频率特性分析

合集下载

控制工程基础课件第六章 频率特性分析

控制工程基础课件第六章 频率特性分析

G
j
arctan
1
n 2
n2
当=0时,G j 1,G j 0;
当=n时,G j 2,G j 90; 当=时,G j ,G j 180。
二阶微分环节的极坐标图也于阻尼比有关,对应不同的 ξ值,形成一簇坐标曲线,不论ξ值如何,当ω=0时,极 坐标曲线从(1,0)点开始,在ω=∞时指向无穷远处。
第6章 频率特性分析
本章介绍线性系统的频域分析方法。该方法是通 过控制系统对正弦函数的稳态响应来分析系统性能的。
频率特性不仅能反映系统的稳态性能,也可用来 研究系统的稳定性和动态性能。
6.2 频率响应与频率特性
一、频率特性的概念
1、频率响应:是系统对正弦输入的稳态响应。
2、频率特性:给线性系统输入某一频率的正弦波,
1 1 jT
G j 1 U jV
1 jT
1
1 T 22
j T 1 T 22
A e j
实频特性为U 虚频特性为V
1; 1+T 2 2
T。 1+T 2 2
幅频特性为A 1 ;
1 T 22
相频特性为 G j arctanT
特殊点:
当=0时,G j 1,G j 0; 当=1/T时,G j 1 ,G j 45;
取拉氏变换为: Xi s
A
s2
2
电路的输出为: X0 s G s Xi s 上式取拉氏反变换并整理得
1A Ts 1 s2 2
x0 t
AT 1 T2
e t/T
2
A sin t arctan T
1 T2 2
x0 t
AT 1 T2
e t/T
2
A sin t arctan T

频率特性实验报告

频率特性实验报告

频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。

在电子领域中,频率特性实验是非常常见的实验之一。

本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。

一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。

通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。

二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。

在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。

1. 函数发生器:用于产生不同频率的信号作为输入信号。

可以调节函数发生器的频率、幅度和波形等参数。

2. 示波器:用于观测电路或系统的输入和输出信号波形。

示波器可以显示信号的幅度、相位和频率等信息。

3. 频谱分析仪:用于分析信号的频谱成分。

频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。

实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。

2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。

3. 设置函数发生器的频率和幅度,选择适当的波形。

4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。

5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。

实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。

如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。

如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。

2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。

相位谱可以显示信号的相位延迟或提前。

第五章 频率特性分析法

第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、

频率特性分析方法

频率特性分析方法
0
(2)放大环节
Im
G(s) K G( j) K
φ
方法② 直接用频率特性测试仪测取,直接在X-Y 记录仪上显示 x jy或者 B e j 。
A
例1:某系统的传递函数为G:(s)
2(s s2
2)
当输入信号为:r(t) sin(t 1000 )
求出它的稳态输出响应。
解:
G(
j
2( j j )2
如何求模和相角?
G( j
tg1 1800
sin e j e j
2j
t 2
r=Asinωt
K Ts 1
Yss
KA
1 T 2 2
sin(
t
2 )
稳态输出仍是一个正弦信号,输出幅值和相位发生 了变化,角频率ω没变。
稳态输出与输入 r Asint 比较可得:
幅值比 B
K
A 1 T 22
相位差 2 arctg(T )
2
KU 2 U2 V 2
整理:U 2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
G( j 与G( j 为共轭复数。
当ω: -∞→+∞,得到完整的频率特性。 顺时针方向是频率特性变化的方向,即ω增加的方向。
Im
K Re
G( j) 为频率特性,是一复数,模 K 为系统的幅
1 T 22
值比
B ,其相角 A
2 为系统的相位差。
推广到一般的情况,对于任何线性定常系统,只 要将传递函数中的变量s用jω代替,便得到了系统的 频率特性。

第四章系统的频率特性分析

第四章系统的频率特性分析

第四章 频率特性分析4.1 什么是频率特性?解 对于线性定常系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性;将输出的相位于输入的相位之差定义为系统的相频特性。

将系统的幅频特性和相频特性统称为系统的频率特性。

4.2 什么叫机械系统的动柔度,动刚度和静刚度?解 若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的动柔度;机械系统的频率特性的倒数就是机械系统的动刚度;当0=w 时,系统频率特性的倒数为系统的静刚度。

4.3已知机械系统在输入力作用下变形的传递函数为 12+s (mm/kg),求系统的动刚度,动柔度和静刚度。

解 根据动刚度和动柔度的定义有 动柔度()()()12+====jw jw s s G jw G jw λ mm/kg 动刚度 )(jw K =)(1jw G =21+jw kg/mm 静刚度 ()()5.0021010==+====K w jw w jw G w jw kg/mm4.4若系统输入为不同频率w 的正弦函数Asinwt,其稳态输出相应为Bsin(wt+ϕ).求该系统的频率特性。

解:由频率特性的定义有 G (jw )=AB e jw。

4.5已知系统的单位阶跃响应为)(。

t x =1-1.8te 4-+0.8te9-,试求系统的幅辐频特性与相频特性。

解:先求系统的传递函数,由已知条件有)(。

t x =1-1.8te 4-+0.8te9-(t 0≥))(S X i =s 1)(。

S X =s 1-1.841+s +0.891+s )(S G =)()(。

S X S X =()()9436++s s )(jw G =jw s s G =)(=()()jw jw ++9436)(w A =)(jw G =22811636ww +•+)(w ϕ=0-arctan 4w -arctan 9w =-arctan 4w -arctan 9w4.6 由质量、弹簧、阻尼器组成的机械系统如图所示。

频率特性分析

频率特性分析

弹簧阻尼系统对正弦输入的稳态响应
例:机械系统如下图所示,k为弹簧刚度系数,c为阻尼系数, 当输入正弦力信号 f(t)=Fsinωt时,求位移x(t)的稳态输出。
解 该系统的传递函数为:
f(t)=Fsinωt
输入信号的拉氏变换为:
k
位移输出的拉氏变换为:
c
取拉氏反变换,位移输出为
如果系统稳定,频率响应包含二部分:瞬态响应和稳态响 应。瞬态响应不是正弦波,趋于0;稳态响应部分,是与 输入信号频率相同的正弦波,但幅值、相位不同。 所以稳态位移输出为:
10
0
10
1
10
2
2.积分环节
1 G(j) j
L() 20lg
1 20lg j
() 90
各型乃氏图的低频段
对于0型系统,当ω→∞时,幅角为-90°(m-n)
乃氏图的高频段
通常,机电系统频率特性分母的阶次 大于分子的阶次,故当 时,乃氏图 曲线终止于坐标原点处;而当频率特性分 母的阶次等于分子的阶次,当 时, 乃氏图曲线终止于坐标实轴上的有限值。 一般在系统频率特性分母上加极点, 使系统相角滞后;而在系统频率特性分子 上加零点,使系统相角超前。
当 当
ω=0
时, G(jω)= +∞∠−90°
ω = +∞时, G(jω)= 0∠−270°
其相角范围从-90º ~-270º ,因此必有与负实轴 的交点。
解方程G(j) 90º arctan() arctan(2) 180º

arctan(2) 90º arctan()
First-order components
4.一阶惯性环节
u ( )

机械工程控制基础(第4章 系统的频率特性分析)

机械工程控制基础(第4章 系统的频率特性分析)

(4.1.10)
根据频率特性的定义可知,系统的幅频特性和相频特性分别为:
G ( j ) Xi ( ) G ( j ) A ( ) X o ( )
(4.1.11)
故 G ( j ) G ( j ) e
j G ( j )
就是系统的频率特性,它是将 G ( s )
d dt
微分方程
dt
s 传递函数 s
系统
j
频率特性
j
图4.1.2 系统的微分方程、传递 函数和频率特性相互转换关系图
中原工学院
机电学院
4.1.4 频率特性的特点和作用
第1
系统的频率特性就是单位脉冲响应函数的Fourier变换,即频谱。 所以,对频率特性的分析就是对单位脉冲响应函数的频谱分析。
第2
K

所以
A
X o Xi

1 T
2
2
arctan T

K 1 T
2 2
e
j arctan T
中原工学院
机电学院
2. 将传递函数中的s换为 j (s=j )来求取
由上可知,系统的频率特性就是其传递函数G(s)中复变量s j 的特殊情况。由此得到一个极为重要的结论与方法,即将系统的传递
G
j 端点的轨迹即为频率特性的极坐标图, 或称为Nyquist 图, 如
中原工学院
机电学院
图4.2.1所示。它不仅表示幅频特性和相频特性, 而且也表示实频特性和
虚频特性。图中的箭头方向为从小到大的方向。
正如4.1节所述, 系统的幅频特性和相频特
性分别为
A ( ) X o ( ) Xi G

自动控制原理第5章频率特性

自动控制原理第5章频率特性

自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。

在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。

本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。

1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。

在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。

频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。

2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。

频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。

对数坐标图上,增益通常以分贝(dB)为单位表示。

3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。

相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。

在相频特性图上,频率通常是以对数坐标表示的。

4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。

它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。

5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。

在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。

对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。

6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。

工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。

常见的设计方法包括校正器设计、分频补偿、频率域设计等。

总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。

频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。

第四章 频率特性分析

第四章 频率特性分析

B( s)
(s p )
i i 1
n

A s
2 2
为简单起见,设G(s)的极点均为相异的极点,则将 Xo(s)的表达式进行部分分式分解,得
X o ( s)
i 1
n
bi s pi
n

a1 s j

a2 s j
xo (t ) bi e
i 1
pi t
变乘除运算为加减运算
Bode图的横坐标ω采用对数分度,单位rad/s 线性分度:
0 1 2 3 4 5 6 7

对数分度:
小结
纵坐标:L( ) 20 lg G( j ) 对数幅频特性图
(单位:分贝(dB),线性分度)
横坐标:频率ω Bode图
(单位:rad/s),对数分度)
纵坐标:G ( j ) 对数相频特性图

一、频率特性的图示方法(重点)
1.频率特性的Nyquist图(也叫极坐标图、幅 相频率特性图)
Nyquist图

把频率特性G(j ω)看作ω的复变函数
jG ( j )
G( j ) G( j ) e
u ( ) jv( )
虚频特性
实频特性
2 2
G( j ) u ( ) v ( ) G ( j ) arctan
j
112 0.4 10
3 3
实频特性u(ω)
虚频特性v(ω)
ω
u(ω)
v(ω)
0
20
-2.24
-1.93
-∞
-4.89
30
40
-1.64
-1.36
-2.75
-1.7

第四章 频率特性分析(第9讲)

第四章  频率特性分析(第9讲)
xo (t ) = XiK 1 + T 2ω 2 sin(ωt − arctan Tω )
xo (t ) =
XiK 1+ T ω
2 2
sin(ωt − arctan Tω )
从上式可知,系统的稳态响应的幅值与系统的参数即 比例系数K、时间常数T以及输入谐波的幅值 X i 、频率 ω有关; XiK 幅值 1 + T 2ω 2 相位差
G ( jω ) = Re[G ( jω )] + Im[G ( jω )] = u (ω ) + jv (ω )
G ( jω ) = Re[G ( jω )] + Im[G ( jω )] = u (ω ) + jv (ω )
式中, u (ω ) 是频率特性的实部,称为实频特性, v (ω ) 是频率特性的虚部,称为虚频特性。 显然有:u (ω ) = A(ω ) cos ϕ (ω ),
也是一个复数,可以写成:
G ( jω ) = G ( jω ) e j∠G ( jω ) = A(ω )e jϕ (ω )
因此,传递函数与频率特性的关系为:
G ( jω ) = G ( s ) s = jω
G ( jω ) = G ( s ) s = jω
传递函数的复变量s用jω代替后,传递函数就 变为频率特性。它是传函的特例,是定义在复 平面虚轴上的传递函数。 频率特性的量纲就是传递函数的量纲,也是输 出信号与输入信号的量纲之比。同前面介绍的 微分方程、传递函数、脉冲响应函数等一样, 也是线性控制系统的数学模型。
X iω bm s m + bm −1s m −1 + ⋅⋅⋅ + b1s + b0 X o ( s ) = X i ( s )G ( s ) = 2 ⋅ 2 s + ω an s n + an −1s n −1 + ⋅⋅⋅ + a1s + a0

第四章系统的频率特性分析

第四章系统的频率特性分析

第四章系统的频率特性分析第四章系统的频率特性分析时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。

4.1频率特性概述1.频率响应与频率特性(1)频率响应:线性定常系统对谐波输入的稳态响应。

(frequencyresponse)对稳定的线性定常系统输入一谐波信号xi(t)=Xisin?t稳态输出(频率响应):xo(t)=Xo(?)sin[ωt+?(ω)]【例】设系统的传递函数为输入谐波信号xi(t)=Xisin?t 则稳态输出(频率响应)与输入信号的幅值成正比与输入同频率,相位不同进行laplace逆变换,整理得同频率?幅值比A(?)相位差?(?)ω的非线性函数(揭示了系统的频率响应特性)输入:xi(t)=Xisinωt稳态输出(频率响应):xo(t)=XiA(?)sin[ωt+?(ω)]幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差?(?)[s]A(?)?(?)(2)频率特性:对系统频率响应特性的描述(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(?),相位为?(?)。

输入谐波函数xi(t)=Xisin?t,其拉式变换为2.频率特性与传递函数的关系设系统的微分方程为:则系统的传递函数为:则由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j?)=?G(j?)?ej?G(j?)就是系统的频率特性如例1,系统的传递函数为所以3.频率特性的求法(1)频率响应→频率特性稳态输出(频率响应)故系统的频率特性为或表示为(2)传递函数→频率特性将传递函数G(s)中的s换成jω,得到频率特性G(jω)。

第四章 系统的频率特性分析

第四章 系统的频率特性分析

61
4.2 频率特性的图示方法(典型环节的Bode图)
62
4.3 频率特性的特征量
如图4.31所示,在频域分析时要用到的一些有关频率的特征量 或频域性能指标有 A(0)、wm、wr(Mr)、wb。
1.零频幅值 A(0 ) 零频幅值A(0 )表示当频率ω 接近于零时,闭环系统稳态输出 的幅值与输入幅值之比。
解:根据回路电压定律有
系统的传递函数为:
系统的频率特性为 :
系统的幅频特性为:
17
4.1 频率特性概述
系统的相频特性为:
根据系统频率特性的定义有 ,系统稳态输出为:
18
4.1 频率特性概述
例4.4 系统结构图如图所示。当系统的输入 时,测得 系统的输出 ,试确定该系统的参数nω,ξ。 解:系统的闭环传递函数为:
因为,如果不知道系统的传递函数或微分方程等数学模型就无法
用上面两种方法求取频率特性。在这样的情况下,只有通过实验 求得频率特性后才能求出传递函数。这正是频率特性的一个极为 重要的作用。
12
4.1 频率特性概述
三、 根据定义来求,此方法麻烦。
13
4.1 频率特性概述
四、
14
4.1 频率特性概述
五、
27
4.2 频率特性的图示方法(典型环节的Nyquist图)
所以,微分环节频率特性的nyquist图是:
28
4.2 频率特性的图示方法(典型环节的Nyquist图)
29
4.2 频率特性的图示方法(典型环节的Nyquist图)
30
4.2 频率特性的图示方法(典型环节的Nyquist图)
31
4.2 频率特性的图示方法(典型环节的Nyquist图)

第4章频率特性分析

第4章频率特性分析
Frequency (rad/sec): 0.197
System: sys Real: 4.17 Imag: -5.42
Frequency (rad/sec): 0.11
System: sys Real: 8.5
n
C(s) (s)R(s)
Ci
B
D
i1 s si s j s j
B
(s)R(s)(s
j
s j
(
j)R0
1 2j
1 2
(
j)
j[( j ) ]
R0e
2
D
1 2
( j)
j[( j) ]
R0e
2
拉氏反变换,可求得系统的输出为
n
c(t) Ciesit Be j t De j t i 1
d mr(t) dt m
bm1
d m1r(t) dt m1
b1
dr(t) dt
b0 r (t
)
线性定常系统 c(t) 图
与其对应的传递函数为
(s)
C(s) R(s)
bm s m an s n
bm1sm1 b1s b0 an1sn1 a1s a0
r(t) R0 sin t
R(s) R0 s2 2
4.2.2 频率特性的对数坐标图 常见的对数坐标图见P150表4.2.2。
光盘,第4章的Section1~5。
例 某最小相位系统的对数幅频特性的渐近线 如图所示,确定该系统的传递函数。
G(s)
K (1 1 s) 2 10
K (1 0.1s) 2
s(1 1 s) 2 s(1 5s) 2
0.2

绘制系统的开环Nyquist图。

控制工程基础第四章频率特性分析

控制工程基础第四章频率特性分析
20 0 -20 -40 10 -1 0 10 0 10 1
ξ
=0.1
ξ
=0.1
-90
-180 10 -1 10 0 10 1
4.1.3
频率特性的物理意义
1.频率特性实质上是系统的单位脉冲响应函数的Fourier变换。 即 G ( jω ) = F [ w(t )] 。 2.频率特性分析通过分析不同的谐波输入时的稳态响应,揭示 系统的动态特性。 3.频率特性分析主要针对系统的稳态响应而言,应用频率特性 的概念可以非常容易求系统在谐波输入 作用下系统的稳态响应。另外,系统频 率特性在研究系统的结构与参数对系统 性能的影响时,比较容易。 4.频率特性分析在实验建模和复杂系统分 析方面的应用要比时域分析法更方便。
A(ω )e jϕ (ω )
4.1.2 频率特性的求法
1.用拉氏逆变换求取 用拉氏逆变换求取
xi (t ) = X i sin ω t
X i ( s ) = L[ xi (t )] = L[ X i sin ω t ] =
X o (s) = G (s) X iω s2 + ω 2 X iω −1 xo (t ) = L [G ( s ) 2 ] 2 s +ω
2.Bode图 2.Bode图:以ω的常用对数值为横坐标,分别以 20 lg A(ω ) 和 Bode 对数幅频特性图和对数相频特性 对数幅频特性图 ϕ (ω ) 为纵坐标画出的曲线,称为对数幅频特性图 对数相频特性 对数坐标图,又称为Bode图。 图,统称为频率特性的对数坐标图 对数坐标图
dB
A( ω ) =20 lg G( jω )
xo (t ) = X o (ω ) sin (ω t + ϕ (ω ))

第4章 频域特性分析

第4章 频域特性分析

二、 频率特性及其求法
1.定义: 频率特性就是指线性系统或环节在正弦函数作用 下,稳态输出与输入之比对频率的关系特性。又 称正弦传递函数。频率特性是个复数,可分别用 幅值和相角来表示。 频率特性一般可通过以下三种方法得到: (1) 根据已知系统的微分方程或传递函数,把 输入以正弦函数代入,求其稳态解,取输出稳态 分量和输入正弦函数的复数之比即得。 (2) 根据传递函数来求取。 (3) 通过实验测得。
右边第一项为稳态分量,第二项为瞬态分量。 例系数A(ω)以及输入输出间的相位角φ(ω), 两个 量都是频率 ω的函数,并与系统参数 k、c有关。 随时间 t ∞ , 瞬态分量衰减为零,所以稳态位移 输出为 1k
x t 1 T
2 2
F sin t arctgT
AF sin T X sin T
XiK T K X i w t 有 x o (t ) sin( wt arctgTw) e T 2 2 T w 1 1 T 2 w2
稳态响应 瞬态响应
K X o ( w) A ( w ) Xi 频率特性: 1 T 2 w2 w arctgTw
幅频特性 相频特性
(2). 根据传递函数来求取。 G ( s )

s jw
G ( jw)
以jw代替s由传递函数得到的频率特性,对 线性定常系统普遍适用。
K 例:已知系统传函 G( s) 。求其频率特性。 Ts 1
K K (1 jTw) 解:由 G ( jw) G ( s ) s jw 1 jTw 1 T 2 w 2 K 虚部 G ( jw) , G jw arctg arctgTw 实部 1 T 2 w2

分析频率的特性

分析频率的特性
第三章 频率特性
频率特性(又叫频率响应)
频率特性是控制系统在频域中的一种数学 模型,是研究自动控制系统的一种工程方法。
系统频率特性能间接地揭示系统的动态特 性和稳态特性,可简单迅速地判断某些环节或 参数对系统性能的影响,指出系统改进方向。
频率特性可以由实验确定,这对于难以建 立动态模型的系统来说,很有用处。
3、系统的稳态输出量与输入量具有相同的频率。 这是由于系统中的储能元件引起的。
4
4、实际系统的输出量都随频率的升高而 现失真,幅值衰减。 所以,可以将它们看成为一个“低通”滤波器。
5、频率特性可应用到某些非线性系统的分析中去。
三、频率特性的求取: 1、根据定义求取。 即对已知系统的微分方程,把正弦输入函数代入,求出其 稳态解,取输出稳态分量与输入正弦量的复数比即可得到。
Gjω 1 1 j ωT
1 jωT 1 ω2T2 1 ω2T2
Gjω 1
1ω2T2 G( j) tg 1
0
我们取三个特殊点,显然
G(j0) 1 0
G j 1 1 45 T 2
G(j) 0 - 90
不难看出,随着频率ω=0→∞变化,惯性环节的幅值逐步衰 减,最终趋于0。相位移的绝对值越来越大,但最终不会大于 90°,其极坐标图为一个半圆。
( )
0
U ( ) U
7
四、频率特性的三种图示法
1、极坐标 图 —— Nyquist图(又叫幅相频率特性、 或奈奎斯特图简称奈氏图)
2、对数坐标图——Bode图(又叫伯德图,简称伯 氏图)
3、复合坐标图——Nichocls图(又叫尼柯尔斯 图,简称尼氏图);及一般用 于闭环系统频率特性分析的。
8
0
Im

第四章 频率特性分析解析

第四章  频率特性分析解析

以R-C电路为例,说明频率特性的物理
R
意义。如右图所示电路的传递函数为:
Uo (s) G(s) 1
ui
Ui (s)
1 RCs
C uo
设输入电压 ui (t) Asin t
U o ( j) G( j) 1 1
U i ( j)
1 RCj 1 Tj
图5-3 R-C电路
式中 T=RC G(jω) 称为电 路的频率特性。
— 稳态输出信号的相位
频率特性
线性定常系统在谐波输入信号作用下的频率 响应与输入信号频率的关系称为频率特性,它包 括幅频特性和相频特性。
系统的频率响应幅值与谐波输入信号幅值之 比随输入信号频率变化的关系称为幅频特性,即
A X o G j
Xi
G j
系统的频率响应相位与谐波输入信号相位之 差 (ω)随输入信号频率变化的关系称为相频特性。
❖ 频率响应与输入谐波信号之间存在相位差 (ω),其相 位差 (ω)随输入信号的频率ω的变化而改变。
❖ 即输出信号与输入信号的幅值比和相位差都是频率ω的 非线性函数。
频率响应演示
6 4 2 幅值 0 -2 -4 -6 -8
0
红 —输 入 , 蓝 —全 响 应 , 黑 —稳 态 响 应 yss(t)
频率特性记作 A(ω)·∠ (ω)
频率特性的求法
1. 根据系统的频率响应来求取;
2. 将系统传递函数G(s)中的s换为jω来求取; 3. 用试验方法求取。
当输入信号xi t
Xi
sin
t时,X i s
X i s2 2
则输出为:xos t
AX i
sin t
,X o s
AX i s sin cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,系统的幅频等于各环节幅频之积,相频等于各环节相频之和
0型系统的低频起始段的绘制
G( s ) H ( s ) K
对类似右图所示的0型系统的Bode图,通过低频 段高度H=20lgK(dB)。
I型系统的低频起始段的绘制
G( s) H ( s ) K / s
【例:
【例 设系统开环传递函数为
5( s 2) G(s) s(10s 1)(2s 1)
试绘制开环系统对数频率特性曲线。
【例 设系统开环传递函数为
2000s 4000 G(s) H (s) 2 s ( s 1)( s 2 10s 1)
试绘制开环系统对数频率特性曲线。
第四章 频率特性分析
作业
4.1 4.4 4.5 4.7 4.8 (2) 4.10(2) 成,即
G ( s) G1 ( s)G2 ( s) L Gn ( s) G ( j ) G1 ( j )G2 ( j ) L Gn ( j ) G ( j ) | G ( j ) | e jG ( j ) G1 ( j )G2 ( j ) L Gn ( j ) | G1 ( j ) | e jG1 ( j ) | G2 ( j ) | e jG2 ( j ) L | Gn ( j ) | e jGn ( j ) | G1 ( j ) | | G2 ( j ) | L | Gn ( j ) | e j (G1 ( j )G2 ( j )LGn ( j )) | G ( j ) | | G1 ( j ) | | G2 ( j ) | L | Gn ( j ) | e jG ( j ) e j ( G1 ( j )G2 ( j )LGn ( j )) G ( j ) G1 ( j ) G2 ( j ) L Gn ( j )
2 绘制步骤概括如下: (1) 将系统开环频率特性改写为各个典型环节的乘积形式, 确定各环节的转折频率,并将转折频率由低到高依次标注到 半对数坐标纸上(不妨设为:w1、w2、w3、w4 ……); (2) 绘制L()的低频段渐近线; (3) 按转折频率由低频到高频的顺序,在低频渐近线的基础 上,每遇到一个转角频率,根据环节的性质改变渐近线斜率, 绘制渐近线,直到绘出转折频率最高的环节为止。 (4)如需要精确对数幅频特性,则可在各转折频率处加以修 正。 (5)相频特性曲线由各环节的相频特性相加获得。 注意:对数幅频特性曲线上要标明斜率!
对右下图I型系统Bode图,低频段渐近线斜率为-20dB/dec。有两种情况: (1) 低频段或低频段延长线与横轴相交,则交点处的频率 =K ; (2) 低频段或低频段渐近线的延长线在=1时的幅值为20lg K 。
II型系统的低频起始段的绘制
G(s) H (s) K / s 2
下图所示为II型系统Bode图,低频段渐近线的斜率为-40dB/dec,也 有两种不同情况: (1)低频段渐近线或低频段渐近线的延长线与横轴相 交, 则交点处的频率 =K1/2;(2)低频段或低频段的延长线在 =1时的 幅值为20lg K
相关文档
最新文档