必修一 第一章 集合部分习题 教师版

合集下载

新北师大版高中数学必修一第一单元《集合》测试(有答案解析)(1)

新北师大版高中数学必修一第一单元《集合》测试(有答案解析)(1)

一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,3.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =4.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞5.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉ B .3A ∈,1A -∈ C .3A ∉,1A -∈ D .3A ∉,1A -∉ 6.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉7.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .308.在整数Z 集中,规定被5除所得余数为k 的所有整数组成“一类”,记为[]k ,即[]{}|5,k x x n n Z k ==+∈,0,1,2,3,4k =,给出如下四个结论:①[]20183∈;②[]20183-∈;③[][][][][]01234Z =;④“整数a ,b 属于同‘一类’”的充要条件是“[]0a b -∈”;其中正确结论的个数是( ) A .1B .2C .3D .49.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UBD .∅10.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,111.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤12.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<二、填空题13.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________. 14.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?15.集合1{}2|Ax x ≤=<,{|}B x x a =<,若A B B ⋃=,则a 的取值范围是_______.16.已知集合{}2|20A x x x x R =--<∈,,集合{}|21B x x x R =-∈≥,,则A B =________.17.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______18.设集合A ,B 是R 中两个子集,对于x ∈R ,定义: 0,,0,1,,1,x A x Bm n x A x B ⎧∉∉⎧==⎨⎨∈∈⎩⎩.①若A B ⊆;则对任意(),10x R m n ∈-=;②若对任意,0x R mn ∈=,则A B φ⋂=;③若对任意,1x R m n ∈+=,则A ,B 的关系为R A C B =.上述命题正确的序号是______. (请填写所有正确命题的序号)19.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________20.已知集合{}{}2|21,|20xA y yB x x x ==+=--<,则()R C A B =__________.三、解答题21.在①{}23B x x =-<<,②{}35RB x x =-<<,③{}26B x x a =≥+且{}A B x x a ⋃=>这三个条件中任选一个,补充在下面的问题中,并解答该问题.问题:已知非空集合{}8A x a x a =<<-,______,若A B =∅,求a 的取值集合.22.设集合{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,{}122C x a x a =-<<. (1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且()C A B ⊆⋂,求实数a 的取值范围. 23.已知集合{}2210,A x ax x a R =++=∈. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围. 24.若全集U =R ,集合{23},{27},{(4)(3)0}A x a x a B x x C x x x =-≤≤+=≤≤=-+≥.(1)当3a =时,求,()U A B A C B ;(2)若AC A =,求实数a 的取值范围.25.已知集合{}13A x x =<<,{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若A B B ⋃=,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.26.已知集合5|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2|20B x x x m =--<. (1)当3m =时,求()R A C B ;(2)若{}|14AB x x =-<<,求实数m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.A解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.3.D解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.4.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.5.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-.所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.6.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.7.C解析:C 【分析】 求出{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=,由题意列举出集合123,,A A A ,由此能求出123M M M ++的最小值. 【详解】 由题意可知,{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=123,,A A A 各有3个元素且不重复,当{}13,4,5A =,{}22,6,7A =,{}31,8,9A =时,123M M M ++取得最小值,此时最小值为12357927+++++=,故选C 【点睛】本题主要考查集合中的元素运算,解题的关键是理解题中满足的条件,属于中档题.8.C解析:C 【分析】根据“一类”的定义分别进行判断即可. 【详解】 ①201854033÷=⋯,2018[3]∴∈,故①正确;②20185(404)2-=⨯-+,2018[3]-∉,故②错误;③因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故③正确;④整数a ,b 属于同 “一类”, ∴整数a ,b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.故④正确. 正确的结论为①③④3个. 故选:C . 【点睛】本题主要考查新定义的应用,利用定义正确理解“一类”的定义是解决本题的关键,是中档题.9.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.10.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.11.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,AB =∅,符合题意.当0a >时,由于A B =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.12.A解析:A 【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.二、填空题13.①③【分析】根据题意可得①③正确通过举反例可得②④错误【详解】对于结论①若则中最小的元素相同故①正确;对于结论②取集合满足但故②错误;对于结论③若则中存在相同的元素则交集非空故③正确;对于结论④取集解析:①③ 【分析】根据题意可得①③正确,通过举反例可得②④错误. 【详解】对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确;对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误;对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确; 对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =,则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.14.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析 【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a的取值范围. 【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣,当1a >-时,(1,)A a =-; 当1a =-时,A =∅; 当1a <-时,(,1)A a =- 若选择①AB A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤ 当1a =-时,A =∅,满足题意 当1a <-时,(,1)A a =-不满足题意 所以选择①,则实数a 的取值范围是[-1,1] 若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意; 当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意 所以选择②,则实数a 的取值范围是(1,)-+∞. 若选择③RB A ⊆,当1a >-时,(1,),(,1][,)RA a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意当1a =-时,,R RA A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)RA a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.15.【分析】根据可知A 为B 的子集利用数轴求解即可【详解】根据题意作图如下:由图可知实数的取值范围为【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题常考题型 解析:2a >【分析】根据A B B ⋃=,可知A 为B 的子集,利用数轴求解即可. 【详解】 根据题意,作图如下:由图可知,实数a 的取值范围为2a >. 【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题、常考题型.16.【分析】先解一元二次不等式得集合A 再解含绝对值不等式得集合B 最后求交集得结果【详解】因为所以故答案为:【点睛】本题考查解一元二次不等式解含绝对值不等式以及集合交集考查基本分析求解能力属基础题 解析:(]1,1-【分析】先解一元二次不等式得集合A ,再解含绝对值不等式得集合B,最后求交集得结果. 【详解】因为{}2|20(1,2)A x x x x R =--<∈=-,,{}|21(,1][3,)B x x x R =-∈=-∞+∞≥,, 所以AB =(]1,1-故答案为:(]1,1- 【点睛】本题考查解一元二次不等式、解含绝对值不等式以及集合交集,考查基本分析求解能力,属基础题.17.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的解析:8 【分析】由条件可得:当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. 【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉.当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ; 而元素5没有限制.{1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个. 故答案为:8. 【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.18.①②③【分析】对于①按照和两种情况讨论可得①正确;对于②根据不可能都为1可得不可能既属于又属于可得②正确;对于③根据中的一个为0另一个为1可得时必有或时必有由此可知③正确【详解】对于①因为所以当时根解析:①②③ 【分析】对于①,按照x A ∈和x A ∉两种情况讨论,可得①正确;对于②,根据,m n 不可能都为1,可得x 不可能既属于A ,又属于B 可得②正确;对于③,根据,m n 中的一个为0,另一个为1,可得x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,由此可知③正确. 【详解】对于①,因为A B ⊆,所以当x A ∉时,根据定义可得0m =,所以(1)0m n -=, 当x A ∈,则必有x B ∈,根据定义有1n =,所以(1)0m n -=, 故对于任意x ∈R ,都有(1)0m n -=,故①正确;对于②,因为对任意,0x R mn ∈=,所以,m n 中不可能都为1,即x A ∈和x B ∈不可能同时成立,所以A B φ⋂=,故②正确;对于③,因为对任意,1x R m n ∈+=,所以,m n 中的一个为0,另一个为1,即x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,所以R A C B =,故③正确.综上所述: 所有正确命题的序号为:①②③. 故答案为①②③ 【点睛】本题考查了元素与集合,集合与集合之间的关系,对新定义的理解能力,属于中档题.19.【分析】根据条件得到或分别计算得到答案【详解】则或当时解得;当时满足综上所述:故答案为:【点睛】本题考查了根据集合的包含关系求参数忽略掉空集的情况是容易发生的错误 解析:[1,)+∝【分析】根据条件得到{}1N =或N =∅,分别计算得到答案. 【详解】N M ⊆,则{}1N =或N =∅当{}1N =时,{}{}2|201N x x x a =-+==,解得1a =;当N =∅时,{}2|20N x xx a =-+=,满足4401a a ∆=-<∴>.综上所述:1a ≥ 故答案为:[1,)+∝ 【点睛】本题考查了根据集合的包含关系求参数,忽略掉空集的情况是容易发生的错误.20.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂. 【详解】根据指数函数的性质可知,211xy =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-.故答案为(]1,1-. 【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.三、解答题21.答案见解析. 【分析】选①:本题首先可根据A 是非空集合得出4a <,然后根据AB =∅得出3a ≥或82a -≤-,最后通过计算即可得出结果.选②:本题首先可以根据A 是非空集合得出4a <,然后根据{}R35B x x =-<<求出集合B ,最后根据AB =∅列出不等式组,通过计算即可得出结果.选③:本题首先可以根据A 是非空集合得出4a <,然后根据题意得出268a a +=-,最后通过计算即可得出结果. 【详解】选①:因为A 是非空集合,所以8a a ->,解得4a <, 因为{}23B x x =-<<,AB =∅,所以3a ≥或82a -≤-,解得3a ≥或10a ≥, 综上所述,a 的取值集合是{}34a a ≤<.选②:因为A 是非空集合,所以8a a ->,解得4a <, 因为{}R35B x x =-<<,所以{3B x x =≤-或}5x ≥,因为A B =∅,所以3854a a a ≥-⎧⎪-≤⎨⎪<⎩,解得34a ≤<,故a 的取值集合是{}34a a ≤<.选③:因为A 是非空集合,所以8a a ->,解得4a <, 因为AB =∅,{}26B x x a =≥+,{}A B x x a ⋃=>,所以268a a +=-,解得2a =-或1, 故a 的取值集合是{}2,1-. 【点睛】关键点点睛:本题考查根据集合的运算结果求参数的取值范围,若两个集合的交集为空集,则这两个集合没有相同的元素,考查集合的混合运算,考查计算能力,是中档题.22.(1)14a a ⎧⎫≤⎨⎬⎩⎭;(2)1344a a ⎧⎫<≤⎨⎬⎩⎭.【分析】(1)根据空集的概念列出关于a 的不等式,求解出a 的取值范围; (2)先根据C ≠∅求解出a 的初步范围,然后根据条件求解出A B 的结果,最后再根据子集关系求解出a 的取值范围. 【详解】解:(1)因为{}122C x a x a =-<<=∅,所以122a a -≥,所以14a ≤,即实数a 的取值范围是14a a ⎧⎫≤⎨⎬⎩⎭. (2)因为{}122C x a x a =-<<≠∅,所以122a a -<,即14a >. 因为{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,所以312A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭, 因为()C A B ⊆⋂,所以12132214a a a ⎧⎪-≥-⎪⎪≤⎨⎪⎪>⎪⎩,解得1344a <≤,即实数a 的取值范围是1344a a ⎧⎫<≤⎨⎬⎩⎭.【点睛】易错点睛:根据集合的包含关系求解参数范围时的注意事项: (1)注意分析集合为空集的可能;(2)列关于参数的不等式时,注意等号是否能取到. 23.(1)0a =或1a =;(2)1a ≤;(3)0a =或1a ≥. 【分析】根据集合中元素的个数以及方程的解即可确定a 的取值范围. 【详解】解:(1)若A 中只有一个元素,则当0a =时,原方程变为210x +=,此时12x =-符合题意,当0a ≠时,方程2210ax x ++=为二元一次方程,440a ∆=-=,即1a =, 故当0a =或1a =时,原方程只有一个解; (2)A 中至少有一个元素, 即A 中有一个或两个元素,由0∆>得1a <综合(1)当1a ≤时A 中至少有一个元素; (3)A 中至多有一个元素, 即A 中有一个或没有元素 当44a 0∆=-<, 即1a >时原方程无实数解,结合(1)知当0a =或1a ≥时A 中至多有一个元素. 【点睛】关键点点睛:本题解题的关键是理解集合中的元素与方程的根之间的关系. 24.(1)[2,6],()(,6](7,)U A B AC B ==-∞+∞;(2)(,6][6,)a ∈-∞-+∞.【分析】(1)由集合的交、并、补的运算即可得解; (2)由集合的包含关系可得:因为A C A =,所以A C ⊆,再列不等式33a +≤-或24a -≥,求解即可.【详解】解:(1)因为3a =,所以[1,6],A =又因为[2,7],B =所以(,2)(7,)U C B =-∞+∞, 故[2,6]A B =,()(,6](7,)U A C B =-∞+∞; (2)因为AC A =,所以A C ⊆,{}(4)(3)0(,3][4,)C x x x =-+≥=-∞-⋃+∞又又集合{}23[2,3],A x a x a a a =-≤≤+=-+ 所以33a +≤-或24a -≥, 即6a ≤-或6,a ≥故实数a 的取值范围为(,6][6,)-∞-+∞. 【点睛】本题考查了集合的交、并、补的运算,重点考查了集合的包含关系,属基础题. 25.(1){}23A B x x ⋃=-<<;(2){}2m m ≤-;(3){}0m m ≥. 【分析】(1)当1m =-时,求出集合B ,利用并集的定义可求得集合AB ;(2)由A B B ⋃=可得出A B ⊆,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围;(3)分B =∅和B ≠∅两种情况讨论,结合A B =∅可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<; (2)由A B B ⋃=,可得A B ⊆,所以,2113m m ≤⎧⎨-≥⎩,解得2m ≤-.因此,实数m 的取值范围是{}2m m ≤-; (3)A B =∅,分以下两种情况讨论:①若21m m 时,即当13m ≥时,B =∅,符合题意;②若21mm 时,即当13m <时,则11m -≤或23m ≥,解得0m ≥,此时103m ≤<. 综上所述,0m ≥.即实数m 的取值范围为{}0m m ≥. 【点睛】本题考查并集的计算,同时也考查了利用交集和并集的运算求参数的取值范围,考查计算能力,属于中等题. 26.(1)(){}|35R A C B x x =≤<;(2)8.【分析】(1)根据分式不等式求解集合A ,再根据二次不等式的方法求解集合B 再求()R A C B 即可.(2)根据{}|14AB x x =-<<与{}|15A x x =-<<可知4x =为二次方程220x x m --=的根,代入求解实数m 的值即可.【详解】 因为501x x -<+,所以15x -<<,所以{}|15A x x =-<<. (1)当3m =时,{}|13B x x =-<<, 则{}|1,3R C B x x x =≤-≥,所以(){}|35R AC B x x =≤<.(2)因为{}|15A x x =-<<,{}|14AB x x =-<<,故4x =为二次方程220x x m --=的根所以有24240m -⨯-=,解得8m =. 此时{}|24B x x =-<<,符合题意, 故实数m 的值为8. 【点睛】本题主要考查了集合的交并补运算以及分式与二次不等式的求解.同时也考查了根据集合间的基本关系求解参数范围的问题.属于中档题.。

高中数学同步讲义(人教A版必修一):第一章集合与常用逻辑用语章末题型大总结(教师版)

高中数学同步讲义(人教A版必修一):第一章集合与常用逻辑用语章末题型大总结(教师版)

二、题型精讲题型01元素与集合高一课时练习)集合M 满足:若a M ,则11aM a(1a 且中一定含有的元素.一定含有的元素有113,2,,32.323M ,1(2)11(2)3M ,121133412133M, ,13,12.一定含有的元素有113,2,,32.【典例2】(2023·全国·高三专题练习)设全集∩,求a的取值范围;(1)若A B AA .2,10x x R B .2,10x x R C .2,10x x R D .2,10x x R 【答案】B【详解】根据特称命题的否定是全称命题即可得到命题:“2,10x x R ”的否定是”2,10x x R ”,故选:B.【变式1】(2023·重庆·统考模拟预测)命题:“ 1,x ,210x ”的否定是________.【答案】 1,x ,210x 【详解】命题:“ 1,x ,210x ”为全称命题,它的否定为特称命题: 1,x ,210x ,故答案为: 1,x ,210x 题型12根据全称命题与特称命题真假求参数【典例1】(2023春·宁夏银川·高二银川一中校考期中)若命题“0x R ,20220x mx m ”为假命题,则m 的取值范围是()A .12mB .12m C .1m 或2m D .1m 或m>2【答案】A【详解】命题“0x R ,20220x mx m ”的否定为“x R ,2220x mx m ”,该命题为真命题,即 24420m m ≤,解得 1,2m .故选:A【典例2】(2023春·天津南开·高二天津市第二南开中学校考阶段练习)若命题“x R ,使得2110x a x ”是假命题,则实数a 的取值范围是__________.【答案】,13, 【详解】若对x R ,使得 2110x a x ,则 2140a ,解得:13a ,因为命题“x R ,使得 2110x a x ”是假命题,所以实数a 的取值范围是:3a 或1a 故答案为: ,13, .【变式1】(2023春·黑龙江齐齐哈尔·高一校联考开学考试)已知命题p :“R x ,210x ax ”为假命题,则实数a 的取值范围为().A .2aB .22aC .2a 或2aD .22a 【答案】D【详解】命题2:,10p x R x ax 为假命题,所以2:,10p x R x ax 为真命题,则240a ,解得 2,2a 故选:D三、重点方法方法01数轴法【典例1】(2023·江苏南京·高一南京市雨花台中学校考阶段练习)已知集合2{|320}A x x x ,2{|0}B x x ax b ,{|02}A B x x ,则实数a 的取值范围为()A .0aB .01a C .12a D .02a 【答案】C【详解】解:因为2{|320}A x x x ={|12}x x ,又因为{|02}A B x x ,所以,方程20x ax b 必两个根,一个根为0,一个根位于[1,2)之间,由韦达定理可得0b ,即有0b ,所以方程20x ax b 即为20x ax ,所以此方程的两根为10x ,2x a .所以[1,2)a .故选:C.【典例2】(2023·江苏扬州·高一校考期中)已知全集 22,60,280U A xx x B x x x R ∣∣.(1)求A B ;(2)若集合 22430C xx ax a ∣且()A B C ∩,求实数a 的取值范围.【答案】(1){|23}A B x x ∩(2)[1,2]【详解】(1)解不等式可得 =|2<<3A x x ,={|<4B x x 或2}x ,所以={|2<<3}A B x x(2)因为 =|3<0C x x a x a ,】(②若A ,在数轴上标出集合A,B则213523aaa a,解得122a.则周一开车上班的职工人数为a b c x ,周二开车上班的职工人数为b d e x ,周三开车上班的职工人数为c e f x ,这三天都开车上班的职工人数为x .则1410820a b c x b d e x c e f x a b c d e f x ,得22233220a b c d e f x a b c d e f x ,得212b c e x ,当0b c e 时,x 取得最大值6.故选:A【典例2】(2023·高一单元测试)对于集合M ,N ,我们把属于集合M 但不属于集合N 的元素组成的集合叫做集合M 与N 的“差集”,记作M N ,即{|M N x x M ,且}x N ;把集合M 与N 中所有不属于M N 的元素组成的集合叫做集合M 与N 的“对称差集”,记作M N ,即{|M N x x M N ,且}x M N ∩.下列四个选项中,正确的有()A .若M N M ,则M N B .若M N ,则M N =C . ()M N M N M N∩D .M N M N N M 【答案】ACD【详解】若M N M ,则M N ,A 正确;当M N 时,M N ,B 错误;{|M N x x M N ,且 }()M N x M N M N ∩∩,C 正确;M N 和 M N N M 均表示集合中阴影部分,D 正确.故选:ACD.【变式1】(2023·四川内江·高一四川省资中县第二中学校考阶段练习)某小学对小学生的课外活动进行了调查.调查结果显示:参加舞蹈课外活动的有63人,参加唱歌课外活动的有89人,参加体育课外活动的有47人,三种课外活动都参加的有24人,只选择两种课外活动参加的有22人,不参加其中任何一种课外活动的有15人,则接受调查的小学生共有多少人?()A .120B .144C .177D .192【答案】B【详解】如图所示,用韦恩图表示题设中的集合关系,不妨将参加舞蹈、唱歌、体育课外活动的小学生分别用集合,,A B C 表示,则()63,()89,()47,()24card A card B card C card A B C ,,不妨设总人数为n ,韦恩图中三块区域的人数分别为,,x y z ,即()24,()24,()24card A B x card A C y card B C z ,22x y z ,由容斥原理:15()()()()()()()n card A card B card C card A B card A C card B C card A B C 638947(24)(24)(24)24x y z ,解得:144n ,故选:B.方法03 判别法【典例1】(2023·全国·高三专题练习)若“x R ,2390ax ax ”是假命题,则a 的取值范围为()A .04a B .04a C .04a D .04a 【答案】C【详解】因为“x R ,2390ax ax ”是假命题,所以“x R ,2390ax ax ”是真命题,所以当0a 时,90 成立;当0a 时,则209360a a a,解得04a ,综上:04a ,(2)因为A B A ,所以B A ,由2(1)0x m x m 解得x m 或=1x ,若1m ,则 1B ,满足B A ;若1m ,则 1,B m ,因为B A ,所以2m ,综上1m 或2m .03数形结合的思想【典例1】(2023·北京·北京四中校考模拟预测)有三支股票,,,28A B C 位股民的持有情况如下:每位股民至少持有其中一支股票.在不持有A 股票的人中,持有B 股票的人数是持有C 股票的人数的2倍.在持有A 股票的人中,只持有A 股票的人数比除了持有A 股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有A 股票.则只持有B 股票的股民人数是()A .7B .6C .5D .4【答案】A【详解】由题意,设只持有A 股票的人数为X ,则持有A 股票还持有其它殸票的人数为1X (图中d e f 的和),∵只持有一支股票的人中,有一半没持有B 或C 股票,∴只持有了B 和C 股票的人数和为X (图中b c 部分).假设只同时持有了B 和C 股票的人数为a ,∴128X X X a ,即329X a ,则X 的取值可能是9,8,7,6,5,4,3,2,1,与之对应的a 值为2,5,8,11,14,17,20,23,26,∵没持有A 股票的股民中,持有B 股票的人数是持有C 股票的人数的2倍∴ 2a b a c ,即3X a c ,∴8,5X a 时满足题意,此时1,7c b ,∴只持有B 股票的股民人数是7,故选:A.【典例2】(2023春·河北·高二校联考阶段练习)某班有学生45人,经调查发现,喜欢打篮球的学生有20人,喜欢打羽毛球的学生有32人,其中既喜欢打篮球,又喜欢打羽毛球的学生有15人,则该班学生中既不喜欢打篮球,也不喜欢打羽毛球的学生有________人.【答案】8【详解】设全集为U,集合A表示喜欢打篮球的学生,集合B表示喜欢打羽毛球的学生,如图所示,由图可得该班学生中既不喜欢打篮球,也不喜欢打羽毛球的学生有45515178人.故答案为:8。

必修一第一章集合全章练习题(含答案)

必修一第一章集合全章练习题(含答案)

》第一章集合与函数概念§集合1.集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念·(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4—5.____一、选择题1.下列语句能确定是一个集合的是( )!A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是( )A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )#A.直角三角形 B.锐角三角形C.钝角三角形 D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是( ) A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为( ) A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有( )#A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号) ①不超过π的正整数; ②本班中成绩好的同学;③高一数学课本中所有的简单题; ④平方后等于自身的数.@8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________. 9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z . 三、解答题10.判断下列说法是否正确并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,,32,12组成的集合含有四个元素;^(4)高一(三)班个子高的同学构成一个集合.`11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .'。

高一物理必修一第一二章总结题习题精练 教师版

高一物理必修一第一二章总结题习题精练  教师版

关于质点和参考系1.我们描述某个物体的运动时,总是相对一定的参考系.下列说法中正确的是()A.我们说“太阳东升西落”,是以地球为参考系的B.我们说“地球围绕太阳转”,是以地球为参考系的C.坐在火车上的乘客看到铁路旁的树木、电线杆迎面向他飞奔而来,乘客是以他自己为参考系的D.参考系必须选取地面或相对于地面不动的其他物体2.在研究下列运动时,可把物体视为质点的是()A.研究从斜面上滑下的木块 B.运动中的砂轮C.绕地球运转的人造地球卫星 D.远洋航行中的巨轮3.从水平匀速航行的飞机上向地面空投救灾物资,站在地面上的观察者与飞行员看空中下落的物资,看到的现象是()A.两人看到物资都是竖直下落的 B.两人看到物资都是沿曲线运动的C.地面上的人看到物体沿曲线下落的 D.飞行员看到物体是竖直下落的4.甲、乙、丙三架观光电梯,甲中乘客看一高楼在向下运动,乙中乘客看甲在向下运动,丙中乘客看甲、乙都在向上运动,则这三架电梯相对地面的运动情况可能是()A.甲向上,乙向下,丙不动 B.甲向上,乙向上,丙不动C.甲向上,乙向上,丙向下 D.甲、乙、丙都向上,但甲、乙比丙慢5.判断下列说法正确的是()A.质点一定是体积、质量都极小的物体B.研究一列火车全部通过桥所需的时间时,因火车上各点的运动状态相同,所以可以将火车视为质点C.研究自行车的运动时,因为车轮在转动,所以无论研究哪方面,自行车都不能被视为质点D.地球虽大,且有自转和公转,但有时可被视为质点关于时间和位移1.以下的计时数据指时间的是 ( ) A.由北京开往深圳的列车于22时18分从北京站开出B.期中物理考试时间为1.5 hC.中央电视台每晚的新闻联播节目19时开播D.一节课45 min2. 关于位移和路程,以下说法正确的是 ( )A.位移和路程都是描述质点位置变动的物理量B.物体的位移是直线,而路程是曲线C.在直线运动中,位移和路程相同D.只有在质点做单向直线运动时,位移的大小才等于路程3. 一个物体从A点运动到B点,则 ( )A. 物体的位移可能等于物体运动的路程B. 物体的位移可能是正值也可能是负值C. 物体位移的大小总是小于或等于物体运动的路程D. 物体的位移是直线,而路程是曲线4. 如图1-2所示,一物体沿三条不同的路径由A运动到B,下列关于它们的位移的大小说法正确的是 ( )A.沿Ⅰ较大B.沿Ⅱ较大图1-2 C.沿Ⅲ较大D.一样大5.路程和位移的关系正确的是 ( ) A.运动的物体位移和路程都不可能为零B.运动的物体在一段时间内位移可以为零,但路程不可能为零C.运动的物体位移随时间一定越来越大D.运动的物体路程随时间一定越来越大6. 一支队伍匀速前进,通讯兵从队尾赶到队前并又立即返回.当通讯兵回到队尾时,队伍已前进了200 m.在这个过程中,通讯兵的位移大小是 ( ) A.400 m B.100 mC.200 m D.300 m7.一质点在x轴上运动,各个时刻的位置坐标如下表,则此质点开始运动后:t/s 0 2 4 6 8 10 12 14 16 18x/m 2 4 6 8 8 8 12 16 20 24(1)作出该质点的位移-时间图象;(2)质点在10s内的位移、路程各为多大?(3)质点在第7个2s内的位移多大?关于速度1.下列说法正确的是 [ ]A.变速直线运动的速度是变化的B.平均速度即为速度的平均值C.瞬时速度是物体在某一时刻或在某一位置时的速度D.瞬时速度可看作时间趋于无穷小时的平均速度2.关于匀速直线运动,下列说法中正确的是 [ ]A.瞬时速度不变的运动,一定是匀速直线运动B.速率不变的运动,一定是匀速直线运动C.相同时间内平均速度相同的运动,一定是匀速直线运动D.瞬时速度的方向始终不变的运动,一定是匀速直线运动3.子弹以900m/s的速度从枪筒射出,汽车在北京长安街上行驶,时快时慢,20min行驶了 18km,汽车行驶的速度是54km/h,则 [ ]A.900m/s是平均速度B.900m/s是瞬时速度C.54km/h是平均速度D.54km/h是瞬时速度4.作变速直线运动的物体,若前一半时间的平均速度为4m/s,后一半时间的平均速度是8m/s,则全程的平均速度是 [ ]A.7m/sB.5m/sC. 6m/sD. 5.5m/s5,某物体沿一条直线运动:(1)若前一半时间内的平均速度为v1,后一半时间内的平均速度为v2,求全程的平均速度.(2)若前一半位移的平均速度为v1,后一半位移的平均速度为v2,全程的平均速度又是多少?解析:(1)设全程所用的时间为t,则由平均速度的定义知(前一半时间内的位移为x1=v1·后一半时间内的位移为x2=v2·全程时间t内的位移为x=x1+x2=(v1+v2)全程的平均速度为==(v1+v2).(2)设全程位移为x,由平均速度定义知前一半位移所用时间为t1=/v1=后一半位移所用时间为t2=/v2=全程所用时间为t=t1+t2=+=全程的平均速度为==.答案:(1)(v1+v2) (2))6,.如图1-3-14所示为甲、乙物体运动的x-t图象,则下列说法正确的是( )图1-3-14A.甲物体做变速直线运动,乙物体做匀速直线运动B.两物体的初速度都为零C.在t1时间内两物体平均速度大小相等D.相遇时,甲的速度大于乙的速度7.A、B、C三物体同时同地出发做直线运动,它们的运动情况如图1-2所示,在20 s时间内,它们的路程关系是( )图1-2A.x A=x B=x c B.x A>x B=x cC.x A>x B>x c D.x A=x B<x c8.某物体沿一直线运动,其v-t图象如图1-4所示,下列描述中正确的是( )A.第1 s内和第2 s内物体的速度方向相反B.第1 s内和第2 s内物体的加速度方向相反C.第2 s末物体的速度和加速度都为零D.第3 s内物体的速度方向和加速度方向相同解析:选BD.由图可知第1 s和第2 s速度均大于零,方向相同,但第1 s内速度增大,第2 s 内速度减小,所以加速度方向相反,第2 s末速度变为零,但加速度不为零,第3 s物体反向运动,加速度与速度方向相同,综上所述B、D正确.用打点计时器测速度1.接通电源与释放纸带让纸带(随物体)开始运动,这两项操作的时间顺序是( )A.先接通电源,后释放纸带B.先释放纸带,后接通电源C.释放纸带的同时接通电源D.先接通电源或先释放纸带都可以2.由打点计时器打出的纸带可以直接得到(可直接测量得到,而不需经过计算)的物理量是( )A.时间间隔B.位移C.瞬时速度D.平均速度3.如图1-4-10所示,根据打点计时器打出的纸带,判断哪条纸带表示物体做匀速运动( )4.打点计时器所用电源的频率为50 Hz,某次实验中得到的一条纸带,用毫米刻度尺测量情况如图所示,纸带在A、C之间的平均速度为________m/s,在A、D之间的平均速度为__________m/s,B点的瞬时速度更接近于________m/s.加速度1.关于加速度的概念,下列说法正确的是( )A.加速度就是增加出来的速度B.加速度的大小反映了速度变化的大小C.加速度的大小反映了速度变化的快慢D.物体有加速度,速度不一定增大2.下列关于加速度与速度方向关系的说法中正确的是( )A.加速度方向一定与初速度方向相同B.加速度方向一定与末速度方向相同C.加速度方向一定与速度变化量的方向相同D.加速度方向保持不变,速度方向也保持不变3.足球以8 m/s的速度飞来,运动员把它以12 m/s的速度反向踢出,踢球时间为0.2 s,设球飞来的方向为正方向,则足球在这段时间内的平均加速度是( )A.-200 m/s2B.200 m/s2C.-100 m/s2 D。

(高中数学必修1)第一章--集合部分试题及答案

(高中数学必修1)第一章--集合部分试题及答案

A BC(高中数学必修1)第一章集合部分试题[基础训练A组]一、选择题1.下列各项中,不可以组成集合的是()A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数2.下列四个集合中,是空集的是()A.}33|{=+xx B.},,|),{(22Ryxxyyx∈-=C.}0|{2≤xx D.},01|{2Rxxxx∈=+-3.下列表示图形中的阴影部分的是()A.()()A CB CB.()()A B A CC.()()A B B CD.()A B C4.下面有四个命题:(1)集合N中最小的数是1;(2)若a-不属于N,则a属于N;(3)若,,NbNa∈∈则ba+的最小值为2;(4)xx212=+的解可表示为{}1,1;其中正确命题的个数为()A.0个B.1个C.2个D.3个5.若集合{},,M a b c=中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.若全集{}{}0,1,2,32UU C A==且,则集合A的真子集共有()A.3个B.5个C.7个D.8个二、填空题1.用符号“∈”或“∉”填空(1)0______N, 5______N, 16______N(2)1______,_______,______2RQ Q e C Qπ-(e是个无理数)(3{}|,,x x a a Q b Q=∈∈2. 若集合{}|6,A x x x N=≤∈,{|}B x x=是非质数,C A B= ,则C的非空子集的个数为。

3.若集合{}|37A x x=≤<,{}|210B x x=<<,则A B=_____________.4.设集合{32}A x x=-≤≤,{2121}B x k x k=-≤≤+,且A B⊇,则实数k的取值范围是。

5.已知{}{}221,21A y y x xB y y x==-+-==+,则A B=_________。

高中数学人教版必修一集合习题及答案

高中数学人教版必修一集合习题及答案

高中数学人教版必修一集合习题及答案必修1 第一章集合一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是()A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }5.下列表述正确的是()A.}0{=?B. }0{??C. }0{??D. }0{∈?7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有()A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个9.满足条件{1,2,3}?≠M ?≠{1,2,3,4,5,6}的集合M 的个数是()A. 8 B . 7C. 6D. 511.设集合{|32}M m m =∈-<<="" bdsfid="122" m="" n="" p="" 则,≤≤="" ,{|13}n="">A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ?,求实数a 的取值集合.必修1 第一章集合测试集合测试参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ?}01{2=-x x ;(2){1,2,3}?N ;(3){1}?}{2x x x =;(4)0∈}2{2x x x =;15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=?x x N C M U ;13|{<≤-=?x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=320. 32≤≤a .。

苏教版必修一《第1章集合》单元测试含答案解析

苏教版必修一《第1章集合》单元测试含答案解析

(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.下列六个关系式:①{a ,b }⊆{b ,a };②{a ,b }={b ,a };③{0}=∅;④0∈{0};⑤∅∈{0};⑥∅⊆{0}.其中正确的个数为________.解析:①②④⑥是正确的.答案:42.下列各对象可以组成集合的是________.①与1非常接近的全体实数;②某校~第一学期全体高一学生;③高一年级视力比较好的同学;④与无理数π相差很小的全体实数.解析:据集合的概念判断,只有②可以组成集合.答案:②3.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________. 解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}4.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为________. 解析:∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,6},∴{a ,a 2}={4,16},∴a =4.答案:45.设集合A ={-1,4,8},B ={-1,a +2,a 2+4},若A =B ,则实数a 的值为________. 解析:∵A =B ,∴①⎩⎪⎨⎪⎧a +2=4a 2+4=8或②⎩⎪⎨⎪⎧a +2=8a 2+4=4, 由①得a =2,此时B ={-1,4,8}满足题意,②无解,∴a =2.答案:26.已知集合A ={3,m 2},B ={-1,3,2m -1},若A ⊆B ,则实数m 的值为________. 解析:∵A ⊆B ,∴A 中元素都是B 的元素,即m 2=2m -1,解得m =1.答案:17.若集合A ={x |x ≥3},B ={x |x <m }满足A ∪B =R ,A ∩B =∅,则实数m =________. 解析:结合数轴知,当且仅当m =3时满足A ∪B =R ,A ∩B =∅.答案:38.设集合A ={1,4,x },B ={1,x 2},且A ∪B ={1,4,x },则满足条件的实数x 的个数是________.解析:由题意知x 2=4或x 2=x ,所以x =0,1,2,-2,经检验知x =0,2,-2符合题意,x =1不符合题意,故有3个.答案:39.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有________个. 解析:M 可以为∅,{4},{4,7},{8},{8,7},{7}.答案:610.已知集合A ={x |y = 1-x 2,x ∈Z },B ={y |y =x 2+1,x ∈A },则A ∩B 为________. 解析:由1-x 2≥0得,-1≤x ≤1,∵x ∈Z ,∴A ={-1,0,1}.当x ∈A 时,y =x 2+1∈{2,1},即B ={1,2},∴A ∩B ={1}.答案:{1}11.集合P ={(x ,y )|x +y =0},Q ={(x ,y )|x -y =2},则P ∩Q =________.解析:P ∩Q ={(x ,y )|⎩⎪⎨⎪⎧x +y =0,x -y =2,}={(x ,y )|⎩⎪⎨⎪⎧x =1,y =-1,}={(1,-1)}. 答案:{(1,-1)}12.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q},若P ={1,2,3,4},Q ={x | x +12<2,x ∈R },则P -Q =________. 解析:由定义P -Q ={x |x ∈P ,且x ∉Q},求P -Q 可检验P ={1,2,3,4}中的元素在不在Q ={x | x +12<2,x ∈R }中,所有在P 中不在Q 中的元素即为P -Q 中的元素,故P -Q ={4}.答案:{4}13.设P 、Q 为两个非空实数集合,定义集合P*Q ={z |z =ab ,a ∈P ,b ∈Q},若P ={-1,0,1},Q ={-2,2},则集合P*Q 中元素的个数是________.解析:按P*Q 的定义,P*Q 中元素为2,-2,0,共3个.答案:314.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么k 是A 的一个“孤立元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:不含“孤立元”的集合就是在集合中有与k 相邻的元素,故符合题意的集合有:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知全集U =R ,A ={x |2≤x <5},集合B ={x |3<x <9}.求(1)∁U (A ∪B );(2)A ∩∁U B .解:(1)∵A ∪B ={x |2≤x <9},∴∁U (A ∪B )={x |x <2或x ≥9}.(2)∵∁U B ={x |x ≤3或x ≥9},∴A ∩∁U B ={x |2≤x ≤3}.16.(本小题满分14分)设全集U ={2,4,-(a -3)2},集合A ={2,a 2-a +2},若∁U A ={-1},求实数a 的值.解:由∁U A ={-1},可得⎩⎪⎨⎪⎧-1∈U ,-1∉A ,所以⎩⎪⎨⎪⎧-(a -3)2=-1,a 2-a +2≠-1,解得a =4或a =2. 当a =2时,A ={2,4},满足A ⊆U ,符合题意;当a =4时,A ={2,14},不满足A ⊆U ,故舍去.综上,a 的值为2.17.(本小题满分14分)已知集合A ={x |x 2-3x -10≤0},集合B ={x |p +1≤x ≤2p -1}.若B ⊆A ,求实数p 的取值范围.解:由x 2-3x -10≤0得-2≤x ≤5,故A ={x |-2≤x ≤5}.①当B ≠∅时,即p +1≤2p -1⇒p ≥2.由B ⊆A 得:-2≤p +1且2p -1≤5,解得-3≤p ≤3.∴2≤p ≤3.②当B =∅时,即p +1>2p -1⇒p <2.由①②得p 的取值范围是p ≤3.18.(本小题满分16分)已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值;(3)若A 中至多只有一个元素,求a 的取值范围.解:(1)若A 是空集,则方程ax 2-3x +2=0没有根,则a ≠0且Δ=9-8a <0,即a >98. (2)若A 中只有一个元素,则方程ax 2-3x +2=0有一个根,①当a ≠0且Δ=9-8a =0时,则a =98; ②当a =0时,方程为-3x +2=0,只有一个根.综上,a =0或98. (3)若A 中至多只有一个元素,则A 是空集或A 只有一个元素,故a =0或a ≥98. 19.(本小题满分16分)某班50名学生中,会讲英语的有36人,会讲日语的有20人,既会讲英语又会讲日语的有14人,问既不会讲英语又不会讲日语的有多少人?解:设全集U ={某班50名学生},A ={会讲英语的学生},B ={会讲日语的学生},A ∩B ={既会讲英语又会讲日语的学生},则由韦恩图知,既不会英语又不会日语的学生有:50-22-14-6=8(人).20.(本小题满分16分)已知集合A ={x |x 2-2x -8=0},B ={x |x 2+ax +a 2-12=0},若A ∪B ≠A ,求实数a 的取值范围.解:若B ∪A =A ,则B ⊆A ,又A ={x |x 2-2x -8=0}={-2,4},所以集合B 有以下三种情况:①当B =∅,有Δ=a 2-4(a 2-12)<0⇒a 2>16⇒a <-4或a >4; ②当B 是单元素集合时,有Δ=0⇒a 2=16⇒a =-4或a =4.若a =-4,则B ={2}⊄A ,若a =4,则B ={-2}⊆A ;③当B ={-2,4}时,有-2,4是关于x 的方程x 2+ax +a 2-12=0的两根 ⇒⎩⎪⎨⎪⎧-2+4=-a (-2)×4=a 2-12⇒a =-2. 此时,B ={x |x 2-2x -8=0}={-2,4}⊆A .综上可知,B ∪A =A 时,实数a 的取值范围是a <-4或a ≥4或a =-2. 所以B ∪A ≠A 时,实数a 的取值范围为-4≤a <4,且a ≠-2.。

高一数学必修一第一章集合练习题(附答案和解释)

高一数学必修一第一章集合练习题(附答案和解释)

高一数学必修一第一章集合练习题(附答案和解释)一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N ={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为() A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x<7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=8>7,∴22∉{x|x<7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N*},用列举法表示C=________. 【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N*,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x +6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.。

2018秋新版高中数学北师大版必修1习题:第一章集合 1.1.1 含解析

2018秋新版高中数学北师大版必修1习题:第一章集合 1.1.1 含解析

01第一章集合§1集合的含义与表示第1课时集合的含义课时过关·能力提升1给出下列说法:①地球周围的行星能构成一个集合;②实数中不是有理数的所有数能构成一个集合;③集合A为{1,2,3},集合B为{1,3,2},是不同的集合.其中正确的个数是()A.0B.1C.2D.3解析:①是错误的,因为“周围”是个模糊的概念,不满足集合元素的确定性.②是正确的,虽然满足条件的数有无数多个,但任给一个元素都能判断出其是否属于这个集合.③是错误的,因为集合中的元素是无序的.答案:B2已知集合M中的元素满足x=3k-1,k∈Z,则下列表示正确的是()A.-1∉MB.-11∈MC.3k2-1∈MD.-34∉M∉Z;C正确,因为3k2-1=3k-1,解得k=0或k=1,满解析:A错,当k=0时,-1∈M;B错,若3k-1=-11,则k=-103足条件;D错,当k=-10时,-34∈M.故选C.答案:C3集合A的元素y满足y=x2+1,集合B的元素(x,y)满足y=x2+1(A,B中x∈R,y∈R).下列选项中元素与集合的关系都正确的是()A.2∈A,且2∈BB.(1,2)∈A,且(1,2)∈BC.2∈A,且(3,10)∈BD.(3,10)∈A,且2∈B答案:C4已知集合A含有两个元素a-3和2a-1,若a∈A,则实数a的值是()A.-3B.0或1C.1D.-1解析:由于a∈A,则a=a-3或a=2a-1.若a=a-3,则有-3=0,不成立;若a=2a-1,则a=1,此时集合A中的两个元素是-2,1,符合题意.答案:C5已知集合M中含有3个元素0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1解析:由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.故选C.答案:C6集合A中有3个元素1,2,3,集合B中有2个元素4,5,设集合M中的元素x满足x=a+b,a∈A,b∈B,则M中元素的个数为()A.3B.4C.5D.6解析:因为集合A为1,2,3,集合B为4,5,集合M中的元素满足x=a+b,a∈A,b∈B,所以a+b的值可能为1+4=5,1+5=6,2+4=6,2+5=7,3+4=7,3+5=8,所以集合M中的元素有5,6,7,8,共4个,故选B.答案:B7若已知-5是x2-ax-5=0的根,集合M中的元素为方程x2-4x-a=0的根,则集合M中所有元素之和为.解析:把-5代入方程x2-ax-5=0,得a=-4,将a=-4代入方程x2-4x-a=0得x2-4x+4=0,故集合M中的元素即为2.因此所有元素之和为2.答案:28设a,b为非零实数,则x=a|a|+b|b|+ab|ab|的所有值组成的集合中的元素为.解析:当a<0,b<0时,ab>0,则x=-1-1+1=-1;当a<0,b>0时,ab<0,则x=-1+1-1=-1;当a>0,b>0时,ab>0,则x=1+1+1=3;当a>0,b<0时,ab<0,则x=1-1-1=-1.故x=-1或x=3.所以由x的所有值构成的集合中的元素为-1,3.答案:-1,39已知集合A的元素满足条件x=m+n2,n,m∈Z.(1)设x1=3-42,x2=9-42,判断x1,x2与集合A之间的关系;(2)任取x 3,x 4∈A ,判断x 3+x 4与集合A 之间的关系.解(1)∵x 1=3-4 2=-3−4 2,∴x 1∉A , ∵x 2= (2 2)2-4 2+1=-1+2 2,∴x 2∈A.(2)x 3,x 4∈A ,设x 3=m 1+n 1 2,x 4=m 2+n 2 2(m 1,n 1,m 2,n 2∈Z ).则x 3+x 4=m 1+ 2n 1+m 2+ 2n 2=(m 1+m 2)+(n 1+n 2) 2,∵m 1,n 1,m 2,n 2∈Z ,∴m 1+m 2,n 1+n 2∈Z ,∴x 3+x 4∈A.10设集合A 的元素为2,3,a 2+2a-3,集合B 的元素为|a+3|,2.已知5∈A ,且5∉B ,求a 的值. 解∵5∈A ,∴a 2+2a-3=5,解得a=2或a=-4.又5∉B ,∴|a+3|≠5,解得a ≠2,且a ≠-8.∴a=-4.★11已知方程ax 2-3x-4=0的解组成的集合为A.(1)若A 中有两个元素,求实数a 的取值范围.(2)若A 中至多有一个元素,求实数a 的取值范围.解(1)因为A 中有两个元素,所以方程ax 2-3x-4=0有两个不等的实数根,所以 a ≠0,Δ=9+16a >0,即a>-916且a ≠0.所以实数a 的取值范围为a>-916,且a ≠0.(2)当a=0时,由-3x-4=0得x=-43;当a ≠0时,若关于x 的方程ax 2-3x-4=0有两个相等的实数根,则Δ=9+16a=0,即a=-916; 若关于x 的方程无实数根,则Δ=9+16a<0,即a<-916,故所求的a 的取值范围是a ≤-916或a=0. ★12已知集合A 的元素全为实数,且满足当a ∈A 时,1+a 1-a ∈A. (1)若2∈A ,则A 中一定还有哪些元素?(2)0是不是集合A 中的元素?请你设计一个实数a ∈A ,再求出A 中的所有元素.(3)根据(1)(2),你能得出什么结论?解(1)当2∈A 时,依次代入1+a 1-a,计算可得,1+21-2=-3∈A ,1-31+3=-12∈A , 1-121+12=1∈A ,1+131-13=2∈A ,…… 结果循环出现,故A 中一定还有-3,-12,13.(2)0不是集合A 中的元素.若0∈A ,则1+01-0=1∈A ,而此时1+11-1没有意义,与条件1+a 1-a∈A 矛盾,故0不是集合A 中的元素. 若a=3,则集合A 的元素为3,-2,-13,12.(3)根据(1)(2)可得出如下结论:A 中不含0,1,-1;若a ∈A ,则其负倒数也属于A.。

高一数学必修1教师用书第一章§2集合的基本关系北师大版

高一数学必修1教师用书第一章§2集合的基本关系北师大版

1.若集合A中含有n个元素,集合A的子集个数为2n, 真子集的个数为2n-1,非空真子集的个数为2n-2.
2.∅与0,{0},{∅}的区别与联系
相同点
∅与0 ∅与{0} 都表示 都是 无的意思 集合
∅与{∅} 都是集合
∅与0
∅与{0}
∅与{∅}
∅不含任何元素;
∅是集合; ∅不含任何元素;
不同点
{∅}含一个元素,
2.符号∈和⊆ 的区别 符号∈只能适用于元素与集合之间,符号∈的左边只能写 元素,右边只能写集合,说明左边的元素属于右边的集合,表 示元素与集合之间的关系,如-1∈Z, 2∈R;符号⊆ 只能适 用于集合与集合之间,其左右两边都必须写集合,说明左边的 集合是右边集合的子集,左边集合的元素均属于右边的集合, 如{1}⊆ {1,0},{x|x<2}⊆ {x|x<3}.
同的解,∴B错;∵(2,3)为有序数组,2,3为数,∴C错.
答案:D
2.已知集合A={高一 ·三班同学},B={高一 ·三班二组
成员},则
()
A.A⊇B
B.A⊆B
C.A B
D.B A
解析:由集合中元素的特点可知,D正确.
答案:D
3.指出下列各对集合之间的关系: ①A={-1,1},B={x∈Z|x2=1}; ②A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)}; ③A={-1,1},B={∅,{-1},{1},{-1,1}}; ④A={x|x是等边三角形},B={x|x是等腰三角形}; ⑤A={x|-1<x<4},B={x|x-5<0}.
1.子集
对于两个集合A与B,如果集合A中的 任何一个元素 都
是集合B中的元素,即若 a∈A,则a∈B,我们就说集合 含

新教材苏教版高中数学必修第一册第一章集合 课时练习题及章末测验含答案解析

新教材苏教版高中数学必修第一册第一章集合 课时练习题及章末测验含答案解析

第一章集合1.1集合的概念与表示................................................................................................. - 1 -第1课时集合的概念.......................................................................................... - 1 -第2课时集合的表示.......................................................................................... - 5 -1.2子集、全集、补集................................................................................................. - 9 -1.3交集、并集 .......................................................................................................... - 14 -第1章测评 ................................................................................................................... - 19 - 1.1集合的概念与表示第1课时集合的概念1.(2020江苏南京高一检测)下列判断正确的个数为()①所有的等腰三角形构成一个集合;②倒数等于它自身的实数构成一个集合;③质数的全体构成一个集合;④由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4,故①正确;若=a,则a2=1,解得a=±1,构成的集合中的元素为1,-1,故②正确;质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故③正确;集合中的元素具有互异性,由2,3,4,3,6,2构成的集合含有4个元素,分别为2,3,4,6,故④错误.故选C.2.下列说法:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的是()A.②④B.②③C.①②D.①④N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.3.用符号∈或∉填空:(1)-2N+;(2)(-4)2N+;(3)Z;(4)π+3Q.∉(2)∈(3)∉(4)∉4.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=.x∈N,2<x<a,且集合P中恰有三个元素,∴集合P中的三个元素为3,4,5,∴a=6.5.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.a∈A且3a∈A,∴解得a<2.又a∈N,∴a=0或1.6.(2020河北师范大学附属中学高一期中)设由“我和我的祖国”中的所有汉字组成集合A,则A中的元素个数为()A.4B.5C.6D.7,集合A中的元素分别为我、和、的、祖、国,共5个元素.故选B.7.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可2∈A可知,m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A 的元素为0,3,2,符合题意.8.(2020上海高一月考)如果集合中的三个元素对应着三角形的三条边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,该三角形一定不可能是等腰三角形.故选D.9.(多选)(2020北京高一检测)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数A,C,D中的元素都是确定的,能构成集合,选项B中“难题”的标准不明确,不符合确定性,不能构成集合.故选ACD.10.(多选)(2020广东深圳第二高级中学高一月考)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是()A.-1B.-2C.6D.2a2,2-a,4组成一个集合A,且集合A中含有3个元素,所以a2≠2-a,a2≠4,2-a≠4,解得a≠±2,且a≠1.故选AC.11.(多选)(2020山东济南高一检测)已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.0∉MB.2∈MC.-4∈MD.4∈M,分4种情况讨论:①当x,y,z全部为负数时,则xyz也为负数,则=-4;②当x,y,z中只有一个负数时,则xyz为负数,则=0;③当x,y,z中有两个负数时,则xyz为正数,则=0;④当x,y,z全部为正数时,则xyz也为正数,则=4.则M中含有三个元素-4,0,4.分析选项可得C,D正确.故选CD.12.(2020山东潍坊高一检测)如果有一集合含有三个元素1,x,x2-x,则实数x满足的条件是.≠0,且x≠1,且x≠2,且x≠x≠1,x2-x≠1,x2-x≠x,解得x≠0,且x≠1,且x≠2,且x≠.13.若方程ax2+x+1=0的解构成的集合只有一个元素,则a的值为.或a=0时,原方程为一元一次方程x+1=0,满足题意,所求元素即为方程的根x=-1;当a≠0时,由题意知方程ax2+x+1=0只有一个实数根,所以Δ=1-4a=0,解得a=.所以a的值为0或.14.集合A是由形如m+n(m∈Z,n∈Z)的数构成的,试分别判断a=-,b=,c=(1-2)2与集合A的关系.a=-=0+(-1)×,而0∈Z,-1∈Z,∴a∈A.∵b=,而∉Z,∉Z,∴b∉A.∵c=(1-2)2=13+(-4)×,而13∈Z,-4∈Z,∴c∈A.15.设A为实数集,且满足条件:若a∈A,则∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.若a∈A,则∈A.又2∈A,∴=-1∈A.∵-1∈A,∴∈A.∵∈A,∴=2∈A.∴A中必还有另外两个元素,且为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无实数解.∴a≠,∴集合A不可能是单元素集.第2课时集合的表示1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7,B={2,3,4,5,6,8},共有6个元素,故选C.3.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.集合3,,…用描述法可表示为()A.x x=,n∈N*B.x x=,n∈N*C.x x=,n∈N*D.x x=,n∈N*解析由3,,即从中发现规律,x=,n∈N*,故可用描述法表示为x x=,n∈N*.5.(2020山东济宁高一检测)已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为B=.-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.6.已知集合A={x|x2+2x+a=0},若1∈A,则A=.-3,1}x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1 000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.(2020福建厦门翔安一中高一期中)已知集合M={x|x(x+2)(x-2)=0},则M=()A.{0,-2}B.{0,2}C.{0,-2,2}D.{-2,2}M={x|x(x+2)(x-2)=0}={-2,0,2}.9.(2020河北沧州高一期中)已知集合M={a,2a-1,2a2-1},若1∈M,则M中所有元素之和为()A.3B.1C.-3D.-1a=1,则2a-1=1,矛盾;若2a-1=1,则a=1,矛盾,故2a2-1=1,解得a=1(舍)或a=-1,故M={-1,-3,1},元素之和为-3.故选C.10.(2020上海嘉定第一中学高一月考)已知集合A={a2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为()A.0B.-1C.1D.±1a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a2=1,此时(ab)2 021=(-1)2 021=-1;当b=-1时,a2=a,因为a≠0,所以a=1,此时(ab)2 021=(-1)2 021=-1.故选B.11.(多选)(2020山东潍坊高一检测)下列选项表示的集合P与Q相等的是()A.P={x|x2+1=0,x∈R},Q=⌀B.P={2,5},Q={5,2}C.P={(2,5)},Q={(5,2)}D.P={x|x=2m+1,m∈Z},Q={x|x=2m-1,m∈Z}A,集合P中方程x2+1=0无实数根,故P=Q=⌀;对于B,集合P中有两个元素2,5,集合Q中有两个元素2,5,故P=Q;对于C,集合P中有一个元素是点(2,5),集合Q中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|x=2m+1,m∈Z}表示所有奇数构成的集合,集合Q={x|x=2m-1,m∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.(多选)(2020山东济宁曲阜一中高一月考)下列选项能正确表示方程组的解集的是()A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.(多选)(2020江苏连云港高一期中)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是()A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉BA={y|y≥1},集合B是由抛物线y=x2+1上的点组成的集合,故A正确,B错误,C正确,D正确.故选ACD.14.(2020上海南洋模范中学高一期中)已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.答案,1解析由题意,集合A={x,y},B={2x,2x2},且A=B,则x=2x或x=2x2.若x=2x,可得x=0,此时集合B不满足集合中元素的互异性,舍去;若x=2x2,可得x=或x=0(舍去),当x=时,可得2x=1,2x2=,即A=B=,1.15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A=;用描述法表示“所有被4除余1的整数组成的集合”是.{x|x=4k+1,k∈Z}A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k∈Z}.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值..①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0.当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0, 所以c2-2c+1=0,即c=1,但当c=1时,B中的三个元素相同,不符合题意.②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0.由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0,解得c=-或c=1(舍去),当c=-时,经验证,符合题意.综上所述,c=-.17.(2020天津南开翔宇学校高一月考)已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.当a=0时,-3x+2=0,此时x=,所以A不是空集,不符合题意;当a≠0时,若A是空集,则Δ=9-8a<0,所以a>.综上可知,a的所有取值组成的集合为a a>.(2)当a=0时,-3x+2=0,此时x=,满足条件,此时A中仅有一个元素;当a≠0时,Δ=9-8a=0,所以a=,此时方程为x2-3x+2=0,即(3x-4)2=0,解得x=,此时A 中仅有一个元素.综上可知,当a=0时,A中只有一个元素为;当a=时,A中只有一个元素为.(3)A中至多有一个元素,即方程ax2-3x+2=0只有一个实数根或无实数根.则a=0或Δ=9-8a<0,解得a=0或a>.故a的所有取值组成的集合为a a=0,或a>.1.2子集、全集、补集1.(2020山东青岛高一检测)已知集合M={x|x2-2x=0},U={2,1,0},则∁U M=()A.{0}B.{1,2}C.{1}D.{0,1,2}M={x|x2-2x=0}={0,2},U={2,1,0},则∁U M={1}.故选C.2.集合A={x|-1<x<2},B={x|0<x<1},则()A.B∈AB.A⊆BC.B⊆AD.A=BA={x|-1<x<2},B={x|0<x<1},∴B⊆A.故选C.3.下列关系:①0∈{0};②⌀⫋{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1B.2C.3D.4正确,0是集合{0}的元素;②正确,⌀是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.4.已知集合B={-1,1,4},满足条件⌀⫋M⊆B的集合M的个数为()A.3B.6C.7D.8M是集合B的非空子集,集合B中有3个元素,因此非空子集有7个,故选C.5.若集合M=x x=,k∈Z,集合N=x x=,k∈Z,则()A.M=NB.N⊆MC.M⫋ND.以上均不对解析M=x x=,k∈Z=x x=,k∈Z,N=x x=,k∈Z=x x=,k∈Z.又2k+1,k∈Z 为奇数,k+2,k∈Z为整数,所以M⫋N.6.设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围是.a|a≥2},因为A⫋B,所以a≥2,即a的取值范围是{a|a≥2}.7.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是.m|m<1}∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1,即m的取值范围是{m|m<1}.8.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.B=⌀时,2a>a+3,即a>3,显然满足题意.当B≠⌀时,根据题意作出如图所示的数轴,可得解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4,或a>2}.9.(2020山东济宁高一月考)如果集合P={x|x>-1},那么()A.0⊆PB.{0}∈PC.⌀∈PD.{0}⊆PP={x|x>-1},∴0∈P,{0}⊆P,⌀⊆P,故A,B,C错误,D正确.故选D.10.已知M={x|x>1},N={x|x>a},且M⫋N,则()A.a≤1B.a<1C.a≥1D.a>1M={x|x>1},N={x|x>a},且M⫋N,∴a<1.故选B.11.集合M={x|x=4k+2,k∈Z},N={x|x=2k,k∈Z},P={x|x=4k-2,k∈Z},则M,N,P的关系为()A.M=P⊆NB.N=P⊆MC.M=N⊆PD.M=P=NM=P={±2,±6…},N={0,±2,±4,±6…},所以M=P⊆N.12.(2020山东济南高一检测)已知A={x|x2-3x+2=0},B={x|ax=1},若B⊆A,则实数a 取值的集合为()A.0,1,B.1,C.0,2,D.-2,解析因为A={x|x2-3x+2=0}={x|(x-1)(x-2)=0}={1,2},又B={x|ax=1},当B=⌀时,方程ax=1无解,则a=0,此时满足B⊆A;当B≠⌀时,a≠0,此时B={x|ax=1}=,为使B⊆A,只需=1或=2,解得a=1或a=.综上,实数a取值的集合为0,1,.故选A.13.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2,知则a=2.14.(多选)(2020山东五莲教学研究室高一期中)已知集合M={x|-3<x<3,x∈Z},则下列符号语言表述正确的是()A.2∈MB.0⊆MC.{0}∈MD.{0}⊆MM={x|-3<x<3,x∈Z}={-2,-1,0,1,2},∴2∈M,0∈M,{0}⊆M.∴A,D正确,B,C错误.故选AD.15.(多选)(2020福建宁德高一期中)已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆AB.A⊆BC.0∉AD.1∈AA={y|y=x2+1}={y|y≥1},B={x|x>2},所以B⊆A,0∉A,1∈A.故选ACD.16.(多选)(2020北京高一检测)集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的可能取值为()A.-1B.0C.1D.2解析由题意,B⊆A,当a=0时,B=⌀符合题意;当a≠0时,B=-⊆A,则-=1或-=-1,解得a=-1或a=1,所以实数a的取值为-1,0或1.故选ABC.17.(2020山东东营高一月考)设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a=,b=.4U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b}.∵∁U A={x|x<3,或x>4},∴a=3,b=4.18.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为.或-A有两个子集可知,该集合中只有一个元素,当a=1时,满足题意;当a≠1时,由Δ=9+8(a-1)=0,可得a=-.19.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.a=,则B={5},元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B⫋A.(2)当a=0时,由题意B=⌀,又A={3,5},故B⊆A;当a≠0时,B=,又A={3,5},B⊆A,此时=3或=5,则有a=或a=.所以C=0,.20.设集合A={x|-1≤x+1≤6},m为实数,B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若B⊆A,求m的取值范围.A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集个数为28-2=254.(2)当m-1≥2m+1,即m≤-2时,B=⌀⊆A;当m>-2时,B≠⌀,因此,要使B⊆A,则只要解得-1≤m≤2.综上所述,m的取值范围是{m|m≤-2,或-1≤m≤2}.21.(2020山西平遥综合职业技术学校高一月考)已知全集U=R,集合A={x|-2≤x≤3},B={x|2a<x<a+3},且B⊆∁U A,求实数a的取值集合.A={x|-2≤x≤3},所以∁U A={x|x<-2,或x>3}.因为B⊆∁U A,当B=⌀时,2a≥a+3,解得a≥3;当B≠⌀时,由B⊆∁U A,得解得≤a<3或a≤-5.所以实数a的取值集合为a a≤-5,或a≥.1.3交集、并集1.(2020北京八中期末)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4},全集U={1,2,3,4},A={1,2},B={2,3},可得A∪B={1,2,3},所以∁U(A∪B)={4}.故选D.2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4}.∴A∩B中元素的个数为2.故选B.3.(2021全国甲,理1)设集合M={x|0<x<4},N=,则M∩N=()A. B.C.{x|4≤x<5}D.{x|0<x≤5}解析由交集的定义及图知M∩N=x≤x<4.4.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则()A.a=3,b=2B.a=2,b=3C.a=-3,b=-2D.a=-2,b=-3A∩B={(2,5)},∴解得故选B.5.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个A∪B=A,∴B⊆A.∵A={0,1,2,x},B={1,x2},∴x2=0或x2=2或x2=x,解得x=0或x=±或x=1.经检验,当x=或-时满足题意.故选B.6.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=.∩B={1,2,3}∩{y|y=2x-1,x∈A}={1,2,3}∩{1,3,5}={1,3}.7.(2020山东泰兴第三高级中学高一月考)设M={a2,a+1,-3},N={a-3,2a-1,a2+1},若M∩N={-3},则a的值为,此时M∪N=.1{-4,-3,0,1,2}M∩N={-3},∴a-3=-3或2a-1=-3,解得a=0或a=-1.当a=0时,M={0,1,-3},N={-3,-1,1},得M∩N={1,-3},不符合题意,舍去.当a=-1时,M={0,1,-3},N={-4,-3,2},得M∩N={-3},符合题意.此时M∪N={-4,-3,0,1,2}.8.(2020上海浦东华师大二附中高一月考)调查班级40名学生对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1,则对A,B都赞成的学生有人.A的人数为40×=24,赞成B的人数为24+3=27.设对A,B都赞成的学生数为x,则对A,B都不赞成的学生数为x+1,如图可得x+1+27-x+x+24-x=40,解得x=18.9.已知集合A={x|-2<x<4},B={x|x-m<0,m∈R}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.∵A={x|-2<x<4},B={x|x<m,m∈R},又A∩B=⌀,∴m≤-2.故实数m的取值范围为{m|m≤-2}.(2)由A∩B=A,得A⊆B.∵A={x|-2<x<4},B={x|x<m,m∈R},∴m≥4.故实数m的取值范围为{m|m≥4}.10.已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2B.3C.4D.8,可知满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2},共4个.故选C.11.(2020江苏无锡期末)下图中的阴影部分,可用集合符号表示为()A.(∁U A)∩(∁U B)B.(∁U A)∪(∁U B)C.(∁U B)∩AD.(∁U A)∩BA与集合B的补集的交集,所以图中阴影部分可以用(∁U B)∩A表示.12.(2020江苏镇江月考)集合论是德国数学家康托尔于19世纪末创立的.在他的集合理论中,用card(A)表示有限集合中元素的个数,例如:A={a,b,c},则card(A)=3.若对于任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B).某校举办运动会,高一某班参加田赛的学生有14人,参加径赛的学生有9人,两项都参加的有5人,那么该班参加本次运动会的人数为()A.28B.23C.18D.16A,则card(A)=14,参加径赛的学生组成集合B,则card(B)=9,由题意得card(A∩B)=5,所以card(A∪B)=card(A)+card(B)-card(A∩B)=14+9-5=18,所以该班参加本次运动会的人数为18.故选C.13.(2020天津南开中学高一开学考试)已知集合A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则实数a的取值范围是()A.{a|a≥1}B.a a≥C.{a|a≥0}D.a0≤a≤解析因为A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则B≠⌀且B与A有公共元素,则需解得a≥.故选B.14.(多选)(2020江苏江浦高级中学期中)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B 中的元素有()A.-2B.-1C.0D.1A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.故选AB.15.(多选)(2020河北曲阳第一高级中学月考)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=x x<B.A∩B≠⌀C.A∪B=x x<D.A∪(∁R B)=R解析∵A={x|x<2},B={x|3-2x>0}=x x<,∁R B=x x≥,∴A∩B=x x<,A∩B≠⌀,A∪B={x|x<2},A∪(∁R B)=R.故选ABD.16.(多选)(2020山东菏泽高一月考)已知集合M={2,-5},N={x|mx=1},且M∪N=M,则实数m的值可以为()A. B.-5C.-D.0解析因为M∪N=M,所以N⊆M,当m=0时,N=⌀,满足N⊆M.当m≠0时,N=,若N⊆M,则=2或=-5,解得m=或m=-.综上所述,m=0或m=或m=-,故选ACD.17.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N=.y|y≥-1}{x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.18.(2020山西太原第五十三中学月考)已知A={x|x2+px+1=0},M={x|x>0},若A∩M=⌀,则实数p的取值范围为.p|p>-2}A=⌀时,Δ=p2-4<0,解得-2<p<2;当A≠⌀,即p≤-2或p≥2时,此时方程x2+px+1=0的两个根需满足小于等于0,则x1x2=1>0,x1+x2=-p<0,得p>0,则p≥2.综上,实数p的取值范围为{p|p>-2}.19.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.{1,2},因为A∪B=A,所以B⊆A.若B=⌀,则方程x2-4x+a=0无实数根,所以Δ=16-4a<0,所以a>4.若B≠⌀,则a≤4,当a=4时,B={2}⊆A满足条件;当a<4时,1,2是方程x2-4x+a=0的根,此时a无解.所以a=4.综上可得,a的取值范围是{a|a≥4}.20.(2020天津宝坻大钟庄高中月考)已知集合A={x|-3≤x≤6},B={x|x<4},C={x|m-5<x<2m+3,m∈R}.(1)求(∁R A)∩B;(2)若A⊆C,求实数m的取值范围.因为A={x|-3≤x≤6},所以∁R A={x|x<-3,或x>6},故(∁R A)∩B={x|x<-3,或x>6}∩{x|x<4}={x|x<-3}.(2)因为C={x|m-5<x<2m+3},且A⊆C,所以<m<2,所以m的取值范围为m<m<2.21.(2020山东滕州第一中学新校高一月考)已知全集U=R,集合A={x|x>2},B={x|-4<x<4}.(1)求∁U(A∪B);(2)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).因为A={x|x>2},B={x|-4<x<4},所以A∪B={x|x>-4},则∁U(A∪B)={x|x≤-4}.(2)因为A-B={x|x∈A,且x∉B},所以A-B={x|x≥4},因此A-(A-B)={x|2<x<4}.第1章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给对象能构成集合的是()A.2020年全国Ⅰ卷数学试题中的所有难题B.比较接近2的全体正数C.未来世界的高科技产品D.所有整数A,B,C的标准不明确,所以不能构成集合;而选项D的元素具有确定性,能构成集合.故选D.2.(2021新高考Ⅰ,1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}A={x|-2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选B.3.(2020山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}数形结合)由数轴可知所以A∪B={x|1≤x<4},故选C.4.(2020江苏梅村高级中学月考)已知A={x,x+1,1},B={x,x2+x,x2},且A=B,则()A.x=1或x=-1B.x=1C.x=0或x=1或x=-1D.x=-1x=1时,集合A={1,2,1},B={1,2,1}不满足集合中元素的互异性,排除A,B,C;当x=-1时,A={-1,0,1},B={-1,0,1},A=B,满足题意.故选D.5.(2020江苏吴江中学月考)满足{2}⫋A⊆{1,2,3,4,5},且A中元素之和为偶数的集合A 的个数是()A.5B.6C.7D.8{2}⫋A⊆{1,2,3,4,5},所以2∈A.又A中元素之和为偶数,所以满足条件的集合A有{2,4},{1,2,3},{1,2,5},{2,3,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共7个,故选C.6.(2020安徽安庆白泽湖中学月考)已知集合A={x|x<1,或x>3},B={x|x-a<0},若B⊆A,则实数a的取值范围为()A.{a|a>3}B.{a|a≥3}C.{a|a<1}D.{a|a≤1}B={x|x<a},因为B⊆A,所以a≤1.故选D.7.(2020山东潍坊月考)设全集U=R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2,或x>3}D.{x|-2≤x≤2}∁R(M∪N).又M={x|x<-2,或x>2},N={x|1≤x≤3},所以M∪N={x|x<-2,或x≥1},则图中阴影部分表示的集合为∁R(M∪N)={x|-2≤x<1}.故选A.8.(2020山西高一月考)某学校组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,则两科均未取得优秀的人数是()A.8B.6C.5D.4,两科都取得优秀的有6人,数学取得优秀物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,这样共有22人至少取得一科优秀.某班共有30名同学,则两科均未取得优秀的人数是30-22=8.故选A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知集合M={1,m+2,m2+4},且5∈M,则m的可能取值有()A.1B.-1C.3D.25∈M,所以m+2=5或m2+4=5,解得m=3,或m=±1.当m=3时,M={1,5,13},符合题意,当m=1时,M={1,3,5},符合题意,当m=-1时,M={1,1,5},不满足元素的互异性,不成立.所以m=3或m=1.故选AC.10.(2020山东邹城第一中学高一月考)已知全集U=R,A={x|x<2,或x>4},B={x|x≥a},且∁U A⊆B,则实数a的取值可以是()A.1B.3C.2D.4A={x|x<2,或x>4},得∁U A={x|2≤x≤4}.因为∁U A⊆B,B={x|x≥a},所以a≤2,所以实数a的取值可以是1,2.故选AC.11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8A={0,1,4},B={0,1,3},所以A∩B={0,1},A∪B={0,1,3,4},选项A,C都正确;又全集U={0,1,2,3,4},所以∁U B={2,4},选项B错误;集合A={0,1,4}的真子集有7个,所以选项D错误.12.(2020重庆万州第二高级中学月考)给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法错误的是()A.集合M={-4,-2,0,2,4}为闭集合B.正整数集是闭集合C.集合M={n|n=5k,k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合A,4∈M,2∈M,但4+2=6∉M,故A错误;对于B,1∈N*,2∈N*,但1-2=-1∉N*,故B错误;对于C,对于任意a,b∈M,设a=5k1,b=5k2,k1∈Z,k2∈Z,a+b=5(k1+k2),a-b=5(k1-k2),k1+k2∈Z,k1-k2∈Z,所以a+b∈M,a-b∈M,故C正确;对于D,A1={n|n=5k,k∈Z},A2={n|n=3k,k∈Z}都是闭集合,但A1∪A2不是闭集合,如5∈(A1∪A2),3∈(A1∪A2),但5+3=8∉(A1∪A2),故D错误.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.A={0,1},B={1,2},∴C={x|x=a+b,a∈A,b∈B}={1,2,3}有3个元素,∴集合C的真子集个数为23-1=7.14.(2020湖南雨花雅礼中学高一月考)设A={x|-1<x≤3},B={x|x>a},若A⊆B,则实数a的取值范围是.a|a≤-1},如图所示,∵A⊆B,∴a≤-1.15.(2020江苏玄武南京田家炳高级中学月考)集合A={x|x<1,或x≥2},B={x|a<x<2a+1},若A∪B=R,则实数a的取值范围是.答案a≤a<1集合A={x|x<1,或x≥2},B={x|a<x<2a+1},A∪B=R,∴解得≤a<1,∴实数a的取值范围是a≤a<1.16.(2020山西高一月考)设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串.如:(2,5)表示的是从左往右第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.若M={1,3,4},则∁U M表示6位字符串为;若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为.4U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},则∁U M表示6位字符串为010011.因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6}.又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020江苏镇江月考)已知全集U={0,1,2,3,4,5,6,7},集合A={1,2,3},B={1,3,4}.(2)集合C满足(A∩B)⊆C⊆(A∪B),请写出所有满足条件的集合C.由A={1,2,3},B={1,3,4},得A∩B={1,3},A∪B={1,2,3,4}.由U={0,1,2,3,4,5,6,7},得(∁U A)∩(∁U B)={0,5,6,7}.(2)由(A∩B)⊆C⊆(A∪B),A∩B={1,3},A∪B={1,2,3,4},得C可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}.18.(12分)已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x(a∈R,x ∈R).(1)若x2∈B,求实数x的值.(2)是否存在实数a,x,使A=B?若存在,求出a,x;若不存在,请说明理由.集合B中有三个元素:0,1,x.x2∈B,当x取0,1,-1时,都有x2∈B,∵集合中的元素都有互异性,∴x≠0,x≠1,∴x=-1.∴实数x的值为-1.(2)不存在.理由如下:a2+1≠0,若a-3=0,则a=3,A={0,5,10}≠B;若2a-1=0,则a=,A=0,-≠B,∴不存在实数a,x,使A=B.19.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由.(2)若A⊆B成立,求出相应的实数对(a,b).不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时,A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).20.(12分)(2020山东枣庄第三中学高一月考)已知集合A={x|a-1<x<2a+1,a∈R},B={x|0<x<1},U=R.(2)若A∩B=⌀,求实数a的取值范围.解(1)当a=时,A=x-<x<2.因为B={x|0<x<1},所以∁U B={x|x≤0,或x≥1}.因此A∩B={x|0<x<1},A∩(∁U B)=x-<x≤0,或1≤x<2.(2)当A=⌀时,显然符合题意,因此有a-1≥2a+1,解得a≤-2;当A≠⌀时,因此有a-1<2a+1,解得a>-2,要想A∩B=⌀,则有2a+1≤0或a-1≥1,解得a≤-或a≥2,而a>-2,所以-2<a≤-或a≥2.综上所述,实数a的取值范围为a a≤-,或a≥2.21.(12分)(2020安徽芜湖一中月考)已知集合A={x|-1≤x≤3},B={x|x<0,或x>2},C={x|m-2≤x≤m+2},m为实数.(1)求A∩B,∁R(A∩B);(2)若A⊆∁R C,求实数m的取值范围.因为A={x|-1≤x≤3},B={x|x<0,或x>2},所以A∩B={x|-1≤x<0,或2<x≤3},∁R(A∩B)={x|x<-1,或0≤x≤2,或x>3}.(2)因为C={x|m-2≤x≤m+2},所以∁R C={x|x<m-2,或x>m+2}.因为A⊆∁R C,所以m-2>3或m+2<-1,解得m>5或m<-3,所以m的取值范围为{m|m<-3,或m>5}.22.(12分)(2020北京八中月考)设a为实数,集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.,B={2,3},C={-4,2}.(1)因为A∩B=A∪B,所以A=B.又B={2,3},则解得a=5.(2)由于A∩B≠⌀,而A∩C=⌀,则3∈A,即9-3a+a2-19=0,解得a=5或a=-2.由(1)知,当a=5时,A=B={2,3}.此时A∩C≠⌀,矛盾,舍去.当a=-2时,经检验,满足题意.因此a=-2.。

高中数学必修一第一章集合分节练习和章末测试题含答案

高中数学必修一第一章集合分节练习和章末测试题含答案

高中数学必修1 第一章 集合 分节练习和章末综合测试题含答案§1 集合的含义与表示1、下列各组对象能否组成一个集合?(1)接近于0的数的全体; (2)2的近似值的全体; (3)平面上到点O 的距离等于1的点的全体; (4)正三角形的全体; (5)美丽的小鸟; (6)直角坐标系中第一象限内的点;(7)某学校的所有高个子男同学; (8)方程092=-x 在实数范围内的解.2、已知∈2x {1,0,x },求实数x 的值.3、下列四个集合中,空集是哪一个?(A ){0} (B ){x │x >8,且x <5} (C ){x ∈N │2x -1=0} (D ){x │x >4}4、用符号∉∈或填空: (1)设集合A 是正整数的集合,则0___A ,2___A ;(2)设集合B 是小于11的所有实数组成的集合,则32___B , 1+2___B.5、用列举法表示下列集合:(1)方程2x -9=0的解的集合; (2)由大于3小于10的整数组成的集合;(3){x ∈R │21)-(x (x +1)=0}; (4){x ∈N │∈x-66N }; (5){y ∈N │y =-2x +6,x ∈N }; (6){(x ,y)│y =-2x +6,x ∈N ,y ∈N }.6、用描述法表示下列集合:(1)小于10的所有有理数组成的集合; (2)所有偶数组成的集合;(3){2,4,6,8}; (4){1,21,31,41}; (5)直角坐标平面内第四象限内的点集;(6)抛物线y =2x -2x +2上的点组成的集合.7、对于集合A ={2,4,6,8},若A a ∈,则A a ∈-8,则由a 的值组成的集合为_________§2 集合的基本关系1、设A ={正方形},B ={矩形},C ={平行四边形},D ={梯形},则下列包含关系不正确的是( ) (A )A ⊆B (B )B ⊆C(C )C ⊆D (D )A ⊆C2、在下列集合中,只有一个子集的集合是 ( )A. {02≤x x 丨}B. {03≤x x 丨}C. {02<丨x x }D. {03<丨x x }3、已知集合A ={12=丨x x },B ={1=丨ay y ,a 为常数},若B ⊆A ,则由实数a 的取值构成的集合是 ( )A. {-1}B. {1}C. {-1,1}D. {-1,0,1}4、集合M ={丨=丨丨x y R y ∈},N ={2m x R x =丨∈,R m ∈},则下列关系正确的是 ( )A. N M ≠⊃B. N M =C. N M ≠D. M N ≠⊃5、 设集合A ={1,3, a },B ={1, 12+-a a },且A ⊇B ,则a 的值为_______.6、 已知M ={1>丨x x },N ={a x x >丨},且N M ⊆,则a 的取值范围是_______. 7、若{1,a ,ab }={0,2a ,b a +},则20132014b a +=_______.8、计算下列集合的子集的个数并写出其所有子集:(1) (2){0}; (3){丨x ()()()03212=--+x x x }.9、集合A ={23<<丨-x x },B ={121+<<-丨m x m x }且B ⊆A ,求实数m 的取值范围.§3 集合的基本运算1、已知集合=A {1,3,5,7,9},=B {0,3,6,9,12},则B A ⋂等于 ( )A.{3,5}B.{3,6}C.{3,7}D.{3,9}2、设全集=U {1,2,3,4,5},=A {1,3,5},=B {2,4,5}则(A C u )⋂(B C u )等于 ( )A. B. {4} C. {1,5} D. {2,5}3、下列命题正确的是A. )(P C C u u ={P }B. 若=M { 1,,{2} },则{2}≠⊂MC. Q C R =QD. 若=N {1,2,3},=S {1,3,4,2,5},则N ≠⊂S4、若集合=A {2≤x x 丨},=B {a x x ≥丨}满足B A ⋂={2},则实数a =_______.5、设=A {31≤x x <丨-},=B {42<丨x x ≤},则)(B A C R ⋃=_______. 6、已知关于x 的方程052=+-px x 与052=+-q x x 的解的集合分别为M 、S ,且=S M ⋂{3},则=qp _______. 7、设=A {33≤≤x x 丨-},=B {t x y y +=-丨2},若B A ⋂=, 则实数t 的取值范围是_______.8、设全集是实数集R ,=A {03722≤+-丨x x x },=B {02<+丨a x x }.(1)当a =-4时,求B A ⋂和B A ⋃;(2)若(A C R ) B B =,求实数a 的取值范围.9、集合A ={11<<丨-x x },B ={a x x <丨}. (1)若=B A ⋂,求实数a 的取值范围;(2)若=B A ⋃{1<丨x x },求实数a 的取值范围;本章综合测试题一、选择题1.下列命题正确的有( )(1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素;(4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。

苏教版必修一第1章集合作业题及答案解析1.3

苏教版必修一第1章集合作业题及答案解析1.3

§1.3交集、并集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.交集(1)定义:一般地,由____________________元素构成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=__________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔______.2.并集(1)定义:一般地,________________________的元素构成的集合,称为集合A与B的并集,记作______.(2)并集的符号语言表示为A∪B=______________.(3)并集的图形语言(即V enn图)表示为图中的阴影部分:(4)性质:A∪B=______,A∪A=____,A∪∅=____,A∪B=A⇔______,A____A∪B,A∩B____A∪B.一、填空题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=________.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B=________.3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是________.①A⊆B;②B⊆C;③A∩B=C;④B∪C=A.4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N=________. 5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于________.6.集合M={1,2,3,4,5},集合N={1,3,5},则下列关系正确的是________.①N∈M;②M∪N=M;③M∩N=M;④M>N.7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.二、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为________.13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x ∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B ⇔A∩B=A.这种转化在做题时体现了化归与转化的思想方法,十分有效.§1.3交集、并集知识梳理1.(1)所有属于集合A 且属于集合B 的 A ∩B (2){x |x ∈A ,且x ∈B } (4)B ∩A A ∅ A ⊆B 2.(1)由所有属于集合A 或属于集合B A ∪B (2){x |x ∈A ,或x ∈B } (4)B ∪A AA B ⊆A⊆ ⊆作业设计1.{0,1,2,3,4}2.{x |-1≤x <1}解析 由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}.3.④解析 参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C .4.{(3,-1)}解析 M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧ x =3,y =-1. 5.3解析 依题意,由A ∩B ={2}知2a =2,所以,a =1,b =2,a +b =3.6.②解析 ∵N M ,∴M ∪N =M .7.0或1解析 由A ∪B =A 知B ⊆A ,∴t 2-t +1=-3①或t 2-t +1=0②或t 2-t +1=1③①无解;②无解;③t =0或t =1.8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1.9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ),∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2},∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧ 1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3. 11.解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a}, ∴-1a ∈A ,即有-1a =-2,得a =12. 综上,得a =0或a =12. 12.6解析 x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6.13.解 符合条件的理想配集有①M={1,3},N={1,3}.②M={1,3},N={1,2,3}.③M={1,2,3},N={1,3}.共3个.。

必修一第一章集合全章练习题(含答案)

必修一第一章集合全章练习题(含答案)

第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号________________________一、选择题1.下列语句能确定是一个集合的是()A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是() A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是() A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为() A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有()A.2个元素B.3个元素C.4个元素D.5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,… 2.确定性互异性无序性3.一样 4.a是集合A a不是集合A 5.N N*或N+Z Q R作业设计1.C[选项A、B、D都因无法确定其构成集合的标准而不能构成集合.]2.C[由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D[集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A . ∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12. (2)若A 为单元素集,则a =11-a, 即a 2-a +1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是() A.x0∈NB.x0∉NC.x0∈N或x0∉N D.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑. 第2课时 集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z }作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0,∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N };③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}. 集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A[M={x|x=2k+14,k∈Z},N={x|x=k+24,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.]1.1.2集合间的基本关系课时目标 1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.3.在具体情境中,了解空集的含义.1.子集的概念一般地,对于两个集合A、B,如果集合A中________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作______(或______),读作“__________”(或“__________”).2.Venn图:用平面上______曲线的内部代表集合,这种图称为Venn图.3.集合相等与真子集的概念图形表示A B(或B A)(1)定义:______________的集合叫做空集.(2)用符号表示为:____.(3)规定:空集是任何集合的______.5.子集的有关性质(1)任何一个集合是它本身的子集,即________.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么___________________________.一、选择题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是()A.P=Q B.P QC.P Q D.P∩Q=∅2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是()A.3 B.6 C.7 D.83.对于集合A、B,“A⊆B不成立”的含义是()A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0 B.1 C.2 D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()A.S P M B.S=P MC.S P=M二、填空题7.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)8.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.9.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.13.已知集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.拓展当A不是B的子集时,我们记作“A B”(或B A).2.对元素与集合、集合与集合关系的分析与拓展(1)元素与集合之间的关系是从属关系,这种关系用符号“∈”或“∉”表示.(2)集合与集合之间的关系有包含关系,相等关系,其中包含关系有:含于(⊆)、包含(⊇)、真包含于()、真包含()等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的.1.1.2集合间的基本关系知识梳理1.任意一个A⊆B B⊇A A含于B B包含A 2.封闭3.A⊆B且B⊆A x∈B,且x∉A 4.(1)不含任何元素(2)∅(3)子集 5.(1)A⊆A(2)A⊆C作业设计1.B[∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0}∴P Q,∴选B.]2.C[M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.]3.C4.B[只有④正确.]5.B[由N={-1,0},知N M,故选B.]6.C[运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S 表示成被6整除余1的整数集.]7.①②解析①、②显然正确;③中π与M的关系为元素与集合的关系,不应该用“”符号;④中{π}与M的关系是集合与集合的关系,不应该用“∈”符号.8.a≥2解析在数轴上表示出两个集合,可得a≥2.9.6解析 (1)若A 中有且只有1个奇数, 则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅.10.解 A ={-3,2}.对于x 2+x +a =0,(1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;(2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;(3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2}, ∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6.11.解 ∵B ⊆A ,∴①若B =∅, 则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示. 要使B ⊆A ,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3.∴实数m 的取值范围是m ≤3.12.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎨⎧1a ≥-1,2a≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a }.∵A ⊆B ,∴⎩⎨⎧2a≥-1,1a≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2. 13.5解析 若A 中有一个奇数,则A 可能为{1},{3},{1,2},{3,2}, 若A 中有2个奇数,则A ={1,3}.1.1.3集合的基本运算第1课时并集与交集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.并集(1)定义:一般地,________________________的元素组成的集合,称为集合A与B的并集,记作________.(2)并集的符号语言表示为A∪B=_____________________________________________ ___________________________.(3)并集的图形语言(即V enn图)表示为下图中的阴影部分:(4)性质:A∪B=________,A∪A=____,A∪∅=____,A∪B=A⇔________,A____A ∪B.2.交集(1)定义:一般地,由________________________元素组成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=___________________________________________ _____________________________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔________,A∩B____A ∪B,A∩B⊆A,A∩B⊆B.一、选择题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于()A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B等于()A.{x|x<1} B.{x|-1≤x≤2}C.{x|-1≤x≤1} D.{x|-1≤x<1}3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是() A.A⊆B B.B⊆CC.A∩B=C D.B∪C=A4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于()A.1 B.2C.3 D.46.集合M={1,2,3,4,5},集合N={1,3,5},则()A.N∈M B.M∪N=MC.M∩N=M D.M>N二、填空题7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.三、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.613.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分.特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B ⇔A∩B=A.这种转化在做题时体现了化归与转化的思想方法,十分有效.1.1.3 集合的基本运算 第1课时 并集与交集知识梳理 一、1.由所有属于集合A 或属于集合B A ∪B 2.{x |x ∈A ,或x ∈B } 4.B ∪A A A B ⊆A ⊆二、1.属于集合A 且属于集合B 的所有 A ∩B 2.{x |x ∈A ,且x ∈B } 4.B ∩A A ∅ A ⊆B ⊆ 作业设计 1.A2.D [由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}.]3.D [参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C .]4.D [M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.] 5.C [依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3,故选C.] 6.B [∵N M ,∴M ∪N =M .] 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3① 或t 2-t +1=0② 或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ) ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3}, 即方程x 2+px +q =0的两个实根为1,3. ∴⎩⎪⎨⎪⎧ 1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3. 11.解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.D [x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6,故选D.] 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}.③M={1,2,3},N={1,3}.共3个.第2课时补集及综合应用课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.2.补集补集与全集的性质(1)∁U U=____;(2)∁U∅=____;(3)∁U(∁U A)=____;(4)A∪(∁U A)=____;(5)A∩(∁U A)=____.一、选择题1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于()A.{x|-2<x<2} B.{x|-2≤x≤2}C.{x|x<-2或x>2} D.{x|x≤-2或x≥2}3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于()A.{2} B.{2,3}C.{3} D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是()A.A=∁U P B.A=PC.A P D.A P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是() A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?1.全集与补集的互相依存关系(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.第2课时补集及综合应用知识梳理1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}3.(1)∅(2)U(3)A(4)U(5)∅作业设计1.D[在集合U中,去掉1,5,7,剩下的元素构成∁U A.]2.C[∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.]3.D[由B={2,5},知∁U B={1,3,4}.A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]4.B[由A=∁U B,得∁U A=B.又∵B=∁U P,∴∁U P=∁U A.即P=A,故选B.]5.C[依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁I S,所以阴影部分所表示的集合是(M∩P)∩∁I S,故选C.]6.D [由A ∪B ={1,3,4,5,6}, 得∁U (A ∪B )={2,7},故选D.] 7.-3解析 ∵∁U A ={1,2},∴A ={0,3},故m =-3. 8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析 由题意得U ={0,1,2,3,4,5,6,7,8},用Venn 图表示出U ,A ,B ,易得∁U A ={0,1,3,5,7,8},∁U B ={7,8},∁B A ={0,1,3,5}. 9.∁U B ∁U A解析 画Venn 图,观察可知∁U B ∁U A .10.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意. 11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x . ①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0}, U =A ={1,3,0},从而∁U B ={3}.综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x . 根据题意有⎩⎪⎨⎪⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.§1.1习题课课时目标1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1} B.{x|x<3}C.{x|-1<x<3} D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.a A B.a∉AC.{a}∉A D.{a}A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁I M)∩(∁I N)等于()A.∅B.{d}C.{b,e} D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4} B.{a|3≤a≤4}C.{a|3<a<4} D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________. 9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于V enn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1 习题课双基演练1.C [∵A ={x |x >-1},B ={x |x <3}, ∴A ∩B ={x |-1<x <3},故选C.]2.A [画出数轴,将不等式-3<x ≤5,x <-5,x >5在数轴上表示出来,不难看出M ∪N ={x |x <-5或x >-3}.] 3.D4.A [∵∁I M ={d ,e },∁I N ={a ,c }, ∴(∁I M )∩(∁I N )={d ,e }∩{a ,c }=∅.] 5.A =B解析 4k -3=4(k -1)+1,k ∈Z ,可见A =B .6.解 ∵A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6} (1)又∵B ∩C ={3},∴A ∪(B ∩C )={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}. (2)又∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C )={-6,-5,-4,-3,-2,-1,0}∴A ∩(∁A (B ∪C ))={-6,-5,-4,-3,-2,-1,0}. 作业设计1.B [Q ={x |-2<x <2},可知B 正确.]2.B [集合P 内除了含有元素a 外,还必须含b ,c 中至少一个,故P ={a ,b },{a ,c },{a ,b ,c }共3个.]3.B [∵a ∈N *,∴x =a 2+1=2,5,10,….∵b ∈N *,∴y =b 2-4b +5=(b -2)2+1=1,2,5,10,…. ∴M P .]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).] 5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎪⎨⎪⎧a -1≤3,a +2≥5.解得3≤a ≤4.]6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2. 7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ; 当x =2时,x -1=1∈A ,x +1=3∈A ; 当x =3时,x -1=2∈A ,x +1=4∉A ; 当x =5时,x -1=4∉A ,x +1=6∉A ; 综上可知,A 中只有一个孤立元素5. 8.4解析 ∵A ∪(∁U A )=U ,由∁U A ={5}知,a 2-2a -3=5, ∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2. a =4经验证,符合题意. 9.{x |x <1或x ≥5}解析 ∁U M ={x |x <1},∁U N ={x |x <0或x ≥5}, 故(∁U M )∪(∁U N )={x |x <1或x ≥5}或由M ∩N ={x |1≤x <5},(∁U M )∪(∁U N )=∁U (M ∩N ) ={x |x <1或x ≥5}.10.解 (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴-a2<2,∴a >-4.11.解 由题意,设全班同学为全集U ,画出Venn 图,A 表示答错A 的集合,B 表示答错B 的集合,C 表示答错C 的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A ∪B ∪C 中元素数目为32,从而至少错一题的共32人,因此A ,B ,C 全对的有50-32=18人.12.解 依题意可知,“孤立元”必须是没有与k 相邻的元素,因而无“孤立元”是指在集合中有与k 相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解 在数轴上表示出集合M 与N ,可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N ={x |23≤x ≤34},长度为34-23=112;当n =13且m =14时,M ∩N ={x |14≤x ≤13},长度为13-14=112.综上,M ∩N 的长度的最小值为112.§1.2 函数及其表示 1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A 、B 是非空的数集,如果按照某种确定的__________,使对于集合A 中的____________,在集合B 中都有________________和它对应,那么就称f :________为从集合A 到集合B 的一个函数,记作__________________.其中x 叫做________,x 的取值范围A 叫做函数的________,与x 的值相对应的y 值叫做________,函数值的集合{f (x )|x ∈A }叫做函数的________. (2)值域是集合B 的________. 2.区间(1)设a ,b 是两个实数,且a <b ,规定:①满足不等式__________的实数x 的集合叫做闭区间,表示为________; ②满足不等式__________的实数x 的集合叫做开区间,表示为________;③满足不等式________或________的实数x 的集合叫做半开半闭区间,分别表示为______________.(2)实数集R 可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合分别表示为________,________,________,______.一、选择题1.对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( ) A .10个 B .9个 C .8个 D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2 011)f (2 010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.三、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m ,渠深为1.8 m ,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A (m 2)表示成水深h (m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A中的任一个值,按照对应关系所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2函数及其表示1.2.1函数的概念知识梳理1.(1)对应关系f任意一个数x唯一确定的数f(x)A→B y=f(x),x∈A自变量定义域函数值值域(2)子集2.(1)①a≤x≤b[a,b]②a<x<b(a,b)③a≤x<b a<x≤b[a,b),(a,b](2)(-∞,+∞)正无穷大负无穷大[a,+∞)(a,+∞)(-∞,b](-∞,b)作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2 010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1,∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f (2)f (1)=f (3)f (2)=…=f (2 011)f (2 010)=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1, 得⎩⎨⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h 2=h 2+2h (m 2).。

新教材苏教版高中数学必修第一册第一章集合 课时分层练习题 精选最新配套习题,含解析

新教材苏教版高中数学必修第一册第一章集合 课时分层练习题 精选最新配套习题,含解析

第一章集合1集合的概念 .................................................................................................................. - 1 -2集合的表示 .................................................................................................................. - 5 -3子集、真子集............................................................................................................... - 8 -4补集、全集 ................................................................................................................ - 14 -5交集、并集 ................................................................................................................ - 18 -1集合的概念基础练习1.若a是R中的元素,但不是Q中的元素,则a可以是( )A.3.14B.-5C.D.【解析】选D.由题意知a应为无理数,故a可以为.2.下列说法中正确的个数是( )(1)大于3小于5的自然数构成一个集合.(2)直角坐标平面内第一象限的一些点组成一个集合.(3)方程(x-1)2(x+2)=0的解组成的集合有3个元素.A.0B.1C.2D.3【解析】选B.(1)正确,(1)中的元素是确定的,只有一个,可以构成一个集合.(2)不正确,“一些点”标准不明确,不能构成一个集合.(3)不正确,方程的解只有1和-2,集合中有2个元素.3.若由a2,2 019a组成的集合M中有两个元素,则a的取值可以是( )A.0B.2 019C.1D.0或2 019【解析】选C.若集合M中有两个元素,则a2≠2 019a.即a≠0且a≠2 019.4.已知集合A是由偶数组成的,集合B是由奇数组成的,若a∈A,b∈B,则a+b____A, ab____A.(填“∈”或“∉”)【解析】因为a∈A,b∈B,所以a是偶数,b是奇数,所以a+b是奇数,ab是偶数,故a+b∉A,ab∈A.答案:∉∈5.已知集合A含有3个元素a-2,2a2+5a,12,且-3∈A,求a的值.【解题指南】由-3∈A,分两种情况进行讨论,注意根据集合中元素的互异性进行检验.【解析】因为-3∈A,所以a-2=-3或2a2+5a=-3,解得a=-1或a=-.当a=-1时,a-2=-3,2a2+5a=-3,集合A不满足元素的互异性,所以舍去a=-1.当a=-时,经检验,符合题意.故a=-.【补偿训练】设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值. 【解析】因为a∈A且3a∈A,所以解得a<2.又a∈N,所以a=0或1.提升训练一、选择题(每小题5分,共20分)1.下列三个命题:①集合N中最小的数是1;②-a∉N,则a∈N;③a∈N,b∈N,则a+b 的最小值是2.其中正确命题的个数是( )A.0B.1C.2D.3【解析】选A.根据自然数的特点,显然①③不正确.②中若a=,则-a∉N且a∉N,显然②不正确.2.已知集合A中元素x满足-≤x≤,且x∈N*,则必有( )A.-1∈AB.0∈AC.∈AD.1∈A【解析】选D.因为x∈N*,且-≤x≤,所以x=1,2.所以1∈A.3.设集合A含有-2,1两个元素,B含有-1,2两个元素,定义集合A☉B,满足x1∈A,x2∈B,且x1x2∈A☉B,则A☉B中所有元素之积为( )A.-8B.-16C.8D.16【解析】选C.因为集合A含有-2,1两个元素,B含有-1,2两个元素,由题意得,集合A☉B中所有元素是2,-4,-1,它们的积为:2×(-4)×(-1)=8.4.(多选题)下列各组中集合P与Q,表示同一个集合的是( )A.P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合B.P是由π构成的集合,Q是由3.141 59构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是由满足不等式-1≤x≤1的整数构成的集合,Q是由方程x=0的解构成的集合【解析】选AD.由于A,D中P,Q的元素完全相同,所以P与Q表示同一个集合,而B,C中P,Q的元素不相同,所以P与Q不能表示同一个集合.二、填空题(每小题5分,共10分)5.不等式x-a≥0的解集为A,若3∉A,则实数a的取值范围是________.【解析】因为3∉A,所以3是不等式x-a<0的解,所以3-a<0,解得a>3.答案:a>36.由实数x,-x,|x|,,-所组成的集合,最多含________个元素.【解析】当x>0时,x=|x|=,-=-x<0,此时集合共有2个元素,当x=0时,x=|x|==-=-x=0,此时集合共有1个元素,当x<0时,=|x|=-=-x,此时集合共有2个元素,综上,此集合最多有2个元素.答案:2三、解答题7.(10分)设集合S中的元素x=m+n,m,n∈Z.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个元素x1,x2,则x1+x2,x1·x2是否属于S?【解析】(1)a是集合S中的元素, 因为a=a+0×∈S.(2)不妨设x1=m+n,x2=p+q,m,n,p,q∈Z.则x1+x2=(m+n)+(p+q)=(m+p)+(n+q),因为m,n,p,q∈Z. 所以n+q∈Z,m+p∈Z.所以x1+x2∈S,x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m,n,p,q∈Z.故mp+2nq∈Z,mq+np∈Z.所以x1·x2∈S.综上,x1+x2,x1·x2都属于S.【补偿训练】定义满足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”,则集合A为“闭集”.试问数集N,Z,Q,R是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.【解析】①数集N,Z不是“闭集”,例如,3∈N,2∈N,而=1.5∉N;3∈Z,-2∈Z,而=-1.5∉Z,故N,Z不是闭集.②数集Q,R是“闭集”.由于两个有理数a与b的和,差,积,商,即a±b,ab,(b≠0)仍是有理数,所以Q是闭集,同理R也是闭集.2集合的表示基础练习1.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}【解析】选D.A是列举法;C是描述法;对于B要注意集合的代表元素是y,但实质上表示的都是0,故与A,C相同;而D表示该集合含有一个元素,即方程“x=0”.2.(2020·镇江高一检测)下列集合表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}【解析】选C.对于A,两个集合中的元素不同;对于B,一个集合中元素是点,一个集合中元素是实数,故不同;对于C,列举法表示集合时,与元素顺序无关,故是相同的集合;对于D,两个集合中,一个元素是数,一个元素是点,故不同.3.(2020·哈尔滨高一检测)设集合B={x|x2-4x+m=0},若1∈B,则B= ( )A. B.C. D.【解析】选A.因为集合B={x|x2-4x+m=0},1∈B,所以1-4+m=0,解得m=3.所以B={x|x2-4x+3=0}={1,3}.4.(2020·承德高一检测)若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示集合B 为________.【解析】由题意可知集合B是由A中元素的平方构成的,故B={4,9,16}.答案:{4,9,16}【补偿训练】用列举法表示集合{(x,y)|(x+1)2+|y-1|=0,x,y∈R}为________.【解析】因为(x+1)2≥0,|y-1|≥0,所以(x+1)2=0且|y-1|=0,故有x=-1且y=1,因此答案为{(-1,1)}.答案:{(-1,1)}5.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)24的正因数组成的集合.(3)自然数的平方组成的集合.(4)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.【解析】(1)用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)用描述法表示为{x|x=n2,n∈N}.(4)用列举法表示为{0,1,2,10,12,20,21,102,120,210,201}.提升训练一、选择题(每小题5分,共20分)1.下面对集合{1,5,9,13,17}用描述法表示,其中正确的一个是( )A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,k<5}C.{x|x=4t-3,t∈N,t<5}D.{x|x=4s-3,s∈N*,s<6}【解析】选 D.集合中的元素除以4余1,故元素可以用4k+1(0≤k≤4,k∈Z)或4k-3(1≤k≤5,k∈Z)来表示.2.(2020·济宁高一检测)设集合A={x|x2-x-2=0},B={x||x|=y+2,y∈A},则集合B 是( )A.{-4,4}B.{-4,-1,1,4}C.{0,1}D.{-1,1}【解析】选B.解集合A中方程x2-x-2=0,得到x=2或x=-1,因为y∈A,即y=2或y=-1,得|x|=y+2=4或|x|=y+2=1,故x=±4或x=±1,所以集合B={-4,-1,1,4}.3.(2020·鹤壁高一检测)定义集合A,B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则A*B中的所有元素之和为 ( ) A.21 B.18 C.14 D.9【解析】选C.因为A*B={x|x=x1+x2,x1∈A,x2∈B},A={1,2,3},B={1,2},所以A*B={2,3,4,5},所以A*B中的所有元素之和为:2+3+4+5=14.【补偿训练】若A={1,2,3},B={3,5},用列举法表示A⊗B={2a-b|a∈A,b∈B}= ________.【解析】因为A={1,2,3},B={3,5},又A⊗B={2a-b|a∈A,b∈B},所以A⊗B={-3,-1,1,3}.答案:{-3,-1,1,3}。

【专业资料】新版高中数学北师大版必修1习题:第一章集合 1.2 含解析

【专业资料】新版高中数学北师大版必修1习题:第一章集合 1.2 含解析

§2集合的基本关系课时过关·能力提升1已知集合A={x|-1<x<2},B={x|-1<x<1},则()A.A⫋BB.B⫋AC.A=BD.B⊈A解析:由A={x|-1<x<2},而B={x|-1<x<1},作数轴如图,故B⫋A.答案:B2已知集合A={1,2},B={1,2,3,4,5},且A⫋M⊆B.则符合条件的集合M的个数为()A.6B.7C.8D.不确定解析:∵A⫋M,∴M中一定含有A的全部元素1,2,且至少含有一个不属于A的元素.又M⊆B,∴M中除有1,2外,还有3,4,5中的1个,2个或3个,故M的个数即为{3,4,5}的非空子集,有7个.答案:B3集合M={-1,0,1}和N={x|x2+x=0}的关系用Venn图可表示为()解析:∵M={-1,0,1},N={0,-1},∴N⫋M,故选B.答案:B4若集合A={1,3,x},B={x2,1},且B⊆A,则满足条件的实数x的个数是()A.1B.2C.3D.4解析:由B⊆A,知x2=3或x2=x,解得x=±√3或x=0或x=1.当x=1时集合A,B都不满足元素的互异性,故x=1舍去.答案:C5已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为()A.512B.256C.255D.254 答案:C★6设集合M={x |x =k 2+14,k ∈Z },N={x |x =k 4+ 12,k ∈Z },则( ) A.M=NB.M ⫋NC.M ⫌ND.M ⊈N解析:∵集合M 中,x=k2+14=2k+14(k ∈Z ),集合N 中,x=k+24(k ∈Z ), ∴M 中的x 表示14的奇数倍,N 中的x 表示14的整数倍.∴M ⫋N.答案:B7已知集合A={(x ,y )|{x +y -2=0,x -2y +4=0},B={(x ,y )|y=3x+b },若A ⊆B ,则实数b= . 解析:由已知A={(0,2)},因为A ⊆B ,所以2=3×0+b ,解得b=2.答案:28设集合M={(x ,y )|x+y<0,xy>0}和P={(x ,y )|x<0,y<0},则M 与P 的关系为 .答案:M=P9已知A={x|x 2-4=0},B={x|ax-6=0},且B 是A 的子集.(1)求a 的取值集合M ;(2)写出集合M 的所有非空真子集.解(1)由已知得A={2,-2},∵B ⊆A ,∴B=⌀或{2}或{-2}.①当B=⌀时,方程ax-6=0无解,得a=0;②当B={2}时,方程ax-6=0的解为x=2,得2a-6=0,所以a=3;③当B={-2}时,方程ax-6=0的解为x=-2,得-2a-6=0,所以a=-3.∴a 的取值集合M={0,3,-3}.(2)M={0,3,-3}的非空真子集为{0},{3},{-3},{0,3},{0,-3},{3,-3}.10已知集合A={2,4,6,8,9},B={1,2,3,5,8},非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;其各元素都减2后,则变为B 的一个子集,求集合C.解逆向操作,A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中,所以C 中元素只能是4或7.所以C={4}或{7}或{4,7}.★11已知集合A={x|0<x-a ≤5},B={x |-a 2<x ≤6}.(1)若A ⊆B ,求实数a 的取值范围.(2)若B ⊆A ,求实数a 的取值范围.(3)集合A 与B 能否相等?若能,求出a 的值;若不能,请说明理由.解A={x|a<x ≤a+5},B={x |-a2<x ≤6}.(1)若A ⊆B ,则{a ≥-a2,a +5≤6,解得{a ≥0,a ≤1,∴0≤a ≤1,即所求a 的取值范围是0≤a ≤1.(2)若B ⊆A ,则-a≥6,或{a ≤-a2,a +5≥6.即a ≤-12或{a ≤0,a ≥1,∴a ≤-12.即所求a 的取值范围是a ≤-12.(3)若A=B ,即{x|a<x ≤a+5}={x |-a2<x ≤6},∴{a =-a2,a +5=6,即{a =0,a =1,不可能同时成立.∴A ≠B.。

(常考题)北师大版高中数学必修一第一单元《集合》测试(含答案解析)(1)

(常考题)北师大版高中数学必修一第一单元《集合》测试(含答案解析)(1)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.下图中的阴影部分,可用集合符号表示为( )A .()()UU A B ⋂ B .()()U UA BC .()U A BD .()UA B ⋂3.设集合{}21|10P x xax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x x x b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集4.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .275.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .616.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<7.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =8.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,19.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,110.已知函数2()1f x x=-M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<11.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)12.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则AB 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.我们将b a -称为集合{|}M x a x b =≤≤的“长度”,若集合2{|}3M x m x m =≤≤+,{|0.5}N x n x n =-≤≤,且集合M 和集合N 都是集合{|01}x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是________14.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.15.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.16.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.17.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________18.设全集U =R ,1|11A x x ⎧⎫⎪⎪=<⎨⎬-⎪⎪⎩⎭,{}2|540B x x x =-+>,则()U AC B =______.19.对任意两个集合X 与Y ,定义①{X Y x x X -=∈且}x Y ∉,②()()X Y X Y Y X ∆=--,已知{}2,A yy x x R ==∈,{}22B y y =-≤≤,则A B ∆=_________.20.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.三、解答题21.已知集合{}220,A x x x x R =+-=∈,集合{}20,B x x px p x R =++=∈. (1)若{}1A B ⋂=,求AB ;(2)若12,x x B ∈且22123x x +=,求p 的值.22.设集合A ={x ∣2x −3x +2=0},B ={x ∣2x +2(a +1)x +2a −5=0} (1)若A ∩B ={2},求实数a 的值; (2)若U =R ,A ∩(UB )=A .求实数a 的取值范围.23.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.24.已知0a ≠,集合{}2|60A x x x =--<,{}2|280B x x x =+-≥,{}22|430C x x ax a =-+<,且()RC A B ⊆.求实数a 的取值范围.25.已知不等式()210x a x a -++≤的解集为A .(1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.26.已知不等式3514x x -≤-的解集是A ,不等式1||2x m x ->的解集是B . (1)当4m =时,求A B ;(2)如果A B ⊆,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.C解析:C 【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示.本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.3.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集. 对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.4.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=,【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.5.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.6.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R EC F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 8.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.9.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.10.A解析:A【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.11.C解析:C 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A∩B =(-1,1). 【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.12.D解析:D 【分析】首先求得集合B ,然后进行交集运算即可. 【详解】由题意可得:{}1,3,5,7,9B =,则{}1,3A B =.故选D . 【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】当集合的长度的最小值时与应分别在区间的左右两端由此能求出的长度的最小值【详解】由题的长度为的长度为当集合的长度的最小值时与应分别在区间的左右两端故的长度的最小值是故答案为:【点睛】本题考查交解析:16【分析】当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端,由此能求出M N ⋂的“长度”的最小值 【详解】由题,M 的“长度”为23,N 的“长度”为12,当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端, 故M N ⋂的“长度”的最小值是2111326+-=, 故答案为:16【点睛】本题考查交集的“长度”的最小值的求法,考查新定义的合理运用14.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.15.【分析】根据函数性质求值域解出两个集合再根据新定义运算求交集并集进而求解【详解】对于P 集合即对于Q 集合即则故答案为:【点睛】本题考查函数的值域求法观察法集合的交集并集运算新定义题型属中等题 解析:{}01,2y y y ≤≤>【分析】根据函数性质求值域,解出两个集合,再根据新定义运算求交集并集,进而求解P Q ,【详解】对于P 集合,y =2,2x,[]0,2y ∈,即{}=02P y y ≤≤对于Q 集合,4xy =,()0,x ∈+∞,()1,y ∈+∞,即{}1Q y y => {}12P Q y y ⋂=<≤,{}0P Q y y ⋃=≥ 则{}01,2P Q y y y =≤≤> 故答案为:{}01,2y y y ≤≤>【点睛】本题考查函数的值域求法观察法,集合的交集并集运算,新定义题型,属中等题.16.-2或0【分析】由可得即可得到或分别求解可求出答案【详解】由题意①若解得或当时集合中不符合集合的互异性舍去;当时符合题意②若解得符合题意综上的值是-2或0故答案为:-2或0【点睛】本题考查了交集的性解析:-2或0 【分析】 由{}2MN =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】 由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去; 当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意. 综上,a 的值是-2或0. 故答案为:-2或0. 【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.17.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅.因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]BA =R表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]BA =R中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.18.【分析】解不等式求出集合根据补集与交集的定义写出【详解】全集;∴∴故答案为:【点睛】本题考查集合的运算解题是先解不等式确定集合然后再根据集合运算的定义计算 解析:{}|24x x <≤【分析】解不等式求出集合A 、B ,根据补集与交集的定义写出()U A C B ⋂. 【详解】全集U =R ,{}1|1|111A x x x x ⎧⎫⎪⎪=<=->⎨⎬-⎪⎪⎩⎭{}|02x x x =<>或; {}{}2|540|14B x x x x x x =-+>=<>或,∴{}|14U C B x x =≤≤,∴(){}|24U A C B x x =<≤.故答案为:{}|24x x <≤.【点睛】本题考查集合的运算,解题是先解不等式确定集合,A B ,然后再根据集合运算的定义计算.19.【分析】由A ={y|y =x2x ∈R}={y|y≥0}B ={y|﹣2≤y≤2}先求出A ﹣B ={y|y >2}B ﹣A ={y|﹣2≤y <0}再求A △B 的值【详解】∵A ={y|y =x2x ∈R}={y|y≥0} 解析:[)()2,02-+∞,【分析】由A ={y |y =x 2,x ∈R}={y |y ≥0},B ={y |﹣2≤y ≤2},先求出A ﹣B ={y |y >2},B ﹣A ={y |﹣2≤y <0},再求A △B 的值. 【详解】∵A ={y |y =x 2,x ∈R}={y |y ≥0},B ={y |﹣2≤y ≤2}, ∴A ﹣B ={y |y >2}, B ﹣A ={y |﹣2≤y <0},∴A △B ={y |y >2}∪{y |﹣2≤y <0}, 故答案为:[﹣2,0)∪(2,+∞). 【点睛】本题考查集合的交、并、补集的运算,解题时要认真审题,仔细解答,注意正确理解X ﹣Y ={x |x ∈X 且x ∉Y }、X △Y =(X ﹣Y )∪(Y ﹣X ).20.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题.三、解答题21.(1)12,,12A B ⎧⎫⋃=--⎨⎬⎩⎭;(2))322p =-或)322p =或1p =-.【分析】(1)由{}1A B ⋂=可得1B ∈,求出p 后可求B ,从而可求A B .(2)利用韦达定理可得关于p 的方程,从而可求p 的值. 【详解】(1)因为{}1A B ⋂=,故1B ∈,所以2110p p +⨯+=,解得12p =-, 故20x px p ++=即为211022x x --=,其解为1211,2x x ==-,故11,2B ⎧⎫=-⎨⎬⎩⎭,而{}2,1A =-,故12,,12A B ⎧⎫⋃=--⎨⎬⎩⎭. (2)因为12,x x B ∈,故12,x x 为20x px p ++=的根.若12x x =,则12x x ==12x x ==,此时20x px p ++=有一个根为2或有一个根为2-,故)322p =-或)322p =.若12x x ≠,则12,x x 为20x px p ++=的两个不同的解,而22123x x +=即为()2121223x x x x +-=,所以2230p p --=,解得1p =-或3p =.又240p p ∆=->,故0p <或4p >,故3p =舍去.故p 的值为)322p =-或)322p =或1p =-.【点睛】易错点点睛:本题中,注意12,x x B ∈的含义为12,x x 为方程的根,解析中要注意根据两者是否相等分类讨论.22.(1)1-或3-;(2)1a ≠-且3a ≠-且1≠-±a 【分析】(1)由条件可知集合B 中包含元素2,所以代入求a ,并验证是否满足条件;(2)由条件得AB =∅,分∆<0和0,0∆>∆=三种情况讨论,得到a 的取值范围.【详解】 (1){}1,2A =,由{}2A B ⋂=可知,()2224150a a +++-=,即2430a a ++=,解得:1a =-或3a =-, 当1a =-时,2402x x -=⇒=±,此时2,2B,满足{}2A B ⋂=,当3a =-时,24402x x x -+=⇒=,此时{}2B =,满足{}2A B ⋂=. 所以实数a 的值是1-或3-; (2)U =R ,A ∩(UB )=A ,UA B ∴⊆,则A B =∅①当()()2241458240a a a ∆=+--=+<,即3a <-时,此时B =∅,满足条件;②当0∆=时,3a =-,即{}2B =,{}2A B ⋂=,不满足条件; ③当0∆>时,即3a >-时,此时只需1B ∉,2∉B ,将2代入方程得1a =-或3a =-,将1代入方程得2220a a +-=,得1=-±a综上可知,a 的取值范围是1a ≠-且3a ≠-且1≠-±a 【点睛】易错点睛:1.当集合的元素是方程的实数根时,根据集合的运算结果求参数时,注意回代检验,否则会造成增根情况,当集合是区间形式表示时,注意端点值的开闭; 2.当集合的运算结果转化为集合的包含关系时,注意讨论空集情况,容易忽略这一点. 23.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a . 【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B , (2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案. 【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈, 当0a =时,{|10}A x x =-<<,276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆, 分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立; ②,当12a a -<时,即1a >-时,A ≠∅, 若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a . 【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题. 24.22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】先化简集合,A B ,求出RA B ,再对a 分类讨论,根据()RC AB ⊆得解.【详解】{}{}2|60|23A x x x x x =--<=-<<, {}{2|2804B x x x x =+-≥=≤-或}2x ≥,∴{}|42RB x x =-<<,则(){}|22RAB x x =-<<,又∵{}()(){}22|430|30C x x ax a x x a x a =-+<=--<,∵0a ≠,∴当0a >时,{}|3C x a x a =<<,当0a <时,{}|3C x a x a =<<.∵()RC AB ⊆,∴0232a a a >⎧⎪≥-⎨⎪≤⎩或0322a a a <⎧⎪≥-⎨⎪≤⎩, 解得203a <≤或203a -≤<.所以实数a 的取值范围是22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】本题主要考查一元二次不等式的解法,考查集合的关系和运算,意在考查学生对这些知识的理解掌握水平.25.(1){}|12x x ≤≤;(2)[]4,2. 【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解. 【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤,即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤. (2)由()210x a x a -++≤,可得()()10x x a --≤,当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<, 当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意; 当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤, 由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤, 综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-. 【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题. 26.(1) 831|2x x ⎧<⎫≤⎨⎬⎩⎭;(2) 6m ≥或14m < 【分析】(1)根据分值不等式的求解方法求解集合,A B ,再求交集即可. (2) 先求解1||2x m x ->,再分m 的正负进行讨论,再利用A B ⊆列出区间端点满足的表达式求解即可. 【详解】3535211100444x x x x x x ---≤⇒-≤⇒≤---即()()214040x x x ⎧--≤⎨-≠⎩.解得142x ≤<.(1) 当4m =时, 求解1|4|2x x ->, 当4x <时有18423x x x ->⇒<. 当4x ≥时1482x x x ->⇒>. 综上有83x <或8x >.此时A B =831|2x x ⎧<⎫≤⎨⎬⎩⎭(2)先求解集合:B 1||2x m x -> 当x m <时, 1223m x x x m ->⇒<;当x m ≥时, 122x m x x m ->⇒>. 故当0m <时,集合B R =,此时A B ⊆恒成立.当0m ≥,因为A B ⊆,且1:|42A x x ⎧⎫≤<⎨⎬⎩⎭,3:2|2x m x x m B ⎧>⎭<⎫⎨⎬⎩或. 此时243m ≤或122m >,解得6m ≥或14m <,即6m ≥或104m ≤<综上所述, 6m ≥或14m <【点睛】本题主要考查了分式不等式与绝对值不等式的求解以及根据不等式的解集求解参数范围的问题,需要根据题意分情况讨论求解含参的不等式,再根据集合的基本关系列出区间端点满足的关系式进行求解.属于中档题.。

最新北师大版高中数学必修一第一单元《集合》测试(含答案解析)(1)

最新北师大版高中数学必修一第一单元《集合》测试(含答案解析)(1)

一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤< B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .3.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-4.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2805.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,06.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .47.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭8.已知()()()()22221234()4444f x x x c x x c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( ) A .4B .9C .16D .649.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m < B .23m ≤≤C .3m ≤D .23m <<10.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)11.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .212.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.若集合A 具有以下两条性质,则称集合A 为一个“好集合”. (1)0A ∈且1A ∈;(2)若x 、y A ,则x y A -∈,且当0x ≠时,有1A x∈.给出以下命题:①集合{}2,1,0,1,2P =--是“好集合”; ②Z 是“好集合”; ③Q 是“好集合”; ④R 是“好集合”;⑤设集合A 是“好集合”,若x 、y A ,则x y A +∈;其中真命题的序号是________.14.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.15.若集合{}{,,,}1,2,3,4,a b c d =且下列四个关系:①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,则符合条件的所有有序数组(,,,)a b c d 的个数是________.16.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________17.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且AB =________.18.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.19.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.20.已知集合{}A a =-,,2||b aB a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。

北师版高中数学必修第一册课后习题 第一章 1.1 第1课时 集合的概念

北师版高中数学必修第一册课后习题 第一章 1.1 第1课时 集合的概念

1.1 集合的概念与表示第1课时集合的概念A级必备知识基础练1.下列各组对象能构成集合的有( )①接近于1的所有整数;②小于0的所有实数;③(2 022,1)与(1,2 022).A.1组B.2组C.3组D.0组2.已知集合M是由满足y=12其中中含有的元素个数为( )xA.4B.6C.8D.123.(多选题)下列关系正确的有( )∈RA.12B.√2∉RC.|-3|∈ND.|-√3|∈Q4.已知集合A中元素x满足x=3k-1,k∈Z,则下列结论正确的是( )A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A5.(上海徐汇校级模拟)若集合A中共有三个元素-1,3,a3,且a∈A,则实数a的值为.6.已知集合A中含有0,2,5三个元素,B中含有1,2,6三个元素,定义集合C中的元素是a+b,其中a∈A,b∈B,则C中元素的个数是.B级关键能力提升练7.(多选题)下面说法不正确的是( )A.集合N中最小的数是0B.若-a不属于N,则a属于NC.若a∈N,b∈N,则a+b的最小值为2D.x2+1=2x的解可表示为{1,1}8.已知x,y为非零实数,代数式x|x|+y|y|+xy|xy|的值所组成的集合是M,则集合M中的元素为.9.已知集合M满足条件:若a∈M,则1+a1-a∈M(a≠0,a≠±1).已知3∈M,试把由此确定的集合M中的元素全部求出来.10.已知集合A中含有两个元素a-3和2a-1.(1)若-3是集合A中的元素,试求实数a的值.(2)-5能否为集合A中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由.C级学科素养创新练11.集合A中共有3个元素:-4,2a-1,a2,集合B中也共有3个元素:9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,根据上述条件求出实数a的值.1.1 集合的概念与表示第1课时集合的概念1.B ①中接近于1的所有整数标准不明确,故不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(,1)与(1,)是两个不同的数对,是确定的,能构成集合.2.B 由题意,可知y可取的值为1,2,3,4,6,12,共6个.故选B.3.AC 1是实数,√2是实数,|-3|=3是自然数,|-√3|=√3是无理数.故选2AC.4.C 当k=0时,3k-1=-1,故-1∈A,选项A错误;若-11∈A,则-11=3k-1,解得k=-10∉Z,选项B错误;3令3k2-1=3k-1,得k=0,或k=1,即3k2-1∈A,选项C正确;当k=-11时,3k-1=-34,故-34∈A,选项D错误.5.0或1或3 由题意得,a=-1或a=3或a=a3,故a=-1或a=3或a=0或a=1,经检验,当a=-1时,a3=-1,不满足集合中元素的互异性,故实数a的取值为0或1或3.6.8 若a∈A,b∈B,则a+b的取值分别为1,2,3,4,6,7,8,11,则集合C中有8个元素.7.BCD 因为集合N 中最小的数是0,所以A 说法正确;因为N 表示自然数集,-0.5∉N,0.5∉N,所以B 说法不正确;当a=0,b=1时,a+b=1<2,所以C 说法不正确;根据集合中元素的互异性知D 说法不正确. 8.1,3 ①当x,y 均为正数时,代数式x |x |+y |y |+xy |xy |的值为3;②当x,y 为一正一负时,代数式x |x |+y |y |+xy |xy |的值为-1;③当x,y 均为负数时,代数式x |x |+y |y |+xy|xy |的值为-1.所以集合M 的元素为-1,3.9.解∵3∈M,∴1+31-3=-2∈M, ∴1-21+2=-13∈M,∴1-131+13=12∈M,∴1+121-12=3∈M,∴集合M 中的所有元素为3,-2,-13,12. 10.解(1)因为-3是集合A 中的元素, 所以-3=a-3或-3=2a-1. 若-3=a-3,则a=0,此时集合A 含有两个元素-3,-1,符合要求; 若-3=2a-1,则a=-1,此时集合A 中含有两个元素-4,-3,符合要求.综上所述,满足题意的实数a的值为0或-1.(2)不能.理由如下:若-5为集合A中的元素,则a-3=-5或2a-1=-5.当a-3=-5时,解得a=-2,此时2a-1=2×(-2)-1=-5,显然不满足集合中元素的互异性;当2a-1=-5时,解得a=-2,此时a-3=-5,显然不满足集合中元素的互异性. 综上,-5不能为集合A中的元素.11.解∵9∈A,∴2a-1=9或a2=9,若2a-1=9,则a=5,此时A中的元素为-4,9,25;B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.若a2=9,则a=±3,当a=3时,A中的元素为-4,5,9;B中的元素为9,-2,-2,B 中有两个-2,与集合中元素的互异性矛盾,故舍去.当a=-3时,A中的元素为-4,-7,9;B中的元素为9,-8,4,符合题意.综上所述,a=-3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修一第一章 集合练习题
1.设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B 等于( )
A .{x |x ≥3}
B .{x x ≥2}
C .{x |2≤x <3}
D .{x |x ≥4}
解:B ={x |x ≥3}.画数轴(如下图所示)可知选B
2.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )
A .{3,5}
B .{3,6}
C .{3,7}
D .{3,9}
解:A ={1,3,5,7,9},B ={0,3,6,9,12},A 和B 中有相同的元素3,9,∴A ∩B ={3,9}.故选D.
3.已知集合A ={x |x >0},B ={x |-1≤x ≤2},则A ∪B =( )
A .{x |x ≥-1}
B .{x |x ≤2}
C .{x |0<x ≤2}
D .{x |-1≤x ≤2}
解: 集合A 、B 用数轴表示如图,A ∪B ={x |x ≥-1}.故选A.
4.满足M ⊆{1a ,2a ,3a ,4a },且M ∩{1a ,2a ,3a }={1a ,2a }的集合M 的个数是( )
A .1
B .2
C .3
D .4
解: 集合M 须含有元素1a ,2a ,且不含元素3a ,故M ={1a ,2a }或M ={1a ,2a ,4a }选B.
5.集合A ={0,2,a },B ={1,2a }.若A ∪B ={0,1,2,4,16},则a 的值为( )
A .0
B .1
C .2
D .4
解: ∵A ∪B ={0,1,2,a ,2a },又A ∪B ={0,1,2,4,16},∴{a ,2a }={4,16},∴a =4,
6.设S ={x |2x +1>0},T ={x |3x -5<0},则S ∩T =( )
A .Ø
B .{x |x <21-}
C .{x |x >35}
D .{x |2
1-<x <35} 解: S ={x |2x +1>0}={x |x >21-},T ={x |3x -5<0}={x |x <35},则S ∩T ={x |2
1-<x <35} 7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.
解:设两项都参加的有x 人,则只参加甲项的有(30-x )人,只参加乙项的有(25-x )人. (30-x )+x +(25-x =50,∴x =5.∴只参加甲项的有25人,只参加乙项的有20人, ∴仅参加一项的有45人.
8.满足{1,3}∪A ={1,3,5}的所有集合A 的个数是________.
解:由于{1,3}∪A ={1,3,5},则A ⊆{1,3,5},且A 中至少有一个元素为5,从而A
中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A 的个数是
4.它们分别是{5},{1,5},{3,5},{1,3,5}.
9.已知集合A ={x |x ≤1},B ={x |x ≥a},且A ∪B =R ,则实数a 的取值范围是________. 解:A =(-∞,1],B =[a ,+∞),要使A ∪B =R ,只需a ≤1.
10.已知集合A ={-4,2a -1,2a },B ={5-a ,a -1,9},若A ∩B ={9},求a 的值. 解: ∵A ∩B ={9},∴9∈A ,∴2a -1=9或2a =9,∴a =5或a =±3. 当a =5时,
A ={-4,9,25},
B ={0,-4,9}.此时A ∩B ={-4,9}≠{9}.故a =5舍去. 当a =3时,B ={-2,-2,9},不符合要求,舍去.经检验可知a =-3符合题意.
11.已知集合A ={1,3,5},B ={1,2,12-x },若A ∪B ={1,2,3,5},求x 及A ∩B. 解:由A ∪B ={1,2,3,5},B ={1,2,12-x }得12-x =3或12-x =5. 解得2=x 或6=x
试题一(集合解析及答案)
1.解:B ={x|x ≥3}.画数轴(如下图所示)可知选B
2.解:A ={1,3,5,7,9},B ={0,3,6,9,12},A 和B 中有相同的元素3,9,∴A ∩B ={3,9}. 故选D.
3.解: 集合A 、B 用数轴表示如图,A ∪B ={x|x ≥-1}.故选A.
4.解: 集合M 必须含有元素1a ,2a ,并且不能含有元素3a ,故M ={1a ,2a }或M = {1a ,2a ,4a }.故选B.
5.解: ∵A ∪B ={0,1,2,a ,2a },又A ∪B ={0,1,2,4,16},∴{a ,2a }={4,16},∴a =4,故选D.
6.解: S ={x |2x +1>0}={x |x >-12},T ={x |3x -5<0}={x |x <35},
则S ∩T ={x |-12<x <35}.故选D.
7.解:设两项都参加的有x 人,则只参加甲项的有(30-x )人,只参加乙项的有(25-x ) 人.(30-x )+x +(25-x =50,∴x =5.∴只参加甲项的有25人,只参加乙项的有20人, ∴仅参加一项的有45人.
8.解:由于{1,3}∪A ={1,3,5},则A ⊆{1,3,5},且A 中至少有一个元素为5,从而A
中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A 的个数是
4.它们分别是{5},{1,5},{3,5},{1,3,5}.
9.解:A =(-∞,1],B =[a ,+∞),要使A ∪B =R ,只需a ≤1.
10.解: ∵A ∩B ={9},∴9∈A ,∴2a -1=9或2a =9,∴a =5或a =±3.
当a =5时,A ={-4,9,25},B ={0,-4,9}.此时A ∩B ={-4,9}≠{9}.故a =5舍去. 当a =3时,B ={-2,-2,9},不符合要求,舍去.经检验可知a =-3符合题意.
11.解:由A ∪B ={1,2,3,5},B ={1,2,12-x }得12-x =3或12-x =5. 解得2=x 或6=x。

相关文档
最新文档