《固体物理学(黄昆)》课后习题答案(2)

合集下载

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1。

1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的.它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1。

2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

黄昆版固体物理课后习题解答

黄昆版固体物理课后习题解答

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

黄昆固体物理部分习题解答

黄昆固体物理部分习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯v v v v v v 3121232a a b a a a π⨯=⋅⨯v v v v v v 1231232a a b a a a π⨯=⋅⨯v v v v v v体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+v v vv v v v v v v v v倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯v v v v vv v v v v v v 202()()4a i j k i j k v π=⋅-+⨯+-v v v v v v 2()j k a π=+vv 同理31212322()a a b i k a a a a ππ⨯==+⋅⨯v v v vv r r r 32()b i j a π=+v v v 可见由123,,b b b v v v为基矢构成的格子为面心立方格子面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+v v vv v vv v v倒格子基矢2311232a a b a a a π⨯=⋅⨯v v v v v v 12()b i j k aπ=-++v v v v同理22()b i j k a π=-+v v v v 32()b i j k a π=-+v vv v可见由123,,b b b v v v为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯v v v v v v3121232a a b a a a π⨯=⋅⨯v v v v v v1231232a a b a a a π⨯=⋅⨯v v v v v v倒格子体积*0123()v b b b =⋅⨯v v v3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯v v v v v v 3*00(2)v v π=1.5 证明:倒格子矢量112233G h b h b h b =++v v v v垂直于密勒指数为123()h h h 的晶面系。

固体物理学_答案(黄昆)

固体物理学_答案(黄昆)

《固体物理学》习题解答黄昆原著韩汝琦改编 (陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnV x =(1)对于简立方结构:(见教材P2图1-1) a=2r ,V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34ar 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒=n=2, Vc=a 3∴68.083)r 334(r 342ar342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r344ar344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r338r 348ar348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理 课后习题解答(黄昆版)第二章

固体物理 课后习题解答(黄昆版)第二章

′ ωbcc u (r0 )bcc A62 A6 12.252 / 9.11 = = ( ) /( ) = = 0.957 ′ 14.452 /12.13 ω fcc u (r0 ) fcc A12 A12
2.7 对 于 H2 , 从 气 体 的 测 量 得 到 的 林 纳 德 - 琼 斯 势 参 数 为
σ ⎤ 1 σ ⎤ ⎡σ ⎡ σ 解: u (r ) = 4ε ⎢( )12 − ( ) 6 ⎥ , u (r ) = N (4ε ) ⎢ An ( )12 − Al ( ) 6 ⎥ 2 r ⎦ r r ⎦ ⎣ r ⎣
A62 A12 6 1 ⎛ du (r ) ⎞ 6 r u = 0 ⇒ = 2 σ ⇒ = − N ε 0 0 ⎜ ⎟ A6 2 A12 ⎝ r ⎠r
w
w
. e h c 3 . w
-5-
m o c
解答(初稿)作者
季正华
α e2
1 (1 − ) 当 e 变为 2e 时,有 r0 n
n 4α e 2 1 (1 − ) = u (e) × 4 n −1 r0 (2e) n
2.3 若一晶体两个离子之间的相互作用能可以表示为 计算: 1) 平衡间距 r0
解答(初稿)作者 季正华 -1-
u (r ) = −
α
r
m
+
β
rn
黄昆 固体物理 习题解答
2.5 假设Ⅲ-Ⅴ族化合物中,Ⅲ族、Ⅴ族原子都是电中性的(q*=0) , 求出其电离度 fi 。
解:对于Ⅲ族原子的有效电荷为 q* = (3 − 8
w
. e h c 3 . w
β
r010 + 2W ]
α = 7.5 × 10 −19 eV ⋅ m 2

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。

《固体物理学(黄昆)》课后习题答案(2)

《固体物理学(黄昆)》课后习题答案(2)
1.2
1.10——答案在王矜奉《固体物理概念题和习题指导》p10 第 17 题
3.10 设晶体中每个振子的零点振动能为
1 ,使用德拜模型求晶体的零点振动能。 2
证明:根据量子力学零点能是谐振子所固有的,与温度无关,故 T=0K 时振动能 E0 就是各振动
1
模零点能之和。 E0

m
0
E0 g d 将E0

M
us ueisKa e it , Vs VeisKa e it . 代入上式有
M 2u C 10 e ika V 11Cu , M 2V C eika 10 u 11CV ,
4
是 U,v 的线性齐次方程组,存在非零解的条件为
2 2 2 2 Kx , 2m 2m a 2m a
2 2 2 2 2 2 2 2 B点能量 B K x K y 2 m 2 , 所以 B / A 2 2m a a 2m a
所以 B / A 3
(c)如果二价金属具有简单立方品格结构,布里渊区如图 7—2 所示.根据自由电子理
2 2 论,自由电子的能量为 K x2 K y K z2 ,FerM 面应为球面.由(b)可知,内切于 2m
4 点的内切球的体积
3
4 3
,于是在 K 空间中,内切球内能容纳的电子数为 a
当 K= / a 时
2 20C / M , 2 2C / M ,
当 K=0 时,
2 22C / M , 2 0,
2 与 K 的关系如下图所示.这是一个双原子(例如 H 2 )晶体

《固体物理学(黄昆)》课后习题解答

《固体物理学(黄昆)》课后习题解答

v0

� 倒格子基矢 b1
=

�� � a2�× a3� a1 ⋅ a2 × a3
� b2
=

�� � a3�× a1� a1 ⋅ a2 × a3
� b3
=

�� � a1�× a2� a1 ⋅ a2 × a3
��� 倒格子体积 v0* = b1 ⋅ (b2 × b3 )
v0*
=
(2π )3 v03
《固体物理》习题解答
第一章 习 题
1.1 如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明
结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3)
面心立方(书P3, 图1-7)
六方密排(书P4, 图1-6)
金刚石(书P5, 图1-8)
x
π / 6 ≈ 0.52 3π / 8 ≈ 0.68
2π / 6 ≈ 0.74
2π / 6 ≈ 0.74 3π /16 ≈ 0.34
解 设n为一个晶胞中的刚性原子数,r表示刚性原子球半径,V表示晶胞体积,则致
4π nr3
密度为: ρ =
(设立方晶格的边长为a) r取原子球相切是的半径于是
3V
结构
r
n
V
简单立方
a/2
1
a3
体心立方
a/2
1
a3
ρ π / 6 ≈ 0.52
� b3
=

�� � a1�× a2� a1 ⋅ a2 × a3
� a � � � � a� � � � a� � �
体心立方格子原胞基矢 a1 =
(−i 2
+
j + k ),

黄昆固体物理习题解答-完整版

黄昆固体物理习题解答-完整版
4
感谢大家对木虫和物理版的支持!
《固体物理》习题解答
成群C4:C4=(C1 C2 C3 C4) ,群中任意两元素乘积仍是群中元素。
⎛ ε1 0 ⎜ 1.11 证明六角晶体的介电常数张量为 ⎜ 0 ε 2 ⎜0 0 ⎝
0⎞ ⎟ 0⎟ ε3 ⎟ ⎠
T
证明 若 A 是一旋转对称操作,则晶体的介电常数 ε 满足 ε = A
h k l ( )2 + ( )2 + ( )2 a b c
说明面指数简单的晶面,其面密度较大,容易解理 证 简单正交系 a ⊥ b ⊥ c 倒格子基矢 b1 = 2π
a1 = ai , a2 = bj , a3 = ck b2 = 2π a3 × a1 a1 ⋅ a2 × a3 b3 = 2π a1 × a2 a1 ⋅ a2 × a3
可见由 b1 , b2 , b3 为基矢构成的格子为体心立方格子 1.4 证明倒格子原胞的体积为
(2π )3 ,其中 v 0 为正格子原胞体积 v0

倒格子基矢 b1 = 2π
a2 × a3 a1 ⋅ a2 × a3 a3 × a1 a1 ⋅ a2 × a3 a1 × a2 a1 ⋅ a2 × a3
《固体物理》习题解答
第一章
1.1
习 题
如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明 结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3) 面心立方(书P3, 图1-7) 六方密排(书P4, 图1-6) 金刚石(书P5, 图1-8) x
π / 6 ≈ 0.52
b2 = 2π
b3 = 2π
*
倒格子体积 v0 = b1 ⋅ (b2 × b3 )
(2π )3 v = 3 (a2 × a3 ) ⋅ (a3 × a1 ) × (a1 × a2 ) v0

黄昆固体物理习题解答-完整版

黄昆固体物理习题解答-完整版

⎜⎝ε31 ε32 ε33 ⎟⎠ ⎜⎝ − ε31 ε32 ε33 ⎟⎠
⎜⎝ 0 ε32 ε33 ⎟⎠
⎜⎛ ε11 + 3ε 22
− 3ε11 + 3ε 22 − 3ε 23 ⎟⎞

⎜⎛ ε11 ⎜0 ⎜⎝ 0
0 ε 22 ε 32
0 ⎟⎞
⎜ ⎜
ε 23 ⎟ = ⎜ −
ε33 ⎟⎠
⎜ ⎜
⎜⎝
44
3ε11 + 3ε 22
《固体物理》习题解答
第一章 习 题
1.1 如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明
结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3)
面心立方(书P3, 图1-7)
六方密排(书P4, 图1-6)
金刚石(书P5, 图1-8)
x
π / 6 ≈ 0.52 3π / 8 ≈ 0.68
最后,感谢各位虫友一直以来对小木虫物理版的支持!同时也希望,今后能 后更多的虫友来加入物理版,把这里建成大家交流的乐园!
zt978031 2010 年 4 月 7 日
目录
第一章 习 题··························· 1 第二章 习 题··························· 6 第三章 习 题···························10 第五章 习 题···························31 第六章 习 题···························36 第七章 习 题···························42
倒格子基矢 b1
=

a2 × a3 a1 ⋅ a2 × a3

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx =(1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。

黄昆版固体物理学课后答案

黄昆版固体物理学课后答案

黄昆版固体物理学课后答案《固体物理学》习题解答黄坤原著韩汝琦改编(陈志远答案,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n和小球体积v所得到的小球总体积nv与晶体原胞体积vc之比,即:晶体原胞的空间利用率,x?(1)对于简立方结构:(见教材p2图1-1)nvvc43?r、 vc=a3,n=134343?RR33∴十、0.526a38r3a=2r,v=(2)对于体心立方:晶胞的体对角线bg=3a?4r?a?n=2,vc=a343x32?∴十、434? r2??r33330.688a3433(R)3(3)对于面心立方:单元面对角线BC=2A?4r,?A.22rn=4,vc=a3444??r34??r3233x0.74336a(22r)(4)对于六角密排:a=2r晶胞面积:s=6?s?abo?6?晶胞的体积:v=s?c?a?asin60332a=223328a?a?32a3?242r323n=1212?11?2??3=6个6246??r323x0.7436242r(5)对于金刚石结构,晶胞的体对角线bg=3a?4?2r?a?8r3n=8,vc=a3一448??r38??r33?33x0.346a3833r33c81。

2.测试:在六角形紧密堆积结构中?()1/2? 一点六三三a3证明:在六角密堆积结构中,第一层硬球a、b、o的中心联线形成一个边长a=2r 的正三角形,第二层硬球n位于球abo所围间隙的正上方并与这三个球相切,于是:na=nb=no=a=2r.也就是说,图中的Nabo形成一个正四面体1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

A.a1?2(j?k)A.证明了:(1)面心立方的法向晶格基向量(固体物理的原胞基向量):?a2?(i?k)2aa3?2(i?j)??2(a2?a3)由倒格子基矢的定义:b1??0,aa1?(a2?a3)?,2a,2a,20,a,2a?i,2aa3a???,a2?a3?,242a0,2?j,0,a,2?kaa2(?i?j?k)240?4a2???2?b1?2??3?(?i?j?k)?(?i?j? k)a4a?2.b2?(I?J?K)a类似地:2即面心立方的倒格子基矢与体心立方的正格基矢相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0
0 * E (k ) E A Vn B 0 0 Vn A E k E B0
取 E E
带入上式,其中 E E 0 (k ) Vn V(x)<0, Vn 0 ,从上式得到 B= -A,于是
A ( x) ( x) A L
所以 B / A 3
(c)如果二价金属具有简单立方品格结构,布里渊区如图 7—2 所示.根据自由电子理
2 2 论,自由电子的能量为 K x2 K y K z2 ,FerM 面应为球面.由(b)可知,内切于 2m
4 点的内切球的体积
3
4 3
,于是在 K 空间中,内切球内能容纳的电子数为 a
M 2 11C , C (10 e iKa ) C (eiKa 10), M 2 11C
=0,解出
M 2 4 22MC 2 20C 2 (1 conKa) 0
2
C 11 121 20 1 conKa . M
因此, 计算得到的 H 2 晶体的结合能为 2. 55KJ/mol, 远大于实验观察值 0.75lKJ/mo1. 对 于 H 2 的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造 成理论和实验值之间巨大差别的原因. 4.8,证明一个自由简单晶格在第一布里渊区顶角上的一个自由电子动能比该区一边中 点大 2 倍.(b)对于一个简单立力晶格在第一布里渊区顶角上的一个自由电子动能比该区 面心上大多少?(c)(b)的结果对于二价金属的电导率可能会产生什么影响 7 <解>(a)二维简单正方晶格的晶格常数为 a,倒格子晶格基矢 A 第一布里渊区如图所示
1 1 1 ... n 2 2 3 4
2 n 2
4.3, 电子在周期场中的势能.
1 m 2 b 2 ( x na ) 2 , 2
当na b x na b 当(n-1)a+b x na b
V ( x)
0

其中 d=4b, 是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带度. <解>(I)题设势能曲线如下图所示.
2.7. 对于 H 2 , 从气体的测量得到 Lennard—Jones 参数为 50 10 J , 2.96 A . 计
6

算 fcc 结构的 H 2 的结合能[以 KJ/mol 单位),每个氢分子可当做球形来处理.结合能的 实验值为 0.751kJ/mo1,试与计算值比较. <解> 以 H 2 为基团,组成 fcc 结构的晶体,如略去动能,分子间按 Lennard—Jones 势 相互作用,则晶体的总相互作用能为:
1 3V 和 g 2 3 2 代入积分有 2 vs 2
E0
3V 9 9 m 4 N m ,由于 m k B D得E0 Nk B D 2 3 16 vs 8 8
2
一股晶体德拜温度为~ 10 K ,可
6 12 12 6 U 2N P ij ij P . R R j i

j
P 6 14.45392;
ij

i

P 12 12.13188,
ij
50 1016 erg , 2.96 A, N 6.022 1023 / mol.
5
ቤተ መጻሕፍቲ ባይዱ
将R 0 代入U 得到平衡时的晶体总能量为
12 6 2.96 2.96 U 2 6。 022 1028 / mol 50 1016 erg 12.13 14.45 2.55 KJ / mol. 3.16 3.16
2 2 2 2 Kx , 2m 2m a 2m a
2 2 2 2 2 2 2 2 B点能量 B K x K y 2 m 2 , 所以 B / A 2 2m a a 2m a
2 ˆ 2 ˆ i,B j a a



a
a
0


区边中点的波矢为K A 自由电子能量
ˆ ˆ ˆ i , 角顶B点的波矢为K B i j. a a a
2 K x2 K y2 K z2 , 2m
2 2
A点能量 A
2
2.1,马德隆常数的计算 <解> 设想一个由正负两种离子相间排列的无限长的离子键, 取任一负离子作参考离 子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号) ,用 r 表 示相邻离子间的距离,于是有

r

j
(1) 1 1 1 1 2[ ...] rij r 2r 3r 4r

0
(b 2 x 2 ) cos
x
b
dx 再次利用积分公式有 E g2
2m 2

2
b2
3.3,考虑一双原子链的晶格振动,链上最近邻原子间力常数交替为 c 和 10 c.令两种原子质 量相同,且最近邻间距为
a .求在 vs 1 和 k 处的 ( k ) .大略地画出色散关系.此问题模 a 2
b, b 区间内积分.这时, n 0 ,于是
V
1 b m 2 b 2 m 2 2 V x dx b x dx ( ) ( ) a b 2a b 2a 2 b x
b b
1 x3 3
b b
1 2 6 mb 。
(3) ,势能在[-2b,2b]区间是个偶函数,可以展开成傅立叶级数
2
m 2 b

b
0
(b 2 x 2 ) cos
x
2b
dx

u 2 mu sin mu 2 cos mu 3 sin mu 得 2 m m
E g1
16m 2

3
b 2 第二个禁带宽度 Eg2 2 V2 ,以m 2代入上式,代入上式
b
Eg2
m 2 b
前边的因子 2 是因为存在着两个相等距离 ri 的离子,一个在参考离子左面,一个在其右面, 故对一边求和后要乘 2,马德隆常数为
2[1 ...] 2 3 42 x x3 x 4 n (1 x) x ... x 3 4
当 X=1 时,有 1
1
1 1
1.2
1.10——答案在王矜奉《固体物理概念题和习题指导》p10 第 17 题
3.10 设晶体中每个振子的零点振动能为
1 ,使用德拜模型求晶体的零点振动能。 2
证明:根据量子力学零点能是谐振子所固有的,与温度无关,故 T=0K 时振动能 E0 就是各振动
1
模零点能之和。 E0

m
0
E0 g d 将E0

a
状态简并微扰结果,求出与 E 及 E 相应的波函数 及 ?,并说明它们
2
*
的特性.说明它们都代表驻波,并比较两个电子云分布 说明能隙的来源(假设 Vn = Vn )。 <解>令 k

a
, k

a
,简并微扰波函数为 A k ( x) B k ( x)
(2)势能的平均值:由图可见, V ( x) 是个以 a 为周期的周期函数,所以
3
V ( x)
1 1 a 1 a b V ( x) V ( x) dx V ( x)dx L L a b a b
题设 a 4b ,故积分上限应为 a b 3b ,但由于在 b,3b 区间内 V ( x) 0 ,故只需在
当 K= / a 时
2 20C / M , 2 2C / M ,
当 K=0 时,
2 22C / M , 2 0,
2 与 K 的关系如下图所示.这是一个双原子(例如 H 2 )晶体
2.6,bcc 和 fcc Ne 的结合能,用林纳德—琼斯(Lennard—Jones)势计算 Ne 在 bcc 和 fcc 结构中的结合能之比值. <解> u ( r ) 4 ( ) ( ) , u ( r ) N (4 ) An ( ) Al ( ) r r r 2 r
b)简单立方晶格的晶格常数为a,倒格子基矢为 A
第一布里渊区如图7—2所示.
2 a
ˆ 2 i, B a
ˆ 2 j, C a
ˆ k,
6
A点能量 A
2 ; 2m a
2
2 2 2 2 2 2 2 2 2 2 B点能量 B K x K y K z 2 m 3 , 2m a a a 2m a
12 12

6
1


6
A62 A12 6 1 du (r ) 6 r u N 0 2 0 0 A6 A12 2 r r
bcc u (r0 )bcc A2 A 12.252 / 9.11 ( 6 ) /( 6 ) 0.957 14.452 /12.13 fcc u (r0 ) fcc A12 A12

M
us ueisKa e it , Vs VeisKa e it . 代入上式有
M 2u C 10 e ika V 11Cu , M 2V C eika 10 u 11CV ,
4
相关文档
最新文档