()f x 在()0,+∞上单调递增,当12a -…时, ()f x 在()()110,a a a a ⎛⎫-++-++∞ ⎪ ⎪⎪⎝⎭⎝⎭上单调递减, 在()()11a a a a ⎛⎫-++-+- ⎪ ⎪⎝⎭上单调递增,评注 本题考查了导数的几何意义以及利用导数讨论函数的单调性,考查了学生利用分类讨论思想求解问题的能力以及逻辑推理和运算求解能力. 21. 解析 (I )由题意知=,可得224a b =,椭圆C 的方程可简化为2224x y a +=.将y x =代入可得5x =±55=,可得2a =.因此1b =,所以椭圆C 的方程为2214x y +=.(II )(i )设()()1111,0A x y x y ≠,()22,D x y ,则()11,B x y --,因为直线AB 的斜率11AB y k x =,又AB AD ⊥,所以直线AD 的斜率11x k y =-.设直线AD 的方程为y kx m =+,由题意知0k ≠,0m ≠.由2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()222148440k x m k x m +++-=.所以122814mk x x k +=-+,因此()121222214my y k x x m k+=++=+.由题意知12x x ≠-,所以1211121144y y y k x x k x +==-=+.所以直线BD 的方程为()11114y y y x x x +=+.令0y =,得13x x =,即()13,0M x .可得1212y k x =-.所以1212k k =-,即12λ=-.因此存在常数12λ=-使得结论成立.(ii )直线BD 的方程为()11114y y y x x x +=+,令0x =,得134y y =-,即130,4N y ⎛⎫-⎪⎝⎭.由(i )知()13,0M x ,可得OMN △的面积11111393248S =x y x y⨯⨯=.因为22111114x x y y +=…,当且仅当112x y ==时等号成立,此时S 取得最大值98,所以OMN △面积的最大值为98.评注 本题考查了椭圆的标准方程、离心率,直线与椭圆的位置关系以及存在性问题和最值问题,综合性较强,难度较大,考查了学生的逻辑推理能力、运算求解能力以及函数与方程思想在解析几何中的应用.。
山东高考文科数学试题及答案Word版
2014年普通高等学校招生全国统一考试(山东卷)文科数学第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i - (B) 34i + (C) 43i -(D) 43i + (2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B = (A) (0,2] (B) (1,2) (C) [1,2) (D) (1,4)(3) 函数21()log 1f x x =-的定义域为(A) (0,2) (B) (0,2] (C) (2,)+∞ (D) [2,)+∞ (4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是 (A) 方程30x ax b ++=没有实根 (B) 方程30x ax b ++=至多有一个实根 (C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根(5) 已知实数,x y 满足(01)x ya a a <<<,则下列关系式恒成立的是(A) 33x y > (B) sin sin x y >(C) 22ln(1)ln(1)x y +>+ (D) 221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是(A) 0,1a c >> (B) 1,01a c ><<(C) 01,1a c <<> (D) 01,01a c <<<<(7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6π,则实数m = (A) 23 (B) 3 (C) 0(D) 3-(8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
高考真题——文科数学(山东卷)
2014年普通高等学校招生全国统一考试数学试卷(山东卷)参考公式:如果事件,A B 互斥,那么()()()P A B P A P B +=+ 一.选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,a b R ∈,i 是虚数单位,若2a i bi +=-,则()2a bi +=( )(A )34i - (B )34i + (C )43i - (D )43i +2.设集合{}2|20A x x x =-<,{}|14B x x =≤≤,则A B =( )(A )(]0,2 (B )()1,2 (C )[)1,2 (D )()1,43.函数()f x =的定义域为( ) (A )()0,2 (B )(]0,2 (C )()2,+∞ (D )[)2,+∞4.用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是( )(A )方程30x ax b ++=没有实根 (B )方程30x ax b ++=至多有一个实根(C )方程30x ax b ++=至多有两个实根 (D )方程30x ax b ++=恰好有两个实根5.已知实数,x y 满足()01x y a aa <<<,则下列关系式恒成立的是( ) (A )33x y > (B )sin sin x y > (C )()()22ln 1ln 1x y +>+ (D )())221111x y +>+6.已知函数()log a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如右图,则下列结论成立的是( )(A )0,1a c >> (B )1,01a c ><<(C )01,1a c <<> (D )01,01a c <<<<7.已知向量()1,3a =,()3,b m =,若向量,a b 的夹角为6π,则实数m =( )(A )(B (C )0(D )8.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[)12,13,[)13,14,[)14,15,[)15,16,[]16,17,将其按从左到右的顺序分别编号为第一组,第二组,......,第五组。
2014年全国高考山东省数学(文)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。
满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
3. 第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i + (C) 43i -(D) 43i +(2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3)函数()f x =(A) (0,2)(B) (0,2](C) (2,)+∞(D) [2,)+∞(4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是(A) 方程30x ax b ++=没有实根(B) 方程30x ax b ++=至多有一个实根(C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根(5) 已知实数,x y 满足(01)x y a a a <<<, 则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是(A) 0,1a c >>(B) 1,01a c ><<(C) 01,1a c <<> (D) 01,01a c <<<<(7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6π,则实数m =(A)(B)(C) 0(D)(8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
2014年普通高等学校招生全国统一考试数学文试题(山东卷,解析版)
2014年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。
满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i + (C) 43i -(D) 43i +(2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3) 函数21()log 1f x x =-的定义域为(A) (0,2)(B) (0,2](C) (2,)+∞(D) [2,)+∞(4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是 (A) 方程30x ax b ++=没有实根(B) 方程30x ax b ++=至多有一个实根(C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根(5) 已知实数,x y 满足(01)x ya a a <<<,则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是(A) 0,1a c >>(B) 1,01a c ><<(C) 01,1a c <<> (D) 01,01a c <<<<(7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6π,则实数m =(A) 23(B) 3(C) 0(D) 3-(8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
2014年山东省高考文科数学试卷及答案解析
京翰教育北京家教辅导——全国中小学一对一课外辅导班2014 年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共 4 页。
满分150 分,考试用时120 分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第 I 卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
3. 第 II 卷必须用 0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A,B 互斥,那么P( A B) P( A) P(B)第I卷(共50 分)一、选择题:本大题共10 小题,每小题 5 分,共 50 分 .在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知a, b R, i 是虚数单位.若 a i =2bi ,则 (a bi )2(A) 34i(B) 34i(C) 43i(D)4 3i(2) 设集合 A { x | x22x 0}, B { x |1 x 4} ,则 A B(A)(0, 2](B) (1,2)(C) [1,2)(D)(1,4)(3)函数 f ( x)1的定义域为log 2 x 1(A) (0, 2)(B) (0, 2](C) (2,)(D) [2,)(4)用反证法证明命题:“设 a,b 为实数,则方程 x3ax b0 至少有一个实根”时,要做的假设是(A) 方程x3ax b 0 没有实根(B) 方程x3ax b0 至多有一个实根(C) 方程x3ax b 0 至多有两个实根(D) 方程x3ax b0 恰好有两个实根(5)已知实数x, y 满足a x a y (0 a 1) ,则下列关系式恒成立的是(A)x3y3(B) sin x sin y(C)ln( x21) ln( y2 1)(D)111x2 1 y2(6)已知函数 y log a ( x c)(a,c为常数,其中 a0, a 1) 的图象如右图,则下列结论成立的是EO x(A) a0, c1(B) a1,0c1(C) 0 a 1,c 1(D) 0 a 1,0c1(7) 已知向量a(1,3), b(3, m) .若向量 a, b 的夹角为,则实数 m6(A) 23(B)3(C) 0(D)3(8)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位: kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组, ,, ,第五组,右图是根据试验数据制成的频率分布直方图。
2014年山东高考数学文科试卷及详细解析
2014年山东高考数学文科试卷解析一.选择题: (1) 【解析】由ia +bi-=2得,12-==b a ,,=+2)(bi a i i i i 4344)2(22-=+-=-故答案选A (2)【解析】[]4,1)20(==B A ,,,数轴上表示出来得到=B A [1,2) 故答案为C (3)【解析】01log 2>-x 故2>x 。
选D (4)【解析】答案选A ,解析略。
(5)【解析】由)10(<<<a a a y x 得,y x >,但是不可以确定2x 与2y 的大小关系,故C 、D 排除,而x y sin =本身是一个周期函数,故B 也不对,33y x >正确。
(6) 【解析】由图象单调递减的性质可得01a <<,向左平移小于1个单位,故01c <<答案选C (7)【解析】:()22333cos ,29233393a b m a b a b a b m m m m ⋅=+⋅==+⋅∴+=⋅+∴=r rr r r r r r答案:B (8)【解析】:第一组与第二组频率之和为0.24+0.16=0.4200.450÷=500.361818612⨯=-=答案:C (9)【解析】:由分析可知准偶函数即偶函数左右平移得到的。
答案:D (10)【解析】:10230x y x y --≤⎧⎨--≥⎩求得交点为()2,1,则225a b +=,即圆心()0,0到直线2250a b +-=的距离的平方2225245⎛⎫== ⎪ ⎪⎝⎭。
答案: B二.填空题:11【解析】:根据判断条件0342≤+-x x ,得31≤≤x ,输入1=x第一次判断后循环,11,21=+==+=n n x x 第二次判断后循环,21,31=+==+=n n x x 第三次判断后循环,31,41=+==+=n n x x 第四次判断不满足条件,退出循环,输出3=n 答案:3 12【解析】:233111sin 2cos sin 2cos 2sin 2222262y x x x x x π⎛⎫=+=++=++ ⎪⎝⎭ 22T ππ∴==. 答案:T π=13【解析】:设六棱锥的高为h ,斜高为h ',则由体积1122sin 6062332V h ⎛⎫=⨯⨯⨯⨯⨯⨯= ⎪⎝⎭得:1h =,()2232h h '=+=∴ 侧面积为126122h '⨯⨯⨯=.答案:12 14【解析】 设圆心(),02a a a ⎛⎫> ⎪⎝⎭,半径为a . 由勾股定理()22232a a ⎛⎫+= ⎪⎝⎭得:2a =∴圆心为()2,1,半径为2, ∴圆C 的标准方程为()()22214x y -+-= 答案:()()22214x y -+-=15【解析】 由题意知222Pc a b =-=, 抛物线准线与双曲线的一个交点坐标为,2P c ⎛⎫⎪⎝⎭,即(),c b -代入双曲线方程为22221c ba b-=,得222c a=,∴渐近线方程为yx =±,2211b c a a∴=-=.答案:1 三.解答题 (16) 【解析】:(Ⅰ)因为工作人员是按分层抽样抽取商品,所以各地区抽取商品比例为:::50:150:1001:3:2A B C ==所以各地区抽取商品数为:1:616A ⨯=,3:636B ⨯=,2:626C ⨯=;(Ⅱ)设各地区商品分别为:12312,,,,,A B B B C C时间空间Ω为:()()()()()()()123121213,,,,,,,,,,,,,A B A B A B A C A C B B B B()()()()()()()()1112232122313212,,,,,,,,,,,,,,,B C B C B B B C B C B C B C C C ,共15个.样本时间空间为:()()()()12132312,,,,,,,B B B B B B C C 所以这两件商品来自同一地区的概率为:()415P A = (17) 【解析】:(Ⅰ)由题意知:23sin 1cos 3A A =-=, 6sin sin sin cos cos sin cos 2223B A A A A πππ⎛⎫=+=+== ⎪⎝⎭,由正弦定理得:sin 32sin sin sin a b a Bb A B A⋅=⇒== (Ⅱ)由余弦定理得:2222126cos 43903,33,23b c a A c c c c bc +-==⇒-+=⇒== 又因为2B A π=+为钝角,所以b c >,即3c =,所以132sin .22ABCS ac B == (18)【解析】:(Ⅰ)连接AC 交BE 于点O ,连接OF ,不妨设AB=BC=1,则AD=2,//,BC AD BC AB = ∴四边形ABCE 为菱形AP OF PC AC F O //,,∴中点,分别为又BEF AP BEF OF 平面,平面//∴⊂ (Ⅱ)CD AP PCD CD PCD AP ⊥∴⊂⊥,平面,平面CD BE BCDE ED BC ED BC //,,//∴∴=为平行四边形, ,PA BE ⊥∴AC BE ABCE ⊥∴为菱形,又PAC AC PA A AC PA 平面、又⊂=⋂, ,PAC BE 平面⊥∴(19)【解析】: (Ⅰ)由题意知:{}n a 为等差数列,设()d n a a n 11-+=,2a 为1a 与4a 的等比中项4122a a a ⨯=∴且01≠a ,即()()d a a d a 31121+=+, 2=d 解得:21=an n a n 22)1(2=⨯-+=∴(Ⅱ)由 (Ⅰ)知:n a n 2=,)1(2)1(+==+n n a b n n n①当n 为偶数时:()()()()()()()()[]()()222222642222624221153431214332212nn n n n n n n n n n T n +=+⨯=++++⨯=⨯++⨯+⨯+⨯=++--+++-++-=+++⨯-⨯+⨯-=②当n 为奇数时:()()()()()()()()[]()()()()[]()()()212122112211642212126242212153431214332212++-=----+⨯=+--++++⨯=+-⨯-++⨯+⨯+⨯=+-+---+++-++-=+-+⨯-⨯+⨯-=n n n n n n n n n n n n n n n n n n n T n综上:⎪⎪⎩⎪⎪⎨⎧+++-=为偶数为奇数,n n n n n n T n ,2221222 (20)【解析】(1)0a =当时212(),()1(1)x f x f x x x -'==++ 221(1)(11)2f '==+ (1)0(1,0)f =∴又直线过点1122y x ∴=- (2) 22()(0)(1)af x x x x '=+>+ 220()0.()(1)a f x f x x '==+①当时,恒大于在定义域上单调递增. 2222(1)20()=0.()(1)(1)a a x x a f x f x x x x x ++'>=+>++②当时,在定义域上单调递增.2210(22)4840,.2a a a a a <∆=+-=+≤≤-③当时,即()f x 开口向下,在定义域上单调递减。
2014年高考山东文科数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(山东卷)数学(文科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年山东,文1,5分】已知,a b R ∈,i 是虚数单位. 若i 2i a b +=-,则2(i)a b +=( )(A )34i - (B )34i + (C)43i - (D)43i + 【答案】A【解析】由i 2i a b +=-得,21a b ==-,,2i a b +=()22(2i)44i i 34i -=-+=-,故选A .【点评】本题主要考查两个复数相等的充要条件,两个复数代数形式的乘法法则,属于基础题. (2)【2014年山东,文2,5分】设集合2{20},{14}A x x x B x x =-<=≤≤,则AB =( )(A )(0,2] (B )(1,2) (C )[1,2) (D)(1,4) 【答案】C【解析】[](02)1,4A B ==,,,数轴上表示出来得到[1,2)A B =,故选C . 【点评】本题是简单的计算题,一般都是在高考的第一题出现,答题时要注意到端点是否取得到,计算也是高考中的考查点,学生在平时要加强这方面的练习,考试时做到细致悉心,一般可以顺利解决问题.(3)【2014年山东,文3,5分】函数21()log 1f x x =-的定义域为( )(A)(02), (B )(0,2] (C )(2,)+∞ (D )[2)+∞, 【答案】C【解析】2log 10x ->故2x >,故选C .【点评】本题是对基本计算的考查,注意到“真数大于0”和“开偶数次方根时,被开方数要大于等于0”,及“分母不为0”,即可确定所有条件.高考中对定义域的考查,大多属于容易题.(4)【2014年山东,文4,5分】用反证法证明命题“设,a b R ∈,则方程20x ax b ++=至少有一个实根”时要做的假设是( )(A )方程20x ax b ++=没有实根 (B )方程20x ax b ++=至多有一个实根 (C )方程20x ax b ++=至多有两个实根 (D )方程20x ax b ++=恰好有两个实根 【答案】A【解析】反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a ,b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是:方程20x ax b ++=没有实根,故选A .【点评】本题考查反证法证明问题的步骤,基本知识的考查. (5)【2014年山东,文5,5分】已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( )(A)33x y > (B)sin sin x y > (C )22ln(1)ln(1)x y +>+ (D)221111x y >++ 【答案】A【解析】,01x y a a a x y <<<∴>,排除C ,D,对于B ,sin x 是周期函数,排除B ,故选A .【点评】本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键. (6)【2014年山东,文6,5分】已知函数()log a y x c =+(a ,c 为常数,其中0a >,1a ≠)的图像如右图,则下列结论成立的是( )(A )1,1a c >> (B)1,01a c ><< (C)01,1a c <<> (D )01,01a c <<<< 【答案】D【解析】∵函数单调递减,∴01a <<,当1x =时()()log log 10a y x c c =+=+<,即11c +>,即0c >,当0x =时()log log 0a a y x c c =+=>,即1c <,即01c <<,故选D .【点评】本题主要考查对数函数的图象和性质,利用对数函数的单调性是解决本题的关键,比较基础. (7)【2014年山东,文7,5分】已知向量()1,3a =,()3,b m =.若向量a,b 的夹角为6π,则实数m =( )(A)23 (B )3 (C )0 (D )3- 【答案】B【解析】由题意可得2333cos 6229a b m a b m π⋅+===⋅+,解得3m =,故选B . 【点评】本题主要考查两个向量的夹角公式、两个向量的数量积公式的应用,属于基础题.(8)【2014年山东,文8,5分】为了研究某药厂的疗效,选取若干名志愿者进行临床 试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五 组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人, 第三组中没有疗效的有6人,则第三组中有疗效的人数为( )(A )6 (B )8 (C )12 (D )18 【答案】C【解析】第一组与第二组频率之和为0.240.160.4+=,200.450÷=,500.3618⨯=,18612-=,故选C .【点评】本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题. (9)【2014年山东,文9,5分】对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是( ) (A )()f x x = (B )3()f x x = (C )()tan f x x = (D )()cos(1)f x x =+ 【答案】D【解析】对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,∴函数的对称轴是x a =,0a ≠,选项A 函数没有对称轴;选项B 、函数的对称轴是0x =,选项C 函数没有对称轴.函数()()cos 1f x x =+,有对称轴,且0x =不是对称轴,选项D 正确,故选D .点评:本题考查函数的对称性的应用,新定义的理解,基本知识的考查.(10)【2014年山东,文10,5分】已知,x y 满足的约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数()0,0z ax by a b =+>>在该约束条件下取得最小值25时,22a b +的最小值为( )(A )5 (B )4 (C )5 (D )2【答案】B【解析】10230x y x y --≤⎧⎨--≥⎩作可行域如图,联立10230x y x y --=⎧⎨--=⎩,解得:()2,1A .化目标函数为直线方程得:()0a z y x b b b =-+>.由图可知,当直线a zy x b b=-+过A 点时,直线在y 轴上的截距最小,z 最小,225a b ∴+=,即2250a b +-=.则22a b +的最小值为22545⎛⎫-= ⎪ ⎪⎝⎭,故选B .【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.第II 卷(共100分)二、填空题:本大题共5小题,每小题5分. (11)【2014年山东,文11,5分】执行下面的程序框图,若输入的x 的值为1,则输出的n 的值为 . 【答案】3【解析】根据判断条件2430x x -+≤,得13x ≤≤,输入1x =第一次判断后循环,12,11x x n n =+==+=; 第二次判断后循环,13,12x x n n =+==+=; 第三次判断后循环,14,13x x n n =+==+=;0舒张压/kPa频率 / 组距0.360.240.160.08171615141312第四次判断不满足条件,退出循环,输出3n =.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.(12)【2014年山东,文12,5分】函数23sin 2cos 2y x x =+的最小正周期为 .【答案】π【解析】233111sin 2cos sin 2cos 2sin 2222262y x x x x x π⎛⎫=+=++=++ ⎪⎝⎭,22T ππ∴==. 【点评】本题主要考查两角和的正弦公式、二倍角的余弦公式,正弦函数的周期性,属于基础题.(13)【2014年山东,文13,5分】一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 【答案】12【解析】设六棱锥的高为h ,斜高为h ',则由体积1122sin 6062332V h ⎛⎫=⨯⨯⨯⨯⨯⨯= ⎪⎝⎭,得:1h =, ()2232h h '=+=,∴ 侧面积为126122h '⨯⨯⨯=.【点评】本题考查了棱锥的体积,侧面积的求法,解答的关键是能够正确利用体积与表面积公式解题. (14)【2014年山东,文14,5分】圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦的长23,则圆C 的标准方程为 .【答案】()()22214x y -+-=【解析】设圆心(),02a a a ⎛⎫> ⎪⎝⎭,半径为a . 由勾股定理()22232a a ⎛⎫+= ⎪⎝⎭得:2a =∴圆心为()2,1,半径为2, ∴圆C 的标准方程为()()22214x y -+-=.【点评】此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.(15)【2014年山东,文15,5分】已知双曲线()222210,0x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线()220x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且FA c =,则双曲线的渐近线方程为 . 【答案】y x =± 【解析】由题意知222P c a b =-=,抛物线准线与双曲线的一个交点坐标为,2P c ⎛⎫⎪⎝⎭, 即(),c b -代入双曲线方程 为22221c b a b -=,得222c a=,2211b c a a ∴=-=,∴渐近线方程为y x =±. 【点评】熟练掌握圆锥曲线的图象与性质是解题的关键. 三、解答题:本大题共6题,共75分.(16)【2014年山东,文16,12分】海关对同时从,,A B C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A BC 数量 50 150 100(1)求这6件样品中来自,,A B C 各地区样品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)A ,B ,C 三个地区商品的总数量为50+150+100=300,故抽样比6130050k ==,故A 地区抽取商品的数量为150150⨯=;B 地区抽取的商品的数量为1150350⨯=;C 地区抽取的商品的数量为1100250⨯=.(2)在这6件样品中随机抽取2件共有:2615C =个不同的基本事件;且这些事件是等可能发生的,记“这2件商品来自相同地区”为事件A ,则A 中包含22234C C +=种不同的基本事件,故()415P A =,即这2件商品来自相同地区的概率为415.【点评】本题考查的知识点是分层抽样,古典概型概率计算公式,难度不大,属于基础题.(17)【2014年山东,文17,12分】在ABC ∆中,角,,A B C 所对的边分别是,,a b c .已知63,cos ,32a A B A π===+. (1)求b 的值;(2)求ABC ∆的面积.解:(1)由题意知:23sin 1cos 3A A =-=,6sin sin sin cos cos sin cos 2223B A A A A πππ⎛⎫=+=+==⎪⎝⎭, 由正弦定理得:sin 32sin sin sin a b a Bb A B A⋅=⇒==.(2)由余弦定理得:2222126cos 43903,33,23b c a A c c c c bc +-==⇒-+=⇒==又因为2B A π=+为钝角,所以b c >,即3c =,所以132sin 22ABC S ac B ∆==. 【点评】本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.(18)【2014年山东,文18,12分】如图,四棱锥P ABCD -中, AP PCD ⊥平面,//AD BC ,12AB BC AD ==,,E F 分别为线段,AD PC 的中点.(1)求证://AP BEF 平面; (2)求证:BE PAC ⊥平面.解:(1)连接AC 交BE 于点O ,连接OF ,不妨设AB B =,1AB BC ==,则2AD =,AB BC =,//AD BC ,∴四边形ABCE 为菱形,,,//O F AC PC OF AP ∴分别为中点, 又//OF BEF AP BEF ⊂∴平面,平面.(2),AP PCD CD PCD AP CD ⊥⊂∴⊥平面,平面,//BC ED ,BC ED =,BCDE ∴为平行四边形,//BE CD ∴,BE PA ∴⊥,又ABCE 为菱形,BE AC ∴⊥, ,PA AC A PA AC PAC ⋂=⊂又、平面,BE PAC ∴⊥平面.【点评】本题考查直线与平面平行、垂直的判定,考查学生分析解决问题的能力,正确运用直线与平面平行、垂直的判定是关键.(19)【2014年山东,文19,12分】在等差数列{}n a 中,已知2d =,2a 是1a 与4a 等比中项.(1)求数列{}n a 的通项公式; (2)设()12n n n b a +=,记()1231nn n T b b b b =-+-++-,求n T .解:(1)由题意知:{}n a 为等差数列,设()11n a a n d =+-,2a 为1a 与4a 的等比中项,2214a a a ∴=⨯且10a ≠, 即()()21113a d a a d +=+, 2d = 解得:12a =,2(1)22n a n n ∴=+-⨯=.(2)由(1)知:2n a n =,(1)2(1)n n n b a n n +==+,①当n 为偶数时:()()()()()()()()122334121343511n T n n n n n =-⨯+⨯-⨯+++=-++-+++--++⎡⎤⎣⎦()()222222426222246222nn n n n n ++=⨯+⨯+⨯++⨯=⨯++++=⨯= ②当n 为奇数时:()()()()()()()()()1223341213435121n T n n n n n n n =-⨯+⨯-⨯+-+=-++-+++---+-+⎡⎤⎣⎦ ()()()()224262*********n n n n n n =⨯+⨯+⨯++-⨯-+=⨯++++--+⎡⎤⎣⎦()()21212122122n n n n n n -+-++=⨯--=-. 综上:222122,2n n n n T n n n ⎧++-⎪⎪=⎨+⎪⎪⎩,为奇数为偶数.【点评】本题考查了等差数列与等比数列的通项公式及其前n 项和公式、分类讨论思想方法,属于中档题.(20)【2014年山东,文20,13分】设函数()1ln 1x f x a x x -=++,其中a 为常数.(1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性. 解:(1)当0a =时,()11x f x x -=+,()()221f x x '=+,()()2211211f '==+,(1)0f =∴直线过点(1,0),1122y x =-. (2)22()(0)(1)a f x x x x '=+>+, ①当0a =时,()()221f x x '=+恒大于0,()f x 在定义域上单调递增. ②当0a >时,()()()()222122011a x x a f x x x x x ++'=+=>++,()f x 在定义域上单调递增. ③当0a <时,()22224840a a a ∆=+-=+≤,即1a ≤-,开口向下,()f x 在定义域上单调递减.当102a -<<时,0∆>,1,2x==对称轴方程为22110a x +=-=-->且1210x x ⋅=>.()f x在单调递减, 单调递增,+)∞单调递减.综上所述,0a =时,()f x 在定义域上单调递增;0a >时,()f x 在定义域上单调递增;12a ≤-时,()f x在定义域上单调递减;10a -<<时,()f x在单调递减,单调递增,+)∞单调递减.【点评】导数是高考中极易考察到的知识模块,导数的几何意义和导数的单调性是本题检查的知识点,特别是单调性的处理中,分类讨论是非常关键和必要的,分类讨论也是高考中经常考查的思想方法.(21)【2014年山东,文21,14分】在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>,直线y x =被椭圆C(1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于,A B 两点(,A B 不是椭圆C 的顶点),点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于,MN 两点.(i )设直线,BD AM 的斜率分别为12,k k .证明存在常数λ使得12k k λ=,并求出λ的值; (ii)求OMN ∆面积的最大值.解:(1)32e =,c a ∴=2234c a =,22234a b a -=,224a b ∴=,设直线与椭圆交于,p q 两点.不妨设p 点为直线和椭圆在第一象限的交点.又p ∴,2244551a b ∴+=,联立解得24a =,21b =,∴椭圆方程为2214xy +=.(2)(i )设()11,A x y ()110x y ≠,()22,D x y ,则()11,B x y --.∵直线AB 的斜率11AB yk x =,又AB AD ⊥,∴直线AD 的斜率11AD xk y =-.设AD 方程为y kx m =+,由题意知0k ≠,0m ≠.联立2214y kx mx y =+⎧⎪⎨+=⎪⎩,得()222148440k x kmx m +++-=.∴122814mk x x k +=-+. 因此()121222214my y k x x m k +=++=+.由题意可得1211111144y y y k x x k x +==-=+. ∴直线BD 的方程为()11114yy y x x x +=+.令0y =,得13x x =,即()13,0M x .可得1212y k x =-.∴1212k k =-,即12λ=-.因此存在常数12λ=-使得结论成立.(ii )直线BD 方程为()11114y y y x x x +=+,令0x =,得134y y =-,即130,4N y ⎛⎫- ⎪⎝⎭.由(i )知()13,0M x ,可得OMN ∆的面积为22111111139993248848x S x y x y y ⎛⎫=⨯⨯=≤+= ⎪⎝⎭.当且仅当112x y ==时等号成立.∴OMN ∆面积的最大值为98.【点评】本题考查椭圆方程的求法,主要考查了直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考试具备较强的运算推理的能力,是压轴题.。
2014年全国高考山东省数学(文)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。
满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。
3. 第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i + (C) 43i -(D) 43i +(2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =I(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3)函数()f x =(A) (0,2)(B) (0,2](C) (2,)+∞(D) [2,)+∞(4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是(A) 方程30x ax b ++=没有实根(B) 方程30x ax b ++=至多有一个实根(C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根(5) 已知实数,x y 满足(01)xya a a <<<, 则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是(A) 0,1a c >>(B) 1,01a c ><<(C) 01,1a c <<> (D) 01,01a c <<<<(7) 已知向量(3,)a b m ==r r . 若向量,a b r r 的夹角为6π,则实数m =(A)(B)(C) 0(D)(8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
2014年普通高等学校招生全国统一考试(山东卷)数学试题(文科)解析版
(C) ln(x2 1) ln( y2 1)
(D)
11 x2 1 y2 1
5.【答案】A
【解析】由 a x a y (0 a 1) 得, x y ,但是不可以确定 x2 与 y2 的大小关系,故 C、D 排
除,而 y sin x 本身是一个周期函数,故 B 也不对, x3 y3 正确。
如果事件 A,B 互斥,那么 P( A B) P( A) P(B)
第I卷(共 50 分)
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有 一项是符合题目要求的。
(1) 已知 a, b R, i 是虚数单位. 若 ai= 2 bi ,则 (a bi)2
(A) 3 4i
(B) 3 4i
(C) 4 3i
1.【答案】A
【解析】 a i 2 bi, a 2, b 1 , a 2, b 1
(D) 4 3i
(a bi)2 (2 i)2 4 4i i2 3 4i .
(2) 设集合 A {x | x2 2x 0}, B {x |1 x 4} ,则 A B
(C) 方程 x3 ax b 0 至多有两个实根 (D) 方程 x3 ax b 0 恰好有两个实根
4.【答案】A 【解析】“至少有一个”的对立面应是“没有”,故选 A
(5) 已知实数 x, y 满足 ax a y (0 a 1) ,则下列关系式恒成立的是
(A) x3 y3
(B) sin x sin y
(10)
x y 1 0, 已知 x, y 满足约束条件 2x y 3 0, 当目标函数 z
ax by
(a
0,b
0) 在该约束
条件下取到最小值 2 5 时, a2 b2 的最小值为
2014年普通高等学校招生全国统一考试(山东卷)数学文
2014年普通高等学校招生全国统一考试(山东卷)数学文一.选择题:每小题5分,共50分1.已知a,b∈R,i是虚数单位,若a+i=2-bi,则(a+bi)2=( )A. 3-4iB. 3+4iC. 4-3iD. 4+3i解析:∵a+i=2-bi,∴a=2、b=-1,则(a+bi)2=(2-i)2=3-4i,答案:A.2.设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( )A.(0,2]B. (1,2)C. [1,2)D. (1,4)解析:A={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x<2}.答案:C.3.函数f(x)=的定义域为( )A. (0,2)B. (0,2]C. (2,+∞)D. [2,+∞)解析:由题意可得,,解得,即x>2.∴所求定义域为(2,+∞).答案:C.4.用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A. 方程x3+ax+b=0没有实根B. 方程x3+ax+b=0至多有一个实根C. 方程x3+ax+b=0至多有两个实根D. 方程x3+ax+b=0恰好有两个实根解析:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.答案:A.5.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是( )A. x3>y3B. s inx>sinyC. l n(x2+1)>ln(y2+1)D. >解析:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.当x>y时,x3>y3,恒成立,B.当x=π,y=时,满足x>y,但sinx>siny不成立.C.若ln(x2+1)>ln(y2+1),则等价为x2>y2成立,当x=1,y=-1时,满足x>y,但x2>y2不成立.D.若>,则等价为x2+1<y2+1,即x2<y2,当x=1,y=-1时,满足x>y,但x2<y2不成立.答案:A.6.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是( )A. a>1,c>1B. a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:∵函数单调递减,∴0<a<1,当x=1时log a(x+c)=log a(1+c)<0,即1+c>1,即c>0,当x=0时log a(x+c)=log a c>0,即c<1,即0<c<1,答案:D.7.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=( )A.2B.C. 0D. -解析:由题意可得cos===,解得 m=,答案:B.8.为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A. 6B.8C.12D.18解析:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.答案:C.9.对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a-x),则称f(x)为准偶函数,下列函数中是准偶函数的是( )A. f(x)=B.f(x)=x2C. f(x)=tanxD.f(x)=cos(x+1)解析:对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a-x),则称f(x)为准偶函数,∴函数的对称轴是x=a,a≠0,选项A函数没有对称轴;选项B、函数的对称轴是x=0,选项C,函数没有对称轴.函数f(x)=cos(x+1),有对称轴,且x=0不是对称轴,选项D正确.答案:D.10.已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为( )A. 5B. 4C.D. 2解析:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b-2=0.则a2+b2的最小值为.答案:B.二.填空题每小题5分,共25分11.执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为.解析:循环前输入的x的值为1,第1次循环,x2-4x+3=0≤0,满足判断框条件,x=2,n=1,x2-4x+3=-1≤0,满足判断框条件,x=3,n=2,x2-4x+3=0≤0满足判断框条件,x=4,n=3,x2-4x+3=3>0,不满足判断框条件,输出n:3.答案:3.12.函数y=sin2x+cos2x的最小正周期为.解析:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.13.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为.解析:∵一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则,∴h=1,棱锥的斜高为:==2,该六棱锥的侧面积为:=12.答案:12.14.圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为.解析:设圆心为(2t,t),半径为r=|2t|,∵圆C截x轴所得弦的长为2,∴t2+3=4t2,∴t=±1,其中t=-1不符合题意,舍去,故t=1,2t=2,∴(x-2)2+(y-1)2=4.答案:(x-2)2+(y-1)2=4.15.已知双曲线-=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为 .解析:∵右顶点为A,∴A(a,0),∵F为抛物线x2=2py(p>0)的焦点,F,∵|FA|=c,∴抛物线的准线方程为由得,,c2=2a2,∵c2=a2+b2,∴a=b,∴双曲线的渐近线方程为:y=±x,答案:y=±x.三.解答题共6小题,共75分16.(12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解析:(Ⅰ)先计算出抽样比,进而可求出这6件样品来自A,B,C各地区商品的数量;(Ⅱ)先计算在这6件样品中随机抽取2件的基本事件总数,及这2件商品来自相同地区的事件个数,代入古典概型概率计算公式,可得答案.答案:(Ⅰ)A,B,C三个地区商品的总数量为50+150+100=300,故抽样比k==,故A地区抽取的商品的数量为:×50=1;B地区抽取的商品的数量为:×150=3;C地区抽取的商品的数量为:×100=2;(Ⅱ)在这6件样品中随机抽取2件共有:=15个不同的基本事件;且这些事件是等可能发生的,记“这2件商品来自相同地区”为事件A,则A中包含=4种不同的基本事件,故P(A)=,即这2件商品来自相同地区的概率为.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.解析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.答案:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>,∴cosB=-=-,sinC=sin(π-A-B)=sin(A+B)=sinAcosB+cosAsinB=×(-)+×=,∴S=a·b·sinC=×3×3×=.18.(12分)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解析:(Ⅰ)证明四边形ABCE是平行四边形,可得O是AC的中点,利用F为线段PC的中点,可得PA∥OF,从而可证AP∥平面BEF;(Ⅱ)证明BE⊥AP、BE⊥AC,即可证明BE⊥平面PAC.答案:(Ⅰ)连接CE,则AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.19.(12分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解析:(Ⅰ)由于a2是a1与a4的等比中项,可得,再利用等差数列的通项公式即可得出.(Ⅱ)利用(Ⅰ)可得b n=a=n(n+1),因此T n=-b1+b2-b3+b4-…+(-1)n b n=-1×(1+1)+2×(2+1)-…+(-1)n n•(n+1).对n分奇偶讨论即可得出.答案:(Ⅰ)∵a2是a1与a4的等比中项,∴,∵在等差数列{a n}中,公差d=2,∴,即,化为,解得a1=2.∴a n=a1+(n-1)d=2+(n-1)×2=2n.(Ⅱ)∵b n=a=n(n+1),∴T n=-b1+b2-b3+b4-…+(-1)n b n=-1×(1+1)+2×(2+1)-…+(-1)n n•(n+1).当n=2k(k∈N*)时,b2k-b2k-1=2k(2k+1)-(2k-1)(2k-1+1)=4kT n=(b2-b1)+(b4-b3)+…+(b2k-b2k-1)=4(1+2+…+k)=4×=2k(k+1)=.当n=2k-1(k∈N*)时,T n=(b2-b1)+(b4-b3)+…+(b2k-2-b2k-3)-b2k-1=n(n+1)=-.故T n=.20.(13分)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.解析:(Ⅰ)根据导数的几何意义,曲线y=f(x)在x=1处的切线方程为y-f(1)=f′(1)(x-1),代入计算即可.(Ⅱ)先对其进行求导,即,考虑函数g(x)=ax2+(2a+2)x+a,分成a≥0,-<a<0,a≤-三种情况分别讨论即可.答案:,(Ⅰ)当a=0时,,f′(1)=,f(1)=0∴曲线y=f(x)在点(1,f(1))处的切线方程为y=(x-1).(Ⅱ)(1)当a≥0时,由x>0知f′(x)>0,即f(x)在(0,+∞)上单调递增;(2)当a<0时,令f′(x)>0,则>0,整理得,ax2+(2a+2)x+a>0,令f′(x)<0,则<0,整理得,ax2+(2a+2)x+a<0.以下考虑函数g(x)=ax2+(2a+2)x+a,g(0)=a<0.,对称轴方程.①当a≤-时,△≤0,∴g(x)<0恒成立.(x>0)②当-<a<0时,此时,对称轴方程>0,∴g(x)=0的两根均大于零,计算得当<x<时,g(x)>0;当0<x<或x>时,g(x)<0.综合(1)(2)可知,当a≤-时,f(x)在(0,+∞)上单调递减;当-<a<0时,f(x)在(,)上单调递增,在(0,),(,+∞)上单调递减;当a≥0时,f(x)在(0,+∞)上单调递增.21.(14分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.解析:(Ⅰ)由椭圆离心率得到a,b的关系,化简椭圆方程,和直线方程联立后求出交点的横坐标,把弦长用交点横坐标表示,则a的值可求,进一步得到b的值,则椭圆方程可求;(Ⅱ)(i)设出A,D的坐标分别为(x1,y1)(x1y1≠0),(x2,y2),用A的坐标表示B的坐标,把AB和AD的斜率都用a的坐标表示,写出直线AD的方程,和椭圆方程联立后利用根与系数关系得到AD横纵坐标的和,求出AD中点坐标,则BD斜率可求,再写出BD所在直线方程,取y=0得到M点坐标,由两点求斜率得到AM的斜率,由两直线斜率的关系得到λ的值;(ii)由BD方程求出N点坐标,结合(i)中求得的M的坐标得到△OMN的面积,然后结合椭圆方程利用基本不等式求最值.答案:(Ⅰ)由题意知,,则a2=4b2.∴椭圆C的方程可化为x2+4y2=a2. 将y=x代入可得,因此,解得a=2.则b=1.∴椭圆C的方程为;(Ⅱ)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(-x1,-y1).∵直线AB的斜率,又AB⊥AD,∴直线AD的斜率.设AD方程为y=kx+m,由题意知k≠0,m≠0.联立,得(1+4k2)x2+8kmx+4m2-4=0.∴.因此.由题意可得.∴直线BD的方程为.令y=0,得x=3x1,即M(3x1,0).可得.∴,即.因此存在常数使得结论成立.(ii)直线BD方程为,令x=0,得,即N().由(i)知M(3x1,0),可得△OMN的面积为S=.当且仅当时等号成立.∴△OMN面积的最大值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试(山东卷)文科数学 第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i + (C) 43i -(D) 43i +(2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3)函数()f x =的定义域为(A) (0,2)(B) (0,2](C) (2,)+∞(D) [2,)+∞(4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是 (A) 方程30x ax b ++=没有实根(B) 方程30x ax b ++=至多有一个实根(C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根(5) 已知实数,x y 满足(01)xya a a <<<,则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是 (A) 0,1a c >>(B) 1,01a c ><<(C) 01,1a c <<> (D) 01,01a c <<<<(7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6π,则实数m =(A)(B)(C) 0(D)(8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )(A) 6 (B) 8 (C) 12 (D) 18(9) 对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是()(A) ()f x =(B) 3()f x x =(C) ()tan f x x =(D) ()cos(1)f x x =+(10) 已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数z ax by =+(0,0)ab >>在该约束条件下取到最小值22a b +的最小值为( )(A) 5(B) 4 (C)(D) 2kPa第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11) 执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 . (12)函数22cos 2y x x =+的最小正周期为 . (13)一个六棱锥的体积为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 。
(14) 圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为C 的标准方程为 。
(15) 已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 。
三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(I)求这6件样品中来自A ,B ,C 各地区商品的数量;(II )若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.(17) (本小题满分12分)ABC ∆中,角A ,B ,C 所对的边分别为,,a b c .已知3,cos ,32a A B A π===+. (I)求b 的值; (II )求ABC ∆的面积.(18)(本小题满分12分)如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 21==,F E ,分别为线段PC AD ,的中点。
(Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥PA BCD E(19) (本小题满分12分)在等差数列{}n a 中,已知公差12a =,2a 是1a 与4a 的等比中项. (I)求数列{}n a 的通项公式;(II )设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .(20) (本小题满分13分) 设函数 x 1f(x)=alnx +x +1-,其中a 为常数. (I)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )讨论函数()f x 的单调性.(21)(本小题满分14分)在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>,直线y x =被椭圆C . (I)求椭圆C 的方程;(II )过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i )设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求OMN ∆面积的最大值.2014年普通高等学校招生全国统一考试(山东卷)文科数学参考答案一、选择题1—5、ACDAA 6—10、CBCDB二、填空题11、3 12、π 13、12 14、22(2)(1)4x y -+-= 15、y x =±三、解答题 16、(Ⅰ)因为工作人员是按分层抽样抽取商品,所以各地区抽取商品比例为:::50:150:1001:3:2A B C == 所以各地区抽取商品数为:1:616A ⨯=,3:636B ⨯=,2:626C ⨯=; (Ⅱ)设各地区商品分别为:12312,,,,,A B B B C C基本时间空间Ω为:()()()()()()()123121213,,,,,,,,,,,,,A B A B A B A C A C B B B B()()()()()()()()1112232122313212,,,,,,,,,,,,,,,B C B C B B B C B C B C B C C C ,共15个.样本时间空间为:()()()()12132312,,,,,,,B B B B B B C C 所以这两件商品来自同一地区的概率为:()415P A =.17、(Ⅰ)由题意知:sin A ==,sin sin sin cos cos sin cos 222B A A A A πππ⎛⎫=+=+== ⎪⎝⎭,由正弦定理得:sin sin sin sin a b a Bb A B A⋅=⇒==(Ⅱ)由余弦定理得:222212cos 9023b c a A c c c bc +-==⇒-+=⇒==又因为2B A π=+为钝角,所以b c >,即c =所以1sin 2ABCSac B == 18、(Ⅰ)连接AC 交BE 于点O ,连接OF ,不妨设AB=BC=1,则AD=2,//,BC AD BC AB = ∴四边形ABCE 为菱形AP OF PC AC F O //,,∴中点,分别为又BEF AP BEF OF 平面,平面//∴⊂(Ⅱ)CD AP PCD CD PCD AP ⊥∴⊂⊥,平面,平面CD BE BCDE ED BC ED BC //,,//∴∴=为平行四边形, ,PA BE ⊥∴AC BE ABCE ⊥∴为菱形,又PAC AC PA A AC PA 平面、又⊂=⋂, ,PAC BE 平面⊥∴19、(Ⅰ)由题意知:{}n a 为等差数列,设()d n a a n 11-+=,2a 为1a 与4a 的等比中项4122a a a ⨯=∴且01≠a ,即()()d a a d a 31121+=+, 2=d 解得:21=an n a n 22)1(2=⨯-+=∴(Ⅱ)由 (Ⅰ)知:n a n 2=,)1(2)1(+==+n n a b n n n①当n 为偶数时:()()()()()()()()[]()()222222642222624221153431214332212nn n n n n n n n n n T n +=+⨯=++++⨯=⨯++⨯+⨯+⨯=++--+++-++-=+++⨯-⨯+⨯-= ②当n 为奇数时:()()()()()()()()[]()()()()[]()()()212122112211642212126242212153431214332212++-=----+⨯=+--++++⨯=+-⨯-++⨯+⨯+⨯=+-+---+++-++-=+-+⨯-⨯+⨯-=n n n n n n n n n n n n n n n n n n n T n 综上:⎪⎪⎩⎪⎪⎨⎧+++-=为偶数为奇数,n n n n n n T n ,222122220、(1)0a =当时212(),()1(1)x f x f x x x -'==++ 221(1)(11)2f '==+(1)0(1,0)f =∴又直线过点1122y x ∴=- (2) 22()(0)(1)a f x x x x '=+>+ 220()0.()(1)a f x f x x '==+①当时,恒大于在定义域上单调递增. 2222(1)20()=0.()(1)(1)a a x x a f x f x x x x x ++'>=+>++②当时,在定义域上单调递增. 2210(22)4840,.2a a a a a <∆=+-=+≤≤-③当时,即()f x 开口向下,在定义域上单调递减。