2018届高三物理(通用)二轮复习专题限时检测:专题四 第1讲 功能关系在力学中的应用 Word版含解析
2018届高考物理二轮复习 专题卷汇编 功和能 专题卷 含
机械能知识网络:单元切块:按照考纲的要求,本章内容可以分成四个单元,即:功和功率;动能、势能、动能定理;机械能守恒定律及其应用;功能关系动量能量综合。
其中重点是对动能定理、机械能守恒定律的理解,能够熟练运用动能定理、机械能守恒定律分析解决力学问题。
难点是动量能量综合应用问题。
§1 功和功率教学目标:理解功和功率的概念,会计算有关功和功率的问题培养学生分析问题的基本方法和基本技能教学重点:功和功率的概念教学难点:功和功率的计算教学方法:讲练结合,计算机辅助教学教学过程:一、功1.功功是力的空间积累效应。
它和位移相对应(也和时间相对应)。
计算功的方法有两种:(1)按照定义求功。
即:W =Fs cos θ。
在高中阶段,这种方法只适用于恒力做功。
当20πθ<≤时F 做正功,当2πθ=时F 不做功,当πθπ≤<2时F 做负功。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
(2)用动能定理W =ΔE k 或功能关系求功。
当F 为变力时,高中阶段往往考虑用这种方法求功。
这里求得的功是该过程中外力对物体做的总功(或者说是合外力做的功)。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。
如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
【例1】 如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。
在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功各是多少?⑴用F 缓慢地拉;⑵F 为恒力;⑶若F 为恒力,而且拉到该位置时小球的速度刚好为零。
可供选择的答案有A.θcos FL B .θsin FL C.()θcos 1-FL D .()θcos 1-mgL【例2】如图所示,线拴小球在光滑水平面上做匀速圆周运动,圆的半径是1m ,球的质量是0.1kg ,线速度v =1m/s ,小球由A 点运动到B点恰好是半个圆周。
2018届高三物理高考二轮复习 第一部分 专题一 第4讲 万有引力定律及其应用
星相距最近(O、B、A在同一直线上),已知地球半径为R,卫星A离地心O的距
离是卫星B离地心O的距离的4倍,地球表面重力加速度为g,则( BD )
A.卫星A、B的运行周期的比值为TTAB=41
B.卫星
A、B的运行线速度大小的
比值为vA=1 vB 2
C.卫星A、B的运行加速度的比值为aaAB=14
D.卫星A、B至少经过时间t=167π
球表面重力加速度为 g.仅利用以上数据,可以计算出的物理量有( B )
A.火星的质量
B.火星的密度
C.火星探测器的质量
D.火星表面的重力加速度
考向一
考向一 考向二 考向三
研考向 融会贯通
提能力 强化闯关
限时 规范训练
试题 解析
由题意可知火星探测器绕火星表面运行的周期
T=Nt ,由
GM=gR2
和
M火m G r2
GM,则 r
r
越大,v
越小.
(2)由 GMr2m=mω2r,得 ω= (3)由 GMr2m=m4Tπ22r,得 T=
GrM3 ,则 r 越大,ω 越小.
4π2r3,则 GM
r
越大,T
越大.
考向二
考向一 考向二 考向三
研考向 融会贯通
[典例剖析]
提能力 强化闯关
限时 规范训练
试题 解析
答案
[典例1] (多选)卫星A、B的运行方向相同,其中B为近地卫星,某时刻,两卫
所对的圆心角θ=α,所以发生“日全食”的时间为t=
θ 2π
T=
α 2π
T, C项错误;根据
GMr2m= m4Tπ22r得飞船的周期 T=
2πR α
sin 2
高考物理二轮复习专题功和能练含解析.doc
【解析】根据题意,从图可以看出力
F 是均匀减小的,可以得出力 F 随高度 x 的变化关系: F F0 kx ,
而 k F0 ,可以计算出物体到达 h 处时力 错误!未指定书签。 ;物体从地面到 h 处的过程中,力 F 做正功, H
重力 G做负功, 由动能定理可得: F h mgh ,而 错误! 未指定书签。 ,可以计算出: 错误! 未指定书签。 ,
【答案】 A
错误!未指定书签。
4.取水平地面为零势能面, 一物块从某高处水平抛出, 在抛出点其重力势能为动能的 3 倍。 不计空气阻力,
该物块落地时的速度方向与水平方向的夹角为(
)
A. π B . 5π C . π D . π
6
12
4
3
【答案】 D
【解析】试题分析:根据机械能守恒定律,以及已知条件:抛出时动能是重力势能的
则物体在初位置加速度为: 错误!未指定书签。 : 错误!未指定书签。 ,而 错误!未指定书签。
,计算得: a
,计算处理得:
gh ;当物体运动到 h 处时,加速度为 2H h
a
gh ,即加速度最大的位置是 0 或
2H h
h 处。
【考点定位】动能定理、牛顿第二定律
【方法技巧】 首先结合图像分析物体从静止上升过程中加速度最大的位置,
III 卷)
【答案】 AC
【解析】试题分析 本题考查速度图像,牛顿运动定律、功和功率及其相关的知识点。
错误!未指定书签。
点睛 此题以速度图像给出解题信息。解答此题常见错误主要有四方面:一是对速度图像面积表示位移掌
握不到位;二是运用牛顿运动定律求解牵引力错误;三是不能找出最大功率;四是不能得出两次提升电机
【高三物理试题精选】2018高考物理二轮相互作用复习题(含2018高考题)
2018高考物理二轮相互作用复习题(含2018高考题)精品题库试题物理1(mg= ,解得F=3mg。
再对物体B受力分析,受重力、支持力、拉力和静摩擦力,重力的下滑分量为Fx=(4m)gsin30°=2mg,故静摩擦力f=3mg-2mg=mg,A正确;小球下摆过程中,拉力F由零逐渐变大到大于重力G,当F<mgsin30°时,物块B受到的静摩擦力沿斜面向上且不断变小;当F=mgsin30°时,物块B受到的静摩擦力为零;当F>mgsin30°时,物块B受到的静摩擦力沿斜面向下且不断变大;可见物块B受到的摩擦力方向发生了变化,故B错误;由A分析可知,绳子对B的拉力与L无关,到达最低点时绳子拉力达到的最大值始终为3mg,故适当增加OA段绳子的长度,物块仍保持静止,C错误;对物体B和斜面体整体受力分析,由于A球向左下方拉物体B和斜面体整体,故一定受到地面对其向右的静摩擦力,D正确。
12(ma=10-5=5N,故C正确;当F=300N时,最大静摩擦力为01×300=30N;故两物体的重力小于最大静摩擦力;同理A受到的最大静摩擦力也为30N,A也处于静止,故两物体均保持静止,摩擦力均等于重力,故f1=10N,f2=Lcos53°=005m,对整体在整个运动过程中运用动能定理列式,得到 WF-fs-m2g h=0,代入数据,求得拉力F1做功WF=fs+m2g h=8×005J+2×10×005J=14J,故AD正确,BC错误。
03)m=5N联立解得f=6N,N=13N,故BC正确。
22(广州市1图所示,O点为橡皮筋被拉伸后伸长到的位置,两弹簧测力计共同作用时,拉力F1和F2的方向分别过P1和P2点;一个弹簧测力计拉橡皮筋时,拉力F3的方向过P3点。
三个力的大小分别为F1=330 N、F2=385 N和F3=425 N。
请根据图中给出的标度作图求出F1和F2的合力。
2018届高考物理二轮复习全国通用课件 专题一 力与运动 第4讲
C.A和B的质量之比为1∶12
D.A和B的位移大小之比为1∶1
解析 粒子 A 和 B 在匀强电场中做类平抛运动,水平方向由 x =v0t 及 OC=CD 得,tA∶tB=1∶2;竖直方向由 h=12at2得 a=2th2 , 它们沿竖直方向下落的加速度大小之比为 aA∶aB=4∶1;根据 a =qmE得 m=qaE,故mmAB=112,A 和 B 的位移大小不相等,故选项 A、B、C 正确。 答案 ABC
答案 AC
5.(2015·全国卷Ⅱ·24)如图3,一质量为m、电荷量为q(q>0)的粒 子在匀强电场中运动,A、B为其运动轨迹上的两点。已知该粒 子在A点的速度大小为v0,方向与电场方向的夹角为60°;它 运动到B点时速度方向与电场方向的夹角为30°。不计重力。 求A、B两点间的电势差。
图3
解析 设带电粒子在 B 点的速度大小为 vB。粒子在垂直于电场 方向的速度分量不变,即
[精 典 题 组]
1.(多选)如图4所示,带电荷量之比为qA∶qB =1∶3的带电粒子A、B以相等的速度v0从 同一点出发,沿着跟电场强度垂直的方向
射入平行板电容器中,分别打在C、D点,若
图4
OC=CD,忽略粒子重力的影响,则( )
A.A和B在电场中运动的时间之比为1∶2
B.A和B运动的加速度大小之比为4∶1
3600°°=
33,选项
A
错误、B
正确;粒子运行周期
T=2Bπqm,粒子在磁场中运行的时间为 t=326θ0°T=2Bmqθ,所以tt21= 23, 选项 C 错误、D 正确。
答案 BD
2.(2016·四川理综,4)如图8所示,正六边形
abcdef区域内有垂直于纸面的匀强磁场。一
2018年高考物理大二轮专题复习讲学稿:专题四 第1讲
第1讲功能关系在力学中的应用课标卷高考命题分析1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能,转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F f·x相对.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.③明确物体在运动过程初、末状态的动能E k1和E k2.④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能与其他形式的能的相互转化.③对一些“绳子突然绷紧”“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明或暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当的选取参考平面,确定研究对象在运动过程的初、末状态的机械能.④根据机械能守恒定律列方程,进行求解.高考题型1 力学中的几个重要功能关系的应用例1 (2017·山东滨州市一模)两物块A和B用一轻弹簧连接,静止在水平桌面上,如图1甲,现用一竖直向上的力F拉动物块A,使之向上做匀加速直线运动,如图乙,在物块A开始运动到物块B将要离开桌面的过程中(弹簧始终处于弹性限度内),下列说法正确的是( )图1A.力F先减小后增大B.弹簧的弹性势能一直增大C.物块A的动能和重力势能一直增大D.两物块A、B和轻弹簧组成的系统机械能先增大后减小答案 C解析对A物块由牛顿第二定律得:F-mg+kx=ma,解得:F=m(g+a)-kx,由于x先减小后反向增大,故拉力一直增大,故A错误;在A上升过程中,弹簧从压缩到伸长,所以弹簧的弹性势能先减小后增大,故B错误;在上升过程中,由于物块A做匀加速运动,所以物块A的速度增大,高度升高,则物块A的动能和重力势能增大,故C正确;在上升过程中,除重力与弹力做功外,还有拉力做正功,所以两物块A、B和轻弹簧组成的系统的机械能一直增大,故D错误.1.对研究对象进行受力分析、运动分析、能量分析.2.熟练掌握动能、重力势能、弹性势能、机械能等变化的分析方法.1.(2017·全国卷Ⅲ·16)如图2,一质量为m、长度为l的均匀柔软细绳PQ竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为( )图2A.19mglB.16mgl C.13mgl D.12mgl 答案 A解析 由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l6,则重力势能增加ΔE p =23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A正确,B 、C 、D 错误.2.(多选)(2017·辽宁铁岭市协作体模拟)如图3,用轻绳连接的滑轮组下方悬挂着两个物体,它们的质量分别为m 1、m 2,且m 2=2m 1,m 1用轻绳挂在动滑轮上,滑轮的质量、摩擦均不计.现将系统从静止释放,对m 1上升h 高度(h 小于两滑轮起始高度差)这一过程,下列说法正确的是( )图3A .m 2减小的重力势能全部转化为m 1增加的重力势能B .m 1上升到h 高度时的速度为2gh 3C .轻绳对m 2做功的功率与轻绳对m 1做功的功率大小相等D .轻绳的张力大小为23m 1g答案 BCD解析 根据能量守恒可知,m 2减小的重力势能全部转化为m 1增加的重力势能和两物体的动能,故A 错误;根据动滑轮的特点可知,m 2的速度大小为m 1速度大小的2倍,根据动能定理可得:m 2g ·2h -m 1gh =12m 2v 22+12m 1v 12,v 2=2v 1,解得:v 1=2gh3,故B 正确;绳子的拉力相同,故轻绳对m 2、m 1做功的功率大小分别为P 2=Fv 2,P 1=2F ·v 1,由于v 2=2v 1,故轻绳对m 2做功的功率与轻绳对m 1做功的功率大小相等,故C 正确;根据动滑轮的特点可知,m 1的加速度大小为m 2的加速度大小的一半,根据牛顿第二定律可知:2F -m 1g =m 1a ,m 2g -F =m 2·2a ,联立解得:F =2m 1g 3,故D 正确;故选B 、C 、D.高考题型2 动力学方法和动能定理的综合应用例2 (2017·福建大联考)如图4,固定直杆上套有一小球和两根轻弹簧,两根轻弹簧的一端与小球相连,另一端分别固定在杆上相距为2L 的A 、B 两点.直杆与水平面的夹角为θ,小球质量为m ,两根轻弹簧的原长均为L 、劲度系数均为3mg sin θL,g 为重力加速度.图4(1)小球在距B 点45L 的P 点处于静止状态,求此时小球受到的摩擦力大小和方向;(2)设小球在P 点受到的摩擦力为最大静摩擦力,且与滑动摩擦力相等.现让小球从P 点以一沿杆方向的初速度向上运动,小球最高能到达距A 点45L 的Q 点,求初速度的大小.答案 (1)mg sin θ5,方向沿杆向下 (2)26gL sin θ5解析 (1)小球在P 点时两根弹簧的弹力大小相等,设为F ,根据胡克定律有F = k (L -45L )①设小球静止时受到的摩擦力大小为F f ,方向沿杆向下, 根据平衡条件有mg sin θ +F f =2F ② 由①②式并代入已知数据得F f =mg sin θ5③方向沿杆向下(2)小球在P 、Q 两点时,弹簧的弹性势能相等,故小球从P 到Q 的过程中,弹簧对小球做功为零据动能定理有W 合=ΔE k-mg ·2(L -45L )sin θ-F f ·2(L -45L ) =0-12mv 2④由③④式得v =26gL sin θ51.动能定理解题的“两状态、一过程”,即初、末状态和运动过程中外力做功.2.无论直线、曲线、匀变速、非匀变速、单过程、多过程、单物体、物体系统,均可应用动能定理.3.(2017·安徽省十校联考) 如图5所示,质量为1 kg 的物块静止在水平面上,物块与水平面间的动摩擦因数μ=0.2,t =0时刻给物块施加一个水平向右的拉力F ,使物块沿水平方向做直线运动,其加速度随时间变化的关系如表格所示,重力加速度g 取10 m/s 2,水平向右方向为正方向,求:图5(1)0~4 s 内水平拉力的大小; (2)0~8 s 内物块运动的位移大小; (3)0~8 s 内水平拉力做的功. 答案 (1)6 N (2)72 m (3)152 J解析 (1)0~4 s 内,物块运动的加速度大小为a 1=4 m/s 2根据牛顿第二定律:F 1-μmg =ma 1,求得:F 1=6 N. (2)t 1=4 s 时物块的速度大小:v 1=a 1t 1=16 m/s 0~8 s 内物块运动的位移:x =12v 1t 1+v 1t 2+12a 2t 22=72 m(3)8 s 时物块的速度:v 2=a 1t 1+a 2t 2=4 m/s 根据动能定理:W -μmgx =12mv 22,解得W =152 J.4.(2017·江西省六校3月联考) 如图6所示为一由电动机带动的传送带加速装置示意图,传送带长L =31.25 m ,以v 0=6 m/s 顺时针方向转动,现将一质量m =1 kg 的物体轻放在传送带的A 端,传送带将其带到另一端B 后,物体将沿着半径R =0.5 m 的光滑圆弧轨道运动,圆弧轨道与传送带在B 点相切,C 点为圆弧轨道的最高点,O 点为圆弧轨道的圆心.已知传送带与物体间的动摩擦因数μ=0.8,传送带与水平地面间夹角θ=37°,已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,物体可视为质点,求:图6(1)物体在B 点对轨道的压力大小;(2)当物体过B 点后将传送带撤去,求物体落到地面时的速度大小. 答案 (1)58 N (2)20 m/s 解析 (1)根据牛顿第二定律: μmg cos θ-mg sin θ=ma 解得a =0.4 m/s 2设物体在AB 上全程做匀加速运动,根据运动学公式:v B 2=2aL解得v B =5 m/s<6 m/s ,即物体在AB 上全程做匀加速运动,对B 点受力分析有F N -mg cos θ=mv B 2R得F N =58 N由牛顿第三定律可得物体在B 点对轨道的压力大小F N ′=58 N (2)设物体能够越过C 点,从B 到C 利用动能定理: -mg (R +R cos θ)=12mv C 2-12mv B 2解得v C =7 m/s>gR ,即物体能越过最高点C从C 点落到地面,物体做平抛运动,下落高度h =R +R cos θ+L sin θ=19.65 m 利用运动学公式:v y 2=2gh ,解得v y =393 m/s 故v =v C 2+v y 2=20 m/s(或利用动能定理 mgh =12mv 2-12mv C 2得v =20 m/s)高考题型3 应用动力学和能量观点分析综合问题例3 (2017·齐鲁名校联考)如图7所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接一口深为H 、宽度为d 的深井CDEF ,一个质量为m 的小球放在曲面AB 上,可从距BC 面不同的高度处静止释放小球,已知BC 段长L ,小球与BC 间的动摩擦因数为μ,取重力加速度g =10 m/s 2.则:图7(1)若小球恰好落在井底E 点处,求小球释放点距BC 面的高度h 1;(2)若小球不能落在井底,求小球打在井壁EF 上的最小动能E kmin 和此时的释放点距BC 面的高度h 2. 答案 见解析解析 (1)小球由A 到C ,由动能定理得mgh -μmgL =12mv C 2①自C 点水平飞出后,由平抛运动规律得x =v C t ② y =12gt 2③由①②③得h =μL +x 24y④若小球恰好落在井底E 处,则x =d ,y =H 代入④式得小球的释放点距BC 面的高度为h 1=μL +d 24H(2)若小球不能落在井底,设打在EF 上的动能为E k ,则x =d 由②③式得v C =dg 2y小球由C 到打在EF 上,由动能定理得:mgy =E k -12mv C 2代入v C 得:E k =mgy +mgd 24y当y =d2时,E k 最小,且E kmin =mgd此时小球的释放点距BC 面的高度为h 2=μL +d2多个运动过程的组合实际上是多种物理规律和方法的综合应用,分析这种问题时注意要独立分析各个运动过程,而不同过程往往通过连接点的速度建立联系,有时对整个过程应用能量的观点解决问题会更简单.5.(2017·上海市松江区模拟)如图8所示,AB (光滑)与CD (粗糙)为两个对称斜面,斜面的倾角均为θ,其上部都足够长,下部分别与一个光滑的圆弧面BEC 的两端相切,一个物体在离切点B 的高度为H 处,以初速度v 0沿斜面向下运动,物体与CD 斜面的动摩擦因数为μ.图8(1)物体首次到达C 点的速度大小;(2)物体沿斜面CD 上升的最大高度h 和时间t ;(3)请描述物体从静止开始下滑的整个运动情况,并简要说明理由. 答案 见解析解析 (1)由12mv 02+mgH =12mv C 2 得v C =v 02+2gH(2)物体沿CD 上升的加速度大小a =g sin θ+μg cos θ v C 2=2a hsin θ,解得h =(v 02+2gH )sin θ2(g sin θ+μg cos θ)物体从C 点上升到最高点所用的时间t =v C a =v 02+2gH g sin θ+μg cos θ(3)情况一:物体滑上CD 斜面并匀减速上升最终静止在CD 斜面某处.理由是物体与CD 斜面的动摩擦因数较大. 情况二:物体在轨道上做往复运动,在斜面上做匀变速直线运动,最大高度逐渐降低,最终在BEC圆弧内做周期性往复运动.理由是物体与CD 斜面的动摩擦因数较小,在CD 斜面上克服摩擦力做功,机械能减少,在BEC 圆弧内只有重力做功,机械能守恒.题组1 全国卷真题精选1.(多选)(2016·全国卷Ⅱ·21)如图9,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N点的过程中( )图9A .弹力对小球先做正功后做负功B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差 答案 BCD解析 因M 和N 两点处弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2,知M 处的弹簧处于压缩状态,N 处的弹簧处于伸长状态,则弹簧的弹力对小球先做负功后做正功再做负功,选项A 错误;当弹簧水平时,竖直方向的力只有重力,加速度为g ;当弹簧处于原长位置时,小球只受重力,加速度为g ,则有两个时刻的加速度大小等于g ,选项B 正确;弹簧长度最短时,即弹簧水平,弹力与速度垂直,弹力对小球做功的功率为零,选项C 正确;由动能定理得,W F +W G =ΔE k ,因M 和N 两点处弹簧对小球的弹力大小相等,弹性势能相等,则由弹力做功特点知W F =0,即W G =ΔE k ,选项D 正确.2.(2015·新课标全国Ⅰ·17)如图10,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )图10A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离答案 C解析 根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿运动定律和向心力公式可得4mg -mg =m v 2R ,所以N 点动能为E k N =3mgR 2,从P 点到N 点根据动能定理可得mgR -W =3mgR2-mgR ,即克服摩擦力做功W =mgR2.质点运动过程,半径方向的合力提供向心力,即F N -mg cosθ=ma =m v 2R,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确.3.(多选)(2015·新课标全国Ⅱ·21)如图11,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距h ,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a 、b 可视为质点,重力加速度大小为g .则( )图11A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg 答案 BD解析 滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12mv a 2+0,即v a =2gh ,选项B 正确;a 、b 的先后受力如图所示.由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.4.(2014·新课标全国Ⅱ·16)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C 解析 根据x =v +v 02t 得,两过程的位移关系x 1=12x 2,根据加速度的定义a =v -v 0t得,两过程的加速度关系为a 1=a 22.由于在相同的粗糙水平地面上运动,故两过程的摩擦力大小相等,即f 1=f 2=f ,根据牛顿第二定律得,F 1-f 1=ma 1,F 2-f 2=ma 2,所以F 1=12F 2+12f ,即F 1>F 22.根据功的计算公式W =Fl ,可知W f1=12W f2,W F 1>14W F 2,故选项C 正确,选项A 、B 、D 错误.题组2 各省市真题精选5.(2016·四川理综·1)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J ,他克服阻力做功100 J .韩晓鹏在此过程中( ) A .动能增加了1 900 J B .动能增加了2 000 JC .重力势能减小了1 900 JD .重力势能减小了2 000 J 答案 C解析 由题可得,重力做功W G =1 900 J ,则重力势能减少1 900 J ,故C 正确,D 错误;由动能定理得,W G -W f =ΔE k ,克服阻力做功W f =100 J ,则动能增加1 800 J ,故A 、B 错误. 6.(多选)(2015·浙江理综·18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg ,设起飞过程中发动机的推力恒为1.0×105N ;弹射器有效作用长度为100 m ,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( ) A .弹射器的推力大小为1.1×106N B .弹射器对舰载机所做的功为1.1×108J C .弹射器对舰载机做功的平均功率为8.8×107W D .舰载机在弹射过程中的加速度大小为32 m/s 2 答案 ABD解析 设总推力为F ,位移x ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x =12mv 2,解得F =1.2×106 N ,弹射器推力F 弹=F -F 发=1.2×106 N -1.0×105 N =1.1×106 N ,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100 J =1.1×108J ,B 正确;弹射器对舰载机做功的平均功率P =F 弹·0+v 2=4.4×107 W ,C 错误;根据运动学公式v2=2ax ,得a =v 22x=32 m/s 2,D 正确.专题强化练1.(2017·全国名校联考)如图1所示,静止在水平地面上的物体,受到一水平向右的拉力F 作用,F 是随时间先逐渐增大后逐渐减小的变力,力F 的大小随时间的变化如表所示,表格中的F fm 为物体与地面间的最大静摩擦力,设滑动摩擦力等于最大静摩擦力,则( )图1A.第2 s 末物体的速度最大 B .第2 s 末摩擦力的功率最大C .第3 s 末物体的动能最大D .在0~3 s 时间内,拉力F 先做正功后做负功 答案 C解析 在0~1 s 时间内,物体所受水平拉力小于最大静摩擦力,物体静止;在1~3 s 时间内,物体受到的拉力大于最大静摩擦力,物体一直做加速运动,3 s 末物体的速度达到最大,动能最大,故A 、B 项错误,C 项正确;拉力F 始终与位移方向相同,一直做正功,故D 项错误.2.(2017·山东临沂市一模)如图2甲所示,质量m =2 kg 的小物体放在长直的水平地面上,用水平细线绕在半径R =0.5 m 的薄圆筒上.t =0时刻,圆筒由静止开始绕竖直的中心轴转动,其角速度随时间的变化规律如图乙所示,小物体和地面间的动摩擦因数μ=0.1,重力加速度g 取10 m/s 2,则( )图2A .小物体的速度随时间的变化关系满足v =4tB .细线的拉力大小为2 NC .细线拉力的瞬时功率满足P =4tD .在0~4 s 内,细线拉力做的功为12 J 答案 D解析 根据题图乙可知,圆筒匀加速转动,角速度随时间变化的关系式为:ω=t ,圆周边缘线速度与物体前进速度大小相同,根据v =ωR 得:v =ωR =0.5t ,故A 错误;物体运动的加速度a =Δv Δt =0.5t t =0.5 m/s 2,根据牛顿第二定律得:F -μmg =ma ,解得:F =2×0.5N +0.1×2×10 N =3 N ,故B 错误;细线拉力的瞬时功率P =Fv =3×0.5t =1.5t ,故C 错误;物体在4 s 内运动的位移:x =12at 2=12×0.5×42m =4 m ,在0~4 s 内,细线拉力做的功为:W =Fx =3×4 J =12 J ,故D 正确.3.(2017·江西师大附中3月模拟)如图3所示,竖直放置的等螺距螺线管高为h ,该螺线管是用长为l 的硬质直管(内径远小于h )弯制而成.一光滑小球从上端管口由静止释放,关于小球的运动,下列说法正确的是( )图3A .小球到达下端管口时的速度大小与l 有关B .小球到达下端管口时重力的功率为mg 2ghC .小球到达下端的时间为2l2ghD .小球在运动过程中受管道的作用力大小不变 答案 C解析 在小球到达下端管口的过程中只有重力做功,故根据动能定理可知mgh =12mv 2,解得v =2gh ,小球到达下端管口时的速度大小与h 有关,与l 无关,故A 错误;到达下端管口的速度为v =2gh ,速度沿管道的切线方向,故重力的瞬时功率为P =mg 2gh cos θ,θ为小球到达下端管口时速度方向与重力方向的夹角,故B 错误;小球在管内下滑的加速度为a =gh l ,设下滑所需时间为t ,则l =12at 2,t =2la =2l2gh,故C 正确;小球运动速度越来越大,做的是螺旋圆周运动,根据F n =mv 2R可知,支持力越来越大,故D 错误.4.(多选)(2017·甘肃省一模)如图4所示,固定的倾斜光滑杆上套有一个质量为m 的圆环,圆环与一轻质水平状态的弹簧相连,弹簧的另一端固定在墙上O 点,且处于原长.现让圆环从A 点由静止开始下滑,滑到O 点正下方B 点时速度为零.则在圆环下滑过程中( )图4A .圆环的机械能先减小再增大,再减小B .弹簧的弹性势能先增大再减小C .与圆环在A 点的加速度相同的位置还有两处D .弹簧再次恢复到原长时圆环的速度最大 答案 AC解析 弹力对圆环先做负功再做正功再做负功,故圆环的机械能先减小后增大,再减小;弹性势能先增大,后减小再增大;圆环在A 处a =g sin θ,当弹簧恢复原长时和弹簧与杆垂直时,也有a =g sin θ;合力为零时,圆环的速度最大,不是弹簧原长时.5.(多选)(2017·河北邯郸市一模)如图5,质量为m 的物体在恒定外力F 作用下竖直向上做初速度为零的匀加速直线运动,经过一段时间,力F 做的功为W ,此时撤去恒力F ,物体又经相同时间回到了出发点.若以出发点所在水平面为重力势能的零势能平面,重力加速度为g ,不计空气阻力,则( )图5A .从物体开始运动到回到出发点的过程中,物体的机械能增加了W3B .恒力F 的大小为43mgC .回到出发点时重力的瞬时功率为2mg 2W D .撤去恒力F 时,物体的动能和势能恰好相等 答案 BC解析 除重力以外的力做的功等于物体机械能的变化量,力F 做功为W ,则物体机械能增加了W ,故A 错误; 撤去恒力F 到回到出发点,两个过程位移大小相等、方向相反,时间相等,取竖直向上为正方向,则得:12at 2=-(at ·t -12gt 2),F -mg =ma ,联立解得:a =13g ,F =43mg ,故B 正确;在整个过程中,根据动能定理得:12mv 2=W ,物体回到出发点时速率v=2W m ,瞬时功率为P =mgv =2mg 2W ,故C 正确;撤去力F 时, 此时动能为E k =W -mg ·12at 2=F ·12at 2-mg ·12at 2=16mgat 2,重力势能为E p =mg ·12at 2=12mgat 2,可见,动能和势能不相等,故D 错误.6.(2017·山东菏泽市一模)如图6所示,内壁光滑的圆形轨道固定在竖直平面内,轨道内甲、乙两小球固定在轻杆的两端,甲球质量小于乙球质量,开始时乙球位于轨道的最低点,现由静止释放轻杆,下列说法正确的是( )图6A .甲球下滑过程中,轻杆对其做正功B .甲球滑回时一定能回到初始位置C .甲球可沿轨道下滑到最低点D .在甲球滑回过程中杆对甲球做的功大于杆对乙球做的功 答案 B解析 甲球下滑过程中,乙的机械能逐渐增大,所以甲的机械能逐渐减小,则杆对甲做负功,故A 错误;据机械能守恒定律知,甲球不可能下滑到圆弧最低点,但返回时,一定能返回到初始位置,故B 正确,C 错误;甲与乙两球组成的系统机械能守恒,在甲球滑回过程中杆对甲球做的功等于杆对乙球做的功.7.(2017·山东烟台市模拟)某段高速路对载重货车设定的允许速度范围为50~80 km/h ,而上坡时若货车达不到最小允许速度50 km/h ,则必须走“爬坡车道”来避免危险,如图7.某质量为4.0×104kg 的载重货车,保持额定功率200 kW 在“爬坡车道”上行驶,每前进1 km ,上升0.04 km ,汽车所受的阻力(摩擦阻力与空气阻力)为车重的0.01倍,g 取10 m/s 2,爬坡车道足够长,则货车匀速上坡的过程中( )图7A .牵引力等于2×104N B .速度可能大于36 km/hC .上坡过程增加的重力势能等于汽车牵引力所做的功D .上坡过程增加的机械能等于汽车克服阻力所做的功 答案 A解析 货车匀速上坡的过程中,根据平衡条件得:牵引力大小 F =0.01mg +mg sin θ=0.01×4.0×104×10 N +4.0×104×10×0.041 N =2×104 N ,故A 正确;根据P =Fv 得:v =P F =2×1052×104m/s =10 m/s =36 km/h ,故B 错误;上坡过程增加的重力势能等于汽车牵引力所做的功与克服阻力做功之差,故C 错误;根据功能关系知,上坡过程增加的机械能等于汽车牵引力做功与克服阻力所做的功之差,故D 错误.8.(多选)(2017·福建厦门市模拟)如图8所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧(滑轮摩擦不计),物体A 、B 的质量都为m ,开始时细绳伸直,用手托着物体A 使弹簧处于原长且A 与地面的距离为h ,物体B 静止在地面上,放手后物体A 下落,与地面即将接触时速度大小为v ,此时物体B 对地面恰好无压力,则下列说法中正确的是( )图8A .此时弹簧的弹性势能等于mgh -12mv 2B .此时物体B 的速度大小也为vC .此时物体A 的加速度大小为g ,方向竖直向上D .弹簧的劲度系数为mgh答案 AD解析 物体B 对地面压力恰好为零,故弹簧的拉力为mg ,故细绳对A 的拉力也等于mg ,弹簧的伸长量为h ,由胡克定律得k =mg h,故D 正确;此时物体B 受重力和弹簧的拉力,处于平衡状态,速度仍为零,故B 错误;此时物体A 受重力和细绳的拉力大小相等,合力为零,加速度为零,故C 错误;物体A 与弹簧系统机械能守恒,mgh =E p 弹+12mv 2,故E p 弹=mgh -12mv 2,故A 正确.9.(多选)(2017·山东济宁市模拟)如图9所示,长为L 、质量为M 的木板静置在光滑的水平面上,在木板上放置一质量为m 的物块,物块与木板之间的动摩擦因数为μ.物块以v 0从木板的左端向右滑动时,若木板固定不动时,物块恰好能从木板的右端滑下.若木板不固定时,下面叙述正确的是( )图9A .物块不能从木板的右端滑下B .对系统来说产生的热量Q =μmgLC .经过t =Mv 0(M +m )μg 物块与木板便保持相对静止D .摩擦力对木板所做的功等于物块克服摩擦力所做的功。
2018届高考物理(全国通用)一轮总复习 配套课件 6.4
第六章
考点一 考点二 考点三来自第4讲 功能关系、能量守恒定律
主干知识回顾
名师考点精讲
综合能力提升
课堂限时检测
-4-
考点一 几种常见的功能关系及其表达式
各种力做功 合力的功 重力的功 弹簧弹 力的功
对应能的变化 定量的关系 动能变化 重力势 能变化 弹性势 能变化 合力对物体做功等于物体动能的增量 W 合 =Ek2-Ek1 重力做正功,重力势能减少,重力做负功,重力势 能增加,且 WG=-ΔEp=Ep1-Ep2 弹力做正功,弹性势能减少,弹力做负功,弹性势 能增加,且 W 弹=-ΔEp=E p1-Ep2
第六章
考点一 考点二 考点三
第4讲 功能关系、能量守恒定律
主干知识回顾
名师考点精讲
综合能力提升
课堂限时检测
-5-
各种力做功
对应能的变化 定量的关系 机械能守恒 ΔE=0 除重力和弹力之外的其他力(外力)做正功,物体 (或系统)的机械能增加,做负功,机械能减少,且 W 其他=ΔE
只有重力、 不引起机 弹簧弹力的功 械能变化 非重力和 弹力的功 机械能 变化
滑动摩擦力 既有能量的转移,又有能量的转化 一对滑动摩擦力所做功的代数和为负 值,总功 W=-Ff· s 相对,即摩擦时产生的热 量
两种摩擦力对物体可以做正功、负功,还可以不做功;静摩擦力 做正功时,它的反作用力一定做负功;滑动摩擦力做负功时,它的 反作用力可能做正功,可能做负功,还可能不做功;但滑动摩擦力 做正功或不做功时,它的反作用力一定做负功
第六章
考点一 考点二 考点三
第4讲 功能关系、能量守恒定律
主干知识回顾
名师考点精讲
综合能力提升
课堂限时检测
2018版高考物理二轮复习专题四功能关系的应用教学案
专题四 功能关系的应用考情分析命题解读本专题共6个考点,其中功和功率、动能 动能定理、重力势能、机械能守恒定律及其应用四个考点为Ⅱ要求,弹性势能、能量守恒为Ⅰ要求,这些考点皆属于高频考点。
从近三年命题情况看,命题特点为:(1)注重基础知识与实际问题结合。
如2011年的抛鸡蛋、2013年的球碰撞等,难度较小。
(2)注重方法与综合。
如2012年、2013年、2015年的“弹簧问题”、2016年的连接体等,难度较大。
整体难度偏难,命题指数★★★★★,复习目标是达B 冲A 。
图1A.从D 到C 过程中,弹丸的机械能守恒B.从D 到C 过程中,弹丸的动能一直在增大C.从D 到E 过程橡皮筋对弹丸做的功大于从E 到C 过程橡皮筋对弹丸做的功D.从D 到C 过程中,橡皮筋的弹性势能先增大后减小解析 从D 到C ,橡皮筋的弹力对弹丸做功,所以弹丸的机械能增大,故A 项错误;弹丸在与橡皮筋作用过程中,受到向上的弹力和向下的重力,橡皮筋ACB 恰好处于原长状态,在C 处橡皮筋的拉力为0,在CD 连线中的某一处,弹力和重力相等时,弹丸受力平衡,所以从D 到C ,弹丸的合力先向上后向下,速度先增大后减小,弹丸的动能先增大后减小,故B 项错误;从D 到C ,橡皮筋对弹丸一直做正功,橡皮筋的弹性势能一直减小,故D 项错误;从D 到E 橡皮筋作用在弹丸上的合力大于从E 到C 橡皮筋作用在弹丸上的合力,两段位移相等,所以DE 段橡皮筋对弹丸做功较多,故C 项正确。
答案 C2.(多选)(2017·南京三模)从离沙坑高度H 处无初速地释放一个质量为m 的小球,小球落入沙坑后,陷入深度为h 。
已知当地重力加速度为g ,不计空气阻力,则下列关于小球下落全过程的说法正确的是( ) A.重力对小球做功为mgHB.小球的重力势能减少了mg (H +h )C.外力对小球所做的总功为零D.小球在沙坑中受到的平均阻力为H hmg解析 重力全程做功,故重力做功和重力势能减少量均为mg (H +h ),A 项错误,B 项正确;小球初、末速度都为零,由动能定理,外力总功为零,C 项正确;由mg (H +h )-f h =0,可知阻力f =mg (H +h )h,D 项错误。
2018届全国卷高考物理考前复习大串讲基础知识及查漏补缺复习资料专题02 相互作用基础知识含解析
【知识网络】【知识清单】一、力的概念1.2.力的图示和力的示意图 ①力的图示用一根带箭头的线段来表示力,按一定比例(或标度)画出线段,其长短表示力的大小;在线段的末端标上箭头表明力的作用方向;箭头或箭尾表示力的作用点;线段所在的直线表示力的作用线。
这种表示力的方法,叫做力的图示。
②力的示意图只画出力的作用点和方向,表示物体在这个方向上受到了力。
③力的图示与力的示意图的比较3.力的分类4. 四种基本相互作用①万有引力 ②电磁相互作用 ③强相互作用 ④弱相互作用 二、重力 1.重力2.重心:重力的等效作用点.重心的位置与物体的形状和质量的分布有关.重心不一定在物体上.质量分布均匀、形状规则的物体的重心在几何中心上.薄板类物体的重心可用悬挂法确定.3.重力与质量的区别与联系三、弹力1.形变物体在外力的作用下,自身的几何形状或体积发生改变,称作形变。
形变2.形变的分类(1)弹性形变:撤去外力作用后物体能恢复原状的形变。
(2)范性形变:撤去外力作用后物体的形变或多或少仍有保留而不能复原的形变。
3.弹性限度如果作用在物体上的外力过大,超出了一定的限度,撤去外力后物体就不能恢复原状,这个限度叫做弹性限度。
4.弹力(1)定义:发生弹性形变的物体,由于要恢复原状,对跟它接触的物体产生力的作用,这种力叫弹力.①两物体相互接触;(2)产生条件:②接触面之间发生弹性形变。
(3)方向:弹力的方向与施力物体的形变方向相反.①压力、支持力的方向总是垂直于接触面或接触面的切面,总指向被压、被支持的物体.②绳的拉力总是沿绳指向绳收缩的方向.③杆的弹力不一定沿杆的方向.如果轻直杆只有两个端点受力而处于平衡状态,则轻杆两端对物体的弹力的方向一定沿杆的方向.④轻弹簧的拉力或压力沿弹簧的轴线方向.(4)弹力的大小①对弹簧,在弹性限度内弹力的大小可以由胡克定律F = kx 计算,其中k 表示弹簧的劲度系数,单位:牛顿每米,符号:N/m。
北京市2018届高考物理二轮复习 专题4 功能关系在力学中的应用专题卷(含解析)
专题4 功能关系在力学中的应用说明:1.本卷主要考查功能关系在力学中的应用。
2.考试时间60分钟,满分100分。
一、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.(2017·新疆乌鲁木齐二诊)动车组是由几节自带动力的车厢加几节不带动力的车厢组成的,带动力的车厢叫动车,不带动力的车厢叫拖车.每节动车与拖车质量都相等,每节动车的额定功率都相等.动车组运行过程中总阻力来自两部分:一部分是车轮与铁轨之间摩擦产生的机械阻力,阻力大小与动车组的质量成正比;另一部分来自于空气阻力,阻力大小与动车组速度的平方成正比.一列12节车厢的动车组,有3节动车时最大速度为160 km/h ,此时空气阻力是总阻力的0.5倍.若要使12节车厢的动车组的最大速度达到240 km/h ,则动车的节数至少为( )A .7节B .8节C .9节D .10节【解析】 设12节动车组的质量为m ,则机械阻力F f1=k 1m ,空气阻力为F f2=k 2v 2,每节动车的额定功率为P ,由P =Fv 得,有3节动车时3P =(k 1m +k 2v 21)v 1,k 2v 21=0.5(k 1m +k 2v 21),有n 节动车时nP =(k 1m +k 2v 22)v 2,由以上三式解得n ≈7.3,故要使12车厢的动车组的最大速度达到240 km/h ,动车的节数至少8节,选项B 正确,A 、C 、D 错误.【答案】 B2.(2016·湖南长沙一中月考)一摩托车在竖直的圆轨道内侧做匀速圆周运动,周期为T ,人和车(当作质点)的总质量为m ,轨道半径为R ,车经最高点时发动机功率为P 0,车对轨道的压力为2mg .设轨道对摩托车的阻力与车对轨道的压力成正比,则( )A .车经最低点时对轨道的压力为3mgB .车经最低点时发动机功率为2P 0C .车从最高点经半周到最低点的过程中发动机做的功为12P 0T D .车从最高点经半周到最低点的过程中发动机做的功为2mgR【解析】 摩托车在最高点时有2mg +mg =m v 2R ,在最低点时有F N -mg =m v 2R,解得F N =4mg ,选项A 错误;由于轨道对摩托车的阻力与车对轨道的压力成正比,又因为车在最高点对轨道的压力为2 mg ,根据P =Fv ,可知发动机在最低点时的功率是在最高点时功率的2倍,所以选项B 正确,C 错误;根据动能定理可知摩托车从最高点经半周到最低点的过程中克服阻力做的功等于发动机做的功与2mgR 之和,选项D 错误.【答案】 B3.(2017·天津模拟题)足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是( )A .W =0 Q =mv 2B .W =0 Q =2mv 2C .W =mv 22 Q =mv 2D .W =mv 2 Q =2mv 2 【解析】 对小物块,由动能定理有W =12mv 2-12mv 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v 2μg,这段时间内因摩擦产生的热量Q =μmg ·x 相对=2mv 2,选项B 正确.【答案】 B4.(2017·重庆西北狼联盟考试)如图所示,一个质量为m 的物体以某一速度从A 点冲上倾角为30°的斜面,其运动的加速度大小为34g ,物体在斜面上上升的最大高度为h ,则在这一过程中( )A .重力势能增加了34mghB .机械能损失了12mgh C .动能损失了mgh D .合外力对物体做功为-34mgh 【解析】 物体在斜面上上升的最大高度为h ,克服重力做功为mgh ,则重力势能增加了mgh ,选项A 错误;根据牛顿第二定律得mg sin 30°+F f =ma ,得到摩擦力大小为F f =14mg ,物体克服摩擦力做功为WF f =F f ·2h =12mgh ,所以物体的机械能损失了12mgh ,选项B 正确;合外力对物体做功为W 合=-ma ·2h =-32mgh ,根据动能定理知,物体动能损失32mgh ,故选项C 、D 错误.【答案】 B5.(2017·山东重点中学联考)如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体A 、B 的质量分别为2m 、m ,开始时细绳伸直,用手托着物体A 使弹簧处于原长且A 与地面的距离为h ,物体B 静止在地面上,放手后物体A 下落,与地面即将接触时速度为v ,此时物体B 对地面恰好无压力,则下列说法中正确的是( )A .物体A 下落过程中的某一时刻,物体A 的加速度为零B .此时弹簧的弹性势能等于2mgh -mv 2C .此时物体B 处于超重状态D .弹簧劲度系数为2mg h【解析】 在物体A 的下落过程中,物体B 还没有脱离地面,绳子拉力F ≤mg ,地面对物体B 的支持力F N ≤mg ,此时物体B 处于失重状态,可知物体A 在下落过程中一直做加速运动,且物体A 与弹簧组成的系统机械能守恒,有关系式2mgh =12×2mv 2+E p ,此时弹簧的弹性势能E p =2mgh -mv 2,则选项A 、C 错误,B 正确;A 即将与地面接触时,弹簧伸长量为h ,弹簧弹力F 弹=kh ,对B 受力分析,有F 弹=mg ,解得k =mg h,易知选项D 错误.【答案】 B6.(2017·湖南长沙一模)(多选)如图所示,内壁光滑半径大小为R 的圆轨道竖直固定在桌面上,一个质量为m 的小球静止在轨道底部A 点.现用小锤沿水平方向快速击打小球,击打后迅速移开,使小球沿轨道在竖直面内运动.当小球回到A 点时,再次用小锤沿运动方向击打小球.必须经过两次击打,小球才能运动到圆轨道的最高点.已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W ,第二次击打过程中小锤对小球做功4W .设两次击打过程中小锤对小球做的功全部用来增加小球的动能,则W 的值可能是( )A.56mgR B .34mgR C.38mgR D .32mgR 【解析】 第一次击打,小球运动的最大高度为R ,即W ≤mgR .第二次击打,小球才能运动到圆轨道的最高点,而小球能够通过最高点的条件为mg ≤m v 20R,即v 0≥gR .小球从静止到达最高点的过程,由动能定理得W +4W -mg ·2R =12mv 20-0,得W ≥12mgR ,则12mgR ≤W ≤mgR ,故选项A 、B 正确.【答案】 AB7.(2017·山西名校联考)(多选)如图所示,小物块与三块材料不同但厚度相同的薄板间的动摩擦因数分别为μ、2μ和3μ,三块薄板长度均为L ,并依次连在一起.第一次将三块薄板固定在水平地面上,让小物块以一定的水平初速度v 0从a 点滑上第一块薄板,结果小物块恰好滑到第三块薄板的最右端d 点停下;第二次将三块薄板仍固定在水平地面上,让小物块从d 点以相同的初速度v 0水平向左运动;第三次将连在一起的三块薄板放在光滑的水平地面上,让小物块仍以相同的初速度v 0从a 点滑上第一块薄板.则下列说法正确的是( )A .第二次小物块一定能够运动到a 点并停下B .第一次和第二次小物块经过c 点时的速度大小相等C .第三次小物块也一定能运动到d 点D .第一次与第三次小物块克服摩擦力做的功相等【解析】 因为第一次和第二次薄板均被固定,以小物块为研究对象,根据动能定理,第一次有-μmgL -2μmgL -3μmgL =0-12mv 20,第二次从d 点运动到a 点摩擦力做功相同,故可以运动到a 点并停下,选项A 正确;同理,第一次运动到c 点时,摩擦力做的功W f1=-μmgL -2μmgL =-3μmgL ,第二次运动到c 点时摩擦力做的功W f2=-3μmgL ,所以两次通过c 点时的速度大小相等,选项B 正确;与第一次相比,第三次薄板放在光滑水平地面上,则摩擦力对薄板做功,薄板动能增加,系统损失的机械能减少,小物块相对薄板的位移减小,则小物块不能运动到d 点,选项C 错误;与第一次相比,因为第三次小物块没有减速到零,故损失的动能减少,所以摩擦力对小物块做的功减少,即小物块克服摩擦力做的功减少,选项D 错误.【答案】 AB8.(2017·广西南宁模拟)(多选)如图所示,一弹性轻绳(绳的弹力与其伸长量成正比)穿过固定的光滑圆环B ,左端固定在A 点,右端连接一个质量为m 的小球,A 、B 、C 在一条水平线上,弹性绳自然长度为AB .小球穿过竖直固定的杆,从C 点由静止释放,到D 点时速度为零,C 、D 两点间距离为h .已知小球在C 点时弹性绳的拉力为mg 2,g 为重力加速度,小球和杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内,下列说法正确的是( )A .小球从C 点运动到D 点的过程中克服摩擦力做功为mgh 2B .若在D 点给小球一个向上的速度v ,小球恰好回到C 点,则v =ghC .若仅把小球质量变为2m ,则小球到达D 点时的速度大小为ghD .若仅把小球质量变为2m ,则小球向下运动到速度为零时的位置与C 点的距离为2h【解析】 设小球向下运动到某一点E 时,如图所示,弹性绳伸长量为BE =x ,BC =x 0,弹性绳劲度系数为k ,∠BEC =θ,则弹力为kx ,弹力沿水平方向的分力为kx sin θ=kx 0=mg 2,故在整个运动过程中,小球受到的摩擦力恒为μ·mg 2=mg 4,从C 点运动到D 点的过程中克服摩擦力做功为mgh 4,选项A 错误.若在D 点给小球一个向上的速度v ,小球恰好回到C 点,则小球从C 点到D 点,再从D 点返回C 点的过程中,根据功能关系可知,克服摩擦力做的功等于在D 点给小球的动能,即mgh 4×2=mv 22,v =gh ,选项B 正确.从C 点到D 点的过程,小球质量为m 时,有mgh -W 弹-mgh 4=0,小球质量为2m 时,有2mgh -W 弹-mgh 4=2mv 212,v 1=gh ,选项C 正确.由于弹性绳的弹力在竖直方向的分力越来越大,则小球向下运动到速度为零时的位置与C 点的距离应小于2h ,选项D 错误.【答案】 BC二、非选择题:本大题共4小题,共52分。
2018届北京四中高考物理二轮复习精品资源(教师版)
2018北京四中高考物理二轮复习精品资源(教师版)专题1力与物体的平衡 (2)专题2牛顿运动定律与直线运动 (11)专题3牛顿运动定律与曲线运动(含天体运动) (26)专题4功能关系在力学中的应用 (41)专题5功能关系在电学中的应用 (59)专题6电场、磁场的基本性质 (68)专题7带电粒子在复合场中的运动 (78)专题8电磁感应及综合应用交变电流 (89)专题9动量守恒定律原子物理 (102)专题10热学 (113)专题11机械振动和机械波光 (119)专题12力学实验 (127)专题13电学实验 (136)专题1力与物体的平衡【考向预测】平衡问题是历年高考的重点,特别是受力分析与平衡条件的应用在近几年高考中频繁考查。
本部分内容在高考命题中也有两大趋势:一是向着选择题单独考查的方向发展;二是选择题单独考查与电学综合考查并存。
考查的角度主要包括:一、对各种性质的力的理解;二、共点力平衡条件的应用。
用到的思想方法有:整体法和隔离法、假设法、合成法、正交分解法、矢量三角形法、相似三角形法、等效思想、分解思想等。
高频考点:受力分析、物体的静态平衡;物体的动态平衡问题;平衡中的临界、极限问题。
【知识与技巧的梳理】考点一、受力分析 物体的静态平衡例 (淄博2018届高三检测)如图,带电体P 、Q 可视为点电荷,电荷量相同。
倾角为θ、质量为M 的斜面体放在粗糙地面上,将质量为m 的带电体P 放在粗糙的斜面体上。
当带电体Q 放在与P 等高(PQ 连线水平)且与带电体P 相距为r 的右侧位置时,P 静止且受斜面体的摩擦力为0,斜面体保持静止,静电力常量为k ,则下列说法正确的是( )A. P 、QB. P 对斜面体的压力为0C. 斜面体受到地面的摩擦力为0D. 斜面体对地面的压力为(M +m )g【审题立意】本题考查共点力平衡问题,关键是明确研究对象,正确进行受力分析,然后根据共点力平衡条件列方程研究。
【解题思路】解析:对P ,如图甲,得:F 库=mg tan θ=k q 2r 2,q 对P 和斜面体,如图乙,得: F N ′=(M +m )g ,F f =F 库=mg tan θ。
专题04 功能关系在力学中的应用-2018年高考物理二轮复习精品资料(学生版)
1.质量为m 的物体,自高为h 、倾角为θ的固定粗糙斜面顶端由静止开始匀加速滑下,到达斜面底端时的速度为v .重力加速度为g .下列说法正确的是( )A.物体下滑过程的加速度大小为v 2sin θhB.物体下滑到底端时重力的功率为mgvC.物体下滑过程中重力做功为12mv 2D.物体下滑过程中摩擦力做功为12mv 2-mgh2.如图1所示,在竖直面内固定一光滑的硬质杆ab ,杆与水平面的夹角为θ,在杆的上端a 处套一质量为m 的圆环,圆环上系一轻弹簧,弹簧的另一端固定在与a 处在同一水平线上的O 点,O 、b 两点处在同一竖直线上.由静止释放圆环后,圆环沿杆从a 运动到b ,在圆环运动的整个过程中,弹簧一直处于伸长状态,则下列说法正确的是( )图1A.圆环的机械能保持不变B.弹簧对圆环一直做负功C.弹簧的弹性势能逐渐增大D.圆环和弹簧组成的系统机械能守恒3.(多选)如图2所示,斜面与足够长的水平横杆均固定,斜面与竖直方向的夹角为θ,套筒P 套在横杆上,与绳子左端连接,绳子跨过不计大小的定滑轮,其右端与滑块Q 相连接,此段绳与斜面平行,Q 放在斜面上,P 与Q 质量相等且为m ,O 为横杆上一点且在滑轮的正下方,滑轮距横杆h .手握住P 且使P 和Q 均静止,此时连接P 的绳与竖直方向夹角为θ,然后无初速度释放P .不计绳子的质量和伸长及一切摩擦,重力加速度为g .关于P 描述正确的是( )图2A.释放P 前绳子拉力大小为mg cos θB.释放后P 做匀加速运动C.P 达O 点时速率为2gh -cos θD.P 从释放到第一次过O 点,绳子拉力对P 做功功率一直增大4.(多选)一足够长的传送带与水平面的夹角为θ,以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图3a 所示),以此时为t =0时刻记录了物块之后在传送带上运动的速度随时间的变化关系.如图b 所示(图中取沿斜面向上的运动方向为正方向,其中两坐标大小v 1>v 2).已知传送带的速度保持不变.则下列判断正确的是( )图3A.若物块与传送带间的动摩擦因数为μ,则μ>tan θB.0~t 1内,传送带对物块做正功C.0~t 2内,系统产生的热量一定比物块动能的减少量大D.0~t 2内,传送带对物块做的功等于物块动能的减少量5.(多选)如图4所示,半径为R 的竖直光滑圆轨道与光滑水平面相切,质量均为m 的小球A 、B 与轻杆连接,置于圆轨道上,A 位于圆心O 的正下方,B 与O 等高.它们由静止释放,最终在水平面上运动.下列说法正确的是( )图4A.下滑过程中重力对B 做功的功率先增大后减小B.当B 滑到圆轨道最低点时,轨道对B 的支持力大小为3mgC.下滑过程中B 的机械能增加D.整个过程中轻杆对A 做的功为12mgR6.如图5所示,长1 m 的轻杆BO 一端通过光滑铰链铰在竖直墙上,另一端装一轻小光滑滑轮,绕过滑轮的细线一端悬挂重为15 N 的物体G ,另一端A 系于墙上,平衡时OA 恰好水平,现将细线A 端滑着竖直墙向上缓慢移动一小段距离,同时调整轻杆与墙面夹角,系统重新平衡后轻杆受到的压力恰好也为15 N ,则该过程中物体G 增加的重力势能约为( )图5A.1.3 JB.3.2 JC.4.4 JD.6.2 J7.(多选)如图6所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0.6,cos 37°=0.8).则( )图6A.动摩擦因数μ=67B.载人滑草车最大速度为2gh 7C.载人滑草车克服摩擦力做功为mghD.载人滑草车在下段滑道上的加速度大小为35g8.如图2所示,质量为M 、长度为L 的小车静止在光滑水平面上,质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使小物块从静止开始做匀加速直线运动.小物块和小车之间的摩擦力为f ,小物块滑到小车的最右端时,小车运动的距离为x .此过程中,以下结论正确的是( )图2A .小物块到达小车最右端时具有的动能为(F -f )·(L +x )B .小物块到达小车最右端时,小车具有的动能为fxC .小物块克服摩擦力所做的功为f (L +x )D .小物块和小车增加的机械能为F (L +x )9.图3是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( )A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能10.如图4甲所示,一倾角为37°的传送带以恒定速度运行,现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8.则下列说法正确的是( )图4A.物体与传送带间的动摩擦因数为0.875B.0~8 s内物体位移的大小为18 mC.0~8 s内物体机械能的增量为90 JD.0~8 s内物体与传送带由于摩擦产生的热量为126 J11.光滑圆轨道和两倾斜直轨道组成如图5所示装置,其中直轨道bc粗糙,直轨道cd光滑,两轨道相接处为一很小的圆弧.质量为m=0.1 kg的滑块(可视为质点)在圆轨道上做圆周运动,到达轨道最高点a时的速度大小为v=4 m/s,当滑块运动到圆轨道与直轨道bc的相切处b时,脱离圆轨道开始沿倾斜直轨道bc滑行,到达轨道cd上的d点时速度为零.若滑块变换轨道瞬间的能量损失可忽略不计,已知圆轨道的半径为R=0.25 m,直轨道bc的倾角θ=37°,其长度为L=26.25 m,d点与水平地面间的高度差为h=0.2 m,取重力加速度g=10 m/s2,sin 37°=0.6.求:(1)滑块在圆轨道最高点a 时对轨道的压力大小; (2)滑块与直轨道bc 间的动摩擦因数; (3)滑块在直轨道bc 上能够运动的时间.12.如图6(a)所示,一物体以一定的速度v 0沿足够长斜面向上运动,此物体在斜面上的最大位移与斜面倾角的关系由图(b)中的曲线给出.设各种条件下,物体运动过程中的摩擦系数不变.g =10 m/s 2,试求:图6(1)物体与斜面之间的动摩擦因数; (2)物体的初速度大小; (3)θ为多大时,x 值最小.13.如图7所示,倾角θ=30°、长L =4.5 m 的斜面,底端与一个光滑的14圆弧轨道平滑连接,圆弧轨道底端切线水平.一质量为m =1 kg 的物块(可视为质点)从斜面最高点A 由静止开始沿斜面下滑,经过斜面底端B 后恰好能到达圆弧轨道最高点C ,又从圆弧轨道滑回,能上升到斜面上的D 点,再由D 点由斜面下滑沿圆弧轨道上升,再滑回,这样往复运动,最后停在B 点.已知物块与斜面间的动摩擦因数为μ=36,g =10 m/s 2,假设物块经过斜面与圆弧轨道平滑连接处速率不变.求:图7(1)物块经多长时间第一次到B 点;(2)物块第一次经过B 点时对圆弧轨道的压力; (3)物块在斜面上滑行的总路程.14.如图8所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0=1.8 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进人固定在竖直平面内的光滑圆弧轨道,最后小物块无碰撞地滑上紧靠轨道末端D 点的足够长的水平传送带.已知传送带上表面与圆弧轨道末端切线相平,传送带沿顺时针方向匀速运行的速度为v =3 m/s ,小物块与传送带间的动摩擦因数μ=0.5,圆弧轨道的半径为R =2 m ,C 点和圆弧的圆心O 点连线与竖直方向的夹角θ=53°,不计空气阻力,重力加速度g =10 m/s 2,sin 53°=0.8,cos 53°=0.6.求:图8(1)小物块到达圆弧轨道末端D 点时对轨道的压力;(2)小物块从滑上传送带到第一次离开传送带的过程中产生的热量.15.如图4所示,在竖直平面内有一固定光滑轨道,其中AB 是长为x =10 m 的水平直轨道,BCD 是圆心为O 、半径为R =10 m 的34圆弧轨道,两轨道相切于B 点.在外力作用下,一小球从A 点由静止开始做匀加速直线运动,到达B 点时撤除外力.已知小球刚好能沿圆轨道经过最高点C ,重力加速度为g =10 m/s 2.求:图4(1)小球在AB 段运动的加速度的大小;(2)小球从D 点运动到A 点所用的时间.(结果可用根式表示)16.如图7甲所示,用固定的电动机水平拉着质量m =4 kg 的小物块和质量M =2 kg 的平板以相同的速度一起向右匀速运动,物块位于平板左侧,可视为质点.在平板的右侧一定距离处有台阶阻挡,平板撞上后会立刻停止运动.电动机功率保持P =6 W 不变.从某时刻t =0起,测得物块的速度随时间的变化关系如图乙所示,t =6 s 后可视为匀速运动,t =10 s 时物块离开木板.重力加速度g =10 m/s 2,求:图7(1)平板与地面间的动摩擦因数μ; (2)平板长度L .17.倾斜雪道的长为25 m ,顶端高为15 m ,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图8所示.一滑雪运动员在倾斜雪道的顶端以水平速度v 0=8 m/s 飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起.除缓冲过程外运动员可视为质点,过渡圆弧光滑,其长度可忽略.设滑雪板与雪道的动摩擦因数μ=0.2,求运动员在水平雪道上滑行的距离(取g =10 m/s 2).图818.风洞飞行表演是一种高科技的惊险的娱乐项目.如图9所示,在某次表演中,假设风洞内向上的总风量和风速保持不变.质量为m 的表演者通过调整身姿,可改变所受的向上的风力大小,以获得不同的运动效果.假设人体受风力大小与正对面积成正比,已知水平横躺时受风力面积最大,且人体站立时受风力面积为水平横躺时受风力面积的18,风洞内人体可上下移动的空间总高度AC =H .开始时,若人体与竖直方向成一定角度倾斜时,受风力有效面积是最大值的一半,恰好使表演者在最高点A 点处于静止状态;后来,表演者从A 点开始,先以向下的最大加速度匀加速下落,经过某处B 点后,再以向上的最大加速度匀减速下落,刚好能在最低点C 处减速为零,试求:图9(1)表演者向上的最大加速度大小和向下的最大加速度大小; (2)AB 两点的高度差与BC 两点的高度差之比; (3)表演者从A 点到C 点减少的机械能.。
最新-广东省执信中学2018物理复习高三第二轮复习专题(
高三第二轮复习专题(四) 功能关系 能量关系(2) (能量、动量问题)1.下面哪种说法是正确的( )A .运动物体动量的方向总是与它的运动方向相同B .如果运动物体动量发生变化,作用在它上面的合力外的冲量必不为零C .作用在物体上的合外力冲量总是使物体的动能增大D .作用在物体上的合外力冲量等于物体动量的增量 1.答案:ABD.2.在光滑水平面上有质量均为2kg 的a 、b 两质点,a 质点在水平恒力F a = 4N 作用下由静止出发移动4s ,b 质点在水平恒力F b =4N 作用下由静止出发移动4m,比较两质点所经历的过程。
可以得到的正确结论是 ( ) A.a 质点的位移比b 质点的位移大 B.a 质点的末速度比b 质点的末速度小 C.力F a 做的功比力F b 做的功多 D.力F a 的冲量比力F b 的冲量小2.答案:AC .解析:F a 的冲量t F I a a ==16N ·s,由动量定理a a mv I =,所以mI v aa ==8m/s,由动能定理F a 做的功是221a a mv W ==64J. 由a a a s F W =得a 质点的位移是aa a F W s ==16m 。
对b 质点,F b 做功b b b s F W ==16J,据动能定理221b b mv W =,得v b =4 m/s,F b 的冲量b a mv I ==8 N ·s 。
对比以上计算结果,b a s s >,选项A 正确;v a > v b ,选项B 错误;b a W W >,选项C 正确;b a I I >,选项D 错误。
3.动能相等质量不等的两个物体A 、B ,m A >m B ,A 、B 均在动摩擦因数相同的水平地面上滑行,滑行距离分别为s A 、s B后停下,则( ) A .s A >s B B .B 滑行时间短C .s A <s BD .它们克服摩擦力做功一样多3.答案:CD.4.物体在恒定的合力F 作用下做直线运动,在时间∆t 1内速度由0增大到v ,在时间∆t 2内速度由v 增大到2v . 设F 在∆t 1内做的功是W 1 ,冲量是I 1 ;在∆t 2内做的功是W 2 ,冲量是I 2 ,那么 ( ) A.I 1< I 2 ,W 1=W 2 B.I 1< I 2 ,W 1< W 2 C.I 1= I 2 ,W 1=W 2 D.I 1=I 2 ,W 1< W 24.答案:D .解析:根据牛顿第二定律推知物体作匀加速运动, 由匀加速运动规律可推出,物体速度由0增大到v 的时间∆t 1和由v 增大到2v 的时间∆t 2是相等的,即∆t 1 =∆t 2, 根据冲量的定义知I 1=I 2 , 物体在∆t 1时间内通过的位移∆s 1 比在∆t 2时间内通过的位移∆s 2 小,即∆s 1 <∆s 2 ,根据功的定义知W 1< W 2 ,故选项D 正确。
专题06 功和能讲-2018年高考物理二轮复习讲练测 含解析 精品
纵观近几年高考试题,预测2018年物理高考试题还会考:1、从近几年高考来看,关于功和功率的考查,多以选择题的形式出现,有时与电流及电磁感应相结合命题.2、动能定理多数题目是与牛顿运动定律、平抛运动、圆周运动以及电磁学等知识相结合的综合性试题;动能定理仍将是高考考查的重点,高考题注重与生产、生活、科技相结合,将对相关知识的考查放在一些与实际问题相结合的情境中。
3、机械能守恒定律,多数是与牛顿运动定律、平抛运动、圆周运动以及电磁学等知识相结合的综合性试题;高考题注重与生产、生活、科技相结合,将对相关知识的考查放在一些与实际问题相结合的情境中。
考向01 功和功率 1.讲高考(1)考纲要求掌握做功正负的判断和计算功的方法;理解tWP =和Fv P =的关系,并会运用;会分析机车的两种启动方式. (2)命题规律从近几年高考来看,关于功和功率的考查,多以选择题的形式出现,有时与电流及电磁感应相结合命题. 案例1.【2017·新课标Ⅱ卷】如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环。
小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力: ( )A .一直不做功B .一直做正功C .始终指向大圆环圆心D .始终背离大圆环圆心【答案】A【考点定位】圆周运动;功【名师点睛】此题关键是知道小圆环在大圆环上的运动过程中,小圆环受到的弹力方向始终沿大圆环的半径方向,先是沿半径向外,后沿半径向里。
案例2.【2016·天津卷】(多选)我国高铁技术处于世界领先水平,和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车。
假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比。
某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组: ( )A .启动时乘客受到车厢作用力的方向与车运动的方向相反B .做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3:2C .进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D .与改为4节动车带4节拖车的动车组最大速度之比为1:2 【答案】BD【考点定位】牛顿第二定律、功率、动能定理【名师点睛】此题是力学综合问题,考查牛顿第二定律、功率以及动能定理等知识点;解题时要能正确选择研究对象,灵活运用整体法及隔离法列方程;注意当功率一定时,牵引力等于阻力的情况,速度最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四能量与动量第1讲功能关系在力学中的应用(建议用时:40分钟满分:100分)一、选择题(本大题共8小题,每小题8分,共64分.第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求)1.(2017·浙江嘉兴测试)如图所示是一种腹部先着水的跳水比赛,击水时水花最大者获胜,水花的大小主要取决于运动员入水时具有的动能.假设甲、乙两运动员都站在3 m高的平台上(甲、乙站立时的重心位置离平台均为1 m),其中质量为120 kg的甲简单地步出平台倒向水面.若质量为100 kg的乙要不输于甲,则需要通过起跳使自身重心至少升高约( B )A.0.6 mB.0.8 mC.1.6 mD.1.8 m解析:由机械能守恒定律,甲入水时动能为E k1=m1gH=120×10×(3+1)J=4 800 J;乙要不输于甲,乙入水时动能至少为E k2=m2g(H+h)=100×10×(3+1+h)J=4 800 J,解得h=0.8 m,选项B 正确.2.(2017·北京丰台区测试)某同学利用如图实验装置研究摆球的运动情况,摆球从A点由静止释放,经过最低点C到达与A等高的B点,D,E,F是OC连线上的点,OE=DE,DF=FC,OC连线上各点均可钉钉子.每次均将摆球从A点由静止释放,不计绳与钉子碰撞时机械能的损失.下列说法正确的是( D )A.若只在E点钉钉子,摆球最高可能摆到A,B连线以上的某点B.若只在D点钉钉子,摆球最高可能摆到A,B连线以下的某点C.若只在F点钉钉子,摆球最高可能摆到D点D.若只在F点以下某点钉钉子,摆球可能做完整的圆周运动解析:根据机械能守恒定律可知,在E点和D点钉钉子,摆球最高可摆到与A,B等高的位置,选项A,B错误;当在F点钉钉子时,摆球不可能摆到D点,因为摆球如果摆到D点,根据机械能守恒定律可知,其速度为0,可是摆球要想由C点摆到D点,在D点时必须有一定的速度,至少由重力提供向心力,选项C错误;若在F点以下钉钉子,则摆球摆到最高点时能够具有一定的速度,有可能做完整的圆周运动,选项 D 正确.3.(2017·湖北武汉调研)如图,半径为R、圆心为O的光滑圆环固定在竖直平面内,OC水平,D是圆环最低点.质量为2m的小球A与质量为m的小球B套在圆环上,两球之间用轻杆相连.两球初始位置如图所示,由静止释放,当小球A运动至D点时,小球B的动能为( D )A.mgRB.mgRC.mgRD.mgR解析:A,B组成的系统机械能守恒.当A运动到最低点D时,A下降的高度为h A=R+Rsin 45°,B上升的高度为h B=Rsin 45°,则有2mgh A-mgh B=·2m+m,又v A cos 45°=v B cos 45°,小球B的动能为=m=mgR,选项D正确.4.(2017·广西玉林模拟)如图所示,某特战队员在进行素质训练时,用手抓住一端固定在同一水平高度的绳索另一端,从高度一定的平台由水平状态无初速度开始下摆.当绳索到达竖直位置时特战队员放开绳索,特战队员水平抛出直到落地,不计绳索质量和空气阻力,特战队员可看成质点.下列说法正确的是( B )A.绳索越长,特战队员落地时竖直方向的速度越大B.绳索越长,特战队员落地时水平方向的速度越大C.绳索越长,特战队员平抛运动的水平位移越大D.绳索越长,特战队员落地时的速度越大解析:设平台离地的高度为H,绳长为L,根据动能定理得mgL=mv2,解得v=,对于平抛过程,根据H-L=gt2,解得t=,则特战队员落地时竖直方向的速度为v y=gt=,由此可知,绳索越长,特战队员落地时竖直方向的速度越小,选项A错误;落地时水平方向的速度等于平抛运动的初速度,根据v=知,绳索越长,落地时水平方向的速度越大,选项B正确;水平位移为x=vt=2,由数学知识可得当L=H时,水平位移最大,所以不是绳索越长,水平位移越大,选项C 错误;对全过程运用动能定理得mgH=mv′2,解得v′=,可知落地的速度大小与绳索长度无关,选项D错误.5.(2017·东北三省四市联考)A,B两物体放在同一水平面上,分别受到水平拉力F1,F2的作用,而从静止开始从同一位置出发沿相同方向做匀加速直线运动.经过时间t0和4t0,当两者速度分别达到2v0和v0时分别撤去F1和F2,以后物体做匀减速运动直至停止.两物体运动的v t图像如图所示.已知两者的质量之比为1∶2,下列结论正确的是( C )A.物体A,B的位移大小之比是3∶5B.两物体与地面间的动摩擦因数可能不相等C.F1和F2的大小之比是6∶5D.整个运动过程中F1和F2做功之比是6∶5解析:v t图像与两坐标轴所围的面积表示物体在对应时间内的位移,A,B两物体的位移分别为x1=×2v0×3t0=3v0t0,x2=×v0×5t0=v0t0,故x1∶x2=6∶5,选项A错误;撤去拉力后,A,B两物体的加速度大小分别为a1′==,a2′==,即a1′=a2′=μg,故两物体与地面间的动摩擦因数相等,选项B错误;在加速过程中由牛顿第二定律可得F1-μm1g=m1a1,F2-μm2g=m2a2,a1=,a2=,μg=,而m2=2m1,故F1∶F2=6∶5,选项C正确;全过程中根据动能定理可知W1=μm1gx1,W2=μm2gx2,故整个运动过程中F1和F2做功之比W1∶W2=3∶5,选项D错误.6.(2017·湖南株洲一模)光滑水平面上以速度v0匀速滑动的物块,某时刻受到一水平恒力F的作用,经一段时间后物块运动到B点,速度大小仍为v0,方向改变了90°,如图所示,则在此过程中( BD )A.物块的动能一定始终不变B.水平恒力F方向一定与AB连线垂直C.物块的速度一定先增大后减小D.物块的加速度不变解析:物块的初、末动能相同,根据动能定理,合力对物块做的功一定为零,故合力与位移垂直,即水平恒力F方向一定与AB连线垂直;由于合力先做负功后做正功,故动能先减小后增加,速度先减小后增大,选项B正确,A,C错误;合力恒定,根据牛顿第二定律,物块的加速度一定恒定不变,选项D正确.7.(2017·湖北部分重点中学联考)如图所示,长为L的长木板水平放置,在木板的A端放置一个质量为m的小物块.现缓慢地抬高A端,使木板以B端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v,重力加速度为g.下列判断正确的是( BCD )A.整个过程物块受的支持力垂直于木板,所以不做功B.物块所受支持力做功为mgLsin αC.发生滑动前摩擦力逐渐增大D.整个过程木板对物块做的功等于物块机械能的增加量解析:缓慢转动过程中支持力与速度同向,所以支持力做正功,当停止转动后,支持力与速度垂直不再做功,选项A错误;转动过程由动能定理得W N-mgLsin α=0,故W N=mgLsin α,选项B正确;发生滑动前,摩擦力为静摩擦力,大小等于mgsin α,随着α的增大而增大,选项C正确;根据功能关系,除重力以外的力做的功等于物块机械能的增加量,也就是木板对物块做的功等于物块机械能的增加量,选项D正确.8.(2017·山东省实验中学模拟)如图所示,轻质弹簧一端固定在水平面上O点的转轴上,另一端与一质量为m、套在粗糙固定直杆A处的小球(可视为质点)相连,直杆的倾角为30°,OA=OC,B为AC的中点,OB 等于弹簧原长.小球从A处由静止开始下滑,初始加速度大小为a A,第一次经过B处的速度大小为v,运动到C处速度为0,后又以大小为a C 的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力,重力加速度为g.下列说法正确的是( CD )A.小球可以返回到出发点A处B.撤去弹簧,小球可以在直杆上处于静止C.弹簧具有的最大弹性势能为mv2D.a A-a C=g解析:设小球从A运动到B的过程克服摩擦力做功为W f,AB间的竖直高度为h,小球的质量为m,弹簧具有的最大弹性势能为E p.根据能量守恒定律得,对于小球从A到B的过程有mgh+E p=mv2+W f,A到C的过程有2mgh+E p=2W f+E p,解得W f=mgh,E p=mv2.小球从C处向上运动时,假设能返回到A处,则由能量守恒定律得E p=2W f+2mgh+E p,该式违反了能量守恒定律,可知小球不能返回到出发点A处,选项A错误,C正确;设从A运动到C摩擦力的平均值为,AB=s,由W f=mgh,得s=mgssin 30°.在B处,摩擦力f=μmgcos 30°,由于弹簧对小球有拉力(除B处外),小球对杆的压力大于μmgcos 30°,所以>μmgcos 30°,可得mgsin 30°>μmgcos 30°,因此撤去弹簧,小球不能在直杆上处于静止,选项B错误;根据牛顿第二定律得,在A处有Fcos 30°+mgsin 30°-f=ma A;在C处有Fcos 30°-f-mgsin 30°=ma C,两式相减得a A-a C=g,选项D正确.二、非选择题(本大题共2小题,共36分)9.(16分)(2017·山东济南质检)如图所示,x轴与水平传送带重合,坐标原点O在传送带的左端,传送带长L=8 m,匀速运动的速度v0=5 m/s.一质量m=1 kg 的小物块,轻轻放在传送带上x P=2 m的P点.小物块随传送带运动到Q点后冲上光滑斜面且刚好到达N点(小物块到达N点后被收集,不再滑下).若小物块经过Q处无机械能损失,小物块与传送带间的动摩擦因数μ=0.5,重力加速度g=10 m/s2.求:(1)N点的纵坐标;(2)小物块在传送带上运动产生的热量;(3)若将小物块轻轻放在传送带上的某些位置,最终均能沿光滑斜面越过纵坐标y M=0.5 m的M点,求这些位置的横坐标范围.解析:(1)小物块在传送带上做匀加速运动的加速度a=μg=5 m/s2.小物块与传送带共速时,所用时间t==1 s运动的位移x=at2=2.5 m<(L-x P)=6 m故小物块与传送带共速后以v0=5 m/s的速度匀速运动到Q,然后冲上光滑斜面到达N点,由机械能守恒定律得m=mgy N解得y N=1.25 m.(2)小物块在传送带上相对传送带滑动的位移x相对=v0t-x=2.5 m产生的热量Q=μmgx相对=12.5 J.(3)设在坐标为x1处轻轻将小物块放在传送带上,最终刚好能到达M点,由能量守恒得μmg(L-x1)=mgy M代入数据解得x1=7 m故小物块在传送带上的位置横坐标范围0≤x<7 m.答案:(1)1.25 m (2)12.5 J (3)0≤x<7 m10.(20分)如图所示,是一儿童游戏机的简化示意图,光滑游戏面板与水平面成一夹角θ,半径为R的四分之一圆弧轨道BC与长度为8R的AB直管道相切于B点,C点为圆弧轨道最高点(切线水平),管道底端A 位于斜面底端,轻弹簧下端固定在AB管道的底端,上端系一轻绳,绳通过弹簧内部连一手柄P.经过观察发现:轻弹簧无弹珠时,其上端离B点距离为5R,将一质量为m的弹珠Q投入AB管内,设法使其自由静止,测得此时弹簧弹性势能E p=mgRsin θ,已知弹簧劲度系数k=.某次缓慢下拉手柄P使弹簧压缩,后释放手柄,弹珠Q经C 点被射出,弹珠最后击中斜面底边上的某位置(图中未标出),根据击中位置的情况可以获得不同的奖励.假设所有轨道均光滑,忽略空气阻力,弹珠可视为质点.直管道AB粗细不计.求:(1)调整手柄P的下拉距离,可以使弹珠Q经BC轨道上的C点射出,落在斜面底边上的不同位置,其中与A的最近距离是多少?(2)若弹珠Q落在斜面底边上离A的距离为10R,求它在这次运动中经过C点时对轨道的压力为多大?(3)在(2)的运动过程中,弹珠Q离开弹簧前的最大速度是多少?解析:(1)当P离A点最近(设最近距离d)时,弹珠经C点速度最小,设这一速度为v0,弹珠经过C点时恰好对轨道无压力,mgsin θ提供所需要的向心力.所以mgsin θ=m得v0=8R+R=gt2sin θ解得t=x=v0t==3R,d=3R+R.(2)设弹珠落在斜面底边上离A的距离为10R时,经过C点时的速度为v C,离开C点后弹珠做类平抛运动,a=gsin θ10R-R=v C t由(1)中得到t=v C=经C点时有F N+mgsin θ=m所以F N=mgsin θ根据牛顿第三定律,弹珠Q对C点的压力F N′与F N大小相等,方向相反;所以,弹珠Q对轨道C点的压力大小F N′=mgsin θ.(3)弹珠离开弹簧前,在平衡位置时,速度最大,设此时弹簧压缩量为x0,根据平衡条件有mgsin θ=kx0,则x0=取弹珠从平衡位置到C点的运动过程为研究过程,根据系统机械能守恒,取平衡位置重力势能为零E p+m=mg(6R+R)sin θ+m解得v m=.答案:(1)3R+R(2)mgsin θ(3)。