2015年高考数学文分类汇编:专题11 概率和统计

合集下载

2015年高考理数专题复习---概率统计(解析版)

2015年高考理数专题复习---概率统计(解析版)

2015年高考理数专题复习---概率统计预测2013年高考中,本节的内容还是一个重点考查的内容,因为这部分内容与实际生活联系比较大,随着新课改的深入,高考将越来越重视这部分的内容,排列、组合、概率、统计都将是重点考查内容,至少会考查其中的两种类型。

(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。

(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。

这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。

复习建议在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.母题一:5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求:(1)甲中奖的概率;(2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.母题二:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率(结果保留三位小数).母题三:某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01): (1)恰好有两家煤矿必须整改的概率;(2)至少关闭一家煤矿的概率.母题四:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数 的分布列.母题五:.A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白2,服鼠的只数比服用B有效的多,就称该试验组为甲类组.设每一只小白鼠服用A有效的概率为31. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,用ξ表示这3用B有效的概率为2个试验组中甲类组的个数,求ξ的分布列和数学期望.7 8 99 4 4 6 4 7 3高考模拟1.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )(A )8,8 (B )10,6 (C )9,7 (D )12,4【答案】C2.右图是 2011年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84B. 84,1.6C. 85,1.6D. 85,4【答案】C 【解析】2580855x =+=,244 1.6.5s +== 3.如图,矩形O A B C 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( ) A .712π B.23π C .34π D.56π 【答案】B【答案】A6.右图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约( ) A .523 B .521 C .519 D .516 【答案】A 7.设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于34的概率为( ) A .964 B .964π C .916π D .916【答案】B8.已知椭圆2214x y +=的焦点为12,F F ,在长轴A 1A 2上任取一点M ,过M 作垂直于A 1A 2的直线交椭圆于点P ,则使得120PF PF ⋅< 的点M 的概率为( )A B C D .12【答案】B9.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为()A.12B.24C.36D.48【答案】C10.盒子中放有编号为1,2,3,4,5的形状和大小完全相同的5个白球和5个黑球,则取出球的编号互不相同的概率为()A.115B.112C.12D.23【答案】D【解析】32352180.33243 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭12.对某种花卉的开放花期追踪调查,调查情况如下:则这种卉的平均花期为__ _天.【答案】16天(15.9天给满分)16.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)4050,,[)5060,,…,[]90100,后得到如下图的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)4050,与[]90100,两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。

2015年全国高考数学试题分类汇编§11.1 随机事件及其概率

2015年全国高考数学试题分类汇编§11.1 随机事件及其概率

11.1随机事件及其概率1.(2015湖北,2,5分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石答案B6.(2015北京,17,13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解析(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和=0.2.丙,所以顾客同时购买乙和丙的概率可以估计为2001 000(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.7.(2015湖南,16,12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.解析(1)所有可能的摸出结果是{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1 },{B,b2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.8.(2015陕西,19,12分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:的概率;(1)在4月份任取一天,估计西安市在该天不下雨···开始举行连续2天的运动会,估计运动会(2)西安市某学校拟从4月份的一个晴天··的概率.期间不下雨···解析(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为13.15(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的.次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78。

2015年高考真题概率与统计(理科)

2015年高考真题概率与统计(理科)

2015年高考真题解答题专项训练:概率与统计(理科)1.(2015•广东理)某工厂36名工人年龄数据如图:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?2.(2015•新课标二卷理)(本题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.3.((2015•新课标一卷 理)本小题满分13分,(1)小问5分,(2)小问8分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。

(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望 4.(2015•重庆理)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =,w =1881i i w =∑(Ⅰ)根据散点图判断,y=a+bx 与y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:5.(2015•天津 理)(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(Ⅱ)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队(1)求A中学至少有1名学生入选代表队的概率.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.7.(2015•陕西理)本小题满分12分)设某校新、老校区之间开车单程所需时间为T,(Ⅰ)求T的分布列与数学期望ET;(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.8.【2015高考山东,理19】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;分;若能被10整除,得1分.若能被5整除,但不能被10整除,得1(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.9.(2015•湖南理)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产,A B两种产品时间之和不超过12小时.假定每天该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(Ⅰ)求Z的分布列和均值;(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.11.(2015•安徽理)(本小题满分12分)已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.13.(2015•北京理)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;a ,求甲的康复时间比乙的康复时间长的概率;(Ⅱ)如果25(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)2015年高考真题解答题专项训练:概率与统计(理科)参考答案1.(1)44,40,36,43,36,37,44,43,37.(2)平均值40;方差:(3)23人.63.89%.【解析】试题分析:(1)利用系统抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.点评:本题主要考查统计和分层抽样的应用,比较基础.2.(Ⅰ)详见解析;(Ⅱ)0.48.【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(Ⅱ)记1A C 表示事件:“A 地区用户满意度等级为满意或非常满意”; 2A C 表示事件:“A 地区用户满意度等级为非常满意”; 1B C 表示事件:“B 地区用户满意度等级为不满意”; 2B C 表示事件:“B 地区用户满意度等级为满意”. 则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122B A B A C C C C C = .1122()()B A B A P C P C C C C = 1122()()B A B A PC C P C C =+1122()()()()B A B A P C P C P C P C =+.由所给数据得1A C ,2A C ,1B C ,2B C 发生的概率分别为1620,420,1020,820.故1()A P C 16=20, 2()=A P C 420,1()=B PC 1020,2()B P C 8=20,故101684()=+0.4820202020P C ⨯⨯=. 考点:1、茎叶图和特征数;2、互斥事件和独立事件. 3.(1)14;(2)分布列见解析,期望为35. 【解析】试题分析:(1)本题属于古典概型,从10个棕子中任取3个,基本事件的总数为310C ,其中事件“三种棕子各取1个”含基本事件的个数为111235C C C ,根据古典概型概率计算公式可计算得所求概率;(2)由于10个棕子中有2个豆沙棕,因此X 的可能值分别为0,1,2,同样根据古典概型概率公式可得相应的概率,从而列出其分布列,并根据期望公式求得期望为35. 试题解析:(1)令A 表示事件“三个粽子各取到1个”,则由古典概型的概率计算公式有1112353101(A)4C C C P C ==; (2)X 的所有可能取值为0,1,2,且383107(X 0),15C P C ===12283107(X 1),15C C P C ===21283101(X 2),15C C P C ===故7713E(X)0121515155=???. 考点:古典概型,随机变量的颁布列与数学期望.考查学生的数据处理能力与运算求解能力. 4.(Ⅰ)y c =+适合作为年销售y 关于年宣传费用x 的回归方程类型;(Ⅱ)100.6y =+46.24【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w 先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用. 试题解析:(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =,先建立y 关于w 的线性回归方程,由于81821()()()ii i ii w wy ydw w ==--=-∑∑=108.8=6816, ∴ cy dw =- =563-68×6.8=100.6. ∴y 关于w 的线性回归方程为 100.668y w =+, ∴y 关于x 的回归方程为100.6y =+(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.6y =+, 576.60.24966.32z=⨯-= . (ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.620.12zx x =+-=-+ ,13.6=6.82,即46.24x =时,z取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识5.(Ⅰ)635;()52E X =【解析】(Ⅰ)由已知,有22222333486()35C C C C P A C +== 所以事件A 发生的概率为635. (Ⅱ)随机变量X 的所有可能取值为1,2,3,4()45348(1,2,3,4)k k C C P X k k C -===所以随机变量X 的数学期望()1331512341477142E X =⨯+⨯+⨯+⨯= 考点:古典概型、互斥事件、离散型随机变量的分布列与数学期望. 6.(1)A 中学至少1名学生入选的概率为99100p =. (2)X 的分布列为:X 的期望为()2E X =.【解析】(1)由题意,参加集训的男女生各有6名.参赛学生全从B 中抽取(等价于A 中没有学生入选代表队)的概率为333433661100C C C C =. 因此,A 中学至少1名学生入选的概率为1991100100-=.(2)根据题意,X 的可能取值为1,2,3.1333461(1)5C C P X C ===,2233463(2)5C C P X C ===, 3133461(3)5C C P X C ===,所以X 的分布列为:因此,X 的期望为131()1232555E X =⨯+⨯+⨯=. 考点:本题考查随机事件的概率、古典概型、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查运用概率与统计的知识与方法分析和解决实际问题的能力. 7.(Ⅰ)分布列见解析,32;(Ⅱ)0.91. 【解析】 试题分析:(Ⅰ)先算出T 的频率分布,进而可得T 的分布列,再利用数学期望公式可得数学期望ET ;(Ⅱ)先设事件A 表示“刘教授从离开老校区到返回老校区共用时间不超过120分钟”,再算出A 的概率.从而 0.4400.132⨯+⨯=(分钟)(Ⅱ)设12,T T 分别表示往、返所需时间,12,T T 的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在途中的时间不超过70分钟”. 解法一:121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=.解法二:121(A )P P T T T=+>=12P(40,40)T T +==0.40.10.10.40.10.10.09=⨯+⨯+⨯=故(A)1P(A)0.91P =-=.考点:1、离散型随机变量的分布列与数学期望;2、独立事件的概率. 8.(Ⅰ)有:125,135,145,235,245,345; (Ⅱ)X 的分布列为21EX =【解析】 试题分析:(Ⅰ)明确“三位递增数”的含义,写出所有的三位符合条件的“三位递增数”;(Ⅱ)试题解析:明确随机变量的所有可能取值及取每一个值的含义,结合组合的知识,利用古典概型求出X 的分布列和数学期望EX . 解:(Ⅰ)个位数是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增烽”的个数为3984C =随机变量X 的取值为:0,-1,1,因此()3839203C P X C === ()24391114C P X C =-== ,()12111114342P X ==--=,因此0(1)13144221EX =⨯+-⨯+⨯= 考点:1、新定义;2、古典概型;3、离散型随机变量的分布列与数学期望;4、组合的应用.9.(1)107;(2)详见解析. 【解析】试题分析:(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},则可知1A与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,再利用概率的加法公式即可求解;(2)分析题意可知1(3,)5X B ,分别求得00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()55125P X C ===,3303141(3)()()55125P X C ===,即可知X 的概率分布及其期望.试题解析:(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},由题意,1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,∵142()105P A ==,251()102P A ==,∴11212211()()()()525P B P A A P A P A ===⨯=, 2121212121212()()()()()(1())(1())()P B P A A A A P A A P A A P A P A P A P A =+=+=-+-21211(1)(1)52522=⨯-+-⨯=,故所求概率为1212117()()()()5210P C P B B P B P B =+=+=+=;(2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,∴1(3,)5X B ,于是00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()55125P X C ===,3303141(3)()()P X C ===,故X 的分布列为X 的数学期望为 13()355E X =⨯=.考点:1.概率的加法公式;2.离散型随机变量的概率分布与期望. 【名师点睛】本题主要考查了离散型随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以关注.10.(Ⅰ)Z 的分布列为:()9708E Z =;(Ⅱ)0.973. 【解析】(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1)目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C . 将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C . 将10001200z x y =+变形为561200zy x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=. 故最大获利Z 的分布列为第20题解答第20题解答第20题解答因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯=(Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=, 由二项分布,3天中至少有1天最大获利超过10000元的概率为3311(1)10.30.973.p p =--=-=考点:线性规划的实际运用,随机变量的独立性,分布列与均值,二项分布. 11.(Ⅰ)310;(Ⅱ)350. 【解析】 试题分析:(Ⅰ)依据题目所给的条件可以先设“第一次检查出的是次品且第二次检测出的是正品”为事件A .得出1123253()10A A P A A ==.(Ⅱ)X 的可能取值为200,300,400.依此求出各自的概率136,,101010,列出分布列,求出期望136200300400350101010EX =⨯+⨯+⨯=.试题解析:(Ⅰ)记“第一次检查出的是次品且第二次检测出的是正品”为事件A .1123253()10A A P A A ==.(Ⅱ)X 的可能取值为200,300,400.22251(200)10A P X A ===.31123232353(300)10A C C A P X A +===. 136(400)1(200)(300)1101010P X P X P X ==-=-==--=.136200300400350101010EX =⨯+⨯+⨯=. 考点:1.概率;2.随机变量的分布列与期望.12.(Ⅰ)12;(Ⅱ)分布列见解析,期望为52. 【解析】(Ⅰ)设“当天小王的该银行卡被锁定”的事件为A , 则5431(A)=6542P =创(Ⅱ)依题意得,X 所有可能的取值是1,2,3 又1511542(X=1),(X=2),(X=3)1=.6656653P P P ==?=创 所以X 的分布列为所以1125E(X)1236632=???. 考点:1、古典概型;2、离散型随机变量的分布列和期望. 13.(Ⅰ)37,(Ⅱ)1049,(Ⅲ)11a =或18 【解析】试题分析:针对甲有7种情况,康复时间不少于14天有3种情况,概率为37;如果25a =,甲、乙随机各取一人有49种情况,用列举法列出甲的康复时间比乙的康复时间长的情况有10种,概率为1049,由于A 组数据为10,11,12,13,14,15,16;B 组数据调整为a ,12,13,14,15,16,17,或12,13,14,15,16,17,a ,由于A ,B 两组病人康复时间的方差相等,即波动相同,所以11a =或18.试题解析:(Ⅰ)甲有7种取法,康复时间不少于14天的有3种取法,所以概率37P =; (Ⅱ) 如果25a =,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙共有49种取法,甲的康复时间比乙的康复时间长的列举如下:(13,12),(14,12),(14,13),(15,12),(15,13),(15,14),(16,12)(16,13),(16,15),(16,14)有10种取法,所以概率1049P =. (Ⅲ)把B 组数据调整为a ,12,13,14,15,16,17,或12,13,14,15,16,17,a ,可见当11a =或18a =时,与A 组数据方差相等.(可利用方差公式加以证明,但本题不需要)考点:1、古典概型;2、样本的方差。

2015年高考“统计与概率、计数原理”专题命题分析

2015年高考“统计与概率、计数原理”专题命题分析
湖南 文科 卷 、四川 文 科 卷 、陕西 文 科 卷 都 是 一 道 小 题 件 的 概 率分 布 有 八 道 解答 题 .考 查 了互 斥 事 件 、对 立
和一道大题 ,共计 1 7 分 ;安徽文科卷是一道 1 2 分 的 事件 、相互独立事件 、独立重复试验等事件 的概率计 大题 ;天津文科卷是一道 1 3 分 的大题 ;江苏卷和湖北 算以及 概率分布列的数学期 望和方差 . 新课程全 国文 文科卷 ,两道小题 ,所 占分值为 1 O分 ;题量最少的是 科 Ⅱ卷 、新 课 程全 国理 科 Ⅱ卷 、天 津 文科 卷 、安 徽 文 上海文科卷 ,为两道小题 ,分值为 8 分 ,占试题 总分 科卷 、北京文科卷 、北京理科卷 、福建文科卷 、陕西
《试 题 研 究
… … … … … … … … … … … … … … … … … … … … … … … … . .
s j l
l J 1
ቤተ መጻሕፍቲ ባይዱ
理科卷 、湖北理科卷 ,分值为 2 7 分. 其他大多为两道 发 现 其 觉 得题 目有 难 度 的原 因也 在 于此 ,可 见 部分 教 小 题 和 一道 大 题 ,分 值 为 2 2分 ;新 课 程全 国文 科 师没有 重视 对课 本例 题 的研究 . I 卷 、新课程全 国文科 Ⅱ卷 、新课程全 国理科 Ⅱ卷 、 在所有概率试题 中 ,涉及古典概 型的题 目有 四道 北京理科卷 、山东理科卷 、天津理科卷 、福建文科卷 、 小题 ,十一道解答题 ;几何概型有四道小题 ;随机事
求 线性 回归 方 程并 进 行 预 报 的 解 答 题 .这 三道 题 目都 容易 出错 .新 课 程 全 国 I卷 和 上 海 理科 卷 是 一 个 三项 源 于课 本 例 题 和 习题 ,是 比较 容 易 得 分 的 . 新 课 程 全 展 开 式 的 问题 ,其 可 以转 化 为 二项 展 开 式 ,或 者溯 源

2015年高考数学总复习(人教A版,理科)配套教案:第十一章 统计与概率 11.3

2015年高考数学总复习(人教A版,理科)配套教案:第十一章 统计与概率 11.3

§11.3 变量间的相关关系、统计案例1.两个变量的线性相关 (1)正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关. (2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.回归方程 (1)最小二乘法求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法. (2)回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.⎩⎨⎧b ^=∑ni =1(x i-x )(y i-y )∑n i =1(x i-x )2=∑ni =1x i y i-n x y∑n i =1x 2i-n x2a ^=y -b ^x.3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中(x ,y )称为样本点的中心. (3)相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性. 4.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量. (2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为 2×2列联表y 1 y 2 总计 x 1 a b a +b x 2 cdc +d总计a +cb +d a +b +c +d 构造一个随机变量K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d 为样本容量.(3)独立性检验利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( × ) (2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系. ( √ ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( √ )(4)某同学研究卖出的热饮杯数y 与气温x (℃)之间的关系,得回归方程y ^=-2.352x +147.767,则气温为2℃时,一定可卖出143杯热饮.( × ) (5)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( √ )(6)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀. ( × ) 2.下面哪些变量是相关关系( )A .出租车车费与行驶的里程B .房屋面积与房屋价格C .身高与体重D .铁块的大小与质量 答案 C3.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25答案 A4.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(填“有关”或“无关”).答案有关5.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是() A.有99%的人认为该电视栏目优秀B.有99%的人认为该电视栏目是否优秀与改革有关系C.有99%的把握认为该电视栏目是否优秀与改革有关系D.没有理由认为该电视栏目是否优秀与改革有关系答案 D解析只有K2≥6.635才能有99%的把握认为该电视栏目是否优秀与改革有关系,而既使K2≥6.635也只是对“该电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的结论,与是否有99%的人等无关.故只有D正确.题型一相关关系的判断例1x和y的散点图如图所示,则下列说法中所有正确命题的序号为________.①x,y是负相关关系;②在该相关关系中,若用y=c1e c2x拟合时的相关指数为R21,用y=bx+a拟合时的相关指数为R22,则R21>R22;③x、y之间不能建立回归直线方程.思维启迪本题散点图对应的曲线类似于指数型曲线,因此,用y=bx+a拟合的效果差,所以R22小.答案①②解析 ①显然正确;由散点图知,用y =c 1e c 2x 拟合的效果比用y =bx +a 拟合的效果要好,故②正确;x ,y 之间能建立回归直线方程,只不过预报精度不高,故③不正确. 思维升华 判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图,根据散点图很容易看出两个变量之间是否具有相关性,是不是存在线性相关关系,是正相关还是负相关,相关关系是强还是弱.(1)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图①;对变量u ,v有观测数据(u i ,v i )(i =1,2,…,10),得散点图②,由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 答案 C(2)(2012·课标全国)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )A .-1B .0C.12D .1答案 D解析 利用相关系数的意义直接作出判断.样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y i ^,代入相关系数公式r =1-∑i =1n(y i -y i ^)2∑i =1n(y i -y )2=1.题型二 线性回归分析例2 某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得零件的个数x (个) 2 3 4 5 加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时?(注:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x )思维启迪 求线性回归方程的系数b ^时,为防止出错,应分别求出公式中的几个量,再代入公式.解 (1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5,∑i =14x 2i =54,∴b ^ =0.7,∴a ^=1.05,∴y ^=0.7x +1.05,回归直线如图所示.(3)将x =10代入回归直线方程,得y ^=0.7×10+1.05=8.05, 故预测加工10个零件约需要8.05小时.思维升华 (1)回归直线y ^=b ^x +a ^必过样本点的中心(x ,y ).(2)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________. 答案 0.5 0.53解析 小李这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故线性回归方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53. 题型三 独立性检验例3 为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例.(2)能否有99.5%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.思维启迪 直接计算K 2的值,然后利用表格下结论.解 (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要志愿者提供帮助的老年人的比例的估计值为70500×100%=14%.(2)K 2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>7.879,所以有99.5%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法,比采用简单随机抽样方法更好.思维升华 (1)根据样本估计总体是抽样分析的一个重要内容.要使估计的结论更加准确,抽样取得的样本很关键.(2)根据独立性检验知,需要提供服务的老人与性别有关,因此在调查时,采取男、女分层抽样的方法更好,从而看出独立性检验的作用.某中学对“学生性别和是否喜欢看NBA 比赛”作了一次调查,其中男生人数是女生人数的2倍,男生喜欢看NBA 的人数占男生人数的56,女生喜欢看NBA 的人数占女生人数的13.(1)若被调查的男生人数为n ,根据题意建立一个2×2列联表;(2)若有95%的把握认为是否喜欢看NBA 和性别有关,求男生至少有多少人?附:K 2=(a +b +c +d )(ad -bc )2(a +b )(c +, P (K 2≥k )0.100 0.050 0.010 K2.7063.8416.635解 (1)由已知得:喜欢看NBA不喜欢看NBA总计 男生 5n 6 n 6 n 女生 n 6n 3 n 2 总计nn 23n 2(2)K 2=3n 2(5n 6·n 3-n 6·n 6)2n ·n 2·n 2·n =38n .若有95%的把握认为是否喜欢看NBA 和性别有关,则K 2>3.841,即38n >3.841,n >10.24.∵n 2,n6为整数,∴n 最小值为12. 即:男生至少12人.统计中的数形结合思想年收入x (万元) 24466677810年饮食支出y (万元)0.91.41.62.02.11.91.82.12.22.3(1)根据表中数据,确定家庭的年收入和年饮食支出的相关关系; (2)如果某家庭年收入为9万元,预测其年饮食支出.思维启迪 可以画出散点图,根据图中点的分布判断家庭年收入和年饮食支出的线性相关性.规范解答解 (1)由题意,知年收入x 为解释变量,年饮食支出y 为预报变量,作散点图如图所示.[3分]从图中可以看出,样本点呈条状分布,年收入和年饮食支出有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.[4分] 因为x =6,y =1.83,∑i =110x 2i =406,∑i =110y 2i =35.13,∑i =110x i y i =117.7,所以b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.172,a ^=y -b ^x ≈1.83-0.172×6=0.798.从而得到线性回归方程为y ^=0.172x +0.798.[8分] (2)y ^=0.172×9+0.798=2.346(万元).所以家庭年收入为9万元时,可以预测年饮食支出为2.346万元.[12分]温馨提醒 (1)在统计中,用样本的频率分布表、频率分布直方图、统计图表中的茎叶图、折线图、条形图,去估计总体的相关问题,以及用散点图判断相关变量的相关性等都体现了数与形的完美结合.借助于形的直观,去统计数据,分析数据,无不体现了数形结合的思想.(2)本题利用散点图分析两变量间的相关关系,充分体现了数形结合思想的应用. (3)本题易错点为散点图画的不准确,导致判断错误.方法与技巧1.求回归方程,关键在于正确求出系数a ^,b ^,由于a ^,b ^的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为b ^,常数项为a ^,这与一次函数的习惯表示不同.)2.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程. 3.根据K 2的值可以判断两个分类变量有关的可信程度. 失误与防范1.相关关系与函数关系的区别相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S 与边长x 之间的关系S =x 2就是函数关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如商品的销售额与广告费是相关关系.两个变量具有相关关系是回归分析的前提.2.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.A 组 专项基础训练一、选择题1.某地区调查了2~9岁的儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为y ^=8.25x +60.13,下列叙述正确的是( )A .该地区一个10岁儿童的身高为142.63 cmB .该地区2~9岁的儿童每年身高约增加8.25 cmC .该地区9岁儿童的平均身高是134.38 cmD .利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 B2. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在0到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 答案 A解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B 、C 错误.D 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以D 错误.根据线性回归直线一定经过样本点中心可知A 正确.3.(2012·湖南)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由于线性回归方程中x 的系数为0.85, 因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确. 当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确. 4以下结论正确的是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案 A解析 根据独立性检验的定义,由K 2≈7.8>6.635可知我们有99%以上的把握认为“爱好该项运动与性别有关”,故选A.5根据上表可得线性回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元答案 B解析 ∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^=b ^x +a ^必过(x ,y ), ∴42=72×9.4+a ^ ,∴a ^ =9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元). 二、填空题6.以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1 ;③在线性回归方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大. 答案 ②③解析 ①是系统抽样;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小.7.已知回归方程y ^=4.4x +838.19,则可估计x 与y 的增长速度之比约为________. 答案 5∶22解析 x 每增长1个单位,y 增长4.4个单位,故增长的速度之比约为1∶4.4=5∶22. 事实上所求的比值为回归直线方程斜率的倒数.8.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________ cm. 答案 185解析 儿子和父亲的身高可列表如下:设线性回归方程为y ^=a +b x ,由表中的三组数据可求得b =1,故a ^=y -b ^x =176-173=3,故线性回归方程为y ^=3+x ,将x =182代入得孙子的身高为185 cm. 三、解答题9.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)频数1263861829261 4分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)频数297185159766218(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面2×2列联表,问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?甲厂乙厂合计优质品非优质品合计附解(1)甲厂抽查的500件产品中有360件优质品,从而估计甲厂生产的零件的优质品率为360500=72%;乙厂抽查的500件产品中有320件优质品,从而估计乙厂生产的零件的优质品率为320500=64%.(2)完成的2×2甲厂乙厂合计优质品360320680非优质品140180320合计500500 1 000由表中数据计算得K2的观测值k=1 000×(360×180-320×140)2500×500×680×320≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.10.(2013·重庆)从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y ^对月收入x 的线性回归方程y ^ =b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b ^ =l xy l xx =2480=0.3,a ^ =y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).B 组 专项能力提升1.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③回归方程y ^=b ^x +a ^ 必过(x ,y );④有一个2×2列联表中,由计算得K 2=13.079,则有99.9%的把握确认这两个变量间有关系.其中错误的个数是( )A .0B .1C .2D .3 答案 B解析 一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y ^=3-5x ,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y ^=b ^x +a ^必过点(x ,y ),③正确;因为K 2=13.079>10.828,故有99.9%的把握确认这两个变量有关系,④正确.故选B.2.(2013·福建)已知x 与y假设根据上表数据所得线性回归直线方程y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是 ( )A.b ^>b ′,a ^>a ′ B.b ^ >b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′答案 C解析 b ′=2,a ′=-2,由公式b ^=∑i =16(x i -x )(y i -y )∑i =16(x i -x )2求得.b ^=57,a ^ =y -b ^ x =136-57×72=-13,∴b ^ <b ′,a ^>a ′.选C.3.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下非优秀统计成绩,已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按97.5%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按97.5%的可靠性要求,不能认为“成绩与班级有关系” 答案 C解析 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75, 所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.6>5.024,因此有97.5%的把握认为“成绩与班级有关系”.4.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2男生20525女生101525总计302050则在犯错误的概率不超过________的前提下认为喜爱打篮球与性别有关(请用百分数表示).答案0.5%解析K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=50×(20×15-5×10)225×25×30×20≈8.333>7.879,所以在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关.5.(2013·福建)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?解(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2所以得K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)260×40×30×70=2514≈1.79.因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.创新题目技能练——统计、统计案例A 组 专项基础训练一、选择题1.从2 012名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2 012人中剔除12人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 012人中,每人入选的概率 ( )A .不全相等B .均不相等C .都相等,且为251 006D .都相等,且为140答案 C解析 在各种抽样中,不管是否剔除个体,也不管抽取的先后顺序,每个个体被抽到的可能性都是相等的,这是各种抽样的一个特点,也说明了抽样的公平性.故本题包括被剔除的12人在内,每人入选的概率是相等的,都是502 012=251 006.2. 右图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是 ( )A .161 cmB .162 cmC .163 cmD .164 cm答案 B解析 由给定的茎叶图可知,这10位同学身高的中位数为161+1632=162(cm).3.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 x 0,y 0为这10组数据的平均值, 根据公式计算线性回归方程y ^=b ^x +a ^的b ^以后, 再根据a ^=y -b ^x (x ,y 为样本平均值)求得a ^.因此(x ,y )一定满足线性回归方程,但满足线性回归方程的除了(x ,y )外,可能还有其他样本点.4.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为 ( )A .32B .0.2C .40D .0.25答案 A解析 由频率分布直方图的性质,可设中间一组的频率为x ,则x +4x =1, ∴x =0.2,故中间一组的频数为160×0.2=32,选A.5. 若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92答案 A解析 中位数为12×(91+92)=91.5.平均数为18×(87+89+90+91+92+93+94+96)=91.5. 二、填空题6. 某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品 A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________. 答案 1解析 当x ≥4时,89+89+92+93+92+91+947=6407≠91,∴x <4,则89+89+92+93+92+91+x +907=91,∴x =1.7.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.答案 24 23解析 x 甲=110×(19+18+20+21+23+22+20+31+31+35)=24.x 乙=110×(19+17+11+21+24+22+24+30+32+30)=23.8.如图所示是某公司(员工总人数300人)2012年员工年薪情况的频率分布直方图,由此可知,员工中年薪在2.4万元~2.6万元之间的共有________人.答案 72解析 由所给图形,可知员工中年薪在2.4万元~2.6万元之间的频率为1-(0.02+0.08+0.08+0.10+0.10)×2=0.24,所以员工中年薪在2.4万元~2.6万元之间的共有300×0.24=72(人). 三、解答题9.某个体服装店经营某种服装,一周内获纯利y (元)与该周每天销售这种服装的件数x 之间x 3 4 5 6 7 8 9 y66697381899091已知:∑7i =1x 2i =280,∑7i =1y 2i =45 309,∑7i =1x i y i =3 487. (1)求x ,y ;(2)判断纯利润y 与每天销售件数x 之间是否线性相关,如果线性相关,求出线性回归方程.解 (1)x =17(3+4+5+6+7+8+9)=6,y =17(66+69+73+81+89+90+91)≈79.86.(2)根据已知∑7i =1x 2i =280,∑7i =1y 2i =45 309, ∑7i =1x i y i =3 487,得相关系数 r =3 487-7×6×79.86(280-7×62)(45 309-7×79.862)≈0.973.由于0.973>0.75,所以纯利润y 与每天销售件数x 之间具有显著的线性相关关系. 利用已知数据可求得线性回归方程为y ^=4.75x +51.36. 10.某初级中学共有学生2 000名,各年级男、女生人数如表:初一年级 初二年级初三年级女生 373 x y 男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;。

(天津版)高考数学分项版解析 专题11 概率和统计、算法 文-天津版高三全册数学试题

(天津版)高考数学分项版解析 专题11 概率和统计、算法 文-天津版高三全册数学试题

第十一章 概率和统计一.基础题组1. 【2016高考某某文数】甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为(A )65 (B )52 (C )61 (D )31【答案】A 【解析】试题分析:甲不输概率为115.236+=选A. 【考点】概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法公式.对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件. 2.【2007某某,文11】从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下: 分组 [)90100, [)100110, [)110120, [)120130, [)130140, [)140150, 频数123101则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的%. 【答案】703.【2008某某,文11】一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.【答案】10【解析】依题意知抽取超过45岁的职工为258010 200⨯=.4.【2009某某,文6】阅读下面的程序框图,则输出的S等于( )A.14B.20C.30D.55【答案】C【解析】由题意知:S=12+22+…+i2,当i=4时循环程序终止,故S=12+22+32+42=30.5.【2010某某,文3】阅读下边的程序框图,运行相应的程序,则输出s的值为 ( )A.-1 B.0 C.1 D.3【答案】B6.【2010某某,文18】有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47 其中直径在区间1.48,1.52]内的零件为一等品.(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.【答案】(1) 35,(2) ①共有15种.②257.【2011某某,文3】阅读右边的程序框图,运行相应的程序,若输入x的值为-4,则输出y 的值为B.1C.2D.48.【2011某某,文15】编号分别为1216,,,A A A 的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号 A 1A 2A 3A 4A 5A 6A 7A 8得分 15 35 21 28 25 36 18 34 运动员编号 A 9A 10A 11A 12A 13A 14A 15A 16得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格: 区间 [10,20)[20,30)[30,40)人数(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人, (i) 用运动员编号列出所有可能的抽取结果; (ii)求这2人得分之和大于50的概率.【答案】(1)4,6,6(2)15,1 . 39.【2012某某,文3】阅读下边的程序框图,运行相应的程序,则输出S的值为( )A.8 B.18 C.26 D.80【答案】C【解析】n=1,S=0+31-30=2,n=2;n=2<4,S=2+32-31=8,n=3;n=3<4,S=8+33-32=26,n=4;4≥4,输出S=26.10.【2012某某,文15】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.【答案】(Ⅰ)3,2,1;(Ⅱ)①共15种;②1 511.【2013某某,文3】3.(2013某某,文3)阅读下边的程序框图,运行相应的程序,则输出n的值为( ).A.7B.6C.5D.4【答案】D【解析】由程序框图可知,n=1时,S=-1;n=2时,S=1;n=3时,S=-2;n=4时,S=2≥2,输出n的值为4,故选D.12.【2013某某,文15】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z 评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(x, y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1) 产品编号A6A7A8A9A10质量指标(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.【答案】(Ⅰ)0.6;(Ⅱ)①可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种;②(Ⅲ)2 5(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B 发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=62 105.13.【2014某某,文9】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生. 【答案】60 【解析】试题分析:分层抽样实质为按比例抽样,所以应从一年级本科生中抽取4300604556⨯=+++名学生.考点:分层抽样14.【2014某某,文11】阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】 4.-考点:循环结构流程图15.【2014某某,文15】某校夏令营有3名男同学C B A ,,和3名女同学Z Y X ,,,其年级情况如下表:一年级 二年级 三年级 男同学 A B C 女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同) (1)用表中字母列举出所有可能的结果(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.【答案】(1)15,(2) 2.5【解析】试题分析:(1)列举事件,关键是按一定顺序,做到不重不漏. 从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种. (2) M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种. 因此,事件M 发生的概率62().155P M == 试题解析:解(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M 发生的概率62().155P M == 考点:古典概型概率16. 【2015高考某某,文15】(本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (I )求应从这三个协会中分别抽取的运动员人数;(II )将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.(i )用所给编号列出所有可能的结果;(ii )设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率.【答案】(I )3,1,2;(II )(i )见试题解析;(ii )35【解析】(ii )编号为56,A A 的两名运动员至少有一人被抽到的结果为{}15,A A ,{}16,A A ,{}25,A A ,{}26,A A , {}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共9种,所以事件A 发生的概率()93.155P A == 【考点定位】本题主要考查分层抽样与古典概型及运用概率统计知识解决实际问题的能力. 17. 【2015高考某某,文3】阅读下边的程序框图,运行相应的程序,则输出i 的值为( ) (A) 2 (B) 3 (C) 4 (D)5【答案】C 【解析】由程序框图可知:2,8;3,S 5;4, 1.i S i i S ====== 故选C.【考点定位】本题主要考查程序框图及学生分析问题解决问题的能力.18.【2016高考某某文数】阅读下边的程序框图,运行相应的程序,则输出S 的值为_______.【答案】4【考点】循环结构流程图【名师点睛】算法与程序框图的考查,侧重于对程序框图中循环结构的考查.先明晰算法及程序框图的相关概念,其次重视循环次数、终止条件,更要通过循环规律,明确程序框图研究的数学问题是求和还是求项.19.【2009某某,文18】为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C 三个区中抽取7个工厂进行调查.已知A,B,C 区中分别有18,27,18个工厂.(1)求从A,B,C 区中应分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率.【答案】(Ⅰ)2,3,2;(Ⅱ)1121【解析】(1)解:工厂总数为18+27+18=63,样本容量与总体中的个体数的比为91637 ,所以从A,B,C 三个区中应分别抽取的工厂个数为2,3,2. (2)解:设A1,A2为在A 区中抽得的2个工厂,B1,B2,B3为在B 区中抽得的3个工厂,C1,C2为在C 区中抽得的2个工厂.在这7个工厂中随机地抽取2个,全部可能的结果。

2015年高考数学分类讲解-概率

2015年高考数学分类讲解-概率

2015年高考数学第一轮复习分类讲解概率主编:宁永辉 主编单位:永辉中学生教育学习中心第一部分:事件一、事件的分类: 1、事件的分类: 第一类:确定事件;确定事件分类两类:第一类:必然事件,绝对事件发生的概率为1;第二类:不可能事件,不可能事件发生的概率为0;例:春天过去之后一定是夏天。

这是一个绝对事件。

水在C 010的时候,可以结成冰。

这是一个不可能事件。

第二类:不确定事件;不确定事件也叫做随机事件,这个事件有可能发生,也有可能不发生,可能事件发生的概率范围在)1,0(之间。

2、互斥事件的概念:两个不可能同时发生的事件,叫做互斥事件。

例:掷筛子,筛子1正面朝上,和2正面朝上,这两件事情不可能同时发生; 3、对立事件的概念:两个时间不可能同时发生,但是一定会发生其中一个事件。

例:掷硬币,数字朝上和花面朝上,不可能同时发生,但是一定会发生其中一个事件。

4、互斥事件和对立事件的关系:对立事件一定是互斥事件,但是互斥事件不一定是对立事件。

二、频率和概率的关系:1、概率是客观存在的,与是否进行独立实验,独立实验的次数没有关系。

2、频率:频率是主观的,与进行的独立实验,和独立实验的次数有关,每一次独立实验次数的增加,都会改变频率的大小。

当独立实验的次数越来越多的时候,独立实验的频率就会越来越接近概率。

第二部分:古典概型一、基本事件:1、基本事件满足的两个条件: (1)、基本事件发生的概率相等; (2)、基本事件一定是互不相容事件;2、基本事件的举例: 二、古典概型概率的计算: 三、古典概型概率计算的实例:例一:【2013年高考数学安徽卷】若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.32 B.52 C. 53 D.109【解析】:整体事件中包含的基本事件:{甲、乙、丙};{甲、乙、丁};{甲、乙、戊};{甲、丙、丁};{甲、丙、戊}; {甲、丁、戊};{乙、丙、丁};{乙、丙、戊};{乙、丁、戊};{丙、丁、戊}; 所求事件中包含的基本事件:{甲、乙、丙};{甲、乙、丁};{甲、乙、戊};{甲、丙、丁};{甲、丙、戊}; {甲、丁、戊};{乙、丙、丁};{乙、丙、戊};{乙、丁、戊}; 所以:甲或乙被录用的概率为109=P 。

2015年高考数学—概率(解答+答案)

2015年高考数学—概率(解答+答案)

2015年高考数学—概率(解答+答案)1.(2015新课标Ⅰ文数(19)(本小题满分12分))某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。

x ry u r w u r821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()iii w w y y =--∑46.6 563 6.8 289.8 1.6 1469 108.8表中w 1 x 1, ,w u r =1881i w =∑1(Ⅰ)根据散点图判断,y a bx =+与y c x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z=0.2y-x 。

根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?+u的斜率和附:对于一组数据(u1 v1),(u2 v2)…….. (u n v n),其回归线v=αβ截距的最小二乘估计分别为:2.(2015新课标II文数18.(本小题满分12分))某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表。

A地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表(1)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:估计哪个地区的满意度等级为不满意的概率大?说明理由频率/5060708090100 满意度评分405060708090满意度评分100 频率/3.(2015安徽文数17.(本小题满分12分))某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),...,[80,90),[90,100](Ⅰ)求频率分布图中a的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.4.(2015北京文数(17)(本小题13分))某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买。

2015高考数学(文科)试题汇编及答案----12概率与统计

2015高考数学(文科)试题汇编及答案----12概率与统计

2015高考数学(文科 ---概率统计试题汇编及答案1. (15北京文科某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有 320人,则该样本的老年教师人数为( A . 90 B. 100 C. 180 D. 3002. (15北京文科某辆汽车每次加油都把油箱加满, 下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程,在这段时间内,该车每 100千米平均耗油量为(A . 6升 B. 8升 C. 10升 D . 12升3. (15北京文科高三年级 267位学生参加期末考试,某班 37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .4. (15北京文科某超市随机选取 1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买, “×”表示未购买.(Ⅱ估计顾客在甲、乙、丙、丁中同时购买 3中商品的概率;(Ⅲ如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?5. (15年广东文科已知 5件产品中有 2件次品,其余为合格品.现从这 5件产品中任取2件,恰有一件次品的概率为(A . 0.4B . 0.6C . 0.8D . 1 6. (15年广东文科已知样本数据 1x , 2x , ⋅⋅⋅, n x 的均值 5=, 则样本数据 121x +, 221x +,⋅⋅⋅, 21n x +的均值为 .7. (15年广东文科某城市 100户居民的月平均用电量 (单位:度 , 以 [160,180, [180, 200,[200, 220, [220, 240, [240, 260, [260, 280, []280,300分组的频率分布直方图如图 2.(1求直方图中 x 的值;(2求月平均用电量的众数和中位数;(3在月平均用电量为 [220, 240, [240, 260, [260, 280, []280,300的四组用户中, 用分层抽样的方法抽取 11户居民,则月平均用电量在 [220, 240的用户中应抽取多少户?8. (15年福建文科如图, 矩形 ABCD 中, 点 A 在 x 轴上, 点 B 的坐标为 (1,0. 且点 C 与点 D 在函数1, 0( 11, 02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形 ABCD 内随机取一点,则该点取自阴影部分的概率等于( A .16 B . 14 C . 38 D . 129. (15年福建文科某校高一年级有 900名学生,其中女生 400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为 45的样本,则应抽取的男生人数为_______. 10. (15年福建文科全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播 2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据, 对名列前 20名的“省级卫视新闻台”的融合指数进行分组统计, 结果如表所示.(Ⅰ现从融合指数在 [4,5和 []7,8内的“省级卫视新闻台”中随机抽取 2家进行调研,求至少有 1家的融合指数在 []7,8的概率;(Ⅱ根据分组统计表求这 20家“省级卫视新闻台”的融合指数的平均数.11. (15年新课标 2文科根据下面给出的 2004年至 2013年我国二氧化碳年排放量 (单位:万吨柱形图 , 以下结论中不正确的是(A .逐年比较 ,2008年减少二氧化碳排放量的效果最显著B . 2007年我国治理二氧化碳排放显现成效C . 2006年以来我国二氧化碳年排放量呈减少趋势D . 2006年以来我国二氧化碳年排放量与年份正相关12. (15年新课标 2文科某公司为了了解用户对其产品的满意度 , 从 A , B 两地区分别随机调查了 40个用户 , 根据用户对其产品的满意度的评分 , 得到 A 地区用户满意度评分的频率分布直方图和 B 地区用户满意度评分的频率分布表 .A 地区用户满意度评分的频率分布直方图(I 在答题卡上作出 B 地区用户满意度评分的频率分布直方图 , 并通过此图比较两地区满意度评分的平均值及分散程度 . (不要求计算出具体值 , 给出结论即可2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年B 地区用户满意度评分的频率分布直方图(II 根据用户满意度评分 , 将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大 , 说明理由 .13. (15年陕西文科某中学初中部共有 110名教师,高中部共有 150名教师,其性别比例如图所示,则该校女教师的人数为( A . 93 B . 123 C . 137 D . 167(高中部(初中部男男女女60%70%14. (15年陕西文科随机抽取一个年份,对西安市该年 4月份的天气情况进行统计,结果如下:(I在 4月份任取一天,估计西安市在该天不下雨的概率;(II西安市某学校拟从 4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率 .15. (15年天津文科设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18, 先采用分层抽样的方法从这三个协会中抽取 6名运动员参加比赛 . (I 求应从这三个协会中分别抽取的运动员人数;(II 将抽取的 6名运动员进行编号 , 编号分别为 123456, , , , , A A A A A A , 从这 6名运动员中随机抽取 2名参加双打比赛 .(i 用所给编号列出所有可能的结果;(ii 设 A 为事件“ 编号为 56, A A 的两名运动员至少有一人被抽到”, 求事件 A 发生的概率 .16. (15年江苏已知一组数据 4, 6, 5, 8, 7, 6,那么这组数据的平均数为 ________.17.(15年江苏袋中有形状、大小都相同的 4只球,其中 1只白球, 1只红球, 2只黄球, 从中一次随机摸出 2只球,则这 2只球颜色不同的概率为 ________.1C 2.B3 .乙、数学 4.试题解析:(Ⅰ从统计表可以看出,在这 1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ从统计表可以看出,在在这 1000位顾客中,有 100位顾客同时购买了甲、丙、丁, 另有 200位顾客同时购买了甲、乙、丙,其他顾客最多购买了 2种商品 . 所以顾客在甲、乙、丙、丁中同时购买 3种商品的概率可以估计为 1002000.31000+=.(Ⅲ与(Ⅰ同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为 1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为 1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大 . 5.B 6.117. 试题解析:(1由 (0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中 x 的值是 0.00758.B 9. 25 10.解法一:(I 融合指数在 []7,8内的“省级卫视新闻台” 记为 1A, 2A, 3A; 融合指数在 [4,5内的“省级卫视新闻台”记为 1B, 2B.从融合指数在 [4,5和 []7,8内的“省级卫视新闻台”中随机抽取 2家的所有基本事件是:{}12, AA, {}13, AA, {}23, AA, {}11, AB,{}12, AB, {}21, AB, {}22, AB, {}31, AB, {}32, AB, {}12, BB,共 10个.其中,至少有 1家融合指数在 []7,8内的基本事件是:{}12, AA, {}13, AA, {}23, AA,{}11, AB, {}12, AB, {}21, AB, {}22, AB, {}31, AB, {}32, AB,共 9个.所以所求的概率 910P=. (II 这 20家“ 省级卫视新闻台” 的融合指数平均数等于28734.55.56.57.56.0520202020⨯+⨯+⨯+⨯=. 解法二:(I 融合指数在 []7,8内的“省级卫视新闻台” 记为 1A, 2A, 3A; 融合指数在 [4,5内的“省级卫视新闻台”记为 1B, 2B.从融合指数在 [4,5和 []7,8内的“省级卫视新闻台”中随机抽取 2家的所有基本事件是:{}12, AA, {}13, AA, {}23, AA, {}11, AB,{}12, AB, {}21, AB, {}22, AB, {}31, AB, {}32, AB, {}12, BB,共 10个.其中,没有 1家融合指数在 []7,8内的基本事件是:{}12, BB,共 1个. 所以所求的概率 1911010P=-=. 11. D 12.13. C14.试题分析:(I在容量为 30的样本中,从表格中得,不下雨的天数是 26,以频率估计概率,4月份任选一天,西安市不下雨的概率是 2613 3015 =.(II称相邻两个日期为“互邻日期对” (如 1日与 2日, 2日与 3日等这样在 4月份中,前一天为晴天的互邻日期对有 16对, 其中后一天不下雨的有 14个, 所以晴天的次日不下雨的频率为 147168=,以频率估计概率,运动会期间不下雨的概率为 7 8 .试题解析:(I在容量为 30的样本中,不下雨的天数是 26,以频率估计概率, 4月份任选一天,西安市不下雨的概率是1315. (II称相邻两个日期为“互邻日期对” (如 1日与 2日, 2日与 3日等这样在 4月份中,前一天为晴天的互邻日期对有 16对, 其中后一天不下雨的有 14个, 所以晴天的次日不下雨的频率为78, 以频率估计概率,运动会期间不下雨的概率为78. 15. 试题分析:(I 由分层抽样方法可知应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为 3,1,2; (II (i 一一列举 , 共 15种; (ii 符合条件的结果有 9种 , 所以 (93. 155P A ==. 试题解析:(I 应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2; (II (i 从这 6名运动员中随机抽取 2名参加双打比赛 , 所有可能的结果为 {}12, A A ,{}13, A A , {}14, A A , {}15, A A , {}16, A A , {}23, A A , {}24, A A , {}25, A A , {}26, A A , {}34, A A , {}35, A A , {}36, A A , {}45, A A , {}46, A A , {}56, A A , 共15种 .(ii 编号为 56, A A 的两名运动员至少有一人被抽到的结果为 {}15,A A , {}16, A A ,{}25, A A , {}26, A A , {}35, A A , {}36, A A , {}45, A A , {}46, A A , {}56, A A , 共 9种 , 所以事件 A 发生的概率 (93. 155P A == 16.6 175. 6。

2015年高考数学真题概率和统计 答案

2015年高考数学真题概率和统计 答案

2015年高考数学真题分类汇编 专题11 概率和统计 文20.【2015高考安徽,文17】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],,[80,90],[90,100](Ⅰ)求频率分布图中a 的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【答案】(Ⅰ)0.006;(Ⅱ)0.4;(Ⅲ)110【解析】(Ⅰ)因为110)028.02022.00018.0004.0(=⨯+⨯+++a ,所以006.0=a(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为4.010)018.0022.0(=⨯+, 所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为321,,A A A ; 受访职工评分在[40,50)的有: 50×0.004×40=2(人),即为21,B B .从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{}{}{}{},,,,,,,,21113121B A B A A A A A{}{}{}{}{}{},,,,,,,,,,,,2123132212312B B B A B A B A B A A A 又因为所抽取2人的评分都在[40,50)的结果有1种,即{}21,B B ,故所求的概率为101=p . 【考点定位】本题主要考查了频率分布直方图、概率和频率的关系、古典概型等基础知识.【名师点睛】利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.21.【2015高考北京,文17】(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? 【答案】(I )0.2;(II )0.3;(III )同时购买丙的可能性最大. 【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )由统计表读出顾客同时购买乙和丙的人数200,计算出概率;(II )先由统计表读出顾客在甲、乙、丙、丁中同时购买3中商品的人数100200+,再计算概率;(III )由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100200300++,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点:统计表、概率.【名师点晴】本题主要考查的是统计表和古典概型,属于中档题.解题时一定要抓住重要字眼“估计”和“最大”,否则很容易失分.解此类统计表的试题一定要理解透彻题意,提取必要的信息.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.22.【2015高考福建,文18】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 【解析】解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=. (II )同解法一.【考点定位】1、古典概型;2、平均值.【名师点睛】本题考差古典概型和平均数,利用古典概型的“等可能”“有限”性的特点,能方便的求出概率.由实际意义构造古典概型,首先确定试验的样本空间结构并计算它所含样本点总数,然后再求出事件A 所含基本事件个数,代入古典概型的概率计算公式;根据频率分布表求平均数,对于每组的若干个数可以采取区间中点值作为该组数据的数值,再求平均数.23.【2015高考广东,文17】(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】试题分析:(1)由频率之和等于1可得x 的值;(2)由最高矩形的横坐标中点可得众数,由频率之和等于0.5可得中位数;(3)先计算出月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的用户的户数,再计算抽取比例,进而可得月平均用电量在[)220,240的用户中应抽取的户数.试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075 (2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户 考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.【名师点晴】本题主要考查的是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,属于中档题.解题时一定要注意频率分布直方图的纵轴是频率组距,否则很容易出现错误.解本题需要掌握的知识点是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,即在频率分布直方图中,各小长方形的面积的总和等于1,众数是最高矩形的横坐标中点,中位数左边和右边的直方图的面积相等,=⨯频率频率组距组距,=样本容量抽取比例总体容量.24.【2015高考湖南,文16】(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。

2015年新课标高考概率与统计试题分类评析

2015年新课标高考概率与统计试题分类评析

2015年新课标高考概率与统计试题分类评析吕大军【期刊名称】《高中数理化》【年(卷),期】2016(000)001【总页数】3页(P7-9)【作者】吕大军【作者单位】北京宏志中学【正文语种】中文统计与概率都是研究随机现象的学科.统计侧重于从数据分析来刻画随机现象,概率侧重于建立理论模型来刻画随机现象.概率统计学的基本知识和思想方法是现代公民必备的数学素养.在现代信息社会中,统计与概率在日常生活、社会经济及各学科的应用日益广泛,使学生具备基本的统计与概率的思想、方法和知识解决有关应用问题,无疑是高考考查的重点.统计内容考试要求是,理解随机抽样的意义与方法,会作出各种统计图表并进行分析;理解用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;会利用散点图认识变量间的相关关系;了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程;了解一些常见的统计方法,了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.概率内容考试要求是,了解随机事件发生的不确定性和频率的稳定性,理解频率与概率的区别;了解2个互斥事件的概率加法公式,了解条件概率和2个事件相互独立的概念,理解古典概型及其概率计算公式,了解几何概型的意义;理解取有限个值的离散型随机变量及其分布列的概念,理解超几何分布、n次独立重复试验的模型及二项分布,理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差.这类试题一般以实际问题为背景,考查抽样方法、统计图表、用样本估计总体、线性回归、相关性检验等统计基础知识,考查考生收集、整理分析数据,做出推断与决策的能力.例1 (课标Ⅱ卷) 根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万t)柱形图.以下结论不正确的是( ).A 逐年比较,2008年减少二氧化硫排放量的效果最显著;B 2007年我国治理二氧化硫排放显现成效;C 2006年以来我国二氧化硫年排放量呈减少趋势;D 2006年以来我国二氧化硫年排放量与年份正相关由柱形图得,2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D.本题考查考生通过读图获取信息、利用统计相关知识进行分析并得出正确结论的能力.例2 (安徽卷)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ).A 8;B 15;C 16;D 32设样本数据x1,x2,…,x10的标准差为,则,即方差D(X)=64,而2x1-1,2x2-1,…,2x10-1的方差D(2X-1)=22D(X)=22×64,所以其标准差为.故选C.本题主要考查样本的方差与标准差公式与应用,要求学生会灵活利用公式进行计算与推理.这类试题考查必然事件、随机事件、基本事件、等可能性等概率基本概念;古典概型是考查的重点,理科会结合计数原理的相关知识综合考查;几何概型试题一般属于容易题,也可能结合其他章节的相关知识进行综合考查.例3 (广东卷) 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球、1个红球的概率为( ). 从袋中任取2个球共有方法=105种,其中恰好1个白球1个红球共有方法=50种,所以恰好1白球1个红球的概率为,故选C.本题考查计数原理的相关知识、古典概率的计算,属于容易题.例4 (陕西卷)设复数z=(x-1)+yi(x、y∈R),若|z|≤1,则y≥x的概率为( ).;z=(x-1)+yi⟹|z|⟹(x-1)2+y2≤1在圆中满足不等式y≥x的区域对应的面积等于,所以若|z|≤1,则y≥x的概率是,故选B.本题综合复数、不等式的相关知识,考查几何概型的计算,体现各知识间的交会.这类试题主要考查离散型随机变量及其分布列,考查离散型随机变量的均值(数学期望)与方差.试题一般以实际问题为背景,事件与概率、计数原理等知识都可融入这类试题中,因此试题的综合性较强.读懂题目,理解实际问题中蕴含的数学意义是解题的关键.例5 (新课标Ⅰ卷)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ).A 0.648;B 0.432;C 0.36;D 0.312根据独立重复试验公式得,该同学通过测试的概率为,故选A.此类题考查独立重复试验、互斥事件概率公式,要求学生熟知几种基本的概率模型. 例6 (广东卷)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=________.依题意可得E(X)=np=30,且D(X)=np(1-p)=20,解得p=1/3.本题考查二项分布的性质,重点考查二项分布中随机变量的均值与方差公式.例7 (福建卷)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1) 求当天小王的该银行卡被锁定的概率;(2) 设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.(1) 首先记事件“当天小王的该银行卡被锁定”的事件为A,则银行卡被锁定相当于3次尝试密码都错,基本事件总数为,事件A包含的基本事件数为,则.(2) 依题意可得,X所有可能的取值是1、2、3. 又,,.所以X的分布列为所以.在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件包含的基本事件数的求法与基本事件总数的求法的一致性.统计与概率是应用数学,要突出应用性.设计新颖的实际背景、提出有具体意义的实际问题(不是直接求均值、求方差等),是创新问题设计的出发点;与其他数学知识相结合突出其应用性,加深对统计与概率的理解,也是解答问题的关键点.例8 (北京卷)汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙3辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( ).A 消耗1L汽油,乙车最多可行驶5km;B 以相同速度行驶相同路程,3辆车中,甲车消耗汽油最多;C 甲车以80km·h-1的速度行驶1h,消耗10L汽油;D 某城市机动车最高限速80km·h-1,相同条件下,在该市用丙车比用乙车更省油由题目中给出的“燃油效率”的定义, 乙车消耗1L汽油,最多行驶的路程为乙车图象最高点的纵坐标值, 其明显大于5, 故选项A错误; 以相同的速度行驶相同的路程, 甲燃油效率最高,所以甲车最省油,故选项B错误;C中甲车以80km·h-1的速度行驶1h,甲车每消耗1L汽油行驶的里程10km,行驶80km,消耗8L汽油,故选项C错误;某城市机动车最高限速80km·h-1, 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油,故选D.本题考查了考生对统计图表的阅读理解能力. 要求考生会提取信息, 并利用“燃油效率”这个新定义进行数据加工,从而得出正确的结论.在统计中,要注重考查常用的数据处理方法.例9 (安徽卷) 已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测1件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1) 求第1次检测出的是次品且第2次检测出的是正品的概率.(2) 已知每检测1件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).解法1 (1) 设“第1次检查出的是次品且第2次检测出的是正品”为事件A,得(2)X的可能取值为200、300、400. 所以,,.所以X的分布列为所以.解法2 设Ai表示“第i次取到正品”.(1) 设“第1次检查出的是次品且第2次检测出的是正品”为事件A. 得出(2)X的可能取值为200、300、400.所以,,.以下同解法1.概率的综合问题常从实际问题出发,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件,还是能转化为几个相互独立事件同时发生的积事件;要明确随机变量可能取哪些值,结合事件特点选取恰当的方法计算这些可能取值的概率值.。

2015年高考数学总复习(人教A版,理科)配套教案:第十一章 统计与概率 11.2

2015年高考数学总复习(人教A版,理科)配套教案:第十一章 统计与概率 11.2

§11.2 用样本估计总体1.频率分布直方图(1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征估计总体的数字特征.(2)在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精细的反映出总体在各个范围内取值的百分比.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便. 2.用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.平均数:样本数据的算术平均数,即x =1n (x 1+x 2+…+x n ).在频率分布直方图中,中位数左边和右边的直方图的面积应该相等. (2)样本方差、标准差标准差s = 1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数.标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势. ( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )2.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________. 答案 3.2解析 x =10+6+8+5+65=7,∴s 2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=165=3.2.3.一个容量为20的样本,数据的分组及各组的频数如下:[10,20),2;[20,30),3;[30,40),x ;[40,50),5;[50,60),4;[60,70),2;则x =________;根据样本的频率分布估计,数据落在[10,50)的概率约为________. 答案 4 0.7解析 x =20-(2+3+5+4+2)=4, P =2+3+4+520=0.7或P =1-4+220=0.7.4.(2012·湖南) 如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数) 答案 6.8解析 依题意知,运动员在5次比赛中的分数依次为8,9,10,13,15,其平均数为8+9+10+13+155=11.由方差公式得s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=15(9+4+1+4+16)=6.8.5.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.答案600解析由直方图易得数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,所以所求分数小于60分的学生数为3 000×0.2=600.题型一频率分布直方图的绘制与应用例1某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中的平均分.思维启迪利用各小长方形的面积和等于1求分数在[70,80)内的频率,再补齐频率分布直方图.解(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.010+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示.(2)平均分:45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(分).思维升华频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.(2013·陕西)对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30) 上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09 B.0.20 C.0.25 D.0.45答案 D解析设区间[25,30)对应矩形的另一边长为x,则所有矩形面积之和为1,即(0.02+0.04+0.06+0.03+x)×5=1,解得x=0.05.产品为二等品的概率为0.04×5+0.05×5=0.45. 题型二茎叶图的应用例2如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则一定有() A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关思维启迪去掉的最低分和最高分就是第一行和第三行的数据,剩下的数我们只要计算其叶上数字之和,即可对问题作出结论.答案 B解析去掉一个最高分和一个最低分后,甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a2>a1.故选B.思维升华由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表试题时,就要充分使用这个图表提供的数据进行相关的计算或者是对某些问题作出判断,这类试题往往伴随着对数据组的平均值或者是方差的计算等.(2013·山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为( )A.1169B.367 C .36D.677答案 B 解析 由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=17(16+9+1+0+1+9+0)=367. 题型三 用样本的数字特征估计总体的数字特征例3 甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价. 思维启迪 (1)先通过图象统计出甲、乙二人的成绩;(2)利用公式求出平均数、方差,再分析两人的成绩,作出评价. 解 (1)由题图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13,x乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.(1)(2012·山东)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是() A.众数B.平均数C.中位数D.标准差(2)甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.答案(1)D(2)甲解析(1)对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.(2)x甲=x乙=9环,s2甲=15[(10-9)2+(8-9)2+(9-9)2+(9-9)2+(9-9)2]=25,s2乙=15[(10-9)2+(10-9)2+(7-9)2+(9-9)2+(9-9)2]=65>s2甲,故甲更稳定,故填甲.高考中频率分布直方图的应用典例:(5分)为了研究大学生就业后的收入问题,一个研究机构调查了在2009年已经就业且工作满两年的10 000人,并根据所得数据画了样本的频率分布直方图(如图所示).为了分析其收入与学历、职业、性别等方面的关系,要从这10 000人中再用分层抽样方法抽出200人作进一步调查,其中月收入低于1 500元的称为低收入者,高于3 000元的称为高收入者,则应在低收入者和高收入者中分别抽取的人数是()A.1 000,2 000 B.40,80C.20,40 D.10,20思维启迪根据频率分布直方图的意义,分别计算出低收入者和高收入者的频率即可,为方便直接计算,这个频率分布直方图也可以看作是200个样本的频率分布直方图.解析低收入者的频率是0.000 2×500=0.1,故从低收入者中抽取200×0.1=20人;高收入者的频率是(0.000 3+0.000 1)×500=0.2,故从高收入者中抽取200×0.2=40人.故选C.答案 C温馨提醒本题的难点是对频率分布直方图意义的理解以及利用这个图提供的数据对所提问题的计算,频率分布直方图中纵轴上的数据是频率除以组距,组距越大该数据越小,在解答这类问题时要特别注意.方法与技巧1.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.3.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x+b,方差为a2s2.失误与防范频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.A组专项基础训练一、选择题1.(2013·重庆)下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.6答案 B解析10个数据落在区间[22,30)内的数据有22,22,27,29共4个,因此,所求的频率为410=0.4.故选B.2.(2013·辽宁)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60 答案 B解析 由频率分布直方图,知低于60分的频率为 (0.01+0.005)×20=0.3.∴该班学生人数n =150.3=50.3.(2012·陕西) 对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53答案 A 解析由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m o ,平均值为x ,则( )A .m e =m o =xB .m e =m o <xC .m e <m o <xD .m o <m e <x答案 D解析 30个数中第15个数是5,第16个数是6,所以中位数m e =5+62=5.5,众数m o =5,平均值x =3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930.5.若一个样本容量为8的样本的平均数为5,方差为2.现样本中又加入一个新数据5,此时样本容量为9,平均数为x ,方差为s 2,则 ( )A.x =5,s 2<2B.x =5,s 2>2C.x >5,s 2<2D.x >5,s 2>2答案 A解析 考查样本数据的平均数及方差. ∵18(x 1+x 2+…+x 8)=5, ∴19(x 1+x 2+…+x 8+5)=5, ∴x =5,由方差定义及意义可知加入新数据5后,样本数据取值的稳定性比原来强, ∴s 2<2,故选A. 二、填空题6.(2013·湖北)某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为________; (2)命中环数的标准差为________.答案 (1)7 (2)2解析 (1)x =110(7+8+7+9+5+4+9+10+7+4)=7010=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4, ∴命中环数的标准差为2.7.(2012·山东)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.答案 9解析 结合直方图和样本数据的特点求解.最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右边矩形面积为0.18×1=0.18,50×0.18=9.8.将容量为n 的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n =________. 答案 60解析 ∵第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1, ∴前三组频数和为2+3+420·n =27,故n =60.三、解答题9.(2012·安徽)若某产品的直径长与标准值的差的绝对值不超过1 mm 时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm)(1)将上面表格中缺少的数据填在相应位置;(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率; (3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数. 解 (1)如下表所示频率分布表.(2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率约为0.50+0.20=0.70.(3)设这批产品中的合格品数为x 件,依题意505 000=20x +20,解得x =5 000×2050-20=1 980.所以该批产品的合格品件数大约是1 980件.10.(2012·广东)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如分数段 [50,60) [60,70) [70,80) [80,90) x ∶y1∶12∶13∶44∶5解 (1)由频率分布直方图知(2a +0.02+0.03+0.04)×10=1,解得a =0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.B 组 专项能力提升1.(2013·四川)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )答案 A解析由于频率分布直方图的组距为5,排除C、D,又[0,5),[5,10)两组各一人,排除B,应选A.2.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为()A.0.27,78 B.0.27,83C.2.7,78 D.2.7,83答案 A解析由题意,知4.5到4.6之间的频率为0.09,4.6到4.7之间的频率为0.27,后6组的频数成等差数列,设公差为d,则有6×0.27+15d=1-0.01-0.03-0.09,解得d=-0.05,从而求得b=78.3.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登记错了,甲实得80分,却记了50分,乙实得70分,却记了100分,更正后平均分和方差分别是() A.70,75 B.70,50C.75,1.04 D.62,2.35答案 B解析因甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s2,[(x1-70)2+(x2-70)2+…+(80-70)2+(70-70)2+…+(x48-70)2],则由题意可得:s2=148而更正前有75=148[(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2],化简整理得s 2=50.4.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列{a n },已知a 2=2a 1,且样本容量为300,则小长方形面积最大的一组的频数为________.答案 160解析 ∵小长方形的面积由小到大构成等比数列{a n },且a 2=2a 1, ∴样本的频率构成一个等比数列,且公比为2, ∴a 1+2a 1+4a 1+8a 1=15a 1=300,∴a 1=20, ∴小长方形面积最大的一组的频数为8a 1=160.5.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =____________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.答案 0.030 3解析 ∵小矩形的面积等于频率,∴除[120,130)外的频率和为0.700,∴a =1-0.70010=0.030.由题意知,身高在[120,130),[130,140),[140,150]内的学生分别为30人,20人,10人,∴由分层抽样可知抽样比为1860=310,∴在[140,150]中选取的学生应为3人.6.某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,组号 分组 频数 频率 第1组 [160,165) 5 0.050 第2组 [165,170) ① 0.350 第3组 [170,175) 30 ② 第4组 [175,180) 20 0.200 第5组 [180,185]10 0.100 合计1001.00(1)请先求出频率分布表中①、②位置相应数据,再完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率.解 (1)由题意可知,第2组的频数为0.35×100=35,第3组的频率为30100=0.300,频率分布直方图如图所示:(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为第3组:3060×6=3人,第4组:2060×6=2人,第5组:1060×6=1人.所以第3、4、5组分别抽取3人、2人、1人. (3)设第3组的3位同学为A 1,A 2,A 3, 第4组的2位同学为B 1,B 2, 第5组的1位同学为C 1,则从六位同学中抽两位同学有15种可能如下:(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2),(A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1).其中第4组的2位同学至少有一位同学入选的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),(B 1,C 1),(B 2,C 1)9种可能,所以第4组的2位同学至少有一位同学入选的概率为915=35.。

2015年高考数学总复习(人教A版,理科)配套教案:第十一章 统计与概率 11.1

2015年高考数学总复习(人教A版,理科)配套教案:第十一章 统计与概率 11.1

第十一章 统计、统计案例§11.1 随机抽样1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本. 3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样. (2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)简单随机抽样是一种不放回抽样.( √ ) (2)简单随机抽样每个个体被抽到的机会不一样,与先后有关. ( × ) (3)系统抽样在起始部分抽样时采用简单随机抽样.( √ )(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( × )(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关. ( × )2.在某班的50名学生中,依次抽取学号为5、10、15、20、25、30、35、40、45、50的10名学生进行作业检查,这种抽样方法是( )A .随机抽样B .分层抽样C .系统抽样D .以上都不是答案 C3.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为( )A .700B .669C .695D .676答案 C解析 由题意可知,第一组随机抽取的编号l =15,分段间隔数k =N n =1 00050=20,则抽取的第35个编号为a 35=15+(35-1)×20=695.4.大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为________________. 答案 简单随机抽样解析 因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为适合.5.一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________. 答案 12解析 样本的抽取比例为2148+36=14, 所以应抽取男运动员48×14=12(人).题型一 简单随机抽样例1 下列抽取样本的方式是否属于简单随机抽样? (1)从无限多个个体中抽取100个个体作为样本.(2)盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里. (3)从20件玩具中一次性抽取3件进行质量检验.(4)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.思维启迪 判断一个抽样是否为简单随机抽样,要判断是否符合简单随机抽样的特征.解(1)不是简单随机抽样.因为被抽取的样本总体的个体数是无限的,而不是有限的.(2)不是简单随机抽样.因为它是放回抽样.(3)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(4)不是简单随机抽样.因为不是等可能抽样.思维升华(1)简单随机抽样需满足:①被抽取的样本总体的个体数有限;②逐个抽取;③是不放回抽取;④是等可能抽取.(2)简单随机抽样常有抽签法(适用总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).(2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依() 7816657208026314070243699728019832049234493582003623486969387481A.08 B.07 C.02 D.01答案 D解析从第1行第5列、第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.题型二系统抽样例2将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为() A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9思维启迪系统抽样又称“等距抽样”.可以根据“等距”确定各营区被抽中的人数.答案 B解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤103,因此第Ⅰ营区被抽中的人数是25;4令300<3+12(k-1)≤495得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.结合各选项知,选B.思维升华(1)系统抽样的特点——机械抽样,又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取的样本号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.(2)系统抽样时,如果总体中的个体数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.(2013·陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A .11B .12C .13D .14答案 B解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12(人). 题型三 分层抽样例3 (2013·湖南)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n 等于( )A .9B .10C .12D .13思维启迪 分层抽样,抽样比是一个定值. 答案 D解析 ∵360=n 120+80+60,∴n =13.思维升华 在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .某校共有学生2 000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应( )一年级 二年级 三年级 女生 373 x y 男生377 370 zA.24B .18C .16D .12答案 C解析 依题意我们知道二年级的女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.五审图表找规律典例:(12分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生人数 管理 技术开发 营销 生产 共计 老年 40 40 40 80 200 中年 80 120 160 240 600 青年 40 160 280 720 1 200 小计1603204801 0402 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? (3)若要抽20人调查对广州亚运会举办情况的了解,则应怎样抽样?抽取40人调查身体状况↓(观察图表中的人数分类统计情况) 样本人群应受年龄影响↓(表中老、中、青分类清楚,人数确定) 要以老、中、青分层,用分层抽样 ↓要开一个25人的座谈会 ↓(讨论单位发展与薪金调整)样本人群应受管理、技术开发、营销、生产方面的影响 ↓(表中管理、技术开发、营销、生产分类清楚,人数确定) 要以管理、技术开发、营销、生产人员分层,用分层抽样 ↓要抽20人调查对广州亚运会举办情况的了解(可认为亚运会是大众体育盛会,一个单位人员对情况,了解相当) 将单位人员看作一个整体↓(从表中数据看总人数为2 000人) 人员较多,可采用系统抽样 规范解答解 (1)按老年、中年、青年分层,用分层抽样法抽取,[1分] 抽取比例为402 000=150.[2分] 故老年人,中年人,青年人各抽取4人,12人,24人.[4分] (2)按管理、技术开发、营销、生产分层,用分层抽样法抽取,[5分]抽取比例为252 000=180,[6分]故管理,技术开发,营销,生产各抽取2人,4人,6人,13人. [8分] (3)用系统抽样,对全部2 000人随机编号,号码从0001~2000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.[12分] 温馨提醒 (1)本题审题的关键有两点,一是对图表中的人员分类情况和数据要审视清楚;二是对样本的功能要审视准确.(2)本题易错点是,对于第(2)问,由于对样本功能审视不准确,按老、中、青三层分层抽样.方法与技巧 类别 各自特点 相互联系 适用范围 共同点简单随机抽样从总体中逐个抽取 最基本的抽样方法 总体中的个体数较少抽样过程中每个个体被抽到的可能性相等 系统抽样将总体平均分成几部分,按事先确定的规则分别在各部分中抽取在起始部分抽样时,采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成失误与防范进行分层抽样时应注意几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠;(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同; (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.A 组 专项基础训练一、选择题1.(2012·四川)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )A .101B .808C .1 212D .2 012答案 B解析 由题意知抽样比为1296,而四个社区一共抽取的驾驶员人数为12+21+25+43=101,故有1296=101N,解得N =808.2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6B .8C .10D .12答案 B解析 设样本容量为N ,则N ×3070=6,∴N =14,∴高二年级所抽人数为14×4070=8.3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( )A .7B .15C .25D .35答案 B解析 由题意知青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.4.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为( )A .13B .19C .20D .51答案 C解析 抽样间隔为46-33=13, 故另一位同学的编号为7+13=20,选C.5.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生是高一学生的两倍,高二学生比高一学生多300人,现在按1100的抽样比例用分层抽样的方法抽取样本,则高一学生应抽取的人数为( )A .8B .11C .16D .10答案 A解析 设高一学生有x 人,则高三学生有2x 人,高二学生有(x +300)人,学校共有4x +300=3 500(人),解得x =800(人),由此可得按1100的抽样比例用分层抽样的方法抽取样本,高一学生应抽取的人数为1100×800=8(人),故应选A.二、填空题6.(2012·天津)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校. 答案 18 9解析 150×30150+75+25=150×30250=18,75×30250=9.7.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________. 答案 16,28,40,528.(2012·福建)一支田径队有男女运动员98人,其中男运动员有56人,按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________. 答案 12解析 依题意,女运动员有98-56=42(人). 设应抽取女运动员x 人,根据分层抽样特点,得x 42=2898,解得x =12. 9.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________. 答案 2解析 由已知得抽样比为624=14,∴丙组中应抽取的城市数为8×14=2.10.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是____________________________. 答案 11解析 由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x ,则由系统抽样的法则可知,第n 组抽出个体的号码应该为x +(n -1)×8,所以第16组应抽出的号码为x +(16-1)×8=123,解得x =3,所以第2组中应抽出个体的号码为3+(2-1)×8=11.B 组 专项能力提升1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250 ②5,9,100,107,111,121,180,195,200,265 ③11,38,65,92,119,146,173,200,227,254 ④30,57,84,111,138,165,192,219,246,270 关于上述样本的下列结论中,正确的是( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样答案 D解析 因为③为系统抽样,所以选项A 不对;因为②为分层抽样,所以选项B 不对;因为④不为系统抽样,所以选项C 不对,故选D.2.(2012·山东)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15答案 C解析 由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 3.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________. 答案 404. 200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用 系统抽样方法,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人. 答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人, 则40200=x100,解得x =20. 5.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.6.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n . 解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。

2015年高考数学真题分类汇编:专题(11)概率和统计(文科)及答案

2015年高考数学真题分类汇编:专题(11)概率和统计(文科)及答案

2015年高考数学真题分类汇编专题11 概率和统计文1.【2015高考新课标1,文4】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A)310(B)15(C)110(D)120【答案】C【解析】从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C.【考点定位】古典概型【名师点睛】求解古典概型问题的关键是找出样本空间中的基本事件数及所求事件包含的基本事件数,常用方法有列举法、树状图法、列表法法等,所求事件包含的基本事件数与样本空间包含的基本事件数的比值就是所求事件的概率.2.【2015高考重庆,文4】重庆市2013年各月的平均气温(°C)数据的茎叶图如下0 8 91 2 5 82 0 03 3 83 1 2则这组数据中的中位数是()(A) 19 (B) 20 (C ) 21.5 (D )23【答案】B【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20,故选B.【考点定位】茎叶图与中位数.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.3.【2015高考四川,文3】某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )(A )抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C【解析】按照各种抽样方法的适用范围可知,应使用分层抽样.选C【考点定位】本题考查几种抽样方法的概念、适用范围的判断,考查应用数学方法解决实际问题的能力.【名师点睛】样本抽样是现实生活中常见的事件,一般地,抽签法和随机数表法适用于样本总体较少的抽样,系统抽样法适用于要将样本总体均衡地分为n 个部分,从每一部分中按规则抽取一个个体;分层抽样法则是当总体明显的分为几个层次时,在每一个层次中按照相同的比例抽取抽取样本.本题条件适合于分层抽样的条件,故应选用分层抽样法.属于简单题. 4.【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167(高中部)(初中部)男男女女60%70%【答案】C【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=,故答案选C .【考点定位】概率与统计.【名师点睛】1.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表各部分数量占总数的百分数.2.通过扇形图可以很清晰地表示各部分数量同总数之间的关系.5.【2015高考湖南,文2】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、6【答案】B【解析】根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取207435⨯= (人),故选B.【考点定位】茎叶图【名师点睛】系统抽样是指当总体中个数较多时,将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本的抽样方法,其实质为等距抽样. 茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.缺点为不能直接反映总体的分布情况. 由数据集中情况可以估计平均数大小,再根据其分散程度可以估测方差大小.6.【2015高考山东,文6】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为( )(A)①③ (B) ①④ (C) ②③ (D) ②④【答案】B【解析】甲地数据为:26,28,29,31,31;乙地数据为:28,29,30,31,32; 所以,2628293131295x ++++==甲,2829303132305x ++++==乙,2222221s [(2629)(2829)(2929)(3129)(3129)] 3.65=-+-+-+-+-=甲,2222221s [(2830)(2930)(3030)(3130)(3230)]25=-+-+-+-+-=乙,即正确的有①④,故选B .【考点定位】1.茎叶图;2.平均数、方差、标准差.【名师点睛】本题考查茎叶图的概念以及平均数、方差、标准差的概念及其计算,解答本题的关键,是记清公式,细心计算.本题属于基础题,较全面地考查了统计的基础知识.7.【2015高考湖北,文2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石 【答案】B .【解析】设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知,282541534x=,即281534169254x =⨯≈,故应选B . 【考点定位】本题考查简单的随机抽样,涉及近似计算.【名师点睛】本题以数学史为背景,重点考查简单的随机抽样及其特点,通过样本频率估算总体频率,虽然简单,但仍能体现方程的数学思想在解题中的应用,能较好考查学生基础知识的识记能力和估算能力、实际应用能力.8.【2015高考山东,文7】在区间[]0,2上随机地取一个数x ,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )14【答案】A【解析】由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,3032204P -==-,故选A .【考点定位】1.几何概型;2.对数函数的性质.【名师点睛】本题考查几何概型及对数函数的性质,在理解几何概型概率计算方法的前提下,解答本题的关键,是利用对数函数的单调性,求得事件发生的x 范围. 本题属于小综合题,较好地考查了几何概型、对数函数等基础知识.9.【2015高考陕西,文12】 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( )A .3142π+ B . 112π+ C .1142π- D . 112π- 【答案】C【解析】22(1)||1(1)1z x yi z x y =-+⇒=≤⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=-, 若||1z ≤,则y x ≥的概率211142142πππ-=-⨯,故答案选C 【考点定位】1.复数的模长;2.几何概型.【名师点睛】1.本题考查复数的模长和几何概型,利用z a bi =+||z ⇒=把此题转化成几何概型,采用分母实数化和利用共轭复数的概念进行化解求解.2.求几何概型,一般先要求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成区域长度(面积或体积),最后再代入几何概型的概率公式求解;求几何概型概率时,一定要分清“试验”和“事件”,这样才能找准基本事件构成的区域长度(面积或体积).3.本题属于题,注意运算的准确性.10.【2015高考湖北,文8】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( ) A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 【答案】B .【解析】由题意知,事件“12x y +≤”的概率为11111222118p ⨯⨯==⨯,事件“12xy ≤”的概率02S p S =,其中11021111(1ln 2)222S dx x=⨯+=+⎰,111S =⨯=,所以021(1ln 2)112(1ln 2)1122S p S +===+>⨯,故应选B.【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.【名师点睛】以几何概型为依托,融合定积分的几何意义、二元一次不等式所表示的区域和反比例函数所表示的区域等内容,充分体现了转化的数学思想在实际问题中的应用,能较好的考查学生灵活运用基础知识解决实际问题的能力.11.【2015高考广东,文7】已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 【答案】B【考点定位】古典概型.【名师点晴】本题主要考查的是古典概型,属于容易题.解题时要抓住重要字眼“恰有”,否则很容易出现错误.列举基本事件一定要注意按顺序列举,做到不重不漏,防止出现错误.解本题需要掌握的知识点是古典概型概率公式,即()AP A=包含的基本事件的个数基本事件的总数.12.【2015高考湖北,文4】已知变量x和y满足关系0.11y x=-+,变量y与z正相关. 下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关【答案】A.【解析】因为变量x和y满足关系0.11y x=-+,其中0.10-<,所以x与y成负相关;又因为变量y与z正相关,不妨设z ky b=+(0)k>,则将0.11y x=-+代入即可得到:(0.11)0.1()z k x b kx k b=-++=-++,所以0.10k-<,所以x与z负相关,综上可知,应选A. 【考点定位】本题考查正相关、负相关,涉及线性回归方程的内容.【名师点睛】将正相关、负相关、线性回归方程等联系起来,充分体现了方程思想在线性回归方程中的应用,能较好的考查学生运用基础知识的能力.其易错点有二:其一,未能准确理解正相关与负相关的定义;其二,不能准确的将正相关与负相关问题进行转化为直线斜率大于和小于0的问题.13.【2015高考福建,文8】如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0).且点C与点D在函数1,0()11,02x xf xx x+≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD内随机取一点,则该点取自阴影部分的概率等于()A .16 B .14 C .38 D .12【答案】B【解析】由已知得(1,0)B ,(1,2)C ,(2,2)D -,(0,1)F .则矩形ABCD 面积为326⨯=,阴影部分面积为133122⨯⨯=,故该点取自阴影部分的概率等于31264=.【考点定位】几何概型.【名师点睛】本题考查几何概型,当实验结果由等可能的无限多个结果组成时,利用古典概型求概率显然是不可能的,可以将所求概率转化为长度的比值(一个变量)、面积的比值(两个变量)、体积的比值(三个变量或根据实际意义)来求,属于中档题.14.【2015高考北京,文4】某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100 C .180 D .300【答案】C【解析】由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x =,解得180x =,故选C. 【考点定位】分层抽样.【名师点晴】本题主要考查的是分层抽样,属于容易题.解题时一定要清楚“320”是指抽取前的人数还是指抽取后的人数,否则容易出现错误.解本题需要掌握的知识点是分层抽样,即抽取比例=样本容量总体容量.15.【2015高考重庆,文15】在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为________.【答案】32 【解析】方程22320x px p ++-=有两个负根的充要条件是2121244(32)020320p p x x p x x p ⎧∆=--≥⎪+=-<⎨⎪=->⎩即21,3p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p ++-=有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503-+-=-,故填:32.【考点定位】几何概率.【名师点睛】本题考查几何概率及一元二次方程实根的分布,首先将方程22320x px p ++-=有两个负根的充要条件找出来,求出p 的取值范围,再利用几何概率公式求解,本题属于中档题,注意运算的准确性.16.【2015高考湖北,文14】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【解析】由频率分布直方图及频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000. 【考点定位】本题考查频率分布直方图,属基础题.【名师点睛】以实际问题为背景,重点考查频率分布直方图,灵活运用频率直方图的规律解决实际问题,能较好的考查学生基本知识的识记能力和灵活运用能力.17.【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,所以样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=,所以答案应填:11.【考点定位】均值的性质.【名师点晴】本题主要考查的是均值的性质,属于容易题.解本题需要掌握的知识点是均值和方差的性质,即数据1x ,2x ,,n x 的均值为x ,方差为2s ,则(1)数据1x a ±,2x a ±,,n x a ±的均值为x a ±,方差为2s ;(2)数据1kx ,2kx ,,n kx 的均值为kx ,方差为22k s ;(3)数据1kx a ±,2kx a ±,,n kx a ±的均值为kx a ±,方差为22k s .18.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学. 【考点定位】散点图.【名师点晴】本题主要考查的是散点图,属于容易题.解题时一定要抓住重要字眼“语文”和“更”,否则很容易出现错误.解此类图象题一定要观察仔细,分析透彻,提取必要的信息.19.【2015高考福建,文13】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25【解析】由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.【考点】分层抽样.【名师点睛】本题考查抽样方法,要搞清楚三种抽样方法的区别和联系,其中分层抽样是按比例抽样;系统抽样是等距离抽样,属于基础题.20.【2015高考安徽,文17】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],,[80,90],[90,100](Ⅰ)求频率分布图中a 的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【答案】(Ⅰ)0.006;(Ⅱ)0.4;(Ⅲ)110【解析】(Ⅰ)因为110)028.02022.00018.0004.0(=⨯+⨯+++a ,所以006.0=a(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为4.010)018.0022.0(=⨯+,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为321,,A A A ; 受访职工评分在[40,50)的有: 50×0.004×40=2(人),即为21,B B .从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{}{}{}{},,,,,,,,21113121B A B A A A A A{}{}{}{}{}{},,,,,,,,,,,,2123132212312B B B A B A B A B A A A 又因为所抽取2人的评分都在[40,50)的结果有1种,即{}21,B B ,故所求的概率为101=p . 【考点定位】本题主要考查了频率分布直方图、概率和频率的关系、古典概型等基础知识. 【名师点睛】利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.21.【2015高考北京,文17】(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? 【答案】(I )0.2;(II )0.3;(III )同时购买丙的可能性最大.【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )由统计表读出顾客同时购买乙和丙的人数200,计算出概率;(II )先由统计表读出顾客在甲、乙、丙、丁中同时购买3中商品的人数100200+,再计算概率;(III )由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100200300++,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点:统计表、概率.【名师点晴】本题主要考查的是统计表和古典概型,属于中档题.解题时一定要抓住重要字眼“估计”和“最大”,否则很容易失分.解此类统计表的试题一定要理解透彻题意,提取必要的信息.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.22.【2015高考福建,文18】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 【解析】解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个.所以所求的概率1911010P =-=. (II )同解法一.【考点定位】1、古典概型;2、平均值.【名师点睛】本题考差古典概型和平均数,利用古典概型的“等可能”“有限”性的特点,能方便的求出概率.由实际意义构造古典概型,首先确定试验的样本空间结构并计算它所含样本点总数,然后再求出事件A 所含基本事件个数,代入古典概型的概率计算公式;根据频率分布表求平均数,对于每组的若干个数可以采取区间中点值作为该组数据的数值,再求平均数.23.【2015高考广东,文17】(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】试题分析:(1)由频率之和等于1可得x 的值;(2)由最高矩形的横坐标中点可得众数,由频率之和等于0.5可得中位数;(3)先计算出月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的用户的户数,再计算抽取比例,进而可得月平均用电量在[)220,240的用户中应抽取的户数.试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户 考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.【名师点晴】本题主要考查的是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,属于中档题.解题时一定要注意频率分布直方图的纵轴是频率组距,否则很容易出现错误.解本题需要掌握的知识点是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,即在频率分布直方图中,各小长方形的面积的总和等于1,众数是最高矩形的横坐标中点,中位数左边和右边的直方图的面积相等,=⨯频率频率组距组距,=样本容量抽取比例总体容量. 24.【2015高考湖南,文16】(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。

高考数学分项汇编 专题11 概率和统计(含解析)文

高考数学分项汇编 专题11 概率和统计(含解析)文

专题11 概率和统计一.基础题组1. 【2006高考陕西版文第14题】(2x -1x)6展开式中常数项为 (用数字作答)【答案】60考点:二项式定理,容易题.2. 【2007高考陕西版文第6题】某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。

若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是(A )4(B )5(C )6(D )7【答案】C考点:分层抽样,容易题.3. 【2007高考陕西版文第13题】5)21(x 的展开式中的系数..是 .(用数字作答) 【答案】40考点:二项式定理,容易题.4. 【2008高考陕西版文第3题】某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30B .25C .20D .15【答案】C考点:分层抽样,容易题.5. 【2008高考陕西版文第14题】72(1)x 的展开式中21x 的系数为 .(用数字作答) 【答案】84考点:二项式定理,容易题.6. 【2009高考陕西版文第5题】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。

为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为(A )9(B )18(C )27(D) 36【答案】B考点:二项式定理,容易题.7. 【2009高考陕西版文第6题】若20092009012009(12)()x a a x a x x R -=+++∈L ,则20091222009222a a a +++L 的值为 (A )2(B )0(C )1-(D) 2-【答案】C.考点:二项式定理,容易题.8. 【2009高考陕西版文第9题】从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为(A)432 (B)288 (C) 216 (D)108网 【答案】C.考点:排列组合,容易题.9. 【2010高考陕西版文第4题】如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为s A 和s B ,则(A) A x >B x ,s A >s B (B) A x <B x ,s A >s B (C) A x >B x ,s A <s B (D) A x <B x ,s A <s B【答案】B考点:平均数和方差.10. 【2012高考陕西版文第3题】对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53【答案】A考点:统计数据.11. 【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167(高中部)(初中部)男男女女60%70%【答案】C【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=,故答案选C .【考点定位】概率与统计. 二.能力题组1. 【2006高考陕西版文第15题】某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种 . 【答案】1320考点:排列组合.2. 【2006高考陕西版文第17题】甲、乙、丙3人投篮,投进的概率分别是25, 12, 13.现3人各投篮1次,求:(Ⅰ)3人都投进的概率;(Ⅱ)3人中恰有2人投进的概率. 【答案】(Ⅰ)325;(Ⅱ) 1950.∴3人中恰有2人投进的概率为1950考点:相互独立事件的概率.3. 【2007高考陕西版文第15题】安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答) . 【答案】60考点:排列组合,容易题.4. 【2007高考陕西版文第18题】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示) 【答案】(Ⅰ)196625P =;(Ⅱ)2P =101125考点:相互独立事件的概率,互斥事件的概率.5. 【2008高考陕西版文第18题】一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率; (Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率. 【答案】(Ⅰ)116P =.(Ⅱ)2712P =.考点:相互独立事件的概率,互斥事件的概率. 6. 【2008高考陕西版文第6题】若20092009012009(12)()x a a x a x x R -=+++∈L ,则20091222009222a a a +++L 的值为 (A )2(B )0(C )1-(D) 2-【答案】C考点:二项式定理.7. 【2008高考陕西版文第9题】从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为(A)432 (B)288 (C) 216 (D)108网 【答案】C考点:排列组合.8. 【2011高考陕西版文第9题】设1122(,),(,),x y x y ··· ,(,)n n x y 是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )(A) 直线l 过点(,)x y(B )x 和y 的相关系数为直线l 的斜率 (C )x 和y 的相关系数在0到1之间(D )当n 为偶数时,分布在l 两侧的样本点的个数一定相同 【答案】A考点:线性回归,相关性.9. 【2013高考陕西版文第5题】对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( ).A.0.09 B.0.20 C.0.25 D.0.45【答案】D考点:频率分布直方图.10. 【2013高考陕西版文第19题】有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:组别 A B C D E人数5010015015050(1)为了调查评委对7B组抽取了6人,请将其余各组抽取的人数填入下表.组别 A B C D E人数5010015015050抽取人数 6(2)在(1)中,若A,B选1人,求这2人都支持1号歌手的概率.【答案】(1)组别 ABCDE人数 50 100 150 150 50 抽取人数36993(2)29.考点:统计图表,古典概型.11. 【2014高考陕西版文第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】B考点:古典概型及其概率计算公式.12. 【2014高考陕西版文第9题】某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )(A )x ,22s 100+ (B )100x +,22s 100+ (C )x ,2s (D )100x +,2s 【答案】D考点:均值和方差. 三.拔高题组1. 【2009高考陕西版文第18题】椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1(Ⅰ) 求该企业在一个月内共被消费者投诉不超过1次的概率;(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。

2015高考数学一轮精品课件:11.1 事件与概率

2015高考数学一轮精品课件:11.1 事件与概率
生,则称此事件为事件 A 与事件 B 的并事件(或和
事件)
若某事件发生当且仅当事件 A 发生且事件 B 发
生,则称此事件为事件 A 与事件 B 的交事件(或积
事件)
若 A∩B 为 不可能 事件,那么事件 A 与事件 B
互斥
若 A∩B 为 不可能 事件,A∪B 为 必然事件,
那么称事件 A 与事件 B 互为对立事件
P(B
1)=0.1+0.2+0.3+0.2=0.8,
尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择
P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),∴乙应选择 L2.
各自的路径.
答案
答案
考点一
考点三
第十四页,编辑于星期五:十三点 四分。
第十一章
11.1
事件与概率
12+12+16+4=44(人),
地到达火车站的人进行调查,调查结果如下:
∴用频率估计相应的概率为 0.44.
(2)选择 L1 的有 60 人,选择 L2 的有 40 人,故由调查结果得频率为
所用时
10~20 20~30 30~40 40~50 50~60
间(分钟)
L
0.1 10~200.2 20~30 0.330~40 0.2
考纲要求
梳理自测
探究突破
探究突破
巩固提升
方法提炼
频率是个不确定的数,在一定程度上频率可以反映事件发生可能性的
大小,但无法从根本上刻画事件发生的可能性大小.通过大量重复试验可以
发现,随着试验次数的增多,事件发生的频率就会稳定于某个固定的值,这个

2015届高考数学(文)一轮课件11-1《随机事件的概率》(苏教版)

2015届高考数学(文)一轮课件11-1《随机事件的概率》(苏教版)
落”是必然事件.
• (√) • (2)“方程x2+2x+8=0有两个实根”是
不可能事件.
• (√) • (3)(2014·广州调研C项)“下周六会下雨”
是随机事件.
• (√)
• 2.对互斥事件与对立事件的理解
• (4)对立事件一定是互斥事件,互斥事件 不一定是对立事件.
• (√) • (5)(2014·郑州调研B项)从40张扑克牌(红
(1)将T表示为X的函数;
(2)根据直方图估计利润T不少于57 000元的概率;
突破1:购进130 t农产品全部售出还是有剩余是解题的关键; 突破2:T为X的函数是分段函数; 突破3:由函数求得利润T不少于57 000元时的X的范围; 突破4:根据直方图估计概率.
解 (1)当X∈[100,130)时, T=500X-300(130-X)=800X-39 000. 当X∈[130,150]时,T=500×130=65 000. 所以T=860500X0-0,3913000≤0,X1≤001≤50X. <130, (2)由(1)知利润T不少于57 000元当且仅当120≤X≤150. 由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季 度内的利润T不少于57 000元的概率的估计值为0.7.
桃、黑桃、方块、梅花点数从1~10各10 张)中,任取一张,“抽取黑桃”与“抽取 方块”是对立事件.
• (×)
3.对频率与概率的理解
(6)(教材练习改编)在大量重复试验中,概率是频率的稳定
值.
(√)
(7)(2013·江西卷改编)集合A={2,3},B={1,2,3},从A,B中各
任意取一个数,则这两数之和等于4的概率为13.
审题路线 (1)分别求等候人数为0人、1人、2人的概率⇒根据互 斥事件的概率求和公式可求. (2)思路一:分别求等候人数为3人、4人、5人及5人以上的概率⇒ 根据互斥事件的概率求和公式可得. 思路二:转化为求其对立事件的概率⇒根据P(A)=1-P( A )可 求. 解 记“无人排队等候”为事件A,“1人排队等候”为事件B, “2人排队等候”为事件C,“3人排队等候”为事件D,“4人排 队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件 A,B,C,D,E,F互斥.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【2015高考新课标1,文4】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A)310(B)15(C)110(D)120【答案】C【解析】从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C.【考点定位】古典概型【名师点睛】求解古典概型问题的关键是找出样本空间中的基本事件数及所求事件包含的基本事件数,常用方法有列举法、树状图法、列表法法等,所求事件包含的基本事件数与样本空间包含的基本事件数的比值就是所求事件的概率.2.【2015高考重庆,文4】重庆市2013年各月的平均气温(°C)数据的茎叶图如下0 8 91 2 5 82 0 03 3 83 1 2则这组数据中的中位数是()(A)19 (B) 20 (C ) 21.5 (D )23【答案】B【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20,故选B.【考点定位】茎叶图与中位数.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.3.【2015高考四川,文3】某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )(A )抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C【解析】按照各种抽样方法的适用范围可知,应使用分层抽样.选C【考点定位】本题考查几种抽样方法的概念、适用范围的判断,考查应用数学方法解决实际问题的能力.【名师点睛】样本抽样是现实生活中常见的事件,一般地,抽签法和随机数表法适用于样本总体较少的抽样,系统抽样法适用于要将样本总体均衡地分为n 个部分,从每一部分中按规则抽取一个个体;分层抽样法则是当总体明显的分为几个层次时,在每一个层次中按照相同的比例抽取抽取样本.本题条件适合于分层抽样的条件,故应选用分层抽样法.属于简单题. 4.【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( ) A .93 B .123 C .137 D .167(高中部)(初中部)男男女女60%70%【答案】C【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=,故答案选C .【考点定位】概率与统计.【名师点睛】1.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表各部分数量占总数的百分数.2.通过扇形图可以很清晰地表示各部分数量同总数之间的关系.5.【2015高考湖南,文2】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、6【答案】B【解析】根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取207435⨯=(人),故选B.【考点定位】茎叶图【名师点睛】系统抽样是指当总体中个数较多时,将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本的抽样方法,其实质为等距抽样. 茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.缺点为不能直接反映总体的分布情况. 由数据集中情况可以估计平均数大小,再根据其分散程度可以估测方差大小.6.【2015高考山东,文6】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为( )(A)①③(B) ①④(C) ②③(D) ②④【答案】B【解析】甲地数据为:26,28,29,31,31;乙地数据为:28,29,30,31,32;所以,2628293131295x ++++==甲,2829303132305x ++++==乙,2222221s [(2629)(2829)(2929)(3129)(3129)] 3.65=-+-+-+-+-=甲,2222221s [(2830)(2930)(3030)(3130)(3230)]25=-+-+-+-+-=乙,即正确的有①④,故选B .【考点定位】1.茎叶图;2.平均数、方差、标准差.【名师点睛】本题考查茎叶图的概念以及平均数、方差、标准差的概念及其计算,解答本题的关键,是记清公式,细心计算.本题属于基础题,较全面地考查了统计的基础知识.7.【2015高考湖北,文2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石 【答案】B .【解析】设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知,282541534x=,即281534169254x =⨯≈,故应选B . 【考点定位】本题考查简单的随机抽样,涉及近似计算.【名师点睛】本题以数学史为背景,重点考查简单的随机抽样及其特点,通过样本频率估算总体频率,虽然简单,但仍能体现方程的数学思想在解题中的应用,能较好考查学生基础知识的识记能力和估算能力、实际应用能力.8.【2015高考山东,文7】在区间[]0,2上随机地取一个数x ,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )14【答案】A【解析】由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,3032204P -==-,故选A .【考点定位】1.几何概型;2.对数函数的性质.【名师点睛】本题考查几何概型及对数函数的性质,在理解几何概型概率计算方法的前提下,解答本题的关键,是利用对数函数的单调性,求得事件发生的x 范围. 本题属于小综合题,较好地考查了几何概型、对数函数等基础知识.9.【2015高考陕西,文12】 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B . 112π+ C .1142π- D . 112π- 【答案】C【解析】22(1)||1(1)1z x yi z x y =-+⇒=≤⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=-, 若||1z ≤,则y x ≥的概率211142142πππ-=-⨯,故答案选C 【考点定位】1.复数的模长;2.几何概型.【名师点睛】1.本题考查复数的模长和几何概型,利用z a bi =+||z ⇒=把此题转化成几何概型,采用分母实数化和利用共轭复数的概念进行化解求解.2.求几何概型,一般先要求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成区域长度(面积或体积),最后再代入几何概型的概率公式求解;求几何概型概率时,一定要分清“试验”和“事件”,这样才能找准基本事件构成的区域长度(面积或体积).3.本题属于题,注意运算的准确性.10.【2015高考湖北,文8】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( ) A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 【答案】B .【解析】由题意知,事件“12x y +≤”的概率为11111222118p ⨯⨯==⨯,事件“12xy ≤”的概率02S p S =,其中11021111(1ln 2)222S dx x=⨯+=+⎰,111S =⨯=,所以021(1ln 2)112(1ln 2)1122S p S +===+>⨯,故应选B.【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.【名师点睛】以几何概型为依托,融合定积分的几何意义、二元一次不等式所表示的区域和反比例函数所表示的区域等内容,充分体现了转化的数学思想在实际问题中的应用,能较好的考查学生灵活运用基础知识解决实际问题的能力.11.【2015高考广东,文7】已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 【答案】B【考点定位】古典概型.【名师点晴】本题主要考查的是古典概型,属于容易题.解题时要抓住重要字眼“恰有”,否则很容易出现错误.列举基本事件一定要注意按顺序列举,做到不重不漏,防止出现错误.解本题需要掌握的知识点是古典概型概率公式,即()AP A=包含的基本事件的个数基本事件的总数.12.【2015高考湖北,文4】已知变量x和y满足关系0.11y x=-+,变量y与z正相关. 下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关【答案】A.【解析】因为变量x和y满足关系0.11y x=-+,其中0.10-<,所以x与y成负相关;又因为变量y与z正相关,不妨设z ky b=+(0)k>,则将0.11y x=-+代入即可得到:(0.11)0.1()z k x b kx k b=-++=-++,所以0.10k-<,所以x与z负相关,综上可知,应选A. 【考点定位】本题考查正相关、负相关,涉及线性回归方程的内容.【名师点睛】将正相关、负相关、线性回归方程等联系起来,充分体现了方程思想在线性回归方程中的应用,能较好的考查学生运用基础知识的能力.其易错点有二:其一,未能准确理解正相关与负相关的定义;其二,不能准确的将正相关与负相关问题进行转化为直线斜率大于和小于0的问题.13.【2015高考福建,文8】如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0).且点C与点D在函数1,0()11,02x xf xx x+≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD内随机取一点,则该点取自阴影部分的概率等于()A .16 B .14 C .38 D .12【答案】B【解析】由已知得(1,0)B ,(1,2)C ,(2,2)D -,(0,1)F .则矩形ABCD 面积为326⨯=,阴影部分面积为133122⨯⨯=,故该点取自阴影部分的概率等于31264=.【考点定位】几何概型.【名师点睛】本题考查几何概型,当实验结果由等可能的无限多个结果组成时,利用古典概型求概率显然是不可能的,可以将所求概率转化为长度的比值(一个变量)、面积的比值(两个变量)、体积的比值(三个变量或根据实际意义)来求,属于中档题.14.【2015高考北京,文4】某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100 C .180 D .300【答案】C【解析】由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x =,解得180x =,故选C . 【考点定位】分层抽样.【名师点晴】本题主要考查的是分层抽样,属于容易题.解题时一定要清楚“320”是指抽取前的人数还是指抽取后的人数,否则容易出现错误.解本题需要掌握的知识点是分层抽样,即抽取比例=样本容量总体容量.15.【2015高考重庆,文15】在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为________.【答案】32 【解析】方程22320x px p ++-=有两个负根的充要条件是2121244(32)020320p p x x p x x p ⎧∆=--≥⎪+=-<⎨⎪=->⎩即21,3p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p ++-=有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503-+-=-,故填:32.【考点定位】几何概率.【名师点睛】本题考查几何概率及一元二次方程实根的分布,首先将方程22320x px p ++-=有两个负根的充要条件找出来,求出p 的取值范围,再利用几何概率公式求解,本题属于中档题,注意运算的准确性.16.【2015高考湖北,文14】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【解析】由频率分布直方图及频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000. 【考点定位】本题考查频率分布直方图,属基础题.【名师点睛】以实际问题为背景,重点考查频率分布直方图,灵活运用频率直方图的规律解决实际问题,能较好的考查学生基本知识的识记能力和灵活运用能力.17.【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,所以样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=,所以答案应填:11.【考点定位】均值的性质.【名师点晴】本题主要考查的是均值的性质,属于容易题.解本题需要掌握的知识点是均值和方差的性质,即数据1x ,2x ,,n x 的均值为x ,方差为2s ,则(1)数据1x a ±,2x a ±,,n x a ±的均值为x a ±,方差为2s ;(2)数据1kx ,2kx ,,n kx 的均值为kx ,方差为22k s ;(3)数据1kx a ±,2kx a ±,,n kx a ±的均值为kx a ±,方差为22k s .18.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学. 【考点定位】散点图.【名师点晴】本题主要考查的是散点图,属于容易题.解题时一定要抓住重要字眼“语文”和“更”,否则很容易出现错误.解此类图象题一定要观察仔细,分析透彻,提取必要的信息.19.【2015高考福建,文13】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25【解析】由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.【考点】分层抽样.【名师点睛】本题考查抽样方法,要搞清楚三种抽样方法的区别和联系,其中分层抽样是按比例抽样;系统抽样是等距离抽样,属于基础题.20.【2015高考安徽,文17】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],,[80,90],[90,100](Ⅰ)求频率分布图中a 的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【答案】(Ⅰ)0.006;(Ⅱ)0.4;(Ⅲ)110【解析】(Ⅰ)因为110)028.02022.00018.0004.0(=⨯+⨯+++a ,所以006.0=a(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为4.010)018.0022.0(=⨯+,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为321,,A A A ; 受访职工评分在[40,50)的有: 50×0.004×40=2(人),即为21,B B .从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{}{}{}{},,,,,,,,21113121B A B A A A A A{}{}{}{}{}{},,,,,,,,,,,,2123132212312B B B A B A B A B A A A 又因为所抽取2人的评分都在[40,50)的结果有1种,即{}21,B B ,故所求的概率为101=p . 【考点定位】本题主要考查了频率分布直方图、概率和频率的关系、古典概型等基础知识. 【名师点睛】利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.21.【2015高考北京,文17】(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? 【答案】(I )0.2;(II )0.3;(III )同时购买丙的可能性最大.【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )由统计表读出顾客同时购买乙和丙的人数200,计算出概率;(II )先由统计表读出顾客在甲、乙、丙、丁中同时购买3中商品的人数100200+,再计算概率;(III )由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100200300++,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点:统计表、概率.【名师点晴】本题主要考查的是统计表和古典概型,属于中档题.解题时一定要抓住重要字眼“估计”和“最大”,否则很容易失分.解此类统计表的试题一定要理解透彻题意,提取必要的信息.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.22.【2015高考福建,文18】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 【解析】解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个.所以所求的概率1911010P =-=. (II )同解法一.【考点定位】1、古典概型;2、平均值.【名师点睛】本题考差古典概型和平均数,利用古典概型的“等可能”“有限”性的特点,能方便的求出概率.由实际意义构造古典概型,首先确定试验的样本空间结构并计算它所含样本点总数,然后再求出事件A 所含基本事件个数,代入古典概型的概率计算公式;根据频率分布表求平均数,对于每组的若干个数可以采取区间中点值作为该组数据的数值,再求平均数.23.【2015高考广东,文17】(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】试题分析:(1)由频率之和等于1可得x 的值;(2)由最高矩形的横坐标中点可得众数,由频率之和等于0.5可得中位数;(3)先计算出月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的用户的户数,再计算抽取比例,进而可得月平均用电量在[)220,240的用户中应抽取的户数.试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户 考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.【名师点晴】本题主要考查的是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,属于中档题.解题时一定要注意频率分布直方图的纵轴是频率组距,否则很容易出现错误.解本题需要掌握的知识点是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,即在频率分布直方图中,各小长方形的面积的总和等于1,众数是最高矩形的横坐标中点,中位数左边和右边的直方图的面积相等,=⨯频率频率组距组距,=样本容量抽取比例总体容量. 24.【2015高考湖南,文16】(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。

相关文档
最新文档