2018高三数学全国二模汇编(理科)专题07圆锥曲线

合集下载

2018年各地高考真题分类汇编-圆锥曲线---学生版

2018年各地高考真题分类汇编-圆锥曲线---学生版

圆锥曲线1.(2018年全国一·文科4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13 B .12 CD2.(2018年全国二·文科6)双曲线,则其渐近线方程为 A .B .C .D .3.(2018年全国二·文科11)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A .B .CD4.(2018年全国三·文科10)已知双曲线,则点到的渐近线的距离为AB .CD .5.(2018年北京·文科10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.6.(2018年北京·文科12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________. 7.(2018年天津·文科7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 22221(0,0)x y a b a b-=>>y =y =2y x =±y =1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 1-2-122221(00)x y C a b a b-=>>:,(4,0)C 28.(2018年江苏8)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线,则其离心率的值是 . 9.(2018年浙江2)双曲线221 3=x y -的焦点坐标是 A .(,0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2) 10.(2018年浙江17)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.11.(2018年上海2)双曲线2214x y -=的渐近线方程为 。

2018高三各地优质文科二模试题分项汇编:圆锥曲线(含解析)

2018高三各地优质文科二模试题分项汇编:圆锥曲线(含解析)

【2018高三数学各地优质二模试题分项精品】专题七圆锥曲线一、选择题1.【2018广东佛山高三二模】已知双曲线的左焦点为,右顶点为,虚轴的一个端点为,若为等腰三角形,则该双曲线的离心率为( )A. B. C. D.【答案】 A【解析】由题意得不妨设,则,因为为等腰三角形,所以只能是即,(舍去负值),选 A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2018湖南株洲高三二模】已知双曲线的右焦点为,其中一条渐近线与圆交于两点,为锐角三角形,则双曲线的离心率的取值范围是( )A. B. C. D.【答案】 D详解:双曲线的右焦点为,一条渐近线方程为,圆的圆心,半径为,渐近线与圆交于两点,为锐角三角形,可得:可得又可得可得:,由可得所以双曲线的离心率的取值范围是.故选D.点睛:本题考查双曲线的简单性质的应用,圆的简单性质的应用,考查转化思想已经计算能力.3.【2018延安高三模拟】已知,为双曲线的左、右焦点,过的直线与圆相切于点,且,则双曲线的离心率为()A. B. 2 C. 3 D.【答案】 D即有|MF2|=3|MF1|=3a,由OM为三角形MF1F2的中线,可得(2|OM|)2+(|F1F2|)2=2(|MF1|2+|MF2|2),即为4b2+4c2=2(a2+9a2),即有c2+b2=5,再根据得到双曲线的离心率为.故选:D .点睛:本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.4.【2018安徽淮北高三二模】过抛物线的焦点的直线交抛物线于两点,分别过作准线的垂线,垂足分别为两点,以为直径的圆过点,则圆的方程为()A. B.C. D.【答案】 C。

2018圆锥曲线高考题全国卷真题汇总

2018圆锥曲线高考题全国卷真题汇总

20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)
20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)的全部内容。


A
点为
>0
两点,若,则圆。

2018年高考数学试题分类汇编之圆锥曲线解析版

2018年高考数学试题分类汇编之圆锥曲线解析版

2018年高考数学试题分类汇编之圆锥曲线(解析版)一、选择题1.(浙江卷)(2)双曲线221 3=x y -的焦点坐标是A .(0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)解:∵双曲线方程可得双曲线的焦点在x 轴上,且a 2=3,b 2=1, 由此可得222=+=b a c ∴该双曲线的焦点坐标为(±2,0)故选:B2.(天津文)(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:A3.(天津理)(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A221412x y -= B221124x y -= C 22139x y -= D 22193x y -=解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:C4.(全国卷一文)(4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 解:椭圆的一个焦点为(2,0),可得a 2-4=4,解得22=a ,故选:C5.(全国卷一理)(8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .8解:抛物线C :y 2=4x 的焦点为F (1,0),过点(-2,0联立直线与抛物线C :y 2=4x ,消去x 可得:y 2-6y+8=0, 解得y 1=2,y 2=4,不妨M (1,2),N (4,4),FM =(0,2), FN =(3,4).则 FM ∙FN =(0,2)•(3,4)=8. 故选:D6.(全国卷一理)(11)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .4故选:B7.(全国卷二文)(6)双曲线22221(0,0)x y a b a b-=>>A.y =B.y =C.y = D .y = 解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A.8.(全国卷二文)(11)已知1F ,2F 是椭圆C 的两个焦点,P 是C上的一点,若12PF PF ⊥,且2160PFF ∠=︒,则C 的离心率为 A.1 B.2C D 1-解:F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°, 可得椭圆的焦点坐标F 2(c ,0),所以P(c 23,21故选:D9.(全国卷二理)(5)双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y =解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A .10.(全国卷二理)(12)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14解:由题意可知:A (-a ,0),F 1(-c ,0),F 2(c ,0),直线AP 的方程为:)(a x y +=63,故选:D11.(全国卷三文)(10)已知双曲线22221(00)x y C a b a b-=>>:,(4,0)到C 的渐近线的距离为AB .2CD .故选:D12.(全国卷三理)(11)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF ,则C 的离心率为A B .2 C D在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2-2|PF 2|•|F 1F 2|COS ∠PF 2O ,故选:C二、填空题1.(北京文)(10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.解:∵直线l 过点(1,0)且垂直于x 轴,∴x=1,代入到y 2=4ax ,可得y 2=4a ,显然a >0,∴y=±∴抛物线的焦点坐标为(1,0), 故答案为:(1,0)2.(北京文)(12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.解:双曲线的离心率为245422=+a a ,解得a=4. 故答案为:43.(北京理)(14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.解:若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,4.(江苏卷)(8)在平面直角坐标系xOy中,若双曲线22221(0,0)x ya ba b-=>>的右焦点(,0)F c到一条渐近,则其离心率的值是.,故答案为:25.(浙江卷)(17)已知点P(0,1),椭圆24x+y2=m(m>1)上两点A,B满足AP=2PB,则当m=_______时,点B横坐标的绝对值最大.解:设A(x1,y1),B(x2,y2),由P(0,1),AP=2PB,可得-x 1=2x2,1-y1=2(y2-1),即有x1=-2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①-②得(y1-2y2)(y1+2y2)=-3m,可得y1-2y2=-m,即有m=5时,x22有最大值4,即点B横坐标的绝对值最大.故答案为:5.6.(全国卷三理)(16)已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.解:∵抛物线C :y 2=4x 的焦点F (1,0),∴过A ,B 两点的直线方程为y=k (x-1),联立⎩⎨⎧-==)1(42x k y xy 可得,k 2x 2-2(2+k 2)x+k 2=0,设A (x 1,y 1),B (x 2,y 2),y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4,∵M (-1,1),∴ MA =(x 1+1,y 1-1), MB =(x 2+1,y 2-1), ∵∠AMB=90°=0,∴MA *MB =0∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2-(y 1+y 2)+2=0,∴即k 2-4k+4=0, ∴k=2. 故答案为:2三、解答题1.(北京文)(20)(本小题14分)已知椭圆2222:1(0)x y M a b a b +=>>焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D和点71(,)42Q -共线,求k .解析(Ⅰ)由题意得2c =,所以c =3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-=,易得当20m =时,max ||AB =||AB(Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y , 则221133x y += ①,222233x y += ②, 又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.2.(北京理)(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,μλ==,,求证:μλ11+为定值.解析:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2). 由(I )知12224k x x k -+=-,1221x x k =. 直线P A 的方程为y –2=1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由μλ==,得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=211(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.3.(江苏卷)(18)(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=,从而AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=, 所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+4.(天津文)(19)(本小题满分14分) 设椭圆22221(0)x y a b a b +=>> 的右顶点为A ,上顶点为B .||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.解析:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23.a b =由||AB ==从而3,2a b ==. 所以,椭圆的方程为22194x y +=. (II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>,点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩ 消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-. 5.(天津理)(19)(本小题满分14分) 设椭圆22221x x a b +=(a >b >0)的左焦点为F ,上顶点为B .,点A 的坐标为(,0)b ,且FB AB ⋅=.(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQAOQ PQ =∠(O 为原点) ,求k 的值. 解析(Ⅰ):设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB,由FB AB ⋅=ab =6,从而a =3,b =2. 所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ.由AQ AOQ PQ =∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =.易知直线AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221k y k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =.所以,k 的值为111228或. 6.(浙江卷)(21)(本题满分15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.解析(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是7.(全国一卷文)(20)(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222y x k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k ++-++++===. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM =∠ABN .8.(全国一卷理)(19)(12分) 设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A的坐标为或(1,. 所以AM的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<,直线MA ,MB 的斜率之和为212122MA MB x x y y k k +=+--. 由1122,y k k x y k x k =-=-得 121212(23()42)(2)MA MB x x x x k k x x k k k -+++=--. 将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=. 所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k k k k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.9.(全国二卷文)(20)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x =-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.10.(全国卷二理)(19)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =.因此l 的方程为1y x =-. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.11.(全国卷三文)(20)(12分) 已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA =-uu r .同理2||=22x FB -uu r . 所以1214()32FA FB x x +=-+=u u r u u r .故2||=||+||FP FA FB u u r u u r u u r . 12.(全国卷三理)(20)(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得 1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是 1||(22x FA x ==-. 同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则 1212||||||||||2FB FA x x d =-=-=②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||d =.或。

普通高等学校2018届高三招生全国统一考试仿真卷(二)数学(理)试题含答案

普通高等学校2018届高三招生全国统一考试仿真卷(二)数学(理)试题含答案

绝密★启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(二)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1z的共轭复数为()AB C D2.若双曲线221yxm-=的一个焦点为()3,0-,则m=()A.B.C.D.643()fx)ABC D4.函数()12xf x⎛⎫= ⎪⎝⎭,()0,x∈+∞的值域为D,在区间()1,2-上随机取一个数x,则x D∈的概率是()A.12B.13C.14D.15.记()()()()72701272111x a a x a x a x-=+++++⋅⋅⋅++,则012a a a+++6a⋅⋅⋅+的值为()A.1 B.2 C.129 D.21886.一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.87.《九章算术》是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,5人以爵次进行分配(古代数学中“以爵次分之”这种表述,一般表示等差分配,在本题中表示等差分配).”在这个问题中,若大夫得“一鹿、三分鹿之二”,则簪裹得()A .一鹿、三分鹿之一B.一鹿C.三分鹿之二D.三分鹿之一8)A.B.C.D.9.阅读如图所示的程序框图,运行相应程序,输出的结果是()A .12B .18C .120D .12510.当实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,表示的平面区域为C ,目标函数2z x y =-的最小值为1p ,而由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( )A .12B .23C .35D .4311.已知点1F 是抛物线C :22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F ,2F 为焦点的双曲线上,则双曲线的离心率为( )AB1- C1D12.已知函数()e e x x f x -=+(其中是自然对数的底数),若当0x >时,()e 1x mf x m -+-≤恒成立,则实数m 的取值范围为( )A .10,3⎛⎫ ⎪⎝⎭B .1,3⎛⎤-∞- ⎥⎝⎦C .1,3⎡⎫+∞⎪⎢⎣⎭ D .11,33⎡⎤-⎢⎥⎣⎦第Ⅱ卷本卷包括必考题和选考题两部分。

2018年高考数学—圆锥曲线(解答+答案)

2018年高考数学—圆锥曲线(解答+答案)

2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。

2018年高考数学试题分类汇编之圆锥曲线解析版

2018年高考数学试题分类汇编之圆锥曲线解析版

FM = (0 , 2) , FN = (3 , 4) .
则 FM FN = (0 ,2 ) ? (3 , 4 ) =8 .
故选: D
x2 6.(全国卷一理)( 11)已知双曲线 C:
y2 1 ,O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的
3
两条渐近线的交点分别为 M、N.若 △ OMN 为直角三角形,则 |MN |=
2018 年高考数学试题分类汇编之圆锥曲线(解析版)
一、选择题
1.(浙江卷)( 2)双曲线 x2 3
2
y =1 的焦点坐标是
A . (- 2 ,0) ,( 2 , 0) B . (- 2, 0), (2, 0) C. (0, - 2 ), (0, 2 ) D. (0, - 2), (0, 2)
解:∵双曲线方程可得双曲线的焦点在
4)已知椭圆
C

x a2
y 4
1的一个焦点为 (2 ,0) ,则 C 的离心率为
1 A.
3
1 B.
2
2 C.
2
解:椭圆的一个焦点为( 2,0),可得 a2-4=4,解得 a
22 D.
3
2 2,
c c 2, e
a
2

2
故选: C
5.(全国卷一理)(
8)设抛物线
C: y2=4x 的焦点为
F,过点( –2, 0)且斜率为
故选: B
x2 7.(全国卷二文)( 6)双曲线 a2
y2 b2
1( a
0, b
0) 的离心率为
3 ,则其渐近线方程为
A . y 2x
B. y 3x
C. y
2x
2

高三数学-2018届高三数学专项训练(2018)《圆锥曲线》精品

高三数学-2018届高三数学专项训练(2018)《圆锥曲线》精品

C. 9
D. 16
12.给出下列结论 , 其中正确的是
()
A.渐近线方程为 y
b x a 0,b 0 的双曲线的标准方程一定是
a
x2 y2 a2 b2 1
B.抛物线 y
1 x2 的准线方程是 x 1
2
2
C.等轴双曲线的离心率是 2
D.椭圆 x2 m2
y2 n2
1 m 0, n 0 的焦点坐标是 F1
x1 1· x2 1 x1·x 2
x1 x21ຫໍສະໝຸດ 44 ………………( 10 分) k2
m n mn ,即 1
1 1
mn
综上可知 1 1 为定值。………………( mn
20.(本小题满分 12 分)
12 分)
解:(1) AM 2AP, NP AM 0. ∴ NP为 AM的垂直平分线,∴ |NA|=|NM|. ………………………… 2 分
由椭圆的对称性知 | OC|=| OB|, 由 AC · BC =0 得 AC⊥ BC,
A
O
x
∵ | BC|=2| AC| ,∴ | OC|=| AC| ,∴△ AOC是等腰直角三角形,∴ C 的坐标为( 1,1),
∵ C 点在椭圆上∴ 12 4
1 b2
1 , ∴ b2 = 4 , 所求的椭圆方程为 3
二、填空题(本题每小题 4 分,共 16 分)
m2 n2 ,0 , F2 m2 n2 ,0
13.如果正△ ABC 中 , D
AB,E
AC , 向量 DE
1 BC , 那么以 B , C 为焦点且过点 D , E 的双曲线
2
的离心率是
2
14.已知椭圆 x m
.

2018二模分类汇编——圆锥曲线(教师版)

2018二模分类汇编——圆锥曲线(教师版)

2018二模分类汇编——圆锥曲线(教师版)1.(2018东城二模·理)已知双曲线C :x 2a 2-y 2b 2=1的一条渐近线的倾斜角为60º,且与椭圆x 25+y 2=1有相等的焦距,则C 的方程为(A )x 23-y 2=1 (B )x 29-y 23=1 (C )x 2-y 23=1 (D )x 23-y 29=11.C2.(2018海淀二模·理)设曲线C 是双曲线,则“C 的方程为2214y x -=”是“C 的渐近线方程为2y x =±”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件2.A3.(2018丰台二模·理)已知双曲线2221(0)9x y b b -=>的一条渐近线的倾斜角为π6,则b 的值为(C) 3(D) B4.(2018海淀二模·理)能够使得命题“曲线221(0)4x y a a-=≠上存在四个点P ,Q ,R ,S 满足四边形PQRS 是正方形”为真命题的一个实数a 的值为 .4.答案不唯一,0a <或4a >的任意实数5.(2018房山二模·理)设双曲线()222210,0-=>>x y a b a b的一条渐近线方程为20-=x y ,则该双曲线的离心率为 .5.26.(2018顺义二模·理)设双曲线)0,0(1:2222>>=-b a by a x C 经过点(4,1),且与1422=-x y 具有相同渐近线,则C 的方程为________________;渐近线方程为__________________.6.x y y x 21,131222±==-. 7.(2018朝阳二模·理)双曲线22xy λ-=(0λ≠)的离心率是 ;该双曲线的两条渐近线的夹角是 .7.π28.(2018昌平二模·理)已知双曲线:2221(0)x y a a -=>的渐近线方程为12y x =±,则双曲线的离心率是 .8.9.(2018海淀二模·理)(本小题共14分)已知椭圆C :2214x y +=,F 为右焦点,圆O :221x y +=,P 为椭圆C 上一点,且P 位于第一象限,过点P 作PT 与圆O 相切于点T ,使得点F ,T 在OP 两侧.(Ⅰ)求椭圆C 的焦距及离心率; (Ⅱ)求四边形OFPT 面积的最大值. 8.(本小题共14分)解:(Ⅰ)在椭圆C :2214x y +=中,2a =,1b =,所以c= ···················· 2分 故椭圆C 的焦距为2c =, ·················· 3分 离心率c e a ==. ······················ 5分 (Ⅱ)法一:设00(,)P x y (00x >,00y >),则220014x y +=,故220014x y =-. ····· 6分所以22222203||||||14TPOP OT x y x =-=+-=所以0||TP =, ·········· 8分C C01||||2OTP S OT TP x ∆=⋅=.··· 9分又(0,0)O ,F ,故00122OFP S OF y y ∆=⋅=. ······10分因此00()2OFP OTP OFPT x S S S y ∆∆=+=+四边形 ··········11分==.由220014x y +=,得1≤,即001x y ⋅≤,所以OFPT S =四边形, ············· 13分当且仅当2200142x y ==,即0x 02y =时等号成立. ····· 14分 (Ⅱ)法二:设(2cos ,sin )P θθ(02πθ<<), ············ 6分则222222||||||4cos sin 13cos TP OP OT θθθ=-=+-=,所以||TP θ=, ·····················8分1||||2OTP S OT TP θ∆=⋅=. ·············9分又(0,0)O ,F ,故012OFP S OF y θ∆=⋅=. ·····10分因此(cos sin )2OFP OTP OFPT S S S θθ∆∆=+=⋅+四边形 ········11分sin()242πθ=+≤, ············· 13分当且仅当4πθ=时,即0x =0y =······ 14分 10.(2018房山二模·理)(本小题14分)已知椭圆()222210+=>>:x y C a b a b 的离心率为12,O 为坐标原点,F 是椭圆C 的右焦点,A 为椭圆C上一点,且⊥AF x 轴,AFO ∆的面积为34.(Ⅰ)求椭圆C 的方程;(Ⅱ)过C 上一点()()000,0≠P x y y 的直线l : 00221x x y ya b+=与直线AF 相交于点M ,与直线4x =相交于点N .证明:当点P 在C 上移动时,MFNF恒为定值,并求此定值. 10.(Ⅰ)设(,0)F c ,(,)A c d 则22221c d a b +=又12c a =||2d b ∴= 因AFO ∆ 的面积为341133||,2224c d c b bc ∴===由2222a b c a c bc ⎧-=⎪=⎨⎪=⎩得21a b c =⎧⎪=⎨⎪=⎩所以C 的方程为22143x y += …………5分 (Ⅱ)由(1)知直线l 的方程为00143x x y y+= (y 0≠0),即y =001234x x y - (y 0≠0).因为直线AF 的方程为x =1,所以直线l 与AF 的交点为M 0123(1,)4x y -, 直线l 与直线x =4的交点为N 0(4,33)x -,则|MF |2|NF |2=202002220000123()4(4)331616(1)9()x y x x y x y --=-+-+ 又P (x 0,y 0)是C 上一点,则2200143x y +=.2200334x y =- 代入上式得|MF |2|NF |2=2220002222000000(4)(4)(4)1148121632164(816)4(4)4x x x x x x x x x ---====-+-+-+- 所以|MF ||NF |=12,为定值. …………14分11.(2018朝阳二模·理)已知抛物线2:2C y x =.(1)写出抛物线C 的直线方程,并求出抛物线C 的焦点到准线的距离;(2)过点(20),且斜率存在的直线l 与抛物线C 交于不同的两点A ,B ,且点B 关于x 轴的对称点为D ,直线AD 与x 轴交于点M .1)求点M 的坐标;2)求OAM △与OAB △面积之和的最小值. 11.【解析】(Ⅰ)由题可得22,1P P ==,所以准线方程为1,2x =-抛物线C 的焦点到准线的距离为1. (Ⅱ)(i )解:令1122(,),(,),A x y B x y 则22(,)D x y -且令10y >,令:2AB l x my =+222x my y x=+⎧⎨=⎩2240y my ⇒--= 所以12122,4y y m y y +=⋅=-则直线AD 方程为121112()y y y y x x x x +-=--121112()()y y y y x x m y y +-=--2111221()()2y y x y y y -=--当0y =时,21211()()2y y y x y -⋅-=-21211()()2y y y y x -⋅-+=122y y x =,2x =-所以(2,0)M -(ii )解:1122OAMS y =⋅⋅! 121122||22OAB S y y =⋅⋅+⋅⋅!则112||OAMOAB S S y y y +=++!!1211112||42||42y y y y y y =+-=+=+≥=当且仅当1142y y =时,即1y =12.(2018西城二模·理)(本小题满分14分)已知直线:1l y kx =+与抛物线2:4C y x =相切于点P .(Ⅰ)求直线l 的方程及点P 的坐标;(Ⅱ)设Q 在抛物线C 上,A 为PQ 的中点.过A 作y 轴的垂线,分别交抛物线C 和直线l 于M ,N .记△PMN的面积为1S ,△QAM 的面积为2S ,证明:12S S =. 12.(本小题满分14分)解:(Ⅰ)由 21,4y kx y x=+⎧⎪⎨=⎪⎩ 得 22(24)10k x k x +-+=. ① ……………… 2分依题意,有0k ≠,且22(24)40k k ∆=--=. 解得 1k =. ……………… 3分所以直线l 的方程为1y x =+. ……………… 4分 将 1k =代入①,解得 1x =,所以点P 的坐标为(1,2). ……………… 5分 (Ⅱ)设 (,)Q m n , 则 24n m =,所以 12(,)22m n A ++. ……………… 7分 依题意,将直线 22n y +=分别代入抛物线C 与直线l , 得 2(2)2(,)162n n M ++,2(,)22n n N +. ……………… 8分因为 22(2)444441||16216164n n n n m n m n MN +-+-+-+=-=== ……… 10分 221(2)(88)(44)||21616m n m n n AM +++-++=-=(88)(444)1164m m n m n +-++-+==, ………………12分所以 ||||AM MN =. ………………13分又 A 为PQ 中点,所以P Q ,两点到直线AN 的距离相等, 所以 12S S =. ………………14分13.(2018东城二模·理)(本小题13分)已知抛物线C :y 2=2px 经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点. (I )求抛物线C 的方程,并求其焦点坐标和准线方程; (II )若OA OB ^,求△AOB 面积的最小值. 13.(共13分)解:(I )由抛物线C :y 2=2px 经过点P (2,2)知44p =,解得1p =.则抛物线C 的方程为22y x =.抛物线C 的焦点坐标为1(,0)2,准线方程为12x =-.………………4分 (II )由题知,直线AB 不与y 轴垂直,设直线AB :x ty a =+,由2,2x ty a y x=+⎧⎨=⎩消去x ,得2220y ty a --=. 设1122(,),(,)A x y B x y ,则12122,2y y t y y a +==-.因为OA OB ⊥,所以12120x x y y +=,即22121204y y y y +=, 解得120y y =(舍)或124y y =-. 所以24a -=-.解得2a =. 所以直线AB :2x ty =+. 所以直线AB 过定点(2,0).12122AOB S y y ∆=⨯⨯-==≥4=.当且仅当122,2y y ==-或122,2y y =-=时,等号成立.所以AOB ∆面积的最小值为4. ……………………………………13分14.(2018昌平二模·理)(本小题14分)已知椭圆经过点.(I )求椭圆E 的标准方程;(II)过右焦点F 的直线(与x 轴不重合)与椭圆交于两点,线段AB 的垂直平分线交y 轴于点(0,)M m ,求实数m 的取值范围.14.(共14分)(Ⅰ)由题意,得, 解得 1a b ⎧=⎪⎨=⎪⎩所以椭圆E 的标准方程是. -------------------5分 (II )(1)当直线轴时,m = 0符合题意.(2)当直线与x 轴不垂直时,设直线的方程为,由22(1)220y k x x y =-⎧⎨+-=⎩,得, 由2222(4)8(12)(1)0k k k ∆=--+->,得k ∈R .设,,则2212122242(1)1212k k x x x x k k-+=⋅=++,. 所以121222(2)12ky y k x x k-+=+-=+, ()2222:10x y E a b a b+=>>(0,1)l ,A B 2221b c e a a b c =⎧⎪⎪==⎨⎪⎪=+⎩2212x y +=x AB ⊥AB AB ()1y k x =-()()2222124210k x k x k +-+-=()11,x y A ()22,x y B所以线段AB 中点C 的坐标为.由题意可知,,故直线的方程为,令x = 0,212k y k =+,即212k m k =+当k > 0时,,得210=11242k m k kk <=≤++,当且仅当2k =时“=”成立. 同理,当 k < 0时,210=11242k m k kk>=≥-++,当且仅当2k =-时“=”成立. 综上所述,实数m的取值范围为44⎡-⎢⎣⎦.--------------------14分 15. (2018丰台二模·理)(本小题共14分)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,离心率为12,过右焦点F 且不与坐标轴垂直的直线l与椭圆相交于M ,N 两点,设点(,0)P m ,记直线PM ,PN 的斜率分别为1k ,2k .(Ⅰ)求椭圆C 的方程; (Ⅱ)若120k k +=,求m 的值. 15.(本小题共14分)解:(Ⅰ)依题意得 24a =,所以 2a =. …………………1分因为 12c e a ==,所以 1c =. …………………2分 所以 23b =. …………………3分所以椭圆C 的方程为 22143x y +=. …………………4分(Ⅱ)椭圆的右焦点 (1,0)F . …………………5分设直线 l :(1)(0)y k x k =-≠,设 11(,)M x y ,22(,)N x y .………6分联立方程组 ⎪⎩⎪⎨⎧-==+)1(13422x k y y x , 2222,1212k k k k ⎛⎫- ⎪++⎝⎭0k ≠C M 222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭消y 得 2222(34)84(3)0k x k x k +-+-=,0∆>成立. …………………8分所以 2122834k x x k +=+,21224(3)34k x x k-=+. …………………9分 因为 1212120y y k k m x m x --+=+=--, …………………10分所以122112()()0()()y m x y m x m x m x ----=--,即 1221()()0y m x y m x -+-=,…11分所以 2112()(1)()(1)0k m x x k m x x --+--=恒成立. …………………12分 因为 0k ≠,所以 1212(1)()220m x x x x m ++--=,即 222284(3)(1)2203434k k m m k k -+⋅-⋅-=++, …………………13分 化简为 2228(1)8(3)2(34)0k m k m k +---+=, 所以 4m =. …………………14分16.(2018顺义二模·理)(本小题满分14分)已知椭圆134:22=+y x G 的左焦点为F ,左顶点为A ,离心率为e ,点()0,t M ()2-<t 满足条件e AM FA =||||.(Ⅰ)求实数t 的值;(Ⅱ)设过点F 的直线l 与椭圆G 交于Q P ,两点,记MPF ∆和MQF ∆的面积分别为21,S S ,证明:||||21MQ MP S S =. 16.解:(Ⅰ)椭圆G 的标准方程为:13422=+y x ∴3,2==b a ,122=-=b a c ------------------------2分则21==a c e ,t AM FA --==2||,1||--------------------3分 ∵2121||||=--=t AM FA ,解得4-=t -------------4分(Ⅱ)方法一:①若直线l 的斜率不存在,则21S S =,||||MQ MP =,符合题意--------5分②若直线l 的斜率存在,因为左焦点()0,1-F ,则可设直线l 的方程为:()1+=x k y ,并设()()2211,,,y x Q y x P .联立方程组()⎪⎩⎪⎨⎧=++=134122y x x k y ,消去y 得:()01248432222=-+++k x k x k ---6分 ∴2221438k k x x +-=+,222143124kk x x +-=--------------------------------7分 ∵442211+++=+x y x y k k MQ MP ()()41412211+++++=x x k x x k ----------------9分 ()()()()()()444141211221+++++++=x x x x k x x k ()()()44852212121+++++=x x k x x k x kx ()()04484385431242212222=++++-∙++-∙=x x k k k k k k k ∴QMF PMF ∠=∠-------------------------------------------------------------------12分 ∵PMF MP MF S ∠=sin ||||211,QMF MQ MF S ∠=sin ||||212 ∴||||21MQ MP S S =------------------------------------------------------------------14分 方法二:依题意可设直线l 的方程为:1-=my x ,并设()()2211,,,y x Q y x P .—5分 联立方程组⎪⎩⎪⎨⎧=+-=134122y x my x ,消去x ,得()0964322=--+my y m --------6分 ∴436221+=+m m y y ,439221+-=m y y --------------------------------7分 ∵442211+++=+x y x y k k MQ MP 332211+++=my y my y ------------------------------9分()()()()3333211221+++++=my my my y my y ()()()3332212121++++=my my y y y my ()()033436343922122=+++⨯++-∙=my my m m m m ∴QMF PMF ∠=∠------------------------------------------------------------------12分 ∵PMF MP MF S ∠=sin ||||211,QMF MQ MF S ∠=sin ||||212 ∴||||21MQ MP S S =------------------------------------------------------------------14分。

方法技巧专题07 圆锥曲线的概念及其几何性质(解析版)

方法技巧专题07  圆锥曲线的概念及其几何性质(解析版)

方法技巧专题7 圆锥曲线的概念及其几何性质 解析版一、 圆锥曲线的概念及其几何性质知识框架二、圆锥曲线的定义、方程【一】圆锥曲线的定义1、椭圆(1)秒杀思路:动点到两定点(距离为2c )距离之和为定值(2a )的点的轨迹;(2)秒杀公式:过抛圆的一个焦点作弦AB ,与另一个焦点F 构造FAB ∆,则FAB ∆的周长等于a 4。

(3) ①当c a 22>时,表示椭圆;②当c a 22=时,表示两定点确定的线段;③当c a 22<时,表示无轨迹。

2、双曲线(1)秒杀思路: ①双曲线上任意一点到两焦点距离之差的绝对值是常数2a ;②注意定义中两个加强条件:(I )绝对值; (II )22a c <; ③加绝对值表示两支(或两条),不加绝对值表示一支(或一条);(2)秒杀公式:过双曲线的一个焦点作弦AB (交到同一支上),与另一个焦点F 构造FAB ∆,则FAB ∆的周长等于AB a 24+。

(3) ①当22a c <时,表示双曲线; ②当22a c =时,表示以两定点为端点向两侧的射线;③当22a c >时,无轨迹; ④当20a =时表示两定点的中垂线。

3、抛物线(1)秒杀思路:到定点(焦点)距离等于到定直线(准线)距离。

所以,一般情况下,抛物线已知到焦点的距离需转化为到准线的距离,已知到准线的距离需转化为到焦点的距离。

(2)秒杀公式一:焦点在x 轴上的圆锥曲线,曲线上的点到同一个焦点的距离成等差数列,则横坐标成等差数列,反过来也成立。

(3)秒杀公式二:作过抛物线焦点且倾斜角为︒60或︒120的弦,两段焦半径分别为:32,2pp .1. 例题【例1】设P 是椭圆2212516x y +=上的点,若21,F F 是椭圆的两个焦点,则12PF PF +等于 ( )A.4B.5C.8D.10【解析】利用椭圆的定义得12PF PF +=102=a ,选D 。

【例2】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为B A ,,线段MN 的中点在C 上,则||||AN BN += .【解析】如图,22QF BN =,12QF AN =,||||AN BN +=124)(221==+a QF QF .【例3】已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为_______.【解析】,8,2222121=+=-r r r r 得21PF PF +=32. 【例4】设椭圆1C 的离心率为135,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为 ( )A.1342222=-y xB.15132222=-y xC.1432222=-y xD.112132222=-y x【解析】由双曲线定义得4=a ,5=c ,3=b ,选A 。

2018年高考数学试题分类汇编--圆锥曲线

2018年高考数学试题分类汇编--圆锥曲线

2018年高考数学选择试题分类汇编——圆锥曲线(2018湖南文数)5. 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是A. 4B. 6C. 8D. 12(2018浙江理数)(8)设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF FF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A )340x y ±= (B )350x y ±= (C )430x y ±= (D )540x y ±=解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a 与b 之间的等量关系,可知答案选C ,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题(2018全国卷2理数)(12)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,过右焦点F且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2 【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.(2018陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为 [C](A )12(B )1 (C )2 (D )4解析:本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p(2018辽宁文数)(9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A (B (C (D 解析:选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b-=>>,则一个焦点为(,0),(0,)F c B b 一条渐近线斜率为:b a ,直线FB 的斜率为:bc -,()1b ba c∴⋅-=-,2b ac ∴=220c a ac --=,解得c e a ==(2018辽宁文数)(7)设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为PF =(A )(B ) 8 (C ) (D ) 16 解析:选B.利用抛物线定义,易证PAF ∆为正三角形,则4||8sin30PF ︒==(2018辽宁理数) (9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A)(C)12(D)12【答案】D【命题立意】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想。

2012-2018全国卷圆锥曲线(理科)

2012-2018全国卷圆锥曲线(理科)

2012-2018全国卷圆锥曲线解答题(理科)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围.6. (2017年全国高考Ⅰ卷理科第20题) (本小题满分12分)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。

2018高三数学全国二模汇编(理科)专题07圆锥曲线

2018高三数学全国二模汇编(理科)专题07圆锥曲线

2018高三数学全国二模汇编(理科)专题07圆锥曲线故选C .点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化, 这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题. 3.【2018河南郑州高三二模】如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点()24,,圆222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则4PN QM +的最小值为( )A. 23B. 42C. 12D. 52 【答案】A【点睛】当抛物线方程为22(p>0)ypx =,,过焦点的直线l 与抛物线交于,P Q ,则有112F PF Q P +=,抛物线的极坐标方程为1cos pρθ=-,所以1PF ρ== 1cos pθ-, ()21cos 1cos p pQF ρθπθ===-++,所以112F PFQ P+=,即证。

4.【2018陕西咸阳高三二模】双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线210x y -+=平行,则它的离心率为( )2D.2【答案】A【解析】由双曲线的渐近线方程可得双曲线的渐近线方程为: b y x a =±,其斜率为: ba±, 其中一条渐近线与直线210x y -+=平行,则: 2b a =,则双曲线的离心率:e ==本题选择A 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.【2018湖南衡阳高三二模】已知双曲线的两个焦点为())12F F M 、,是此双曲线上的一点,且满足12120,2MF MF MF MF ==,则该双曲线的焦点到它的一条渐近线的距离为( )A. 3B. 13C. 12D. 1 【答案】D6.【2018陕西高三二模】已知点12F F、分别为双曲线()222210,0x y a b a b-=>>的左、右两个焦点,点P 是双曲线右支上一点,若P 点的横坐标043x a =时,有12F P F P ⊥,则该双曲线的离心率e 为( )32 C. 2 D. 92【答案】A7.【2018陕西高三二模】已知22C :4630x y x y +---=,点()M 2,0-是C外一点,则过点M 的圆的切线的方程是( ) A. 20724140x x y +=+=,- B. 20724140y x y +=++=, C. 20724140x x y +=++=, D. 20724140y x y +=+=,- 【答案】C 【解析】22C :4630xy x y +---=,即(222316x y -+-=)(), 故圆心是23(,),半径是4,点点()M 2,0-是C 外一点,显然20x += 是过点M 的圆的一条切线,设另一条切线和圆相切于P a b (,), 则MP 的斜率是2b a +,直线MP的方程是:220bx a y b -++=(),故232243122b a bb ba a -++-⋅--+,=解得: 26{? ,7a b -== 故切线方程是724140x y ++=,故选C.【点睛】本题考查了圆的切线方程问题,考查直线和圆的位置关系以及点到直线的距离,解题时应注意切线斜率不存在的情况.8.【2018河南商丘高三二模】已知点分别是双曲线的左、右焦点,为坐标原点,在双曲线的右支上存在点,且满足,,则双曲线的离心率的取值范围为()A. B. C. D.【答案】D点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 9.【2018四川德阳高三二诊】如图,过抛物线的焦点作倾斜角为的直线,与抛物线及其准线从上到下依次交于、、点,令,,则当时,的值为()A. 3B. 4C. 5D. 6【答案】C【解析】设,则由过抛物线的焦点的直线的性质可得又,可得分别过点A,B作准线的垂线,分别交准线于点E,D,则同理可得,故选B.10.【2018河南商丘高三二模】已知椭圆的左、右焦点分别为,直线与椭圆相切,记到直线的距离分别为,则的值为( )A. 1B. 2C. 3D. 4 【答案】B11.【2018四川德阳高三二诊】已知双曲线的离心率为,其一条渐近线被圆截得的线段长为,则实数的值为( ) A. 3 B. 1 C. D. 2 【答案】D【解析】双曲线的离心率为,则故其一条渐近线不妨为,圆的圆心,半径为2,双曲线的一条渐近线被圆截得的线段长为,可得圆心到直线的距离为:故选D .12.【2018重庆高三4月二诊】已知双曲线22221x y a b -=(0a >, 0b >)的左右焦点分别为1F , 2F ,点P 在双曲线的左支上, 2PF 与双曲线的右支交于点Q ,若1PF Q 为等边三角形,则该双曲线的离心率是( )2 【答案】D点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c,代入公式c=;②只需要根据一个条件得ea到关于,,a b c的齐次式,转化为,a c的齐次式,然后转化为关于e的方程(不等式),解方程(不等式),即可得e(e的取值范围).13.【2018甘肃兰州高三二模】在平面直角坐标系xOy中,抛物线26=的焦点为F,准线为,l P为抛物线上一点,, y x⊥为PA l A垂足,若直线AF的斜率k=PF的长为()A. 4 B. 5 C. 6 D. 7【答案】C14.【2018安徽马鞍山高三二模】已知为椭圆上关于长轴对称的两点,分别为椭圆的左、右顶点,设分别为直线的斜率,则的最小值为()A. B. C. D.【答案】C【解析】设,由题得,所以,故选C.点睛:本题的难点在于计算出要观察变形,再联想到基本不等式解答.观察和数学想象是数学能力中的一个重要组成部分,所以平时要有意识地培养自己的数学观察想象力.15.【2018安徽马鞍山高三二模】如图所示的一个算法的程序框图,则输出的最大值为()A. B. 2 C. D.【答案】C16.【2018广东茂名高三二模】以为圆心,为半径的圆与双曲线的渐近线相离,则的离心率的取值范围是()A. B. C. D.【答案】B【解析】由条件可得,,∴,即,∴故选:B点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.17.【2018河北唐山高三二模】椭圆2222:1(0)x y C a b a b+=>>右焦点为F,存在直线y t =与椭圆C 交于,A B 两点,使得ABF ∆为等腰直角三角形,则椭圆C 的离心率e = ( )A.11D. 12【答案】B18.【2018河北邯郸高三一模】设双曲线Ω:22221(0,0)x y a b a b -=>>的左顶点与右焦点分别为A , F ,以线段AF 为底边作一个等腰AFB ∆,且AF 边上的高h AF =.若AFB ∆的垂心恰好在Ω的一条渐近线上,且Ω的离心率为e ,则下列判断正确的是( )A. 存在唯一的e ,且3,22e ⎛⎫∈ ⎪⎝⎭B. 存在两个不同的e ,且一个在区间31,2⎛⎫⎪⎝⎭内,另一个在区间3,22⎛⎫⎪⎝⎭内C. 存在唯一的e ,且31,2e ⎛⎫∈ ⎪⎝⎭D. 存在两个不同的e ,且一个在区间31,2⎛⎫ ⎪⎝⎭内,另一个在区间52,2⎛⎫ ⎪⎝⎭内【答案】A【解析】由题意可设()(),0,,0,,2c a A a F c B c a -⎛⎫-+ ⎪⎝⎭,可得AFB ∆的垂心H ,24c a c a -+⎛⎫⎪⎝⎭,因为AFB ∆的垂心恰好在Ω的一条渐近线上,所以()()32=4110c a b f e e e c a a+∴=---=-()()()()23310,0,201211022f f f x f x x ⎛⎫=--> ⎪⎭'⎝;时,所以存在唯一的e ,且3,22e ⎛⎫∈ ⎪⎝⎭,当312x <<时()0f x <无零点,选A. 点睛:判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断. 19.【2018安徽合肥高三质检二】已知双曲线2222:1x y C a b-=的左,右焦点分别为1F , 2F , A , B 是双曲线C 上的两点,且113AFF B=,23cos 5AF B ∠=,则该双曲线的离心率为( )2C.2【答案】B【解析】如图,设A , B 是双曲线C 左支上的两点,点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量,,a b c的方程或不等式,利用222=-和cb c a=ea 转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量.20.【2018湖南郴州高三二模】如图,F是抛物线2:2C y px=(0p>)的焦点,直线l过点F且与抛物线及其准线交于A, B, C三点,若3BC BFAB=,则抛物线C的标准方程是()=,9A. 22y x= C. 28= B. 24y x=y xy x= D. 216【答案】C【解析】分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a ,则|BC|=3a ,|BD|=a ,∴DB 1BC 3=, 在直角三角形ACE 中,∵|AB|=9,|AC|=9+3a , ∴3|AE|=|AC|, ∴()39a -=9+3a ,即a=3, ∵BD ∥FG ,∴DBBCFG FC=,即3912p =,解得p=4, ∴抛物线的方程为y 2=8x .故选:C . 二、填空题21.【2018黑龙江大庆高三质检二】已知点及抛物线的焦点,若抛物线上的点满足,则__________.【答案】.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.22.【2018河南郑州高三二模】已知椭圆()2222r :10x y a b a b+=>>的右焦点为()1,0F ,且离心率为12, ABC的三个顶点都在椭圆r 上,设ABC三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别为123k k k 、、,且123k k k 、、均不为0. O 为坐标原点,若直线OD OE OM 、、的斜率之和为1.则123111k k k ++=__________.【答案】43-【点睛】点差法:这是处理圆锥曲线问题的一种特殊方法,适用于所有圆锥曲线。

专题7圆锥曲线(2018年4月版)2018届高考高三数学(文)全国各地优质模拟试卷分类汇编解析版

专题7圆锥曲线(2018年4月版)2018届高考高三数学(文)全国各地优质模拟试卷分类汇编解析版

专题 圆锥曲线一、单选题1.【2018河北衡水武邑高三上学期五调】已知抛物线22(0)y p x p =>的焦点为F ,其准线与双曲线2213yx-=相交于,M N 两点,若M N F ∆为直角三角形,其中F 为直角顶点,则p =( )A. B. C. D. 6【答案】A点睛:本题考查了抛物线的标准方程及双曲线的对称性应用,关键是分析出△MNF 为等腰直角三角形,利用tan ∠FMN=1建立等式即可解出p 的值.2.【2018河南安阳高三一模】已知12,F F 分别是椭圆22221(0)x y a b ab+=>>的左、右焦点, P 为椭圆上一点,且()110P F O F O P ⋅+=(O 为坐标原点),若12P F P F =,则椭圆的离心率为( )A.-B. 2C.D. 2-【答案】A【解析】以1,O F O P 为邻边作平行四边形,根据向量加法的平行四边形法则,由()110P F O F O P ⋅+=知此平行四边形的对角线垂直,即此平行四边形为菱形,∴1O P O F =,∴12F P F ∆是直角三角形,即12P F P F ⊥,设2P F x =,则,∴c e a===,故选A .3.【2018贵州遵义高三上学期联考二】数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知A B C ∆的顶点()2,0A , ()0,4B , A C B C =,则A B C ∆的欧拉线方程为( ) A. 230x y +-= B. 230x y -+= C. 230x y --= D. 230x y -+= 【答案】D点睛:本题考查了欧拉线的方程、等腰三角形的性质、三角形的外心重心垂心性质,考查了推理能力与计算能力,本题解题的关键是利用好欧拉线的几何性质实现几何问题的代数化.4.【2018贵州遵义高三上学期联考二】已知m 是两个数2,8的等比中项,则圆锥曲线221yx m+=的离心率为( )A.22B.2C.2D. 【答案】B【解析】由题意得216m =,解得4m =或4m =-.当4m =时,曲线方程为2214yx +=,故离心率为2c e a ====当4m =-时,曲线方程为2214yx -=,故离心率为c e a====.2B .5.【2018广东茂名高三山学期第一次综合测试】已知抛物线28y x =的准线与x 轴交于点D ,与双曲线221xym-=交于A , B 两点,点F 为抛物线的焦点,若△ADF 为等腰直角三角形,则双曲线的离心率是( )A. B. C. D.2【答案】D6.【2018重庆九校联盟高三上学期联考一】已知抛物线2:2C y p x =经过点()1,2M ,则该抛物线的焦点到准线的距离等于( ) A.18B.14C.12D. 1【答案】B【解析】依题意得2221112212222224p p y x x y p p =⨯⇒=⇒=⇔=⇒=⇒=,故选:B7.【2018福建三明高三上学期二模】已知等腰梯形A B C D 中//A B C D , 24A B C D ==,60B A D ∠=,双曲线以,A B 为焦点,且经过,C D 两点,则该双曲线的离心率等于( )A.B.C.D.1【答案】D【解析】等腰梯形ABCD 中AB ∥CD ,AB=2CD=4,∠BAD=60°,双曲线以A ,B 为焦点,且经过C ,D 两点, 双曲线过点C 时,e 1c A B aC A C B===-,故选:D .点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 8.【2018吉林普通高中高三二调】已知双曲线22221(0,0)x y a b ab -=>>的左右焦点分别为12,F F , P 为双曲线上一点, 且122P F P F =,若121c o s 4F P F ∠=,则该双曲线的离心率等于A. 2B.52C. 2D. 1【答案】C点睛:双曲线求离心率关键是其几何性质的应用。

2018年全国各地高考数学模拟试题《圆锥曲线与方程》试题汇编(含答案解析)

2018年全国各地高考数学模拟试题《圆锥曲线与方程》试题汇编(含答案解析)

2018年全国各地高考数学模拟试题《圆锥曲线与方程》试题汇编(含答案解析)1.(2018•红河州二模)设F1,F2分别是椭圆C:的左、右焦点,M是C上一点,且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为3,且|MN|=7|F1N|,求a,b.2.(2018•江苏模拟)已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.3.(2018•四川模拟)已知椭圆(a>b>0)的左焦点F(﹣2,0)左顶点A1(﹣4,0).(Ⅰ)求椭圆C的方程;(Ⅱ)已知P(2,3),Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点.若∠APQ=∠BPQ,试问直线AB的斜率是否为定值?请说明理由.4.(2018•济宁一模)已知椭圆C:,直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点.(1)若直线l与直线OD(O为坐标原点)的斜率之积为,求椭圆..的方程;(2)在(1)的条件下,y轴上是否存在定点M使得当k变化时,总有∠AMO=∠BMO(O为坐标原点).若存在,求出定点M的坐标;若不存在,请说明理由.5.(2018•红桥区一模)已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A,B两点,且|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x轴交于两点E,F,求点P 横坐标的取值范围及|EF|的最大值.6.(2018•南通一模)如图,在平面直角坐标系xOy中,已知椭圆+=1(a >b>0)的离心率为,两条准线之间的距离为4.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△AOB的面积是△AOM的面积的2倍,求直线AB的方程.7.(2018•枣庄二模)已知抛物线C:y2=2px(0<p<1)上的点P(m,1)到其焦点F的距离为.(Ⅰ)求C的方程;(Ⅱ)已知直线l不过点P且与C相交于A,B两点,且直线PA与直线PB的斜率之积为1,证明:l过定点.8.(2018•沈阳三模)已知抛物线C1:x2=2py(p>0)过点A(2,1),且它的焦点F也是椭圆C2:(a>b>0)的一个焦点,椭圆上的点到焦点F的最小值为2.(Ⅰ)求抛物线C1和椭圆C2的标准方程;(Ⅱ)设M,N是抛物线C1上的两个动点,且=﹣4.①求证:直线MN必过定点,并求定点Q坐标;最大时,求直线MN的方程.②直线MN交椭圆C2于R、S两点,当S△FNS9.(2018•焦作四模)已知椭圆Γ:的离心率为,椭圆的四个顶点围成的四边形的面积为4.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)直线l与椭圆Γ交于A,B两点,AB的中点M在圆x2+y2=1上,求△AOB (O为坐标原点)面积的最大值.10.(2018•宣城二模)已知椭圆(a>b>0)的离心率为,点在椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)设AB是椭圆的一条弦,斜率为k(k≠0),N(t,0)是x轴上的一点,△ABN的重心为M,若直线MN的斜率存在,记为k',问:t为何值时,k•k'为定值?11.(2018•洛阳一模)已知点M,N分别是椭圆的左右顶点,F为其右焦点,|MF|与|FN|的等比中项是,椭圆的离心率为.(1)求椭圆C的方程;(2)设不过原点O的直线l与该轨迹交于A,B两点,若直线OA,AB,OB的斜率依次成等比数列,求△OAB面积的取值范围.12.(2018•江西二模)已知椭圆E:+=1(a>b>0)过点,且两个焦点的坐标分别为(﹣1,0),(1,0).(1)求E的方程;(2)若A,B,P为E上的三个不同的点,O为坐标原点,且,求证:四边形OAPB的面积为定值.13.(2018•虹口区二模)如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”,已知椭圆C:,点M(m,n)是椭圆C上的任意一点,直线l过点M且是椭圆C的“切线”.(1)证明:过椭圆C上的点M(m,n)的“切线”方程是;(2)设A、B是椭圆C长轴上的两个端点,点M(m,n)不在坐标轴上,直线MA、MB分别交y轴于点P、Q,过M的椭圆C的“切线”l交y轴于点D,证明:点D是线段PQ的中点;(3)点M(m,n)不在x轴上,记椭圆C的两个焦点分别为F1和F2,判断过M的椭圆C的“切线”l与直线MF1、MF2所成夹角是否相等?并说明理由.14.(2018•揭阳一模)已知A是椭圆T:上的动点,点P(0,),点C与点A关于原点对称.(I)求△PAC面积的最大值;(II)若射线AP、CP分别与椭圆T交于点B、D,且=m,=n,证明:m+n为定值.15.(2018•聊城一模)已知圆x2+y2=4经过椭圆C:的两个焦点和两个顶点,点A(0,4),M,N是椭圆C上的两点,它们在y轴两侧,且∠MAN的平分线在y轴上,|AM|≠|AN|.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:直线MN过定点.16.(2018•定远县模拟)已知椭圆C:+=1(a>b>0)的离心率为,其左、右焦点分别为F1,F2,点P(x0,y0)是坐标平面内一点,且|OP|=5,•=16(O为坐标原点).(1)求椭圆C的方程;(2)过点S(0,﹣1)且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过该点?若存在,求出点M的坐标,若不存在,说明理由.17.(2018•南充模拟)已知椭圆C:+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.(1)求椭圆C的方程;(2)直线l平行于OM,且与椭圆C交于A,B两个不同的点,若∠AOB为钝角,求直线l在y轴上的截距m的取值范围.18.(2018•成都模拟)已知椭圆C:的左右焦点分别为F1,F2,左顶点为A,离心率为,点B是椭圆上的动点,△ABF1的面积的最大值为.(1)求椭圆C的方程;(2)设经过点F1的直线l与椭圆C相交于不同的两点M,N,线段MN的中垂线为l'.若直线l'与直线l相交于点P,与直线x=2相交于点Q,求的最小值.19.(2018•齐齐哈尔一模)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2.且椭圆C过点(,﹣),离心率e=;点P在椭圆C上,延长PF1与椭圆C交于点Q,点R是PF2中点.(I)求椭圆C的方程;(II)若O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.20.(2018•唐山一模)已知椭圆Γ:(a>b>0)的左焦点为F,上顶点为A,长轴长为,B为直线l:x=﹣3上的动点,M(m,0)(m<0),AM ⊥BM.当AB⊥l时,M与F重合.(1)若椭圆Γ的方程;(2)若C为椭圆Γ上一点,满足AC∥BM,∠AMC=60°,求m的值.21.(2018•南平二模)已知抛物线C:y2=2px的焦点为F,抛物线C上的点M(2,y0)到F的距离为3.(Ⅰ)求抛物线C的方程;(Ⅱ)斜率存在的直线l与抛物线相交于相异两点A(x1,y1),B(x2,y2),x1+x2=4.若AB的垂直平分线交x轴于点G,且=5,求直线l方程.22.(2018•洛阳三模)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,试问直线AE是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.23.(2018•资阳模拟)已知椭圆C:的离心率,且过点.(1)求椭圆C的方程;(2)过P作两条直线l1,l2与圆相切且分别交椭圆于M,N两点.①求证:直线MN的斜率为定值;②求△MON面积的最大值(其中O为坐标原点).24.(2018•辽宁模拟)已知M()是椭圆C:(a>b>0)上的一点,F1F2是该椭圆的左右焦点,且|F1F2|=2.(1)求椭圆C的方程;(2)设点A,B是椭圆C上与坐标原点O不共线的两点,直线OA,OB,AB的斜率分别为k1,k2,k3,且k1k2=k2.试探究|OA|2+|OB|2是否为定值,若是,求出定值,若不是,说明理由.25.(2018•上饶三模)已知椭圆C1:(a>1)的离心率,左、右焦点分别为F1、F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.(1)求点M的轨迹C2的方程;(2)当直线AB与椭圆C1相切,交C2于点A,B,当∠AOB=90°时,求AB的直线方程.26.(2018•上海模拟)已知点F1、F2为双曲线C:的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.圆O的方程是x2+y2=b2.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值;(3)过圆O上任意一点Q(x0,y0)作圆O的切线l交双曲线C于A、B两点,AB中点为M,求证:.27.(2018•江苏一模)已知椭圆C:(a>b>0)经过点,,点A是椭圆的下顶点.(1)求椭圆C的标准方程;(2)过点A且互相垂直的两直线l1,l2与直线y=x分别相交于E,F两点,已知OE=OF,求直线l1的斜率.28.(2018•衡阳一模)已知椭圆的左、右焦点分别为F1、F2,离心率为,直线y=1与C的两个交点间的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)分别过F1、F2作l1、l2满足l1∥l2,设l1、l2与C的上半部分分别交于A、B 两点,求四边形ABF2F1面积的最大值.29.(2018•太原一模)已知椭圆的左顶点为A,右焦点为F2(2,0),点在椭圆C上.(1)求椭圆C的方程;(2)若直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N,在x轴上,是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由.30.(2018•成都模拟)已知圆O的方程为x2+y2=4,若抛物线C过点A(﹣1,0),B(1,0),且以圆O的切线为准线,F为抛物线的焦点,点F的轨迹为曲线C′.(1)求曲线C′的方程;(2)过点B作直线L交曲线C′与P,Q两点,P,P′关于x轴对称,请问:直线P′Q 是否过x轴上的定点,如果不过请说明理由,如果过定点,请求出定点E的坐标31.(2018•秦州区校级一模)已知椭圆C:+=1(a>b>0)的右焦点为F2(2,0),点P(1,﹣)在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在斜率为﹣1直线l与椭圆C相交于M,N两点,使得|F1M|=|F1N|(F1为椭圆的左焦点)?若存在,求出直线l的方程;若不存在,说明理由.32.(2018•黄山一模)已知椭圆Γ:的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形AF1BF2是边长为2的正方形.(1)求椭圆Γ的方程;(2)若C、D分别是椭圆Γ的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于与点P.证明:为定值.33.(2018•陕西一模)已知椭圆+=1(a>b>0)的左右焦点分别为F1和F2,由4个点M(﹣a,b)、N(a,b)、F2和F1组成了一个高为,面积为3的等腰梯形.(1)求椭圆的方程;(2)过点F1的直线和椭圆交于两点A、B,求△F2AB面积的最大值.34.(2018•朝阳三模)如图,椭圆经过点,且点M到椭圆的两焦点的距离之和为.(1)求椭圆C的标准方程;(2)若R,S是椭圆C上的两个点,线段RS的中垂线l的斜率为且直线l与RS交于点P,O为坐标原点,求证:P,O,M三点共线.35.(2018•徐州一模)如图,在平面直角坐标系xOy中,已知椭圆+=1(a >0,b>0)的离心率为,且过点(1,).F为椭圆的右焦点,A,B为椭圆上关于原点对称的两点,连接AF,BF分别交椭圆于C,D两点.(1)求椭圆的标准方程;(2)若AF=FC,求的值;(3)设直线AB,CD的斜率分别为k1,k2,是否存在实数m,使得k2=mk1,若存在,求出m的值;若不存在,请说明理由.36.(2018•芜湖模拟)已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,若PF1⊥PF2,|F1F2|=2,△PF1F2的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)若A,B分别为椭圆上的两点,且OA⊥OB,求证:为定值,并求出该定值.37.(2018•马鞍山二模)在直角坐标系中,己知点A(﹣2,0),B(2,0),两动点C(0,m),D(0,n),且mn=3,直线AC与直线BD的交点为P.(1)求动点P的轨迹方程;(2)过点F(1,0)作直线l交动点P的轨迹于M,N两点,试求的取值范围.38.(2018•凉山州模拟)若A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.39.(2018•江苏二模)如图,在平面直角坐标系xOy中,B1,B2是椭圆的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为y=x+3时,线段PB1的长为.(1)求椭圆的标准方程;(2)设点Q满足:QB1⊥PB1,QB2⊥PB2,求证:△PB1B2与△QB1B2的面积之比为定值.40.(2018•湖北模拟)如图,已知抛物线x2=2py(p>0),其焦点到准线的距离为2,圆S:x2+y2﹣py=0,直线l:y=kx+与圆和抛物线自左至右顺次交于四点A、B、C、D,(1)若线段AB、BC、CD的长按此顺序构成一个等差数列,求正数k的值;(2)若直线l′过抛物线焦点且垂直于直线l,直线l′与抛物线交于点M、N,设AD、MN的中点分别为P、Q,求证:直线PQ过定点.参考答案与试题解析1.【分析】(1)设出M坐标,通过直线MN的斜率为,转化求解C的离心率.(2)通过原点O为F1F2的中点,MF2∥y轴,推出b2=6a,结合|MN|=7|F1N|,转化求解a,b.【解答】解:(1)根据及题设知,5b2=24ac将b2=a2﹣c2代入5b2=24ac解得或(舍去),故C的离心率为;………………………………………………(4分)(2)由题意得,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,3)是线段MF1的中点,故,即b2=6a①………………………………………………(7分)由|MN|=7|F1N|得|DF1|=3|F1N|,设N(x1,y1)则,即代入C的方程,得②……………………………………………(10分)将①及代入②得解得故……………………………………………………(12分)【点评】本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的应用,考查计算能力.2.【分析】(1)由已知可得a,再由离心率求得c,结合隐含条件求得b,则椭圆方程可求;(2)由题意定义结合已知求得PF2,再由椭圆的第二定义可得点P到右准线的距离.【解答】解:(1)根据题意:,解得,∴b2=a2﹣c2=4,∴椭圆C的标准方程为;(2)由椭圆的定义得:PF1+PF2=6,可得PF2=2,设点P到右准线的距离为d,根据第二定义,得,解得:.【点评】本题考查椭圆的简单性质,考查了椭圆定义的应用,是基础题.3.【分析】(Ⅰ)由题意可得,a=4,c=2由a2=b2+c2,得b2=42﹣22=12,问题得以解决.(Ⅱ)当∠APQ=∠BPQ时,PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为﹣k,将PA、PB的直线方程分别代入椭圆方程,然后运用韦达定理,求出x1,x2,再由斜率公式化简即可得到定值.【解答】解:(Ⅰ)由题意可得,a=4,c=2由a2=b2+c2,得b2=42﹣22=12,所以椭圆C的方程为.(Ⅱ)当∠APQ=∠BPQ时,AP,BP的斜率之和为0,设直线PA的斜率为k,则直线PB的斜率为﹣k,设A(x1,y1)B(x2,y2),PA的方程为y﹣3=k(x﹣2).联立消y得(3+4k2)x2+8(3k﹣k2)x+4(4k2+9﹣12k)﹣48=0所以,同理,所以,,所以k AB===,所以AB的斜率为定值.【点评】本题考查椭圆的方程及联立直线方程消去一个未知数,得到二次方程,运用韦达定理求解,考查基本的运算能力,属于中档题.4.【分析】(1)根据题意,联立直线与椭圆的方程,可得(4+a2k2)x2+2a2kx﹣3a2=0,设A(x1,y1),B(x2,y2),D(x0,y0),用k表示D的坐标,分析可得=.解可得a2的值,将其代入椭圆的方程即可得答案;(2)假设存在定点M,且设M(0,m),分析易得k AM+k BM=0,即,变形分析可得2kx1x2+x1+x2﹣m(x1+x2)=0,结合根与系数的关系分析可得,计算可得m的值,即可得答案.【解答】解:(1)由得(4+a2k2)x2+2a2kx﹣3a2=0,显然△>0,设A(x1,y1),B(x2,y2),D(x0,y0),则,,∴,.∴=.∴a2=8.所以椭圆C的方程为.(2)假设存在定点M,且设M(0,m),由∠AMO=∠BMO得k AM+k BM=0.∴.即y1x2+y2x1﹣m(x1+x2)=0,∴2kx1x2+x1+x2﹣m(x1+x2)=0.由(1)知,,∴.∴m=4.所以存在定点M(0,4)使得∠AMO=∠BMO.【点评】本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程.5.【分析】(Ⅰ)由题意可得,2b=2,再由椭圆的离心率公式和a,b,c的关系,解得a=2,进而得到椭圆方程;(Ⅱ)方法一、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),求出直线PA,PB的方程,与直线x=4的交点M,N,可得MN的中点,圆的方程,令y=0,求得与x轴的交点坐标,运用弦长公式,结合.即可得到所求最大值;方法二、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),求出直线PA,PB 的方程,与直线x=4的交点M,N,以MN为直径的圆与x轴相交,可得y M y N<0,求得,再由弦长公式,可得最大值.【解答】解:(Ⅰ)由题意可得,2b=2,即b=1,,得,解得a2=4,椭圆C的标准方程为;(Ⅱ)方法一、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线PA的方程为,同理:直线PB的方程为,直线PA与直线x=4的交点为,直线PB与直线x=4的交点为,线段MN的中点,所以圆的方程为,令y=0,则,因为,所以,所以,设交点坐标(x1,0),(x2,0),可得x1=4+,x2=4﹣,因为这个圆与x轴相交,该方程有两个不同的实数解,所以,解得.则()所以当x0=2时,该圆被x轴截得的弦长为最大值为2.方法二:设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线PA的方程为,同理:直线PB的方程为,直线PA与直线x=4的交点为,直线PB与直线x=4的交点为,若以MN为直径的圆与x轴相交,则,即,即.因为,所以,代入得到,解得.该圆的直径为,圆心到x轴的距离为,该圆在x轴上截得的弦长为;所以该圆被x轴截得的弦长为最大值为2.【点评】本题考查椭圆的方程的求法,注意运用离心率公式和基本量的关系,考查直线和圆相交的弦长问题,注意运用圆的方程,以及直线和圆相交的条件,考查化简整理的运算能力,属于中档题.6.【分析】(1)设椭圆的焦距为2c,由题意得,=,=4,解出即可得出.(2)△AOB的面积是△AOM的面积的2倍,可得AB=2AM,即点M为AB的中点.A(﹣2,0).设M(x0,y0),利用中点坐标公式可得:B(2x0+2,2y0).由+=,+=1,联立解出,即可得出直线AB的方程.【解答】解:(1)设椭圆的焦距为2c,由题意得,=,=4,解得a=2,c=b=.∴椭圆的方程为:+=1.(2)△AOB的面积是△AOM的面积的2倍,∴AB=2AM,∴点M为AB的中点.∵椭圆的方程为:+=1.∴A(﹣2,0).设M(x0,y0),则B(2x0+2,2y0).由+=,+=1,化为:﹣18x0﹣16=0,≤x0≤.解得:x0=﹣.代入解得:y0=,∴k AB=,因此,直线AB的方程为:y=(x+2).【点评】本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、三角形面积计算公式,考查了推理能力与计算能力,属于难题.7.【分析】(Ⅰ)通过点在抛物线上,以及抛物线的定义,列出方程求解可得C的方程;(Ⅱ)证法一:设直线PA的斜率为k(显然k≠0),则直线PA的方程为y﹣1=k (x﹣1),联立直线与抛物线方程,设A(x1,y1),由韦达定理,求出A的坐标,直线PB的斜率为.得到B的坐标,通过直线的向量是否垂直,求出直线l的方程,然后求解定点坐标.证法二:由(1),得P(1,1).若l的斜率不存在,则l与x轴垂直.设A(x1,y1),则B(x1,﹣y1),.推出l的斜率必存在.设l的斜率为k,显然k ≠0,设l:y=kx+t,利用直线方程与抛物线方程联立,设A(x1,y1),B(x2,y2),利用韦达定理,转化求解直线l:y=kx﹣1.即可说明l过定点(0,﹣1).证法三:由(1),得P(1,1).设l:x=ny+t,由直线l不过点P(1,1),所以n+t≠1.由消去x并整理得y2﹣ny﹣t=0.判别式△=n2+4t>0.设A(x1,y1),B(x2,y2),则y1+y2=n①,y1y2=﹣t②,转化求解l:x=n(y+1).说明l过定点(0,﹣1).【解答】解:(Ⅰ)由题意,得2pm=1,即.由抛物线的定义,得.由题意,.解得,或p=2(舍去).所以C的方程为y2=x.(Ⅱ)证法一:设直线PA的斜率为k(显然k≠0),则直线PA的方程为y﹣1=k (x﹣1),则y=kx+1﹣k.由消去y并整理得k2x2+[2k(1﹣k)﹣1]x+(1﹣k)2=0.设A(x1,y1),由韦达定理,得,即.=.所以.由题意,直线PB的斜率为.同理可得,即B((k2﹣1)2,k﹣1).若直线l的斜率不存在,则.解得k=1,或k=﹣1.当k=1时,直线PA与直线PB的斜率均为1,A,B两点重合,与题意不符;当k=﹣1时,直线PA与直线PB的斜率均为﹣1,A,B两点重合,与题意不符.所以,直线l的斜率必存在.直线l的方程为[x﹣(k﹣1)2],即.所以直线l过定点(0,﹣1).证法二:由(1),得P(1,1).若l的斜率不存在,则l与x轴垂直.设A(x1,y1),则B(x1,﹣y1),.则==.(x1﹣1≠0,否则,x1=1,则A(1,1),或B(1,1),直线l过点P,与题设条件矛盾)由题意,,所以x1=0.这时A,B两点重合,与题意不符.所以l的斜率必存在.设l的斜率为k,显然k≠0,设l:y=kx+t,由直线l不过点P(1,1),所以k+t≠1.由消去y并整理得k2x2+(2kt﹣1)x+t2=0.由判别式△=1﹣4kt>0,得.设A(x1,y1),B(x2,y2),则①,②,则==.由题意,.故(k2﹣1)x1x2+(kt﹣k+1)③将①②代入③式并化简整理得,即1﹣t2﹣kt﹣k=0.即(1+t)(1﹣t)﹣k(t+1)=0,即(1+t)(1﹣t﹣k)=0.又k+t≠1,即1﹣t﹣k≠0,所以1+t=0,即t=﹣1.所以l:y=kx﹣1.显然l过定点(0,﹣1).证法三:由(1),得P(1,1).设l:x=ny+t,由直线l不过点P(1,1),所以n+t≠1.由消去x并整理得y2﹣ny﹣t=0.由题意,判别式△=n2+4t>0.设A(x1,y1),B(x2,y2),则y1+y2=n①,y1y2=﹣t②则==.由题意,y1y2+(y1+y2)+1=1,即y1y2+(y1+y2)=0③将①②代入③式得﹣t+n=0,即t=n.所以l:x=n(y+1).显然l过定点(0,﹣1).【点评】本题考查抛物线的方程的求法,直线与抛物线的位置关系的综合应用,考查直线过定点问题,考查分类讨论思想的应用.8.【分析】(I)把A代入抛物线方程求出p,根据椭圆的性质列方程组求出a,b;(II)①设MN方程为y=kx+b,根据根与系数的关系和向量的数量积公式求出b 即可得出结论;②根据弦长公式计算|SR|,求出F到直线MN的距离d,得出三角形的面积关于k的函数,根据单调性得出k的值.【解答】解:(I)把A(2,1)代入抛物线C1可得:4=2p,p=2.∴抛物线C1的方程为x2=4y.故F(0,1),又F(0,1)是椭圆C2:的焦点,且椭圆上的点到焦点F的最小值为2,∴,解得a=3,b=2,∴椭圆C2的标准方程为:=1.(II)①∵直线MN与抛物线交于M,N两点,∴直线MN斜率必存在.设直线MN的方程为y=kx+b,M(x1,y1),N(x2,y2),联立方程组,消去y可得:x2﹣4kx﹣4b=0,∴x1x2=﹣4b,∴y1y2==b2,∴=x1x2+y1y2=b2﹣4b=﹣4,即b=2.∴直线MN的方程为y=kx+2.∴直线MN过定点Q(0,2).②联立方程组,消去y可得:(9+8k2)x2+32kx﹣40=0,设R(x3,y3),S(x4,y4),则x3+x4=﹣,x3x4=﹣,∴|RS|==,又F(0,1)代直线MN的距离d=,=|RS|×d=,∴S△FSR令=t,则t≥,==,∴S△FSR取得最大值,此时k=0.由对勾函数的性质可知当t=时,S△FSQ∴直线MN的方程为y=2.【点评】本题考查了抛物线、椭圆的性质,直线与圆锥曲线的位置关系,属于中档题.9.【分析】(Ⅰ)根据题意,由椭圆的离心率公式可得,进而可得,则椭圆的方程可以为以,由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,据此解可得a、b的值,将a、b的值代入椭圆的方程即可得答案;(Ⅱ)根据题意,按直线l的斜率是否存在分2种情况讨论,当直线l的斜率不存在时,令x=±1,易得△AOB的面积,当直线l的斜率存在时,设ly=kx+m,联立直线与椭圆的方程,用k表示△AOB的面积,由基本不等式的性质分析可得△AOB的面积,综合2种情况即可得答案.【解答】解:(Ⅰ)根据题意,椭圆Γ:的离心率为,则,得,,所以,由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,所以a=2,b=1,椭圆Γ的标准方程为.(Ⅱ)根据题意,直线l与椭圆Γ交于A,B两点,当直线l的斜率不存在时,令x=±1,得,,当直线l的斜率存在时,设l:y=kx+m,A(x1,y1),B(x2,y2),M(x0,y0),由,得(1+4k2)x2+8kmx+4m2﹣4=0,则,,所以,,将代入x2+y2=1,得,又因为=,原点到直线l的距离,所以==×==.当且仅当12k2=1+4k2,即时取等号.综上所述,△AOB面积的最大值为1.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,注意分析直线的斜率是否存在.10.【分析】(Ⅰ)由已知可得:,结合a2=b2+c2,解得,即可.(Ⅱ)设A(x1,y1),B(x2,y2),则重心,,.则,结合.可得当且仅当t=0,即N(0,0)时,k•k'为定值为.【解答】解:(Ⅰ)由已知可得:,结合a2=b2+c2,解得,∴椭圆方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),则重心,,.由于AB斜率为k存在且k≠0,故,则∵则要使为定值,则当且仅当t=0,即N(0,0)时,k•k'为定值为.【点评】本题考查了椭圆的方程,性质,直线与椭圆的位置关系,属于中档题.11.【分析】(1)利用|MF|=a+c,|BN|=a﹣c,是|MF|与|FN|的等比中项.得到(a+c)(a﹣c)=3,结合椭圆的离心率求解即可.(2)直线l的斜率存在且不为0.设直线l:y=kx+m(m≠0),A(x1,y1),B(x2,y2),联立直线和椭圆,消去y可得,(3+4k2)x2+8kmx+4m2﹣12=0,利用判别式以及韦达定理,通过OA,AB,OB的斜率依次成等比数列,推出m2(4k2﹣3)=0,求出,0<m2<6,且m2≠3,然后求解三角形的面积的表达式,求解范围即可.【解答】解:(1)解:|MF|=a+c,|BN|=a﹣c,是|MF|与|FN|的等比中项.∴(a+c)(a﹣c)=3,∴b2=a2﹣c2=3.又,解得a=2,c=1,∴椭圆C的方程为.(2)由题意可知,直线l的斜率存在且不为0.故可设直线l:y=kx+m(m≠0),A(x1,y1),B(x2,y2),联立直线和椭圆,消去y可得,(3+4k2)x2+8kmx+4m2﹣12=0,由题意可知,△=64km﹣4(4k2+3)(4m2﹣12)=48(4k2﹣m2+3)>0,即4k2+3>m2,且,又直线OA,AB,OB的斜率依次成等比数列,所以,将y1,y2代入并整理得m2(4k2﹣3)=0,因为m≠0,,0<m2<6,且m2≠3,设d为点O到直线l的距离,则有,,所以,所以三角形面积的取值范围为.【点评】本题考查椭圆方程的求法直线与椭圆的位置关系的综合应用,三角形的面积的范围的求法,考查转化思想以及计算能力.12.【分析】(1)根据题意,由椭圆的焦点坐标可得c的值,结合椭圆的定义可得2a=+=2,即可得a的值,由椭圆的定义计算可得b的值,将a、b的值代入椭圆的方程即可得答案;(2)根据题意,按直线AB的斜率是否存在分2种情况讨论:①,直线AB的斜率不为零,②当AB的斜率为零时,分别求出四边形的面积,综合即可得结论.【解答】解:(1)根据题意,椭圆E:+=1的两个焦点的坐标分别为(﹣1,0),(1,0).则c=1,又由椭圆经过点,则2a=+=2,即a=,b==1,则E的方程为;(2)证明:根据题意,分2种情况讨论:①,当直线AB的斜率不为零时,可设AB:x=my+t代入得:(m2+2)y2+2mty+t2﹣2=0,设A(x1,y1),B(x2,y2),则,△=8(m2+2﹣t2),设P(x,y),由,得,∵点P在椭圆E上,∴,即,∴4t2=m2+2,,原点到直线x=my+t的距离为.∴四边形OAPB的面积:.②当AB的斜率为零时,四边形OAPB的面积,∴四边形OAPB的面积为定值.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键是求出椭圆的标准方程.13.【分析】(1)方法一:设切线方程,代入椭圆方程,由M在椭圆方程,利用△=0,即可求得k的值,求得“切线”方程是;方法二:将直线方程代入椭圆方程,由△=0,则直线与椭圆只有一个交点,故直线与椭圆相切;(2)求得直线MA,MB的方程,令x=0,即可求得P和Q点坐标,令x=0,求得D点坐标,由y P+y Q=2y D,即可求得点D是线段PQ的中点;(3)求得交点坐标,即可求得MF1及MF2斜率,根据直线的夹角公式,求得tanθ1=tanθ1,过M的椭圆C的“切线”l与直线MF1、MF2所成夹角是否相等【解答】解:(1)方法一:当n=0时,m=±,则切线方程x=±,满足,当m≠0时,设直线y=k(x﹣m)+n,联立,整理得:(1+2k2)x2﹣4k(km﹣n)x+2(km﹣2)2﹣2=0,由△=16k2(km﹣n)2﹣4×(1+2k2)[2(km﹣2)2﹣2]=0,整理得:(2﹣m2)k2+2mnk+1﹣n2=0,由M(m,n)在椭圆上,则,2﹣m2=2n2,1﹣n2=,∴2n2k2+2mnk+=0,则(nk+)2=0,解得:k=﹣,∴切线方程y=﹣(x﹣m)+n,整理得:;综上可知:过椭圆C上的点M(m,n)的“切线”方程是;方法二:由直线,整理得:mx+2ny=2,,整理得:(2n2+m2)y2﹣4ny+2﹣m2=0,由M(m,n)在椭圆上,则,2﹣m2=2n2,2n2+m2=2,则y2﹣2ny+n2=0,则△=0,∴过椭圆C上的点M(m,n)的“切线”方程是;(2)由椭圆的左顶点A(﹣,0),右顶点B(,0),由直线MA的方程:y=(x+),令x=0,则y P=,同理y Q=,切线方程,令x=0,则y D=y P+y Q===2y D,∴点D是线段PQ的中点;(3)相等,由椭圆的焦点F1(﹣1,0),F2(1,0),过椭圆C上的点M(m,n)的“切线”方程是,则直线MF 1的斜率=,直线MF2的斜率=,则切线的斜率k=,由夹角公式tanθ1=||=,tanθ1=||=,所以所成夹角相等.【点评】本题考查椭圆的标准方程的性质,直线的切线方程的应用,直线与椭圆的位置关系,考查直线夹角公式的应用,中点坐标公式,考查转化思想,属于中档题.14.【分析】(Ⅰ)设A(x1,y1),依题意得点C(﹣x1,﹣y1),表示出△PAC面积,即可求出最大值,(Ⅱ)证法1:当直线AP的斜率存在时,设其方程为y=kx+,根据根与系数的关系可得m,n是方程9x2﹣30x+4x12+9=0的两个根,由韦达定理,m+n=;证法2:当直线AP的斜率存在时,这时点A不在y轴上,即x1≠0,设其方程为y=kx+,根据根与系数的关系,求出m,n,即可求出m+n的值.【解答】解:(Ⅰ)设A(x1,y1),依题意得点C(﹣x1,﹣y1),则S=|OP|•2|x1|=|x1|,△PAC∵点A在椭圆T:+y2=1上,∴|x1|≤2,∴S=|x1|≤1(当且仅当x1=±2时等号成立)△PAC∴△PAC面积的最大值为1;(Ⅱ)证法1:当直线AP的斜率存在时,设其方程为y=kx+,由,消去y,得(1+4k2)x2+4kx﹣3=0,设B(x2,y2),由韦达定理,得,而由=m,得(﹣x1,﹣y1)=m(x2,y2﹣),故﹣x1=mx2,x2=﹣,代入①、②,得,两式相除,得k=,代入④,整理得9m2﹣30m+4x12+9=0;对于射线CP,同样的方法可得9n2﹣30n+4x12+9=0,故m,n是方程9x2﹣30x+4x12+9=0的两个根,由韦达定理,m+n=;当直线AP的斜率不存在时,点A为椭圆T的上顶点或下顶点,当点A为(0,1)时,则B、C重合于点(0.﹣1),D、A重合,由=m,=n,得m=,n=3,这时m+n=;若点A为椭圆T的下顶点(0,﹣1),同理可得m+n=;综上可知m+n为定值,该值为.证法2:当直线AP的斜率存在时,这时点A不在y轴上,即x1≠0,设其方程为y=kx+,由,消去y,得(1+4k2)x2+4kx﹣3=0,设B(x2,y2),由韦达定理,得x1x2=﹣,又k=,代入上式得x2=,由=m,得(﹣x1,﹣y1)=m(x2,y2﹣),故﹣x1=mx2,∴m=﹣=对于射线CP,同样的方法可得n=,∴m+n==.当直线AP的斜率不存在时,点A为椭圆T的上顶点或下顶点,当点A为(0,1)时,则B、C重合于点(0.﹣1),D、A重合,当直线AP的斜率不存在时,点A为椭圆T的上顶点或下顶点,当点A为(0,1)时,则B、C重合于点(0.﹣1),D、A重合,由=m,=n,得m=,n=3,这时m+n=;若点A为椭圆T的下顶点(0,﹣1),同理可得m+n=;综上可知m+n为定值,该值为.【点评】本题考查了直线和椭圆的位置关系,向量的基本运算,考查了运算能力和转化能力,属于中档题.15.【分析】(Ⅰ)根据题意,由圆的方程分析可得椭圆的焦点和顶点坐标,即可得。

2018年全国高考(理科)数学试题分类汇编:圆锥曲线

2018年全国高考(理科)数学试题分类汇编:圆锥曲线

全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 (高考江西卷(理))过点引直线l与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++3 B.3- C.3± D. B 2 (福建数学(理)试题)双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25B .45CDC 3 (广东省数学(理)卷)已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x = B .22145x y -=C .22125x y -=D.2212x -=*B4 (高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>),则C 的渐近线方程为( )A .14y x =±B .13y x =±C .12y x =±D .y x =±*C5 (高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等*D6 (高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12BC .1 DB7 (浙江数学(理)试题)如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在。

2018年高考数学试题分类汇编之圆锥曲线解析版

2018年高考数学试题分类汇编之圆锥曲线解析版

2018年高考数学试题分类汇编之圆锥曲线(解析版)一、选择题1.(浙江卷)(2)双曲线221 3=x y -的焦点坐标是A .(0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)解:∵双曲线方程可得双曲线的焦点在x 轴上,且a 2=3,b 2=1, 由此可得222=+=b a c ∴该双曲线的焦点坐标为(±2,0)故选:B2.(天津文)(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:A3.(天津理)(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A221412x y -= B221124x y -= C 22139x y -= D 22193x y -=解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:C4.(全国卷一文)(4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 解:椭圆的一个焦点为(2,0),可得a 2-4=4,解得22=a ,故选:C5.(全国卷一理)(8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=A .5B .6C .7D .8解:抛物线C :y 2=4x 的焦点为F (1,0),过点(-2,0联立直线与抛物线C :y 2=4x ,消去x 可得:y 2-6y+8=0, 解得y 1=2,y 2=4,不妨M (1,2),N (4,4),FM =(0,2), FN =(3,4).则 FM ∙FN =(0,2)•(3,4)=8. 故选:D6.(全国卷一理)(11)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .4故选:B7.(全国卷二文)(6)双曲线22221(0,0)x y a b a b-=>>A.y =B.y =C.y = D .y = 解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A.8.(全国卷二文)(11)已知1F ,2F 是椭圆C 的两个焦点,P 是C上的一点,若12PF PF ⊥,且2160PFF ∠=︒,则C 的离心率为 A.1 B.2C D 1-解:F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°, 可得椭圆的焦点坐标F 2(c ,0),所以P(c 23,21故选:D9.(全国卷二理)(5)双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y =解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A .10.(全国卷二理)(12)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14解:由题意可知:A (-a ,0),F 1(-c ,0),F 2(c ,0),直线AP 的方程为:)(a x y +=63,故选:D11.(全国卷三文)(10)已知双曲线22221(00)x y C a b a b-=>>:,(4,0)到C 的渐近线的距离为AB .2CD .故选:D12.(全国卷三理)(11)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF ,则C 的离心率为A B .2 C D在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2-2|PF 2|•|F 1F 2|COS ∠PF 2O ,故选:C二、填空题1.(北京文)(10)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.解:∵直线l 过点(1,0)且垂直于x 轴,∴x=1,代入到y 2=4ax ,可得y 2=4a ,显然a >0,∴y=±∴抛物线的焦点坐标为(1,0), 故答案为:(1,0)2.(北京文)(12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.解:双曲线的离心率为245422=+a a ,解得a=4. 故答案为:43.(北京理)(14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.解:若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,4.(江苏卷)(8)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b -=>>的右焦点(,0)F c 到一条渐近,则其离心率的值是 .,故答案为:25.(浙江卷)(17)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =_______时,点B 横坐标的绝对值最大.解:设A (x 1,y 1),B (x 2,y 2),由P (0,1), AP=2PB,可得-x 1=2x 2,1-y 1=2(y 2-1),即有x 1=-2x 2,y 1+2y 2=3, 又x 12+4y 12=4m ,即为x 22+y 12=m ,① x 22+4y 22=4m ,② ①-②得(y 1-2y 2)(y 1+2y 2)=-3m ,可得y 1-2y 2=-m ,即有m=5时,x 22有最大值4, 即点B 横坐标的绝对值最大. 故答案为:5.6.(全国卷三理)(16)已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.解:∵抛物线C :y 2=4x 的焦点F (1,0),∴过A ,B 两点的直线方程为y=k (x-1),联立⎩⎨⎧-==)1(42x k y xy 可得,k 2x 2-2(2+k 2)x+k 2=0,设A (x 1,y 1),B (x 2,y 2),y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4,∵M (-1,1),∴ MA =(x 1+1,y 1-1), MB =(x 2+1,y 2-1), ∵∠AMB=90°=0,∴MA *MB =0∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2-(y 1+y 2)+2=0,∴即k 2-4k+4=0, ∴k=2. 故答案为:2三、解答题1.(北京文)(20)(本小题14分)已知椭圆2222:1(0)x y M a b a b +=>>焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D和点71(,)42Q -共线,求k .解析(Ⅰ)由题意得2c =,所以c =3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-=,易得当20m =时,max ||AB =||AB(Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y , 则221133x y += ①,222233x y += ②, 又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+- ,4471(,)44QD x y =+- , 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.2.(北京理)(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,μλ==,,求证:μλ11+为定值.解析:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2). 由(I )知12224k x x k -+=-,1221x x k =. 直线P A 的方程为y –2=1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由μλ==,得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=211(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.3.(江苏卷)(18)(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=,从而AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=, 所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+4.(天津文)(19)(本小题满分14分) 设椭圆22221(0)x y a b a b +=>> 的右顶点为A ,上顶点为B .||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.解析:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23.a b =由||AB ==从而3,2a b ==. 所以,椭圆的方程为22194x y +=. (II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>,点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩ 消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-. 5.(天津理)(19)(本小题满分14分) 设椭圆22221x x a b +=(a >b >0)的左焦点为F ,上顶点为B .,点A 的坐标为(,0)b ,且FB AB ⋅=.(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQAOQ PQ =∠(O 为原点) ,求k 的值. 解析(Ⅰ):设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB,由FB AB ⋅=ab =6,从而a =3,b =2. 所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ.由AQ AOQ PQ =∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =.易知直线AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221k y k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =.所以,k 的值为111228或. 6.(浙江卷)(21)(本题满分15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.解析(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是7.(全国一卷文)(20)(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222y x k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k ++-++++===. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM =∠ABN .8.(全国一卷理)(19)(12分) 设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A的坐标为或(1,. 所以AM的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<,直线MA ,MB 的斜率之和为212122MA MB x x y y k k +=+--. 由1122,y k k x y k x k =-=-得 121212(23()42)(2)MA MB x x x x k k x x k k k -+++=--. 将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=. 所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k k k k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.9.(全国二卷文)(20)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x =-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.10.(全国卷二理)(19)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =.因此l 的方程为1y x =-. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.11.(全国卷三文)(20)(12分) 已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0 .证明:2||||||FP FA FB =+ .解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA =-uu r .同理2||=22x FB -uu r . 所以1214()32FA FB x x +=-+=u u r u u r .故2||=||+||FP FA FB u u r u u r u u r . 12.(全国卷三理)(20)(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0 .证明:FA ,FP ,FB 成等差数列,并求该数列的公差.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得 1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP = .于是 1||22x FA ==- . 同理2||22x FB =- . 所以121||||4()32FA FB x x +=-+= . 故2||||||FP FA FB =+ ,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则 1212||||||||||2FB FA x x d =-=-= ②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||d =.或。

【研究院】[北京]2018二模(理)分类汇编——圆锥曲线(教师版)

【研究院】[北京]2018二模(理)分类汇编——圆锥曲线(教师版)

2018二模分类汇编——圆锥曲线1.(2018东城二模·理)已知双曲线C :x 2a 2-y 2b 2=1的一条渐近线的倾斜角为60º,且与椭圆x 25+y 2=1有相等的焦距,则C 的方程为(A )x 23-y 2=1 (B )x 29-y 23=1 (C )x 2-y 23=1 (D )x 23-y 29=11.C2.(2018海淀二模·理)设曲线C 是双曲线,则“C 的方程为2214y x -=”是“C 的渐近线方程为2y x =±”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件2.A3.(2018丰台二模·理)已知双曲线2221(0)9x y b b -=>的一条渐近线的倾斜角为π6,则b 的值为(A)3 (B)(C) (D) B4.(2018海淀二模·理)能够使得命题“曲线221(0)4x y a a-=≠上存在四个点P ,Q ,R ,S 满足四边形PQRS 是正方形”为真命题的一个实数a 的值为 .4.答案不唯一,0a <或4a >的任意实数5.(2018房山二模·理)设双曲线()222210,0-=>>x y a b a b的一条渐近线方程为20-=x y ,则该双曲线的离心率为 .6.(2018顺义二模·理)设双曲线)0,0(1:2222>>=-b a by a x C 经过点(4,1),且与1422=-x y 具有相同渐近线,则C 的方程为________________;渐近线方程为__________________.6.x y y x 21,131222±==-. 7.(2018朝阳二模·理)双曲线22x y λ-=(0λ≠)的离心率是 ;该双曲线的两条渐近线的夹角是 .π28.(2018昌平二模·理)已知双曲线:2221(0)x y a a-=>的渐近线方程为12y x =±,则双曲线的离心率是 .8.9.(2018海淀二模·理)(本小题共14分)已知椭圆C :2214x y +=,F 为右焦点,圆O :221x y +=,P 为椭圆C 上一点,且P 位于第一象限,过点P 作PT 与圆O 相切于点T ,使得点F ,T 在OP 两侧. (Ⅰ)求椭圆C 的焦距及离心率; (Ⅱ)求四边形OFPT 面积的最大值.C C8.(本小题共14分)解:(Ⅰ)在椭圆C :2214x y +=中,2a =,1b =,所以c == ········································································· 2分 故椭圆C的焦距为2c =, ································································· 3分离心率c e a ==. ················································································· 5分 (Ⅱ)法一:设00(,)P x y (00x >,00y >),则220014x y +=,故220014x y =-. ······················ 6分 所以2222220003||||||14TPOP OT x y x =-=+-=,所以0||TP =, ········································· 8分01||||24OTP S OT TP x∆=⋅=.·············· 9分又(0,0)O ,F ,故0012OFPS OF y y ∆=⋅=. ························ 10分因此00()2OFP OTP OFPTx S S S y∆∆=+=+四边形 ······································ 11分22==. 由220014x y +=,得1≤,即001x y ⋅≤,所以OFPT S =四边形, ·················································· 13分 当且仅当2200142x y ==,即0x 02y =时等号成立. ···················· 14分 (Ⅱ)法二:设(2cos ,sin )P θθ(02πθ<<), ················································· 6分则222222||||||4cos sin 13cos TP OP OT θθθ=-=+-=,所以||TP θ=, ·············································································· 8分1||||2OTP SOT TP θ∆=⋅=. ················································· 9分 又(0,0)O ,F,故012OFP S OF y θ∆=⋅=.···················· 10分因此(cos sin )OFP OTP OFPT S S S θθ∆∆=+=+四边形······························· 11分 )4πθ=+≤, ·················································· 13分当且仅当4πθ=时,即0x =02y =时等号成立. ······················· 14分10.(2018房山二模·理)(本小题14分)已知椭圆()222210+=>>:x y C a b a b 的离心率为12,O 为坐标原点,F 是椭圆C 的右焦点,A 为椭圆C 上一点,且⊥AF x 轴,AFO ∆的面积为34. (Ⅰ)求椭圆C 的方程;(Ⅱ)过C 上一点()()000,0≠P x y y 的直线l :00221x x y ya b+=与直线AF 相交于点M ,与直线4x =相交于点N .证明:当点P 在C 上移动时,MFNF 恒为定值,并求此定值.10.(Ⅰ)设(,0)F c ,(,)A c d 则22221c d a b+=又12c a =||d ∴= 因AFO ∆ 的面积为341133||,224c d c b bc ∴===由2222a b c a c bc ⎧-=⎪=⎨⎪=⎩得21a b c =⎧⎪=⎨⎪=⎩所以C 的方程为22143x y += …………5分 (Ⅱ)由(1)知直线l 的方程为00143x x y y+= (y 0≠0),即y =001234x x y - (y 0≠0). 因为直线AF 的方程为x =1,所以直线l 与AF 的交点为M 0123(1,)4x y -, 直线l 与直线x =4的交点为N 0(4,33)x -,则|MF |2|NF |2=202002220000123()4(4)331616(1)9()x y x x y x y --=-+-+ 又P (x 0,y 0)是C 上一点,则2200143x y +=.2200334x y =- 代入上式得|MF |2|NF |2=2220002222000000(4)(4)(4)1148121632164(816)4(4)4x x x x x x x x x ---====-+-+-+- 所以|MF ||NF |=12,为定值. …………14分11.(2018朝阳二模·理)已知抛物线2:2C y x =.(1)写出抛物线C 的直线方程,并求出抛物线C 的焦点到准线的距离;(2)过点(20),且斜率存在的直线l 与抛物线C 交于不同的两点A ,B ,且点B 关于x 轴的对称点为D ,直线AD 与x 轴交于点M . 1)求点M 的坐标;2)求OAM △与OAB △面积之和的最小值.11.【解析】(Ⅰ)由题可得22,1P P ==,所以准线方程为1,2x =- 抛物线C 的焦点到准线的距离为1.(Ⅱ)(i )解:令1122(,),(,),A x y B x y 则22(,)D x y -且令10y >,令:2AB l x my =+222x my y x=+⎧⎨=⎩2240y my ⇒--= 所以12122,4y y m y y +=⋅=-则直线AD 方程为121112()y y y y x x x x +-=--121112()()y y y y x x m y y +-=--2111221()()2y y x y y y -=--当0y =时,21211()()2y y y x y -⋅-=-21211()()2y y y y x -⋅-+=122y y x =,2x =-所以(2,0)M - (ii )解:1122OAMS y =⋅⋅! 121122||22OAB S y y =⋅⋅+⋅⋅!则112||OAMOAB S S y y y +=++!!1211112||42||42y y y y y y =+-=+=+≥=当且仅当1142y y =时,即1y = 12.(2018西城二模·理)(本小题满分14分)已知直线:1l y kx =+与抛物线2:4C y x =相切于点P .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2018高三数学各地优质二模试题分项精品】一、单选题1.【2018黑龙江大庆高三二模】已知分别是双曲线的左、右焦点,为双曲线右支上一点,若,,则双曲线的离心率为( )A. B. C. D. 2【答案】A点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).2.【2018广东惠州高三4月模拟】已知F是抛物线2x4y=的焦点,P为抛物线上的动点,且点A的坐标为() 0,1-,则PFPA的最小值是()A.14 B. 12C. 22D. 3【答案】C设切点()2,P a a ,由214y x =的导数为12y x '=,则PA 的斜率为1222a a a⋅==. ∴1a =,则()2,1P . ∴2PM =, 22PA =∴2sin 2PM PAM PA∠==故选C .点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.3.【2018河南郑州高三二模】如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点()24,,圆222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则4PN QM +的最小值为( )A. 23B. 42C. 12D. 52 【答案】A【点睛】当抛物线方程为22(p>0)y px =,,过焦点的直线l 与抛物线交于,P Q ,则有112F PF Q P+=,抛物线的极坐标方程为1cos p ρθ=-,所以1PF ρ== 1cos pθ-,()21cos 1cos p p QF ρθπθ===-++,所以112F PF Q P+=,即证。

4.【2018陕西咸阳高三二模】双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线210x y -+=平行,则它的离心率为( ) A.5 B.52C. 3D.32【答案】A【解析】由双曲线的渐近线方程可得双曲线的渐近线方程为: b y x a =±,其斜率为: b a±,其中一条渐近线与直线210x y -+=平行,则:2ba=, 则双曲线的离心率: 21145b e a ⎛⎫=+=+= ⎪⎝⎭.本题选择A 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.【2018湖南衡阳高三二模】已知双曲线的两个焦点为()()12100100F F M -,、,,是此双曲线上的一点,且满足12120,2MF MF MF MF ==,则该双曲线的焦点到它的一条渐近线的距离为( )A. 3B. 13C. 12D. 1 【答案】D6.【2018陕西高三二模】已知点12F F 、分别为双曲线()222210,0x y a b a b-=>>的左、右两个焦点,点P 是双曲线右支上一点,若P 点的横坐标043x a =时,有12F P F P ⊥,则该双曲线的离心率e 为( ) A.322 B. 32 C. 2 D. 92【答案】A7.【2018陕西高三二模】已知22C :4630x y x y +---=,点()M 2,0-是C 外一点,则过点M 的圆的切线的方程是( )A. 20724140x x y +=+=,-B. 20724140y x y +=++=,C. 20724140x x y +=++=,D. 20724140y x y +=+=,- 【答案】C【解析】22C :4630x y x y +---=,即(222316x y -+-=)(), 故圆心是23(,),半径是4,点 点 ()M 2,0-是C 外一点,显然20x += 是过点M 的圆的一条切线,设另一条切线和圆相切于P a b (,),则MP 的斜率是2ba +,直线MP 的方程是: 220bx a yb -++=(),故()22232242{ 3122b a bb a b ba a -++++-⋅--+=,=解得: 26{? ,7a b -== 故切线方程是724140x y ++=,故选C .【点睛】本题考查了圆的切线方程问题,考查直线和圆的位置关系以及点到直线的距离,解题时应注意切线斜率不存在的情况.8.【2018河南商丘高三二模】已知点分别是双曲线的左、右焦点,为坐标原点,在双曲线的右支上存在点,且满足,,则双曲线的离心率的取值范围为()A. B. C. D.【答案】D点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.【2018四川德阳高三二诊】如图,过抛物线的焦点作倾斜角为的直线,与抛物线及其准线从上到下依次交于、、点,令,,则当时,的值为()A. 3B. 4C. 5D. 6【答案】C【解析】设,则由过抛物线的焦点的直线的性质可得又,可得分别过点A,B作准线的垂线,分别交准线于点E,D,则同理可得,故选B.10.【2018河南商丘高三二模】已知椭圆的左、右焦点分别为,直线与椭圆相切,记到直线的距离分别为,则的值为()A. 1B. 2C. 3D. 4【答案】B11.【2018四川德阳高三二诊】已知双曲线的离心率为,其一条渐近线被圆截得的线段长为,则实数的值为()A. 3B. 1C.D. 2【答案】D【解析】双曲线的离心率为,则故其一条渐近线不妨为,圆的圆心,半径为2,双曲线的一条渐近线被圆截得的线段长为,可得圆心到直线的距离为:故选D .12.【2018重庆高三4月二诊】已知双曲线22221x y a b-=(0a >, 0b >)的左右焦点分别为1F , 2F ,点P 在双曲线的左支上, 2PF 与双曲线的右支交于点Q ,若1PF Q ∆为等边三角形,则该双曲线的离心率是( ) A.2 B. 2 C. 5 D. 7【答案】D点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).13.【2018甘肃兰州高三二模】在平面直角坐标系xOy 中,抛物线26y x =的焦点为F ,准线为,l P 为抛物线上一点, ,PA l A ⊥为垂足,若直线AF 的斜率3k =-,则线段PF 的长为 ( ) A. 4 B. 5 C. 6 D. 7 【答案】C14.【2018安徽马鞍山高三二模】已知为椭圆上关于长轴对称的两点,分别为椭圆的左、右顶点,设分别为直线的斜率,则的最小值为( )A.B.C.D.【答案】C【解析】设,由题得,所以,故选C.点睛:本题的难点在于计算出要观察变形,再联想到基本不等式解答.观察和数学想象是数学能力中的一个重要组成部分,所以平时要有意识地培养自己的数学观察想象力.15.【2018安徽马鞍山高三二模】如图所示的一个算法的程序框图,则输出的最大值为()A. B. 2 C. D.【答案】C16.【2018广东茂名高三二模】以为圆心,为半径的圆与双曲线的渐近线相离,则的离心率的取值范围是()A. B. C. D.【答案】B【解析】由条件可得,,∴,即,∴故选:B点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.17.【2018河北唐山高三二模】椭圆2222:1(0)x y C a b a b+=>>右焦点为F ,存在直线y t =与椭圆C 交于,A B 两点,使得ABF ∆为等腰直角三角形,则椭圆C 的离心率e = ( ) A.22B. 21-C. 51-D.12【答案】B18.【2018河北邯郸高三一模】设双曲线Ω: 22221(0,0)x y a b a b-=>>的左顶点与右焦点分别为A , F ,以线段AF 为底边作一个等腰AFB ∆,且AF 边上的高h AF =.若AFB ∆的垂心恰好在Ω的一条渐近线上,且Ω的离心率为e ,则下列判断正确的是( ) A. 存在唯一的e ,且3,22e ⎛⎫∈⎪⎝⎭B. 存在两个不同的e ,且一个在区间31,2⎛⎫ ⎪⎝⎭内,另一个在区间3,22⎛⎫⎪⎝⎭内 C. 存在唯一的e ,且31,2e ⎛⎫∈ ⎪⎝⎭D. 存在两个不同的e ,且一个在区间31,2⎛⎫ ⎪⎝⎭内,另一个在区间52,2⎛⎫⎪⎝⎭内 【答案】A【解析】由题意可设()(),0,,0,,2c a A a F c B c a -⎛⎫-+ ⎪⎝⎭,可得AFB ∆的垂心H ,24c a c a -+⎛⎫⎪⎝⎭,因为AFB ∆的垂心恰好在Ω的一条渐近线上,所以()()32=4110c a b f e e e c a a+∴=---=- ()()()()23310,0,201211022f f f x f x x ⎛⎫=--> ⎪⎭'⎝;时,所以存在唯一的e ,且3,22e ⎛⎫∈ ⎪⎝⎭,当312x <<时()0f x <无零点,选A. 点睛:判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上. (2)定理法:利用零点存在性定理进行判断.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.19.【2018安徽合肥高三质检二】已知双曲线2222:1x y C a b-=的左,右焦点分别为1F , 2F , A , B 是双曲线C 上的两点,且113AF F B =, 23cos 5AF B ∠=,则该双曲线的离心率为( ) A.10 B.102 C. 52D. 5【答案】B【解析】如图,设A , B 是双曲线C 左支上的两点,点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量,,a b c 的方程或不等式,利用222b c a =-和ce a=转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围. (2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量.20.【2018湖南郴州高三二模】如图, F 是抛物线2:2C y px = (0p >)的焦点,直线l 过点F 且与抛物线及其准线交于A , B , C 三点,若3BC BF =,9AB =,则抛物线C 的标准方程是( )A. 22y x = B. 24y x = C. 28y x = D. 216y x =【答案】C【解析】分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF|=a ,则|BC|=3a ,|BD|=a , ∴DB1BC 3=, 在直角三角形ACE 中,∵|AB|=9,|AC|=9+3a , ∴3|AE|=|AC|,∴()39a -=9+3a ,即a=3, ∵BD ∥FG ,∴DB BC FGFC=,即3912p =,解得p=4, ∴抛物线的方程为y 2=8x . 故选:C . 二、填空题21.【2018黑龙江大庆高三质检二】已知点及抛物线的焦点,若抛物线上的点满足,则__________.【答案】.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.22.【2018河南郑州高三二模】已知椭圆()2222r:10x ya ba b+=>>的右焦点为()1,0F,且离心率为12,ABC 的三个顶点都在椭圆r上,设ABC三条边AB BC AC、、的中点分别为D E M、、,且三条边所在直线的斜率分别为123k k k、、,且123k k k、、均不为0.O为坐标原点,若直线OD OE OM、、的斜率之和为 1.则123111k k k++=__________.【答案】43-【点睛】点差法:这是处理圆锥曲线问题的一种特殊方法,适用于所有圆锥曲线。

相关文档
最新文档