2020届东营市中考数学模拟试卷(有答案)(Word版)(已审阅)

合集下载

2020届东营市中考数学模拟试卷(有答案)(Word版) (2)

2020届东营市中考数学模拟试卷(有答案)(Word版) (2)

山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣ D.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A. B.C.D.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3.00分)分解因式:x3﹣4xy2=.13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M 为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b 和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=,b=,c=,d=;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC 的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1.【解答】解:﹣的倒数是﹣5,故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A. B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×1011【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)分解因式:x3﹣4xy2=x(x+2y)(x﹣2y).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.【点评】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15.【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S=•AC•DQ=×10×3=15,△ACD故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为20π.【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长l为5,然后根据圆锥的侧面积公式:S侧=πrl代入计算即可.【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π【点评】本题考查了圆锥的计算,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.掌握圆锥的侧面积公式:S=•2πr•l=πrl侧是解题的关键.也考查了三视图.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M 为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.【分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.【解答】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b 和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A 的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.【点评】本题考查了绝对值、特殊角的三角函数值、零指数幂、负整数指数幂、解一元一次组等知识点,能求出每一部分的值是解(1)的关键,能求出不等式组的解集是解(2)的关键.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=0.35,b=150,c=0.22,d=0.13;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数;(2)根据频率=频数÷总数分别求解可得;(3)用总人数乘以样本中科普图书和小说的频率之和可得;(4)列表得出所有等可能结果,从中找到恰好1人捐“名人传记”,1人捐“科普图书”的结果数,利用概率公式求解可得.【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC 的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=75°,AB=4.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD ∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD 的长度.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a的值,确定出二次函数解析式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可.【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,。

2019-2020学年东营市中考数学模拟试卷(有标准答案)(Word版) (2)

2019-2020学年东营市中考数学模拟试卷(有标准答案)(Word版) (2)

山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣D.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3.00分)分解因式:x3﹣4xy2= .13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M 的坐标为.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a= ,b= ,c= ,d= ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1.【解答】解:﹣的倒数是﹣5,故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×1011【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)分解因式:x3﹣4xy2= x(x+2y)(x﹣2y).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.【点评】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15 .【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S=•AC•DQ=×10×3=15,△ACD故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为20π.【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长=πrl代入计算即可.l为5,然后根据圆锥的侧面积公式:S侧【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π【点评】本题考查了圆锥的计算,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.掌握圆锥的侧面积公式:S侧=•2πr•l=πrl是解题的关键.也考查了三视图.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.【分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.【解答】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.【点评】本题考查了绝对值、特殊角的三角函数值、零指数幂、负整数指数幂、解一元一次组等知识点,能求出每一部分的值是解(1)的关键,能求出不等式组的解集是解(2)的关键.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数频率(本)名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a= 0.35 ,b= 150 ,c= 0.22 ,d= 0.13 ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数;(2)根据频率=频数÷总数分别求解可得;(3)用总人数乘以样本中科普图书和小说的频率之和可得;(4)列表得出所有等可能结果,从中找到恰好1人捐“名人传记”,1人捐“科普图书”的结果数,利用概率公式求解可得.【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= 75 °,AB= 4.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.25.(12.00分)如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC .(1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x 的值,确定出A 与B 坐标,根据已知相似三角形得比例,求出OC 的长即可;(2)根据C 为BM 的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC ,确定出C 的坐标,利用待定系数法确定出直线BC 解析式,把C 坐标代入抛物线求出a 的值,确定出二次函数解析式即可;(3)过P 作x 轴的垂线,交BM 于点Q ,设出P 与Q 的横坐标为x ,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ ,四边形ACPB 面积最大即为三角形BCP 面积最大,三角形BCP 面积等于PQ 与B 和C 横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P 的坐标即可.【解答】解:(1)由题可知当y=0时,a (x ﹣1)(x ﹣3)=0,解得:x 1=1,x 2=3,即A (1,0),B (3,0),∴OA=1,OB=3∵△OCA ∽△OBC ,。

2020年山东省东营市中考数学试卷(含解析)印刷版

2020年山东省东营市中考数学试卷(含解析)印刷版


3
18.(4 分)如图,在平面直角坐标系中,已知直线 y=x+1 和双曲线 y=﹣ ,在直线上取一点,记为 A1,
过 A1 作 x 轴的垂线交双曲线于点 B1,过 B1 作 y 轴的垂线交直线于点 A2,过 A2 作 x 轴的垂线交双曲线
于点 B2,过 B2 作 y 轴的垂线交直线于点 A3,…,依次进行下去,记点 An 的横坐标为 an,若 a1=2,
脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程 378 里,第一天健步行走,从第二
天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路
程为( )
A.96 里
B.48 里
C.24 里
D.12 里
9.(3 分)如图 1,点 P 从△ABC 的顶点 A 出发,沿 A→B→C 匀速运动到点 C,图 2 是点 P 运动时线段
侧),连接 BC,直线 y=kx+1(k>0)与 y 轴交于点 D,与 BC 上方的抛物线交于点 E,与 BC 交于点 F.
(1)求抛物线的解析式及点 A、B 的坐标;
(2) 是否存在最大值?若存在,请求出其最大值及此时点 E 的坐标;若不存在,请说明理由.
25.(12 分)如图 1,在等腰三角形 ABC 中,∠A=120°,AB=AC,点 D、E 分别在边 AB、AC 上,AD
【解答】解:﹣6 的倒数是:﹣ .
故选:C.
2.(3 分)下列运算正确的是( )
A.(x3)2=x5
B.(x﹣y)2=x2+y2
C.﹣x2y3•2xy2=﹣2x3y5
D.﹣(3x+y)=﹣3x+y
【分析】各项计算得到结果,即可作出判断.

2020年东营市中考数学一模试卷 (含答案解析)

2020年东营市中考数学一模试卷 (含答案解析)

2020年东营市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.12的倒数是()A. 12B. −12C. 2D. −22.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130944000000元,将130944000000用科学记数法表示为()A. 1.30944×1012B. 1.30944×1011C. 1.30944×1010D. 1.30944×1093.已知某5个数的和是a,另6个数的和是b,则这11个数的平均数是()A. a+b2B. a+b11C. 5a+6b11D. 12(a5+b6)4.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是()A. 58B. 12C. 34D. 785.一个物体的三视图如图所示,其中主视图和左视图都是腰长为3、底边为2的等腰三角形,根据三视图求得这个物体的表面积是()A. 3πB. 4πC. (2√2+1)πD. 5π6.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在BC边上的F处,若CD=6,BF=2,则AD的长是()A. 7B. 8C. 9D. 107.如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为().A. 50°;B. 60°;C. 70°;D. 80°.EF 8.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A. AO平分∠EAFB. AO垂直平分EFC. GH垂直平分EFD. GH平分AF9.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A. 50°B. 55°C. 60°D. 65°10.如图为二次函数y=ax2+bx+c的图象,下列说法中:①ab<0;②方程ax2+bx+c=0的根为x1=−1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<−1或x>3.其中,正确的说法有()A. ①②④B. ①②⑤C. ①③⑤D. ②④⑤二、填空题(本大题共8小题,共28.0分)11. 若数据−3,−2,1,3,6,x 的中位数是1,那么这组数据的众数为______ .12. 因式分解:9n 2+1−6n = ______ .13. 从−1、0、√2、0.3、π、13这六个数中任意抽取一个,抽取到无理数的概率为______.14. 已知关于x 的分式方程x x−3−2=k x−3有一个正数解,则k 的取值范围为 .15. 如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数_____.16. 反比例函数y =k x 的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q ,若点Q 也在该函数的图象上,则k =______.17. 如下图,在平面直角坐标系中,已知点A(6,8),将OA 绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是 ___.18. 在平面直角坐标系中,直线l :y =x +1与y 轴交于点A 1,如图所示,依次作正方形OA 1B 1C 1,正方形C 1A 2B 2C 2,正方形C 2A 3B 3C 3,正方形C 3A 4B 4C 4,……,点A 1,A 2,A 3,A 4,……在直线l 上,点C 1,C 2,C 3,C 4,……在x 轴正半轴上,则前n 个正方形对角线长的和是______.三、解答题(本大题共7小题,共62.0分)19. (1)计算:2cos60°−(√2019−π)0+√−83−(13)−2(2)解不等式组:{2x +4≤3(x +2)x−12−x−14<1,并求不等式组的整数解.20.哈六十九中学为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如图的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)在这次调查中,参与问卷调查的学生共有多少名学生?(2)若学校有5 000名学生,估计喜欢足球的学生共有多少名学生?21.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为每件30元,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数表达式.(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.22.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长AO交⊙O于E,连接CD,CE,CE是⊙O的切线.(1)求证:CD是⊙O的切线.(2)若BC=3,CD=4,求BD的长.23.某校为了响应习总书记“足球进校园”的号召,购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌足球各需多少元;(2)由于校园足球队的扩大,学校决定再次购进A、B两种品牌足球共50个,恰商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么该学校此次最多可购买多少个B品牌足球⋅24.在矩形ABCD中,AB=6,AD=8,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角△AEF.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF⊥DF,求BE的长;(3)如图3,若动点E从点B出发,沿边BC向右运动,运动到点C停止,直接写出线段AF的中点Q的运动路径长.25.如图,抛物线y=ax2+bx−4经过A(−3,0),B(5,−4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求△ABC的面积;(3)抛物线的对称轴上是否存在点M,使得△ABM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.【答案与解析】1.答案:C×2=1,解析:解:∵12∴1的倒数是2.2故选:C.根据倒数的定义求解.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:将130944000000用科学记数法表示为:1.30944×1011.故选B.3.答案:B解析:解:∵某5个数的和是a,另6个数的和是b,∴这11个数的平均数是a+b.11故选:B.根据平均数的计算公式求解,即用11个数的和除以11即可.主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.4.答案:B解析:解:观察这个图可知:转盘停止转动时指针指向阴影部分的面积与非阴影部分面积相等,各,占12故其概率等于1.2根据几何概率的求法:转盘停止转动时指针指向阴影部分的概率即转盘停止转动时指针指向阴影部分的面积与总面积的比值.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.答案:B解析:解:依题意知母线长l=3,底面半径r=1,则由圆锥的底面积为:π×12=π;侧面积公式得S=πrl=π⋅1⋅3=3π.所以表面积为:π+3π=4π,故选:B.由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,结合图形可得出母线及底面半径,继而可求出圆锥侧面积.本题主要考查三视图的知识和圆锥侧面面积的计算,学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,易造成错误.6.答案:D解析:设AD=x=DF,则BC=x,CF=x−2,依据勾股定理,可得Rt△CDF中,CD2+CF2=DF2,可得62+(x−2)2=x2,即可得出AD=10.本题主要考查了折叠问题以及勾股定理的运用,解题时设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.解:设AD=x=DF,则BC=x,CF=x−2,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴62+(x−2)2=x2,解得x=10,∴AD=10,7.答案:D解析:[分析]如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数.[详解]∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∠1+60∘=180∘,∴32∴∠1=80°.故选D.[点睛]本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.8.答案:C解析:本题考查的是作图−基本作图,熟知线段垂直平分线的作法是解答此题的关键.直接根据线段垂直平分线的作法即可得出结论.解:由题意可得,GH垂直平分线段EF.故选:C.9.答案:D解析:本题考查圆周角定理和等腰三角形的性质,三角形的内角和定理,首先连接OB,由A,B,C是⊙O 上三点,∠ACB=25°,利用圆周角定理,即可求得∠AOB的度数,再利用等腰三角形的性质和三角形内角和定理即可求得答案.解:连接OB,∵∠ACB=25∘,∴∠AOB=2∠ACB=50∘,∵OA=OB,=65∘.∴∠OAB=∠OBA=180∘−∠AOB2故选D.10.答案:B解析:【试题解析】本题考查了二次函数图象和系数的应用,用了数形结合思想,根据抛物线的开口向上a>0,根据对称轴求出b<0,根据抛物线和x轴的交点坐标是(−1,0),(3,0)得出方程ax2+bx+c=0的根,把x=1代入y=ax2+bx+c求出y=a+b+c<0,根据图象得出当x<1时,y随x值的增大而减小,当y>0时,x<−1或x>3,即可得出正确的选项.解:∵抛物线的开口向上,∴a>0,∵对称轴是x=1,∴−b>0,2a∴b<0,∴ab<0,∴①正确;根据图象可知:抛物线和x轴的交点坐标是(−1,0),(3,0),∴方程ax2+bx+c=0的根为x1=−1,x2=3,∴②正确;把x=1代入y=ax2+bx+c得:y=a+b+c<0,∴③错误;根据图象可知:当x<1时,y随x值的增大而减小,∴④错误;∵当y>0时,x<−1或x>3,∴⑤正确;故选B.11.答案:1解析:解:根据题意得,(1+x)÷2=1,得x=1,则这组数据的众数为1.故答案为1.先根据中位数的定义可求得x,再根据众数的定义就可以求解.本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.12.答案:(3n−1)2解析:解:9n2+1−6n=(3n−1)2.故答案为:(3n−1)2.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.13.答案:13解析:解:∵从−1、0、√2、0.3、π、13这六个数中任意抽取一个,抽取到无理数的有2种情况,即:√2、π;∴抽取到无理数的概率为:26=13.故答案为:13.由从−1、0、√2、0.3、π、13这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.答案:k<6且k≠3解析:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.解:xx−3−2=kx−3方程两边都乘以(x−3),得x−2(x−3)=k,解得x=6−k,∵关于x的方程xx−3−2=kx−3有一个正数解,∴x=6−k>0,且6−k≠3,∴k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为k<6且k≠3.15.答案:15°或75°解析:【试题解析】因为三角形的高有三种情况,而直角三角形不合题意,故舍去,所以应该分两种情况进行分析,从而得到答案.【详解】(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD为等腰三角形ABC腰AC上的高,并且BD=12AB,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD为等腰三角形ABC腰AC上的高,并且BD=12AB,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°,底角为15°.故答案为:15°或75°.本题考查等腰三角形的性质和含30度角的直角三角形,解题的关键是掌握等腰三角形的性质和含30度角的直角三角形.16.答案:6解析:解:∵点P的坐标为(2,n),则点Q的坐标为(3,n−1),依题意得:k=2n=3(n−1),解得:n=3,∴k=2×3=6,故答案为:6.的图象上,即可得出k=2n=3(n−根据平移的特性写出点Q的坐标,由点P、Q均在反比例函数y=kx1),解得即可.本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义,解题的关键:由P点坐标表示出Q点坐标.17.答案:(−8,6)解析:本题主要考查的是旋转中的坐标变换,全等三角形的判定及性质的有关知识.过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′= OB,然后写出点A′的坐标即可.解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,{∠OAB=∠A′OB′∠ABO=∠OB′A′OA=OA′,∴△AOB≌△OA′B′,∴OB′=AB=8,A′B′=OB=6,∴点A′的坐标为(−8,6).故答案为(−8,6).18.答案:√2(2n−1)解析:解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:√2(OA1+C1A2+C2A3+C3A4+⋯+C n−1A n)=√2(1+2+4+ 8+⋯+2n−1),设S=1+2+4+8+⋯+2n−1,则2S=2+4+8+⋯+2n−1+2n,则2S−S=2n−1,∴S=2n−1,∴1+2+4+8+⋯+2n−1=2n−1,∴前n个正方形对角线长的和是:√2×(2n−1),故答案为:√2(2n−1),根据题意和函数图象可以求得点A1,A2,A3,A4的坐标,从而可以得到前n个正方形对角线长的和,本题得以解决.本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.19.答案:解:(1)原式=2×12−1−2−9=1−1−2−9=−11;(2){2x +4≤3(x +2)①x −12−x −14<1② 解不等式①得:x ≥−2,解不等式②得:x <5,∴不等式组的解集为:−2≤x <5,∴不等式组的整数解为−2,−1,0,1,2,3,4.解析:(1)原式第一项利用特殊角的三角函数值化简,第二项利用零指数幂法则计算,第三项利用立方根的意义化简,最后一项利用负指数幂法则计算,即可得到结果.(2)求出不等式组的解集,根据不等式组的解集求出即可.本题考查了解一元一次不等式组和一元一次不等式组的整数解的应用,关键是求出不等式组的解集. 20.答案:解:(1)60÷20%=300(名),答:在这次调查中,参与问卷调查的学生共有300 名学生;(2)调查中喜爱足球的人数300−60−120−30=90人,5000×90300=1500(名),答:喜欢足球的学生共有1500 名学生.解析:(1)根据喜爱乒乓球的人数除以喜爱乒乓球所占的百分比,可得答案;(2)根据有理数的减法,可得喜爱足球的人数,根据全校学生的人数乘以喜爱足球人数所占的百分比,可得答案.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.答案:解:(1)由题意得:{40k +b =30050k +b =150, 解得{k =−10b =700. 故y 与x 之间的函数关系式为:y =−10x +700;(2)由题意,得−10x +700≥240,解得x ≤46,设利润为w =(x −30)⋅y =(x −30)(−10x +700),w =−10x 2+1000x −21000=−10(x −50)2+4000,∵−10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=−10(46−50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w−150=−10x2+1000x−21000−150=3600,−10(x−50)2=−250,x−50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.答:该漆器笔筒销售单价x元的范围45≤x≤55.解析:本题主要考查求一次函数的解析式和二次函数的应用.(1)由图象可知销售量与销售单价之间存在一次函数关系,用待定系数法将点(40,300)和(55,150)代入y=kx+b中可求出k和b的值,即可得到y关于x的函数关系式;(2)先根据漆器笔筒的销售量不低于240件求出x的范围,再根据总利润=单件利润×销售量得出W 与x之间的函数关系式,根据二次函数的性质求出最值;(3)根据每天捐出150元后剩余利润为3600元,求出x的值,再利用二次函数的图形,求出剩余利润不低于3600元时x的范围,即所求销售单价的范围.22.答案:(1)证明:∵CE是⊙O的切线,∴∠OEC=90°,∵四边形OABC是平行四边形,∴AO=BC,OC=AB,OC//AB,∴∠EOC=∠A,∠COD=∠ODA,∵OD=OA,∴∠A=∠ODA,∴∠EOC=∠DOC,在△EOC和△DOC中,{OE=OD∠EOC=∠DOC OC=OC,∴△EOC≌△DOC(SAS),∴∠ODC=∠OEC=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)解:连接DE,交OC于F,如图所示:BC=3,CD=4,∵CE、CD是⊙O的切线,∴CE=CD=4,∵四边形OABC是平行四边形,∴OA=BC=3,∴OE=3,在Rt△CEO中,CE=4,OE=3,由勾股定理得:OC=√32+42=5,∴AB=OC=5,∵AE是直径,∴∠ADE=90°,即AD⊥DE,由三角形的面积公式得:12×CD×OD=12×OC×DF,∴DF=CD⋅ODOC =4×35=125,∴DE=2DF=245,在Rt△ADE中,AE=6,DE=245,由勾股定理得AD=√AE2−DE2=185,∴BD=AB−AD=5−185=75.解析:(1)证出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)连接DE,交OC于F,由圆周角定理得出AD⊥DE,由平行四边形的性质得出OF⊥DE,由垂径定理得出DF=EF=12DE,由勾股定理求出OC,由三角形的面积求出DF的长,即可得出AD的长,进而由BD=AB−AD求得BD.本题考查了切线的性质和判定,平行四边形的性质,平行线的性质,勾股定理,垂径定理,三角形的面积的应用,熟练掌握切线的判定和性质是解题的关键.23.答案:解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需(x+30)元,由题意得:2500 x =2000x+30×2,解得:x=50,经检验x=50是原方程的解,∴x+30=80.答:一个A品牌的足球需50元,则一个B品牌的足球需80元;(2)设此次可购买a个B品牌足球,则购进A牌足球(50−a)个,由题意得:50×(1+8%)(50−a)+80×0.9a≤3260,解得:a≤3119,∵a是整数,∴a最大等于31,答:该中学此次最多可购买31个B品牌足球.解析:本题考查分式方程的应用和一元一次不等式组的应用.(1)设一个A品牌的足球需x元,则一个B品牌的足球需(x+30)元,根据购买A品牌足球数量是购买B品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a个B品牌足球,则购进A牌足球(50−a)个,根据购买A、B两种品牌足球的总费用不超过3260元,列出不等式解决问题.24.答案:解:(1)如图1中,∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥AE,∠AEF=90°,∴∠AEB=∠EFC,∵EF=AE,∴△ABE≌△ECF(AAS),∴CE=AB=6,∴BE=BC−CE=2.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.同理可证△ABE≌△EMF,设BE=x,则EM=AB=6,FM=BE=xEC=8−x,∵EF⊥DF,∴∠DFE=∠DCB=90°,∴∠FEC=∠CDF,CD=AB=EM∴△EFM≌△DNC(AAS),∴NC=FM=x,EN=EC+NC=8,NM=EN−EM=2,即在Rt△FMN中,FN2=x2+22,在Rt△EFM中,EF2=x2+62,在Rt△EFN中,FN2+EF2=EN2,即x2+22+x2+62=82,解得x=2√3或−2√3(舍弃),即BE=2√3,(3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.∵∠BAM=∠EAF=45°,∴∠BAE=∠MAF,∵ABAM =AEAF=√22,∴△ABE∽△AME,∴∠AMF=∠ABE=90°,BEFM =ABAM=√22,∵AQ=FQ,AH=MH,∴HQ=12FM,HQ//FM,∴∠AHQ=90°,∴点Q的运动轨迹是线段HQ,当点E从点B运动到点C时,BE=8,∴MF=8√2,∴HQ=12MF=4√2,∴线段AF的中点Q的运动路径长为4√2.解析:(1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC= FM=x,利用勾股定理构建方程即可解决问题.(3)如图3中,在BC 上截取BM =BA ,连接AM ,MF ,取AM 的中点H ,连接HQ.由△ABE∽△AME ,推出∠AMF =∠ABE =90°,由AQ =FQ ,AH =MH ,推出HQ =12FM ,HQ//FM ,推出∠AHQ =90°,推出点Q 的运动轨迹是线段HQ ,求出MF 的长即可解决问题.本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题. 25.答案:解:(1)将点A(−3,0),B(5,−4)代入y =ax 2+bx −4,得{9a −3b −4=025a +5b −4=−4,解得,{a =16b =−56,∴抛物线的解析式为:y =16x 2−56x −4;(2)在抛物线y =16x 2−56x −4中,当x =0时,y =−4,∴C(0,−4),∵B(5,−4),∴BC//x 轴,∴S △ABC =12BC ⋅OC=12×5×4=10,∴△ABC 的面积为10;(3)存在,理由如下:在抛物线y =16x 2−56x −4中,对称轴为:x =−b 2a =52,设点M(52,m),①如图1,当∠M 1AB =90°时,设x 轴与对称轴交于点H ,过点B 作BN ⊥x 轴于点N ,则HM1=m,AH=112,AN=8,BN=4,∵∠M1AH+∠BAN=90°,∠BAN+∠ABN=90°,∴∠M1AH=∠ABN,又∵∠AHM1=∠BNA=90°,∴△AHM1∽△BNA,∴AHBN =HM1NA,即1124=m8,解得,m=11,∴M1(52,11);②如图2,当∠ABM2=90°时,设x轴与对称轴交于点H,BC与对称轴交于点N,由抛物线的对称性可知,对称轴垂直平分BC,∴M2C=M2B,∴∠BM2N=∠AM2N,又∵∠AHM2=∠BNM2=90°,∴△AHM2∽△BNM2,∴AHBN =HM2NM2,∵HM2=−m,AH=112,BN=52,M2N=−4−m,∴11252=−m−4−m,解得,m=−223,∴M2(52,−223);③如图3,当∠AM3B=90°时,设x轴与对称轴交于点H,BC与对称轴交于点N,则AM 32+BM 32=AB 2,∵AM 32=AH 2+M 3H 2,BM 32=BN 2+M 3N 2,∴AH 2+M 3H 2+BN 2+M 3N 2=AB 2,∵HM 3=−m ,AH =112,BN =52,M 3N =−4−m , 即(112)2+m 2+(52)2+(−4−m)2=42+82,解得,m 1=√712−2,m 2=−√712−2, ∴M 3(52,√712−2),M 4(52,−√712−2);综上所述,存在点M 的坐标,其坐标为M 1(52,11),M 2(52,−223),M 3(52,√712−2),M 4(52,−√712−2).解析:本题考查了待定系数法求解析式,三角形的面积,直角三角形的存在性,相似三角形的判定与性质等,解题关键是注意分类讨论思想在解题中的运用.(1)将点A ,B 代入y =ax 2+bx −4即可求出抛物线解析式;(2)在抛物线y =16x 2−56x −4中,求出点C 的坐标,推出BC//x 轴,即可由三角形的面积公式求出△ABC 的面积;(3)求出对称轴,设点M(52,m),分∠MAB =90°,∠ABM =90°,∠AMB =90°三种情况进行讨论,由相似或勾股定理即可求出点M 的坐标.。

山东省东营市2020版数学中考一模试卷(II)卷

山东省东营市2020版数学中考一模试卷(II)卷

山东省东营市2020版数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) 0的相反数是()A . 0B . 1C . -1D . ±12. (2分)某市在一次扶贫助残活动中,捐款约3180000元,请将3180000元用科学记数法表示为()A . 0.318×106元B . 3.18×106元C . 31.8×106元D . 318×106元3. (2分)下面四个几何体中,俯视图不是圆的几何体的个数是()A . 1B . 2C . 3D . 44. (2分) (2017八下·林甸期末) 如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A .B .C .D .5. (2分)若一元二次方程x2﹣2x﹣a=0无实数根,则一次函数y=(a+1)x+(a﹣1)不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度为()A . 米B . 米C . 米D . 米7. (2分)矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BCO的周长差为4,则AB的长是()A . 12B . 22C . 16D . 268. (2分)如图所示,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD 上,则BP的长是()A . 3B . 2C . 1D . 无法确定二、填空题 (共6题;共6分)9. (1分)(2019·营口) 一个长方形的长和宽分别为和,则这个长方形的面积为________.10. (1分)(2013·嘉兴) 因式分解:ab2﹣a=________.11. (1分) (2019七下·泰兴期中) 如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=________°.12. (1分)如图,DC∥AB,OA=2OC,则△OCD与△OAB的位似比是________13. (1分)(2018·徐州模拟) 点A(a,b)是函数y=x﹣1与y= 的交点,则a2b﹣ab2=________.14. (1分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有________。

山东省东营市2020版中考数学模拟试卷(II)卷

山东省东营市2020版中考数学模拟试卷(II)卷

山东省东营市2020版中考数学模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)下列四个数中,是负数的是()A . -1B . 0C . 1D . 22. (2分)已知a+=4,则a2+的值是()A . 4B . 16C . 14D . 153. (2分)(2017·呼兰模拟) 下列图形中,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A . -=20B . ﹣=20C . -=20D . +=205. (2分)当0≤x≤3时,一次函数y=﹣x+3的最大值是()A . 0B . 3C . ﹣3D . 无法确定6. (2分) (2017八下·江阴期中) 已知点D与点A(0,6),B(0,﹣4),C(x,y)是平行四边形的四个顶点,其中x,y满足x﹣y+3=0,则CD长的最小值为()A .B . 4C . 2D . 27. (2分)(2017·河池) 若函数y= 有意义,则()A . x>1B . x<1C . x=1D . x≠18. (2分)如图所示是某酒店门前的台阶,现该酒店经理要在台阶上铺上一块红地毯,问这块红地毯至少需要()A . 23平方米B . 90平方米C . 130平方米D . 120平方米9. (2分)(2017·深圳模拟) 一个多边形的内角和是720°,这个多边形的边数是()A . 3B . 4C . 5D . 610. (2分)(2017·新野模拟) 如图,∠BAC=60°,AD是∠BAC的角平分线,点D在AD上,过点D作DE∥AB 交AC于点E.若DE=2,则点D到AB的距离为()A . 1B .C . 2D . 211. (2分)下列结论正确的是()A . 数轴上表示6的点与表示4的点相距10B . 数轴上表示+6的点与表示-4的点相距10C . 数轴上表示-4的点与表示4的点相距10D . 数轴上表示-6的点与表示-4的点相距1012. (2分) (2016八上·桑植期中) A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B 地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A .B .C . +4=9D .13. (2分) (2017七下·江苏期中) 如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2015条棱分别停止在所到的正方体顶点处时,它们之间的距离是().A . 0B . 1C .D .14. (2分)用配方法将方程x2+6x-11=0变形为()A . (x-3)2=20B . (x+3)2=20C . (x+3)2=2D . (x-3)2=215. (2分) (2019九下·东台月考) 如图,一次函数与轴,轴交于两点,与反比例函数相交于两点,分别过两点作轴,轴的垂线,垂足为,连接,有下列四个结论:① 与的面积相等;② ∽ ;③ ;④ ,其中正确的结论个数是()A . 1B . 2C . 3D . 416. (2分) (2019九上·浙江期中) 已知二次函数的图象如图所示,有下列4个结论:① ;② ;③ ;④ ;⑤2c<3b其中正确的结论有()A . 2个B . 3个C . 4个D . 5个二、填空题: (共3题;共3分)17. (1分) (2017八上·揭西期末) 如图所示,已知四边形ABCD是等边长为2的正方形,AP=AC,则数轴上点P所表示的数是________.18. (1分)分解因式:x2﹣2xy+y2=________.19. (1分) (2018九上·大庆期末) 如图,在锐角△ABC中,以BC为直径的半圆O分别交AB,AC于D,E 两点,且cosA= ,则S△ADE:S四边形DBCE的值为________.三、计算题: (共2题;共30分)20. (20分) (2019七上·咸阳期中) 计算。

2020年山东省东营市中考数学模拟试卷(含答案)

2020年山东省东营市中考数学模拟试卷(含答案)

2020年山东省东营市三校联考中考数学模拟试卷一.选择题(满分30分,每小题3分)1.﹣2019的相反数是()A.B.﹣C.2019 D.﹣20192.下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a6 3.如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是()A.∠1=50°,∠2=40°B.∠1=40°,∠2=50°C.∠1=30°,∠2=60°D.∠1=∠2=45°5.如图,矩形AB CD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组至少有四个整数解,且关于x的分式方程+=1有非负整数解的概率是()A.B.C.D.7.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上,将剪下的扇形作为一个圆锥侧面,如果圆锥的高为3cm,则这块圆形纸片的直径为()A.12cm B.20cm C.24cm D.28cm8.如图,⊙O是△ABC的外接圆,∠OBC=40°,则∠A等于()A.60°B.50°C.40°D.30°9.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺10.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是()A.0 B.1 C.2 D.3二.填空题(共8小题,满分28分)11.中国的领水面积约为3700000km2,将3700000用科学记数法表示为.12.分解因式:6xy2﹣9x2y﹣y3=.13.已知一组数据1,2,3,5,x,它们的平均数是3,则这组数据的方差是.14.式子有意义的x的取值范围是.15.(4分)某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是m2.16.一个小球沿着坡度为1:3的坡面向下滚动了10米,此时小球下降的垂直高度为米.17.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P 到A、B两点距离之和PA+PB的最小值为.18.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)三.解答题(共7小题,满分62分)19.(7分)(1)计算:()﹣1+|1﹣|﹣2sin60°+(π﹣2016)0﹣.(2)先化简,再求值:(﹣x+1)÷,其中x=﹣2.20.(7分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有名,扇形统计图中“基本了解”部分所对应扇形的圆心角为;请补全条形统计图;(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解””和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.21.(8分)如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.22.(8分)如图,以△ABC的边AB为直径作⊙O,且顶点C在⊙O上,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=8,BC=6,求BD和CE的长.23.(9分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万0.7 0.8 0.5元)若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.24.(11分)如图所示,在边长为4正方形OABC中,OB为对角线,过点O作OB的垂线.以点O为圆心,r为半径作圆,过点C做⊙O的两条切线分别交OB垂线、BO 延长线于点D、E,CD、CE分别切⊙O于点P、Q,连接AE.(1)请先在一个等腰直角三角形内探究tan22.5°的值;(2)求证:①DO=OE;②AE=CD,且AE⊥CD.(3)当OA=OD时:①求∠AEC的度数;②求r的值.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式.(2)点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.当PE=2ED时,求P点坐标;(3)如图2所示,设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点Q,使得四边形OFQC的面积最大?若存在,请求出点Q的坐标;若不存在,说明理由.参考答案一.选择题1.解:﹣2019的相反数是2019.故选:C.2.解:A、不是同类项不能合并,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.3.解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2π×3=6π.故选:C.4.解:“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题为∠1=∠2=45°.故选:D.5.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.6.解:不等式组整理得:,由不等式组至少有四个整数解,得到a≥﹣3,∴a的值可能为,﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a﹣x+2=x﹣3,解得:x=,∵分式方程有非负整数解,∴a=5、3、1、﹣3,则这9个数中所有满足条件的a的值有4个,∴P=故选:C.7.解:设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得2πr=,解得r=R,所以(R)2=(3)2+(R)2,解得R=12,所以这块圆形纸片的直径为24cm.故选:C.8.解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°,故选:B.9.解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.10.解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP,故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴=,即AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP,故②错误;∵BP=1,AB=3,∴AP=4,∵△PBE∽△PAD,∴==,∴BE=,∵CD∥AP,∴∠FDO=∠P,∵∠DFO+∠FDO=90°,∠P+∠PEB=90°,∴∠DFO=∠PEB,∴cos∠PEB=cos∠PEB===,故③正确,故选:C.二.填空题11.解:3700000用科学记数法表示为:3.7×106.故答案为:3.7×106.12.解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)213.解:由平均数的公式得:(1+x+3+2+5)÷5=3,解得x=4;∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(5﹣3)2+(4﹣3)2]÷5=2.故答案为:2.14.解:由题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.15.解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故答案为:15016.解:小球沿着坡面向下前进了10m假设到A处,过C作CB⊥AB,∵i=1:3,∴tan A=,设BC=xcm,AB=3xcm,x2+(3x)2=102,解得:x=或x=﹣(不合题意,舍去),故答案为:.17.解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故答案为:.18.解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴S n=.故答案为:.三.解答题19.解:(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1;(2)原式=(﹣)÷=•=•=,当x=﹣2时,原式===2﹣1.20.解:(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:故答案为:60、90°;(2)根据题意得:1200×=400(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为400人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)所有等可能的情况有9种,其中两人打平的情况有3种,则两人打平的概率为=.21.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C的坐标为(﹣3,),代入y=得:k=﹣3答:k的值为﹣3.(2)过点A作AN⊥OB,垂足为N,由题意得:AN=2CM=2,ON=OB=2,∴A(﹣2,2),设直线OA的关系式为y=kx,将A的坐标代入得:k=﹣,∴直线OA的关系式为:y=﹣x,由题意得:,解得:舍去,,∴D(﹣,3)过D作DE⊥OB,垂足为E,S △OCD=S CMED+S△DOE﹣S△COM=S CMED=(+3)×(3﹣)=3,答:△OCD的面积为3.(3)①当与直线CD平行的直线y=mx+n过点O时,此时y=mx+n的n=0,②当与直线CD平行的直线y=mx+n经过点A时,设直线CD的关系式为y=ax+b,把C、D坐标代入得:,解得:a=1,b=3+∴直线CD的关系式为y=x+3+,∵y=mx+n过与直线y=x+3+平行,∴m=1,把A(﹣2,2)代入y=x+n得:n=2+2因此:0≤n≤2+2.答:n的取值范围为:0≤n≤2+2.22.(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)∵∠ACB=90°,∴AB=,∵tan A=,∴BD=AB=,∴CE=BD=.23.解:(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(2x+1)辆,装运花椒的汽车为30﹣x﹣(2x+1)=(29﹣3x)辆,根据题意得:y=10×0.7x+4×0.5(2x+1)+6×0.8(29﹣3x)=﹣3.4x+141.2.(2)根据题意得:,解得:7≤x≤,∵x为整数,∴7≤x≤9.∵10.6>0,∴y随x增大而减小,∴当x=7时,y取最大值,最大值=﹣3.4×7+141.2=117.4,此时:2x+1=19,29﹣3x=2.答:当装运核桃的汽车为9辆、装运甘蓝的汽车为19辆、装运花椒的汽车为2辆时,总利润最大,最大利润为117.4万元.24.解:(1)如图1,△GMN是等腰直角三角形.则有∠M=90°即GM⊥MN,MG=MN,∠MGN=∠MNG=45°.过点N作NF平分∠MNG,交GM于点F,过点F作FH⊥NG于H.∵NF平分∠MNG,FH⊥NG,FM⊥MN,∴∠MNF=∠MNG=22.5°,FM=FH.∵FH⊥NG即∠FHG=90°,∠G=45°,∴sin G==.∴GF=FH.∴GF=FM.∴MN=MG=MF+FG=MF+FM=(+1)FM.在Rt△FMN中,tan∠FNM=tan22.5°====﹣1.∴tan22.5°=﹣1.(2)①如图2,∵四边形OABC是正方形,∴OA=OC,∠AOB=∠BOC=45°.∴∠EOC=180°﹣∠BOC=135°.∵OD⊥OB即∠DOB=90°,∴∠DOC=∠DOB+∠BOC=135°.∴∠DOC=∠EOC.∵CD、CE分别与⊙O相切于P、Q,∴∠PCO=∠QCO.在△DOC和△EOC中,.∴△DOC≌△EOC(ASA).∴OD=OE.②∵∠AOB=45°,∴∠AOE=135°.∴∠AOE=∠DOC.在△AOE和△COD中,.∴△AOE≌△COD(SAS).∴AE=CD,∠AEO=∠CDO.∵∠DOB=90°,∴∠KDO+∠DKO=90°.∴∠AEO+∠DKO=90°.∴∠KRE=90°.∴AE⊥CD.(3)①∵OA=OD,OA=OC,OD=OE,∴OA=OD=OE=OC.∴点A、D、E、C在以点O为圆心,OA为半径的圆上.∴根据圆周角定理可得∠AEC=∠AOC=45°.∴∠AEC的度数为45°.②连接OQ,如图3.∵OC=OE,∴∠OEC=∠OCE.∵∠BOC=∠OEC+∠OCE=2∠OEC=45°,∴∠OEC=22.5°∵CE与⊙O相切于点Q,∴OQ⊥EC,即∠OQE=90°.在Rt△OQE中,∵∠OQE=90°,∴tan∠OEQ=tan22.5°==﹣1.∵OQ=r,∴QE==(+1)r.∵∠OQE=90°,∴OQ2+QE2=OE2.∵OQ=r,QE=(+1)r,OE=4,∴r2+[(+1)r]2=(4)2.整理得(4+2)r2=32.解得:r=2.∴r的值为2.25.解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|﹣x2+3x+4|=2|x+1|,当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,∴P(2,9);当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1或x=6,但当x=﹣1时,P与A重合不合题意,舍去,∴P(6,﹣7);综上可知P点坐标为(2,9)或(6,﹣7);(3)存在这样的点Q,使得四边形OFQC的面积最大.如图,过点Q作QP⊥x轴于点P,设Q(n,﹣n2+4n+5)(n>0),则PO=n,PQ=﹣n2+4n+5,CP=5﹣n,四边形OFQC的面积=S四边形PQFO+S△PQC=×(﹣n2+4n+5+5)•n+×(5﹣n)×(﹣n2+4n+5)=﹣n2+n+=﹣(n﹣)2+,当n=时,四边形OFQC的面积取得最大值,最大值为,此时点Q的坐标为(,).。

山东省东营市东营区2020年中考数学一模试卷(含解析)

山东省东营市东营区2020年中考数学一模试卷(含解析)

2020年山东省东营市东营区中考数学一模试卷一、选择题1.|﹣2020|的倒数等于()A.2020B.﹣2020C.D.﹣2.下列运算正确的是()A.+=B.(ab2)3=a3b6C.5x2y﹣3x2y=2D.=a+b3.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.45°4.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠BAC=∠EBD C.∠ABC=∠BAE D.∠BAC=∠ABE 5.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)6.为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A.B.C.D.7.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.B.C.D.8.如图,矩形ABCD中∠BAC=60°,以点A为圆心,以任意长为半径作弧分别交AB,AC于点M,N两点,再分别以点M,N为圆心,以大于MN的长为半径作弧交于点P,作射线AP交BC于点E,若BE=2cm,则CE的长为()A.6cm B.6cm C.4cm D.4cm9.已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.10.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,①△BCE是等边三角形,②DE=BF,③△ABC≌△CFD,④四边形BEDF是平行四边形.则其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.引发“新冠肺炎”的COVID﹣19病毒直径大小约为0.0000015米,这个数用科学记数法表示为.12.分解因式:3x2﹣6x2y+3xy2=.13.数据2,x,2,4,2,5,3的平均数是3,则方差是.14.不等式组的整数解的和是.15.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=,若p⊕3=,则p的值是.16.如图,在直升机的镜头下,观测东营市清风湖A处的俯角为30°,B处的俯角为45°,如果此时直升机镜头C处的高度CD为300米,点A、B、D在同一条直线上,则A、B 两点间的距离为米.(结果保留根号)17.如图,某数学兴趣小组将边长为10的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.18.如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2020的坐标为.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19.(1)计算:﹣12020﹣|1﹣tan60°|+×(﹣)﹣2+(π﹣3.14)0;(2)先化简,再求值(﹣x+1)÷,其中x满足x2+2x﹣3=0.20.东营市某学校九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别频数(人数)频率小说0.5戏剧4n散文100.25其他6合计m1(1)计算m=,n=.(2)在扇形统计图中,“其他”类所在的扇形圆心角为;(3)这个学校共有1000人,则读了戏剧类书籍的学生大约有多少人?(4)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.21.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求AD的长.22.如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,5),点B的坐标为(5,n),tan∠AOC=.(1)求k的值;(2)直接写出点B的坐标,并求直线AB的解析式;(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.23.维康药店购进一批口罩进行销售,进价为每盒(二十只装)40元,如果按照每盒50元的价格进行销售,每月可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每月减少20盒.(1)维康药店要保证每月销售此种口罩盈利6000元,又要使消费者得到实惠,则每盒口罩可涨价多少元?(2)若使该口罩的月销量不低于300盒,则每盒口罩的售价应不高于多少元?24.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).25.如图,在平面直角坐标系中,抛物线y=﹣ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC及抛物线的解析式,并求出D点的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(3)若点P是x轴上一个动点,过P作直线1∥AC交抛物线于点Q,试探究:随着P 点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.参考答案一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.|﹣2020|的倒数等于()A.2020B.﹣2020C.D.﹣【分析】根据绝对值性质和倒数的概念求解可得.解:|﹣2020|,即2020的倒数等于,故选:C.2.下列运算正确的是()A.+=B.(ab2)3=a3b6C.5x2y﹣3x2y=2D.=a+b【分析】根据二次根式的加减、积的乘方、合并同类项计算法则,以及分式的约分进行计算即可.解:A、和不能合并,故原题计算错误;B、(ab2)3=a3b6,故原题计算正确;C、5x2y﹣3x2y=2x2y,故原题计算错误;D、不能约分,故原题计算错误;故选:B.3.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.45°【分析】先根据平角等于180°求出∠3,再利用两直线平行,同位角相等解答.解:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,∵a∥b,∴∠2=∠3=40°.故选:B.4.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠BAC=∠EBD C.∠ABC=∠BAE D.∠BAC=∠ABE 【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解:A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠BAC=∠EBD不能判断出EB∥AC,故本选项错误;C、∠ABC=∠BAE只能判断出EA∥CD,不能判断出EB∥AC,故本选项错误;D、∠BAC=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.故选:D.5.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)【分析】首先将点A向下平移个单位,得到对应点坐标,再确定其绕原点旋转180°可得对称点坐标,然后再向上平移个单位即可.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.6.为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A.B.C.D.【分析】根据河道总长为180米和A、B两个工程队共用时20天这两个等量关系列出方程,组成方程组即可求解.解:设A工程小组整治河道x米,B工程小组整治河道y米,依题意可得:,故选:A.7.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.B.C.D.【分析】可回收物、易腐垃圾、有害垃圾和其他垃圾四大类对应的垃圾筒分别用A,B,C,D表示,垃圾分别用a,b,c,d表示.设分类打包好的两袋不同垃圾为a、b,画出树状图,由概率公式即可得出答案.解:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类对应的垃圾筒分别用A,B,C,D表示,垃圾分别用a,b,c,d表示.设分类打包好的两袋不同垃圾为a、b,画树状图如图:共有12个等可能的结果,分类打包好的两袋不同垃圾随机投入进两个不同的垃圾桶,投放正确的结果有1个,∴分类打包好的两袋不同垃圾随机投入进两个不同的垃圾桶,投放正确的概率为;故选:C.8.如图,矩形ABCD中∠BAC=60°,以点A为圆心,以任意长为半径作弧分别交AB,AC于点M,N两点,再分别以点M,N为圆心,以大于MN的长为半径作弧交于点P,作射线AP交BC于点E,若BE=2cm,则CE的长为()A.6cm B.6cm C.4cm D.4cm【分析】过E作EF⊥AC于F,依据角平分线的性质即可得到EF的长,再根据含30°角的直角三角形的性质即可得到CE的长.解:如图所示,过E作EF⊥AC于F,由题可得,AP平分∠BAC,∵EB⊥AB,∴EB=EF=2cm,∵∠BAC=60°,∠B=90°,∴∠ACB=30°,∴Rt△CEF中,CE=2EF=4cm,故选:C.9.已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,开始y随x的增大而增大,然后y随x的减小而减小,则可对D进行判断,从而得到正确选项.解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;A选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以A 选项不正确;D选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM 的长有最小值.故选:D.10.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,①△BCE是等边三角形,②DE=BF,③△ABC≌△CFD,④四边形BEDF是平行四边形.则其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】由直角三角形的性质和旋转的性质可得∠BCE=∠ACD=60°,CB=CE,∠DEC =∠ABC=90°,AB=DE=BF,可判断①②;由“HL”可证Rt△ABC≌Rt△CFD,可判断③,延长BF交CE于点G,可证BF∥ED,由一组对边平行且相等可证四边形BEDF 是平行四边形,即可判断④,即可求解.解:∵点F是边AC中点,∴CF=BF=AF=AC,∵∠BCA=30°,∴BA=AC,∴BF=AB=AF=CF,∴∠FCB=∠FBC=30°,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,∠DEC=∠ABC=90°,AB=DE,∴△BCE是等边三角形,DE=BF,故①②正确;∵CD=AC,AB=CF,∴Rt△ABC≌Rt△CFD(HL),故③正确;延长BF交CE于点G,则∠BGE=∠GBC+∠BCG=90°,∴∠BGE=∠DEC,∴BF∥ED,∴四边形BEDF是平行四边形,故④正确.故选:D.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.引发“新冠肺炎”的COVID﹣19病毒直径大小约为0.0000015米,这个数用科学记数法表示为 1.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣6,故答案为:1.5×10﹣6.12.分解因式:3x2﹣6x2y+3xy2=3x(x﹣2xy+y2).【分析】原式提取公因式分解即可.解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)13.数据2,x,2,4,2,5,3的平均数是3,则方差是.【分析】先根据平均数的计算方法,求出x,再代入方差的计算公式计算方差.解:∵数据2,x,2,4,2,5,3的平均数是3,∴(2+x+2+4+2+5+3)=3,∴x=3.∴S2=[(2﹣3)2+(3﹣3)2+(2﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2+(3﹣3)2]=(1+0+1+1+1+4+0)=.故答案为:.14.不等式组的整数解的和是3.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,再相加即可求解.解:,解2﹣x≥x﹣2得x≤2,解3x﹣1>﹣4得x>﹣1,故不等式组的解集为﹣1<x≤2,则不等式组的整数解为0,1,2,和为0+1+2=3.故答案为:3.15.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=,若p⊕3=,则p的值是2.【分析】已知等式利用题中的新定义化简,求出方程的解即可得到p的值.解:根据题中的新定义化简得:﹣=,去分母得:3﹣1=p,解得:p=2,经检验p=2是分式方程的解,则p的值为2.故答案为:2.16.如图,在直升机的镜头下,观测东营市清风湖A处的俯角为30°,B处的俯角为45°,如果此时直升机镜头C处的高度CD为300米,点A、B、D在同一条直线上,则A、B 两点间的距离为()米.(结果保留根号)【分析】在两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加减求差即可.解:∵EC∥AD,∴∠A=30°,∠CBD=45°,CD=300,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tan A=,∴AD=,在Rt△BCD中,∠CDB=90°,∠CBD=45°∴DB=CD=300,∴AB=AD﹣DB=300﹣300,答:A、B两点间的距离为(300﹣300)米.故答案为:(300﹣300)17.如图,某数学兴趣小组将边长为10的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为100.【分析】先求出弧长BD=CD+BC,再根据扇形面积公式:S=lR(其中l为扇形的弧长,R是扇形的半径)计算即可.解:由题意的长=CD+BC=10+10=20,S扇形ABD=•AB=20×10=100,故答案为100.18.如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2020的坐标为(﹣22019,0).【分析】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.解:由题意得,A1的坐标为(1,0),A2的坐标为(1,),A3的坐标为(﹣2,2),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8),A6的坐标为(16,﹣16),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,∵2020÷6=336…4,∴点A2020的方位与点A4的方位相同,在在x负半轴上,其横坐标为﹣2n﹣1=﹣22019,纵坐标为0,故答案为:(﹣22019,0).故答案为:(﹣22019,0).三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19.(1)计算:﹣12020﹣|1﹣tan60°|+×(﹣)﹣2+(π﹣3.14)0;(2)先化简,再求值(﹣x+1)÷,其中x满足x2+2x﹣3=0.【分析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质和零指数幂的性质分别化简得出答案;(2)直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.解:(1)原式=﹣1﹣+2×4+1=﹣1﹣2+9=6;(2)原式=[﹣]÷=•,=﹣,∵x2+2x﹣3=0,∴x=1或x=﹣3,∵x﹣1≠0且2x﹣1≠0,即x≠1且x≠,∴x=﹣3,则原式=﹣=.20.东营市某学校九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别频数(人数)频率小说0.5戏剧4n散文100.25其他6合计m1(1)计算m=40,n=0.1.(2)在扇形统计图中,“其他”类所在的扇形圆心角为54°;(3)这个学校共有1000人,则读了戏剧类书籍的学生大约有多少人?(4)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.【分析】(1)用散文的频数除以其频率即可求得样本总数m;用喜欢戏剧的人数除以样本总数即可求得喜欢戏剧的频率;(2)根据其他类的频数和总人数求得其扇形圆心角即可;(3)根据用样本估计总体可求读了戏剧类书籍的学生大约有多少人;(4)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况数,即可确定出所求概率.解:(1)∵喜欢散文的有10人,频率为0.25,∴m=10÷0.25=40;∵喜欢戏剧的有4人,∴n=4÷40=0.1;(2)在扇形统计图中,“其他”类所占的扇形圆心角为×360°=54°;(3)读了戏剧类书籍的学生大约有1000×0.1=100(人).故读了戏剧类书籍的学生大约有100人;(4)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.故答案为:40,0.1;54°.21.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求AD的长.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,而OD是⊙O的半径,∴DE是⊙O切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4,∴AE=AF+EF=3+5=8在Rt△ADE中,AD2=DE2+AE2=42+82=80,∴AD=4.22.如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,5),点B的坐标为(5,n),tan∠AOC=.(1)求k的值;(2)直接写出点B的坐标,并求直线AB的解析式;(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.【分析】(1)tan∠AOC=,则=,即=,故AD=2,则A(﹣2,5),即可求解;(2)求出B(5,﹣2),将A、B坐标代入一次函数y=ax+b,即可求解;(3)S△AOB=S△AOC+S△BOC,S△PBC=|t﹣3|×5=|t﹣3|,再由S△PBC=2S△AOB,即可求解.解:(1)作AD⊥y轴于D,∵点A的坐标为(m,5),∴OD=5,∵tan∠AOC=.∴=,即=,∴AD=2,∴A(﹣2,5),∵在反比例函数y=(k为常数,k≠0)的图象上,∴k=﹣2×5=﹣10;(2)∵反比例函数为y=,∴B(5,﹣2),∵A、B在一次函数y=ax+b的图象上,解得,∴直线AB的解析式为y=﹣x+3;(3)连接OB,由直线AB为y=﹣x+3可知,C(0,3),∵S△AOB=S△AOC+S△BOC=×3×2+×3×5=,∵P是y轴上一点,∴设P(0,t),∴S△PBC=|t﹣3|×5=|t﹣3|,∵S△PBC=2S△AOB,∴|t﹣3|=2×,∴t=或t=,∴P点的坐标为(0,)或(0,).23.维康药店购进一批口罩进行销售,进价为每盒(二十只装)40元,如果按照每盒50元的价格进行销售,每月可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每月减少20盒.(1)维康药店要保证每月销售此种口罩盈利6000元,又要使消费者得到实惠,则每盒口罩可涨价多少元?(2)若使该口罩的月销量不低于300盒,则每盒口罩的售价应不高于多少元?【分析】(1)设每盒口罩需涨价x元,根据“每盒口罩涨价1元,则口罩的销量每月减少20盒”表示出销售量,由售价﹣进价=利润列出方程,求出方程的解即可得到结果;(2)设每盒口罩的售价为m元,由关键描述语“该口罩的月销量不低于300盒”列出不等式求解即可.解:(1)设每盒口罩可涨价x元,由题意,得:(x+50﹣40)(500﹣20x)=6000,解得x1=5,x2=10(不合题意,舍去).答:每盒口罩可涨价5元;(2)解:设每盒口罩的售价为m元,则500﹣20(m﹣50)≥300,解得,m≤60.答:每盒口罩的售价应不高于60元.24.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值,得出P 点坐标.解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).25.如图,在平面直角坐标系中,抛物线y=﹣ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC及抛物线的解析式,并求出D点的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(3)若点P是x轴上一个动点,过P作直线1∥AC交抛物线于点Q,试探究:随着P 点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.【分析】(1)根据抛物线的解析式可以得到点C的坐标,然后根据点A的坐标,即可得到直线AC的解析式,然后将点A和点B的坐标代入抛物线解析式,即可得到抛物线的解析式,然后将抛物线解析式化为顶点式,即可得到点D的坐标;(2)先求出直线BD的解析式,然后根据P为线段BD上的一个动点,可以设出点P的坐标,然后即可得到四边形AMPC的面积,再根据二次函数的性质,即可得到四边形PMAC的面积的最大值和此时点P的坐标;(3)根据题意,可以画出相应的图形,然后利用分类讨论的方法,可以求得点Q的坐标.解:(1)∵抛物线y=﹣ax2+bx+3与y轴交于点C,∴点C(0,3),设直线AC的解析式为y=k1x+b1(k1≠0),∵点A(﹣1,0),点C(0,3),∴,得,∴直线AC的解析式为y=3x+3,∵抛物线y=﹣ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点,∴,得,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)设直线BD的解析式为y=kx+b,∵点B(3,0),点D(1,4),∴,得,∴直线BD的解析式为y=﹣2x+6,∵P为线段BD上的一个动点,∴设点P的坐标为(p,﹣2p+6),∵OA=1,OC=3,OM=p,PM=﹣2p+6,∴S四边形PMAC=S△OAC+S梯形OMPC=+=﹣p2+p+=﹣(p﹣)2+,∵1<p<3,∴当p=时,四边形PMAC的面积取得最大值为,此时点P的坐标为(,);(3)∵直线l∥AC,以点A、P、Q、C为顶点的四边形是平行四边形,∴PQ∥AC且PQ=AC,∵A(﹣1,0),C(0,3),∴设点P的坐标为(x,0),当点Q在x轴上方时,则点Q的坐标为(x+1,3),此时,﹣(x+1)2+2(x+1)+3=3,解得,x1=﹣1(舍去),x2=1,∴点Q的坐标为(2,3);当点Q在x轴下方时,则点Q的坐标为(x﹣1,﹣3),此时,﹣(x﹣1)2+2(x﹣1)+3=﹣3,整理得,x2﹣4x﹣3=0,解得x1=2+,x2=2﹣,∴点Q的坐标为(1+,﹣3)或(1﹣,﹣3),综上所述,点Q的坐标为(2,3)或(1+,﹣3)或(1﹣,﹣3).。

2020年山东省东营市中考数学试卷及答案解析

2020年山东省东营市中考数学试卷及答案解析

2020年山东省东营市初中学业水平考试数学试题第I 卷 (选择题 共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 6-的倒数是( )A . 6-B .6C .16-D .162. 下列运算正确的是( ) A .()235xx =B .()222x y x y -=+ C .2323522x y xy x y -⋅=-D .()33x y x y -+=-+3. 利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( )A .2-B .2C .2±D .44. 如图,直线AB CD 、相交于点,O 射线OM 平分,BOD ∠若42AOC ∠=︒,则AOM ∠等于( )A .159B .161C .169D .1385. 如图,随机闭合开关123,,,K K K 中的两个,则能让两盏灯泡12,L L 同时发光的概率为( )A .16 B .12 C .23 D .136. 如图,已知抛物线2()0y ax bx c a =++≠的图象与x 轴交于,A B 两点,其对称轴与x 轴交于点,C 其中,A C 两点的横坐标分别为1-和1,下列说法错误的是( )A .0abc <B .40a c +=C .1640a b c ++<D .当2x >时,y 随x 的增大而减小7. 用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为( ) A .π B .2π C .2 D .18. 中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半, 一共走了六天才到达目的地.则此人第三天走的路程为( ) A .96里 B .48里 C .24里 D .12里9. 如图1,点P 从ABC 的顶点A 出发,沿A B C →→匀速运动到点,C 图2是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则ABC 的边AB 的长度为( )A .12B .8C .10D .1310.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A B 、重合) ,对角线AC BD 、相交于点,O 过点P 分别作AC BD 、的垂线,分别交AC BD 、于点,E F 、交AD BC 、于点M N 、.下列结论:APE AME ①≌;PM PN AC +=②;222PE PF PO +=③;POFBNF ④;⑤点O 在M N 、两点的连线上.其中正确的是( )A .①②③④B .①②③⑤C .①②③④⑤D .③④⑤第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.11. 2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为_ .12. 因式分解:22123a b -= . 13. 东营市某学校女子游泳队队员的年龄分布如下表:则该校女子游泳队队员的平均年龄是 岁.14. 已知一次函数()0y kx b k =+≠的图象经过()()1,11,3A B --、两点,则k _____ 0(填“>”或“<”).15. 如果关于x 的一元二次方程260x x m -+=有实数根,那么m 的取值范围是 .16.如图,P 为平行四边形ABCD 边BC 上一点,E F 、分别为PA PD 、上的点,且3,3,PA PE PD PF ==,PEF PDC PAB ,的面积分别记为12,S S S 、.若2,S =则12S S += .17.如图,在Rt AOB 中,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的--条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为 .18.如图,在平面直角坐标系中,已知直线1y x =+和双曲线1y x=-,在直线上取一点,记为1A ,过1A 作x 轴的垂线交双曲线于点1B ,过1B 作y 轴的垂线交直线于点2A ,过2A 作x 轴的垂线交双曲线于点2B ,过2B 作y 轴的垂线交直线于点3,A ······,依次进行下去,记点n A 的横坐标为n a ,若12,a =则2020a = .三、解答题 (本大题共7小题,共62分.解答应写出文字说明、证明过程或演算步骤.)19.()1计算()22020126032cos -⎛⎫--+ ⎪⎝⎭;()2先化简,再求值:22222xy y x y x x x xy⎛⎫÷ ⎪⎝⎭---+,其中1,x y ==20. 如图,在ABC 中,以AB 为直径的O 交AC 于点,M 弦//MN BC 交AB 于点,E 且3,ME =4,AE =5AM =.()1求证:BC 是O 的切线;()2求O 的直径AB 的长度.21. 如图,C 处是一钻井平台,位于东营港口A 的北偏东60方向上,与港口A 相距托艇从A 出发,自西向东航行至B 时,改变航向以每小时50海里的速度沿BC 方向行进,此时C 位于B 的北偏西45方向,则从B 到达C 需要多少小时?22. 东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:()1本次抽样共调查了多少名学生?()2将统计表中所缺的数据填在表中横线上;()3若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名? ()4某学习小组4名学生的作业本中,有2本“非常好”(记为12A A 、),1本“较好”(记为B ),1本“一般”(记为C ),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回, 从余下的3本中再抽取一本 ,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.23. 2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:()1若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只? ()2如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.24. 如图,抛物线234y ax ax a =--的图象经过点()0,2C ,交x 轴于点A B 、(点A 在点B 左侧),连接,BC 直线()10y kx k =+>与y 轴交于点,D 与BC 上方的抛物线交于点,E 与BC 交于点F .()1求抛物线的解析式及点A B 、的坐标;()2EFDF是否存在最大值?若存在,请求出其最大值及此时点E 的坐标;若不存在,请说明理由. 25. 如图1,在等腰三角形ABC 中,120,,A AB AC ∠==点D E 、分别在边AB AC 、上,,AD AE =连接,BE 点M N P 、、分别为DE BE BC 、、的中点.()1观察猜想图1中,线段NM NP 、的数量关系是______________,MNP ∠的大小为__________;()2探究证明把ADE 绕点A 顺时针方向旋转到如图2所示的位置,连接,MP BD CE 、、判断MNP 的形状,并说明理由;()3拓展延伸把ADE 绕点A 在平面内自由旋转,若1,3AD AB ==,请求出MNP 面积的最大值秘密★启用前 试卷类型:A数学试题参考答案及评分标准评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2解答题中每小题的解答中所对应的分数,是指考生正确解等到该步骤所应得的累计分数本答案对每小题只给出一种解法,对考生的其它解法.请参照评分标准相应评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分.但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:本大题共10小题. 在每小题给出的四个选项中,只有一项是正确的.请把正确的选项选出来每小题选对得3分,共30分.选错、不选或选出的答案超过一个均记零分二、填空题11.8210-⨯12.()()322a b a b +- 13.14 14.1415.9;m ≤16.1817. 18.2三、解答题19. 解:()1原式143=---6=;()2原式222222x xy y x x xyx y =⋅-++- ()()()2()x y x x y y x y xx -+-=+⋅x y =-.当1,x y ==原式11==.20.()1证明:3,4,5ME AE AM ===,222AE ME AM ∴+=,90,AEM ∴∠=︒ //,MN BC90,ABC AEM ∴∠=∠=︒AB 为O 的直径, BC ∴是O 的切线.()2如图,连接,BMAB 为O 的直径,90,AMB ∴∠=︒又90,AEM ∠=AM AEcos BAM AB AM∴∠==即545AB = 254AB ∴= 从而O 的直径AB 的长度为25421. 解:如图,过点C 作CD AB ⊥于点,D由题意得://,//AE CD BF CD ,60,45ACD CAE BCD CBF ∴∠=∠=∠=∠=︒在Rt ACD 中,AC =12CD AC ∴==在Rt CDB 中,CD =60BC ∴==.601.250∴=(小时), ∴从B 到达C 需要1.2小时.22.解:()72140200360÷=(名),本次抽样共调查了200名学生; ()2()()318000.220.341008⨯+=(名),所以该校学生作业情况“非常好”和“较好”的学生一共约1008名;()4列表如下:(树状图略) 由列表可以看出,一共有12种结果,并且它们出现的可能性相等.其中两次抽到的作业本都是“非常好”的有2种,所以“"()21126P ==两次抽到的作业本都是非常好 23. 解:()1设甲种型号口罩的产量是x 万只,则乙种型号口罩的产量是()20x -万只,根据题意得:()18620300,x x +-=解得:15,x =则2020155,x -=-=则甲、乙两种型号口罩的产量分别为15万只和5万只;()2设甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是()20y -万只,根据题意得:()12420216,y y +-≤解得:17y ≤.设所获利润为w 万元,则()()()181********,w y y y =-+--=+由于40>,所以w 随y 的增大而增大,即当17y =时,w 最大,此时41740108w =>+=.从而安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,获得最大利润,最大利润为108万元.24. 解:()1把()0,2C 代入334y ax ax a =-- 得:42,a -=解得12a =-∴抛物线的解析式为213222y x =-++ 令2132022x -++= 可得:121,4,x x =-=()()1,0,4,0A B ∴-()2存在.如图,由题意,点E 在y 轴的右侧,作//EG y 轴,交BC 于点G .//,CD EG ∴EF EG DF CD∴= 直线()10y kx k =+>与y 轴交于点D .则()0,1D ,211,CD =-=∴EF EG DF∴= 设BC 所在直线的解析式为()0y mx n m =+≠,将()()4,0,0,2B C 代入上述解析式得:042m n n=+=⎧⎨⎩解得:122m n ⎧=-⎪⎨⎪=⎩BC ∴的解析式为122y x =+-设213,222E t t t ⎛⎫-++ ⎪⎝⎭则1,22G t t ⎛⎫-+ ⎪⎝⎭,其中04t <<. ()22131122222222EG t t x t ⎛⎫∴=-++-+=--+ ⎪⎝⎭- 2(22,2)1EF t DF ∴=--+ 10,2-< 当2t =时,有最大值,最大值为2.此时点E 的坐标为()2,3.25. 解:()1相等,60()2MNP 是等边三角形.理由如下:如图,由旋转可得,BAD CAE ∠=∠又,,AB AC AD AE ==()ABD ACE SAS ∴≌,,BD CE ABD ACE =∠=∠∴点M N 、分别为DE BE 、的中点,MN ∴是EBD 的中位线,122MN BD ∴=且//MN BD . 同理可证12PN CE =且//PN CE . ,,MN PN MNE DBE NPB ECB ∴=∠=∠∠=∠.,MNE DBE ABD ABE ACE ABE ∴∠=∠=∠+∠=∠+∠ ,ENP EBP NPB EBP ECB ∠=∠+∠=∠+∠MNP MNE ENP ACE ABE EBP ECB ∴∠=∠+∠=∠+∠+∠+∠ 60ABC ACB =∠+∠=︒.MNP ∴是等边三角形. ()3根据题意得:BD AB AD ≤+. 即4BD ≤,从而2,MN ≤MNP 的面积212MN MN MN ==所以MNP。

2020年东营市中考数学仿真模拟试题(附答案)

2020年东营市中考数学仿真模拟试题(附答案)

2020年东营市中考数学仿真模拟试题(附答案)考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚, 将“条形码”准确粘贴在条形码区域内。

3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

) 1.与2的积为1的数是( )A .2B .C .﹣2D .2.下列式子属于分式的是( )A .x ; B C ; D . 3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆 盖总人口44亿,这个数用科学记数法表示为( ) A .44×108B .4.4×109C .4.4×108D .4.4×10104. 如果将抛物线22+=x y 向下平移3个单位,那么所得新抛物线的表达式是( )A .21-2+=)(x y B .212++=)(x y C .1-2x y = D .32+=x y5.一组数据2,x ,3,4,7的平均数是4,则这组数据的中位数、众数、方差分别是( ) A. 4,4,2.8 B. 3,4,2.8 C. 3,3,3 D. 4,3,46. 如图,在ABC ABC Rt ∠∆中,=90°,分别以AB , AC 为边向外作正方形ABDE 和正方形ACFG , 过点B 作BM ⊥GF ,垂足为M ,BM 交AC 于点N ,连接BG ,CE .下列结论中,不正确的是( )MNGFED CAA.BG =CEB.BG ⊥CEC.S 正方形ABDE >S 四边形ANMGD.BC 2=CF ⋅FM7.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A .4B .5C .6D .78.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,159.如图,△ABC 三个顶点分别在反比例函数y=,y=的图象上,若∠C=90°,AC ∥y 轴,BC ∥x 轴,S △ABC =8,则k 的值为( )A.3 B.4 C.5 D.610.如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止.记PA=x,点D 到直线PA的距离为y,则y关于x的函数解析式是()A.y=12x B. C. D.第Ⅱ卷非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分)11.若代数式有意义,则x的取值范围是.12.口袋内装有除颜色外完全相同的红球、白球和黑球共10个,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么黑球的个数是个.13.已知一次函数y=kx+2k+3(k≠0),不论k为何值,该函数的图象都经过点A,则点A的坐标为.14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.15.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是.16.如图,已知函数y=ax2+bx+c(a>0)的图象的对称轴经过点(2,0),且与x轴的一个交点坐标为(4,0).下列结论:①b2﹣4ac>0;②当x<2时,y随x增大而增大;③a﹣b+c<0;④抛物线过原点;⑤当0<x<4时,y<0.其中结论正确的是.(填序号)三、解答题(共7小题,计72分)17.(本题8分)先化简,再求值:÷+1,其中x为整数且满足不等式组18.(本题8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.19.(本题10分)如图,AB是半圆O的直径,点C在圆弧上,D是弧AC的中点,OD与AC相交于点E.求证:△ABC∽△COE.20.(本题10分)如图,在10×10网格中,每个小方格的边长看做单位1,每个小方格的顶点叫做格点,△ABC 的顶点都在格点上.(1)请在网格中画出△ABC的一个位似图形△A1B1C1,使两个图形以点C为位似中心,且所画图形与△ABC的位似比为2:1;(2)将△A1B1C1绕着点C1顺时针旋转90°得△A2B2C2,画出图形,并分别写出△A2B2C2三个顶点的坐标.21.(本题12分)已知关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根.(1)求m的取值范围.(2)当m为正整数时,求方程的根.22.(本题12分)货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的B处.下表记录的是货车一次加满油后油箱内剩余油量y(升)与行驶时间x(时)之间关系:(1)如果y关于x的函数是一次函数,求这个函数的解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达B处卸货后能顺利返回D处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)23.(本题12分)如图,四边形ABCD中,∠B=90°,AD∥BC,AD=AC,AB=6,BC=8.点P以每秒5个单位长度由点A沿线段AC运动;同时,线段EF以相同的速度由CD出发沿DA方向平移,与AC交于点Q,连结PE,PF.当点F与点B重合时,停止所有运动,设P运动时间为t秒.(1)求证:△APE≌△CFP.(2)当t<1时,若△PEF为直角三角形,求t的值.(3)作△PEF的外接圆⊙O.①当⊙O只经过线段AC的一个端点时,求t的值.②作点P关于EF的对称点P′,当P′落在CD上时,请直接写出线段CP′的长.参考答案第Ⅰ卷选择题(共30分)一、选择题(每小3分,共计30分。

山东省东营市2019-2020学年中考数学模拟试题(4)含解析

山东省东营市2019-2020学年中考数学模拟试题(4)含解析

山东省东营市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折2.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.3.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×1064.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)5.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定6.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.47.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A.B.C.D.8.如图,在△ABC中,EF∥BC,AE1EB2=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.139.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则BECE的值为()A.3 B3C.333+D3110.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.11.如图,一次函数y=x﹣1的图象与反比例函数2yx=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为()A.(0,1)B.(0,2)C.50,2⎛⎫⎪⎝⎭D.(0,3)12.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120°B.110°C.100°D.80°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.15.图,A ,B 是反比例函数y=kx图象上的两点,过点A 作AC ⊥y 轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,△AOD 的面积为3,则k 的值为________.16.矩形纸片ABCD ,AB=9,BC=6,在矩形边上有一点P ,且DP=1.将矩形纸片折叠,使点B 与点P 重合,折痕所在直线交矩形两边于点E ,F ,则EF 长为________.17.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________.18.点A (x 1,y 1)、B (x 1,y 1)在二次函数y=x 1﹣4x ﹣1的图象上,若当1<x 1<1,3<x 1<4时,则y 1与y 1的大小关系是y 1_____y 1.(用“>”、“<”、“=”填空)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知二次函数24y x 49=-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C e 的半径为5,P 为C e 上一动点.()1点B ,C 的坐标分别为B(______),C(______);()2是否存在点P ,使得PBC V 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; ()3连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值=______.20.(6分)在平面直角坐标系中,已知点A (2,0),点B (0,3),点O (0,0).△AOB 绕着O 顺时针旋转,得△A′OB′,点A 、B 旋转后的对应点为A′、B′,记旋转角为α. (I )如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P ,求证:AA′⊥BB′; (Ⅲ)若0°<α<360°,求(Ⅱ)中的点P 纵坐标的最小值(直接写出结果即可).21.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图. 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.22.(8分)化简:()()2a b a 2b a -+-.23.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC 为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)24.(10分)如图,直线y 1=﹣x+4,y 2=34x+b 都与双曲线y=kx 交于点A (1,m ),这两条直线分别与x轴交于B ,C 两点.求y 与x 之间的函数关系式;直接写出当x >0时,不等式34x+b >kx 的解集;若点P在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.25.(10分)解方程(1)2430x x --=;(2)()22(1)210x x ---=26.(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示: 品名猕猴桃 芒果 批发价(元/千克)2040零售价(元/千克)26 50()1他购进的猕猴桃和芒果各多少千克?()2如果猕猴桃和芒果全部卖完,他能赚多少钱?27.(12分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.(1)设该学校需要印刷艺术节的宣传资料x 份,支付甲印刷厂的费用为y 元,写出y 关于x 的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥1. 即最多打1折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 2.A 【解析】 【分析】根据一次函数y=kx+b 的图象可知k >1,b <1,再根据k ,b 的取值范围确定一次函数y=−bx+k 图象在坐标平面内的位置关系,即可判断. 【详解】解:∵一次函数y=kx+b 的图象可知k >1,b <1, ∴-b >1,∴一次函数y=−bx+k 的图象过一、二、三象限,与y 轴的正半轴相交, 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <1;函数值y 随x 的增大而增大⇔k >1;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >1,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <1,一次函数y=kx+b 图象过原点⇔b=1. 3.C 【解析】423公里=423 000米=4.23×105米.故选C.4.A【解析】【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.5.A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.6.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.7.B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k图象经过一、二、四象限,故选B.8.A【解析】【分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵AE1 EB2=,∴AE AE11==AB AE+EB1+23=.又∵EF∥BC,∴△AEF∽△ABC.∴2AEFABCS11=S39∆∆⎛⎫= ⎪⎝⎭.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S △ABC =1. 故选A . 9.C 【解析】 【分析】连接,,CD BD D 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o ,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,则ACD V ≌BFD △,根据全等三角形的性质可得:,CD FD = ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠ 即120,CDF ADB ∠=∠=o ,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x ==3,tan 30DE CE EF x ===o 即可求出BECE的值.【详解】 如图:连接,,CD BDD 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,,AC BF CAD FBD AD BD =⎧⎪∠=∠⎨⎪=⎩则ACD V ≌BFD △,,CD FD ∴= ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠即120,CDF ADB ∠=∠=o,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x == 3,tan 30DE CE EF x ===o333.3BE BF EF x x CE CE x+++=== 故选C.【点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.10.C【解析】【分析】根据全等三角形的判定定理进行判断.【详解】解:A 、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;B 、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;C 、如图1,∵∠DEC =∠B+∠BDE ,∴x°+∠FEC =x°+∠BDE ,∴∠FEC =∠BDE ,所以其对应边应该是BE 和CF ,而已知给的是BD =FC =3,所以不能判定两个小三角形全等,故本选项符合题意;D 、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.11.B【解析】【分析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由1{2y xyx=-=,解得21xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m-1)2=1+m2,∴m=2,故答案为(0,2).【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.【分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.40°【解析】连接CD,则∠ADC=∠ABC=50°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.14.20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.16.62或210.【解析】试题分析:根据P点的不同位置,此题分两种情况计算:①点P在CD上;②点P在AD上.①点P在CD上时,如图:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是邻边相等的矩形即正方形,EF过点C,∵BF=BC=6,∴由勾股定理求得EF=62P在AD上时,如图:先建立相似三角形,过E 作EQ ⊥AB 于Q ,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得2239+10,∵EF 垂直平分PB ,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP ∽△EFQ (两角对应相等,两三角形相似),∴对应线段成比例:EF EQ PB AB=,代入相应数值:69310=,∴10.综上所述:EF 长为2或10. 考点:翻折变换(折叠问题).17.2k <且1k ≠【解析】【分析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.【详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k <2且k≠1.故答案为k <2且k≠1.【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x 1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,∵1<x 1<1,3<x 1<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离,∴y 1<y 1.故答案为<.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)B (1,0),C (0,﹣4);(2)点P 的坐标为:(﹣1,﹣2)或(115,225-)或(5﹣4﹣4);(1【解析】 试题分析:(1)在抛物线解析式中令y=0可求得B 点坐标,令x=0可求得C 点坐标;(2)①当PB 与⊙相切时,△PBC 为直角三角形,如图1,连接BC ,根据勾股定理得到BC=5,BP 2的值,过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,根据相似三角形的性质得到2222P F CP P E BP = =2,设OC=P 2E=2x ,CP 2=OE=x ,得到BE=1﹣x ,CF=2x ﹣4,于是得到FP 2,EP 2的值,求得P 2的坐标,过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2),②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP ,由OB=OA ,BE=EP ,推出OE=12AP ,可知当AP 最大时,OE 的值最大. 试题解析:(1)在2449y x =-中,令y=0,则x=±1,令x=0,则y=﹣4,∴B (1,0),C (0,﹣4); 故答案为1,0;0,﹣4;(2)存在点P ,使得△PBC 为直角三角形,分两种情况:①当PB 与⊙相切时,△PBC 为直角三角形,如图(2)a ,连接BC ,∵OB=1.OC=4,∴BC=5,∵CP 2⊥BP 2,CP 2BP 2=P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,则△CP 2F ∽△BP 2E ,四边形OCP 2B 是矩形,∴2222P F CP P E BP ==2,设OC=P 2E=2x ,CP 2=OE=x ,∴BE=1﹣x ,CF=2x ﹣4,∴324BE x CF x -=- =2,∴x=115,2x=225,∴FP 2=115,EP 2=225,∴P 2(115,﹣225),过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2);②当BC ⊥PC 时,△PBC 为直角三角形,过P 4作P 4H ⊥y 轴于H ,则△BOC ∽△CHP 4,∴44P H P C CH OB OC BC ==,∴,P 4,∴P 4﹣4); 同理P 1(﹣5,5﹣4); 综上所述:点P 的坐标为:(﹣1,﹣2)或(115,225-)或(5,﹣5﹣4)或(﹣5,5﹣4); (1)如图(1),连接AP ,∵OB=OA ,BE=EP ,∴OE=12AP ,∴当AP 最大时,OE 的值最大,∵当P在AC 的延长线上时,AP 的值最大,最大值=55+,∴OE 的最大值为552+.故答案为552+.20.(1)B'的坐标为(3,3);(1)见解析 ;(3)3﹣1.【解析】【分析】(1)设A'B'与x 轴交于点H ,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°, 由∠BOB'=α=30°推出BO ∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90︒即可;(3)作AB 的中点M (1,),连接MP ,由∠APB=90°,推出点P 的轨迹为以点M 为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM ⊥x 轴时,点P 纵坐标的最小值为3﹣1. 【详解】(Ⅰ)如图1,设A'B'与x 轴交于点H ,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO ∥A'B',∵OB'=OB=1, ∴OH=OB'=,B'H=3,∴点B'33);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P31.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.21.(1)41(2)15%(3)1 6【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%, 故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P (丙和乙)=212=16. 22.2b【解析】【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.23.客车不能通过限高杆,理由见解析【解析】【分析】根据DE ⊥BC ,DF ⊥AB ,得到∠EDF=∠ABC=14°.在Rt △EDF 中,根据cos ∠EDF=DF DE ,求出DF 的值,即可判断.【详解】∵DE ⊥BC ,DF ⊥AB ,∴∠EDF=∠ABC=14°.在Rt △EDF 中,∠DFE=90°,∵cos ∠EDF=DF DE, ∴DF=DE•cos ∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF 为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.24.(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P (﹣54,0)或(94,0). 点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.(1)12x =,22x =;(2)11x =,23x =-.【解析】【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)解:∵1a =,4b =-,3c =-,∴224(4)41(3)280b ac ∆=-=--⨯⨯-=>,∴(4)422212b x a ---±±====±⨯∴12x =,22x =(2)解:原方程化为:2(1)2(1)(1)0x x x --+-=,因式分解得:[](1)(1)2(1)0x x x ---+=,整理得:(1)(3)0x x ---=,∴10x -=或30x --=,∴11x =,23x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.【解析】【分析】 ()1设购进猕猴桃x 千克,购进芒果y 千克,由总价=单价⨯数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2根据利润=销售收入-成本,即可求出结论.【详解】()1设购进猕猴桃x 千克,购进芒果y 千克,根据题意得:5020401600x y x y +=⎧+=⎨⎩, 解得:{2030x y ==.答:购进猕猴桃20千克,购进芒果30千克. ()2262050301600420(⨯+⨯-=元).答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2根据数量关系,列式计算.27.(1)0.271000y x x +甲=(>);(2)选择乙印刷厂比较优惠.【解析】【分析】(1)根据题意直接写出两厂印刷厂的收费y 甲(元)关于印刷数量x (份)之间的函数关系式;(2)分别将两厂的印刷费用等于2000元,分别解得两厂印刷的份数即可.【详解】(1)根据题意可知:甲印刷厂的收费y 甲=0.3x×0.9+100=0.27x+100,y 关于x 的函数关系式是y 甲=0.27x+100(x >0);(2)由题意可得:该学校需要印刷艺术节的宣传资料600份,在甲印刷厂需要花费:0.27×600+100=262(元),在乙印刷厂需要花费:100+200×0.3+0.3×0.8×(600﹣200)=256(元).∵256<262,∴如果该学校需要印刷艺术节的宣传资料600份,那么应该选择乙印刷厂比较优惠.【点睛】本题考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.。

2020年山东省东营市中考数学仿真模拟试卷 参考答案

2020年山东省东营市中考数学仿真模拟试卷   参考答案

2020年山东省东营市中考数学仿真模拟试卷参考答案一.选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.解:﹣2020的倒数是,故选:D.2.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.3.解:如图,∵a∥b,∠2=45°,∴∠3=∠2=45°,∴∠1=180°﹣∠3=135°,故选:C.4.解:A、﹣(﹣x+1)=x﹣1,故此选项错误;B、||=2﹣,正确;C、﹣=3﹣,故此选项错误;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选:B.5.解:A、这12个数据的众数为14,正确;B、极差为16﹣12=4,错误;C、中位数为=14,错误;D、平均数为=,错误;故选:A.6.解:从阴影左边的四个小正方形中任选一个,就可以构成正方体的表面展开图,能构成这个正方体的表面展开图的概率是.故选:A.7.解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选:B.8.解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故选:B.9.解:蚂蚁也可以沿A﹣B﹣C的路线爬行,AB+BC=6,把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC====<6,故选:C.10.解:∵∠EAO+∠BAH=90°,∠EAO+∠AEO=90°,∴∠BAH=∠AEO,∵在△AEO和△BAH中,,∴△AEO≌△BAH(AAS),同理△BCH≌△CDF(AAS),∴AO=BG=3,AH=EO=6,CH=DF=4,BH=CF=3,∵梯形DEOF的面积=(EF+DH)•FH=80,S△AEO=S△ABH=AF•AE=9,S△BCH=S△CDF=CH•DH=6,∴图中实线所围成的图形的面积S=80﹣2×9﹣2×6=50,故选:B.二.填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果)11.解:用科学记数法表示32000为3.2×104.故答案为:3.2×104.12.解:原式=3a(a2﹣4a+4)=3a(a﹣2)2,故答案为:3a(a﹣2)213.解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.∴平均成绩一样,小明的方差小,成绩稳定,故答案为:小明.14.解:解不等式3x﹣2≥4x﹣5,得:x≤3,解不等式>﹣3,得:x<5,则不等式组的解集为x≤3,故答案为:x≤315.解:作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形AM′NB是平行四边形,∴PN∥AB,连接PM,又∵N是BC边上的中点,∴P是AC中点,∴PM∥BN,PM=BN,∴四边形PMBN是平行四边形,∵BM=BN,∴平行四边形PMBN是菱形.∴MP+NP=BM+BN=BC=1.故答案为1.16.解:如图所示,延长AB,过点C作CD垂直于AB延长线,垂足为D,由题意知∠CBD=45°,∠A=30°,AB=2km,设BD=CD=x,在Rt△ACD中,由tan A=可得=,解得x=1+,即CD=1+,则AC=2CD=2+2(km),故答案为:(2+2).17.解:连接CD,如图,∵点A的对称点是点C,∴CP=AP,∴CD即为DP+AP最短,∵四边形ABCD是菱形,顶点B(8,4),∴OA2=AB2=(8﹣AB)2+42,∴AB=OA=BC=OC=5,∴点C的坐标为(3,4),∴可得直线OB的解析式为:y=0.5x,∵点D的坐标为(0,﹣2),∴可得直线CD的解析式为:y=2x﹣2,∵点P是直线OB和直线CD的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(,),故答案为:(,).18.解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.三.解答题(本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤)19.解:(1)()﹣1+20190+﹣2cos30°=2+1+3﹣2×=2+1+3﹣=3+2;(2)÷﹣=﹣==﹣,当a=﹣5时,原式==1.20.解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.21.(1)证明:∵⊙D与AB相切于点A,∴AB⊥AD,∵AD∥BC,DE⊥BC,∴DE⊥AD,∴∠DAB=∠ADE=∠DEB=90°,∴四边形ABED为矩形.(2)解:∵四边形ABED为矩形,∴DE=AB=4,∵DC=DA,∴点C在⊙D上,∵D为圆心,DE⊥BC,∴CF=2EC,∵,设AD=3k(k>0)则BC=4k,∴BE=3k,EC=BC﹣BE=4k﹣3k=k,DC=AD=3k,由勾股定理得DE2+EC2=DC2,即42+k2=(3k)2,∴k2=2,∵k>0,∴k=,∴CF=2EC=2.22.解:(1)把点C(﹣8,2)代入y1=得:k=﹣16∴y1=﹣,当x=﹣2时,代入y1=﹣,y=8,∴A(﹣2,8)∵点B与点A关于原点O对称,∴B(2,﹣8)把B(2,﹣8),C(﹣8,2)代入y2=mx+n得:,解得:m=﹣1,n=﹣6,∴y2=﹣x﹣6,答:y1、y2的函数表达式分别为y1=﹣,y2=﹣x﹣6.(2)过A、C分别作y轴的平行线与过B作x轴的平行线相交于M、N,设A(a,),则C(4a,),B(﹣a,﹣),此时,AN=+=,BN=﹣a﹣a=﹣2a,BM=﹣4a﹣a=﹣5a,CM=+=,MN=﹣4a+a=﹣3a,∵S△ABC=S CMNA+S△ABN﹣S△BCM=16,(CM+AN)•MN+AN•BN﹣CM•BM=16,即:(CM+AN)•MN+AN•BN﹣CM•BM=32,(+)×(﹣3a)+×(﹣2a)﹣×(﹣5a)=32,解得:k=﹣,答:k的值为﹣.23.解:(1)设购买A型新能源公交车每辆需x万元,购买B型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需110万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:,因为a是整数,所以a=4,5;则共有两种购买方案:①购买A型公交车4辆,则B型公交车6辆:80×4+110×6=980万元;②购买A型公交车5辆,则B型公交车5辆:80×5+110×5=950万元;购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为950万元.24.解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC===.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴=,∴=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC=y,在Rt△PHB中,BH=x,PH=x,∵PC2=PH2+CH2,∴3y2=(x)2+(4﹣x)2,∴y=(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时PB=2+2,③如图4中,当点P在AB的延长线上时,∵△CBE与△CBP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠CBP=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCB=45°,∴BF=BC=2,CF=PF=2,∴PB=2﹣2.综上所述,满足条件的PB的值为2+2或2﹣2.25.解:(1)将A(﹣1,0),C(0,3)代入y=ax2+2x+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,有﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点B的坐标为(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点E的坐标为(1,4).设过B,C两点的直线解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入y=kx+b,得:,解得:,∴直线BC的解析式为y=﹣x+3.∵点D是直线与抛物线对称轴的交点,∴点D的坐标为(1,2),∴DE=2,∴当点P运动到点E时,△PCD的面积=×2×1=1.(3)设点M的坐标为(m,0),点N的坐标为(1,n).分三种情况考虑:①当四边形CBMN为平行四边形时,有1﹣0=m﹣3,解得:m=4,∴此时点M的坐标为(4,0);②当四边形CMNB为平行四边形时,有m﹣1=0﹣3,解得:m=﹣2,∴此时点M的坐标为(﹣2,0);③当四边形CMBN为平行四边形时,有0﹣1=m﹣3,解得:m=2,∴此时点M的坐标为(2,0).综上所述:存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形,点M的坐标为(4,0)或(﹣2,0)或(2,0).。

山东省东营市2020版数学中考一模试卷(I)卷

山东省东营市2020版数学中考一模试卷(I)卷

山东省东营市2020版数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题3分,计30分。

) (共10题;共29分)1. (3分)如果两个有理数的和为零,那么这两个有理数()A . 互为相反数B . 互为倒数C . 有一个等于零D . 无法确定2. (3分)如图,直线l1∥l2 ,直线l3与l1 , l2分别交于A,B两点,若∠1=70°,则∠2=()A . 70°B . 80°C . 110°D . 120°3. (3分)(2014·盐城) 下列运算正确的是()A . a3•a2=a5B . a6÷a2=a3C . (a3)2=a5D . (3a)3=3a34. (2分) (2016九上·海南期末) 下列手机屏幕解锁图案中不是轴对称图形的是()A .B .C .D .5. (3分) (2019九下·十堰月考) 在最近很火的节目《中国诗词大会》中,除才女武亦姝实力超群外,其他选手的实力也不容小觑.以下是随机抽取的10名挑战者答对的题目数量的统计:人数3421答对题数4578这10名挑战者答对题目数量中的中位数和众数分别是()A . 4和5B . 5和4C . 5和5D . 6和56. (3分)圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为().A . 36πB . 48πC . 72πD . 144π7. (3分)下列不等式组中,无解的是()A .B .C .D .8. (3分)(2017·岱岳模拟) 如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=()A .B .C .D .9. (3分)反比例函数y=的图像如图所示,点M是该函数图像上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为().A . -2B . 4C .D .10. (3分) (2017九上·乐清期中) 关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解是()A . x1=-6,x2=-1B . x1=0,x2=5C . x1=-3,x2=5D . x1=-6,x2=2二、填空题(共4小题,每小题3分,计12分) (共4题;共12分)11. (3分) (2019九上·苍南期中) 因式分解:2a2+4a=________ 。

2020年山东省东营市中考数学仿真模拟试卷 考试卷

2020年山东省东营市中考数学仿真模拟试卷  考试卷

2020年山东省东营市中考数学仿真模拟试卷一.选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.﹣2020的倒数是()A.2020B.﹣2020C.D.﹣2.下列图标,是轴对称图形的是()A.B.C.D.3.如图,直线a,b被直线c所截,a∥b,若∠2=45°,则∠1等于()A.125°B.130°C.135°D.145°4.下列运算正确的是()A.﹣(﹣x+1)=x+1B.||=2﹣C.=D.(a﹣b)2=a2﹣b25.某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A.众数为14B.极差为3C.中位数为13D.平均数为14 6.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是()A.B.C.D.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB =4,则AE的长为()A.B.2C.3D.48.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.1B.2C.3D.69.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.10.如图,点A,C,D,E在Rt△MON的边上,∠MON=90°,AE⊥AB且AE=AB,BC ⊥CD,BH⊥ON于点H,DF⊥ON于点F,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为()A.30B.50C.66D.80二.填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果)11.四川航空一航班在近万米高空遭遇驾驶舱挡风玻璃破裂脱落,随后安全备降成都双流国际机场.航班事发时距离地面32000英尺,请用科学记数法表示32000为.12.把多项式3a3﹣12a2+12a分解因式的结果是.13.为迎接宝应县中小学生诗词大赛,某校举办了五次选拔赛,在这五次选拔赛中,小明五次成绩的平均数是90,方差是2,小强五次成绩的平均数也是90,方差是14.8,应推荐参赛.14.不等式组的解集是.15.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M、N分别是AB、BC 边上的中点,则MP+NP的最小值是.16.如图,已知点C处有一个高空探测气球,从点C处测得水平地面上A,B两点的俯角分别为30°和45°.若AB=2km,则A,C两点之间的距离为km.17.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴上,顶点B的坐标为(8,4),点P是对角线OB上一个动点,点D的坐标为(0,﹣2),当DP与AP之和最小时,点P的坐标为.18.将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2019的横坐标是.三.解答题(共7小题)19.(1)计算:()﹣1+20190+﹣2cos30°(2)先化简,再求值,÷﹣,其中a=﹣5.20.2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=,b=,c=,d=;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4,=,求CF的长.22.如图在平面直角坐标系xOy中位于第二象限的点A在反比例函数y1=(x<0)的图象上,点B与点A关于原点O对称,直线y2=mx+n经过点B,且与反比例函数y1=的图象交于点C.(1)当点A的横坐标是﹣2,点C坐标是(﹣8,2)时,分别求出y1、y2的函数表达式;(2)若点C的横坐标是点A的横坐标的4倍,且△ABC的面积是16,求k的值.23.随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需300万元;若购买A型公交车2辆,B型公交车1辆,共需270万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?24.已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.25.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交A(﹣1,0),B两点,与y 轴交于点C(0,3),抛物线的顶点为点E.(1)求抛物线的解析式;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;(3)点N在抛物线对称轴上,点M在x轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.。

东营市2020年中考数学模拟试卷(II)卷

东营市2020年中考数学模拟试卷(II)卷

东营市2020年中考数学模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若a的相反数是3,则a的倒数是()A . ﹣B . ﹣3C .D . 32. (2分)下面运算正确的是()A . 7a2b﹣5a2b=2B . x8÷x4=x2C . (a﹣b)2=a2﹣b2D . (2x2)3=8x63. (2分)英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A .B .C .D .4. (2分)如果一次函数y=(a-1)x+b的图象如图所示,那么a的取值范围是()A . a>1B . a<1C . a>0D . a<05. (2分) (2020八下·长沙期中) 对一组数据:2,2,1,3,3 分析错误的是()A . 中位数是1B . 众数是3和2C . 平均数是2.2D . 方差是0.566. (2分)观察下列4个命题:其中真命题是()(1 )三角形的外角和是180°;(2 )三角形的三个内角中至少有两个锐角;(3 )如果x2y<0,那么y<0;(4 )直线a、b、c,如果a⊥b、b⊥c,那么a⊥c.A . (1)(2)B . (2)(3)C . (2)(4)D . (3)(4)7. (2分)多边形剪去一个角后,多边形的外角和将()A . 减少180°B . 不变C . 增大180°D . 以上都有可能8. (2分)由5个大小相同的正方体组成的几何体如图所示,其主视图是()A .B .C .D .9. (2分) (2018九上·苏州月考) 如图,已知⊙ 为正三角形的内切圆,为切点,四边形是⊙ 的内接正方形,,则正三角形的边长为()A . 4B .C .D .10. (2分)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()A . 30海里B . 30海里C . 60海里D . 30海里二、填空题 (共8题;共8分)11. (1分)若分式的值为零,则 =________。

山东省东营市2020年九年级中考模拟考试数学试卷(含答案)

山东省东营市2020年九年级中考模拟考试数学试卷(含答案)

山东省东营市2020年中考数学模拟卷一.选择题(每题3分,满分30分)1.﹣0.25的倒数是()A.0.25 B.﹣0.25 C.4 D.﹣42.截至2020年2月14日,各级财政已安排疫情防控补助资金901.5亿元,其中中央财政安排252.9亿元,为疫情防控提供了有力保障.其中数据252.9亿用科学记数法可表示为()A.252.9×108B.2.529×109C.2.529×1010D.0.2529×10103.某居民小区开展节约用电活动.该小区100户家庭4月份节电情况如图所示.那么四月份这100户家庭的节约电量,单位千瓦时的平均数是()节电量(千瓦时)20 30 40 50 户数(户)20 30 30 20 A.35 B.26 C.25 D.204.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.5.如图,右面三幅图分别是从三个不同方向看这个棱柱得到的,从正面看,从左面看与从上面看,依次得到的图形序号分别是()A.(1),(2),(3)B.(2),(3),(1)C.(1),(3),(2)D.(3),(2),(1)6.如图,矩形纸片ABCD中,点E、F分别在线段BC、AB上,将△BEF沿EF翻折,点B 落在AD上的点P处,且AB=4,BE=5,则AP的长为()A.1 B.2 C.3 D.47.如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A.25°B.50°C.65°D.70°8.如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角9.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°10.已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点B的坐标为(1,0)其图象如图所示,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c =0的两个根是﹣3和1;④当y>0时,﹣3<x<1;⑤当x>0时,y随x的增大而增大:⑥若点E(﹣4,y1),F(﹣2,y2),M(3,y3)是函数图象上的三点,则y1>y2>y3,其中正确的有()个A.5 B.4 C.3 D.2二.填空题(满分24分,每小题3分)11.自从“新冠病毒”爆发以来,胖胖同学每周且每天3次自测体温,结果统计如下表:则这些体温的众数是℃.体温(℃)36.1 36.2 36.3 36.4 36.5 36.6 36.7 次数 2 3 4 6 3 1 212.分解因式:9m2﹣n2=.13.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数为3的倍数的概率是.14.若关于x的方程+=2的解为正数,则m的取值范围是.15.如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE=45°时,DF的长为.16.如图,在平面直角坐标系中,矩形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,AC长为,若将边AC平移至A'C'处,此时A'坐标为(﹣4,2),分别连接A'B,C'O,反比例函数y=的图象与四边形A'BOC'对角线A'O交于D点,连接BD.则当BD 取得最小值时,k的值是.17.如图,在平面直角坐标系中,Rt△ABO绕原点O顺时针旋转90°,得到△CDO,若AB =2,∠AOB=30°,则旋转后点C的坐标为.18.如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x 轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.三.解答题19.(8分)(1)计算:﹣(﹣1)2020+(π﹣2019)0﹣(2)解不等式组:,并求整数解.20.(8分)七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.21.(8分)某商场要经营一种文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,每件销售价格每上涨1元,每天的销售量就减少10件.(1)当每天的利润为1440元时,为了让利给顾客,每件文具的销售价格应定为多少元?(2)设每天的销售利润为W元,每件文具的销售价格为x元,如果要求每天的销售量不少于10件,且每件文具的利润至少为25元.①求W与x的函数关系式,并写出自变量的取值范围;②问当销售价格定为多少时,该文具每天的销售利润最大,最大利润为多少?22.(8分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP的长.23.(8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?24.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.25.如图,在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c的图象经过点A(﹣2,0),C(0,﹣6),其对称轴为直线x=2.(1)求该二次函数的解析式;(2)若直线y=﹣x+m将△AOC的面积分成相等的两部分,求m的值;(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x=2上位于x轴下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x=2右侧.若以点E为直角顶点的△BED与△AOC相似,求点E的坐标.参考答案1.D.2.C.3.A.4.B.5.B.6.B.7.B.8.C.9.C.10.C.11.36.4.12.(3m+n)(3m﹣n).13..14.m<3且m≠,15.4或10.16.﹣.17.(2,2).18..19.解:(1)原式=﹣1+1﹣×+2=;(2),由①得x≥﹣4;由②得x≤;∴﹣4≤x≤3.∴原不等式组的整数解为:﹣4,±3,±2,±1,0.20.解:(1)80÷40%=200人,答:一共有200名学生参与了本次问卷调查;(2)200×30%=60人,补全条形统计图如图所示:360°×=36°,(3)400×30%=120人,答:该年级有400名学生喜欢“科普常识”的学生有120人.21.解:(1)设每件文具的销售价格应定为x元,根据题意,得:(x﹣20)[250﹣10(x﹣25)]=1440,解得:x1=44,x2=26,∵要让利给顾客,∴x=26,答:每件文具的销售价格应定为26元;(2)由题意得:W=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000∵,∴45≤x≤49,∴W=﹣10(x﹣35)2+2250 (45≤x≤49);②W=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∵﹣10<0,抛物线的对称轴为直线x=35∴抛物线开口向下,在对称轴的右侧,W随x的增大而减小∴当x=45时,W取最大值为1250.答:当销售价格定为45元时,该文具每天的销售利润最大,最大利润为1250元.22.解:∠CPD是直径AB的“回旋角”,理由:∵∠CPD=∠BPC=60°,∴∠APD=180°﹣∠CPD﹣∠BPC=180°﹣60°﹣60°=60°,∴∠BPC=∠APD,∴∠CPD是直径AB的“回旋角”;(2)如图1,∵AB=26,∴OC=OD=OA=13,设∠COD=n°,∵的长为π,∴,∴n=45,∴∠COD=45°,作CE⊥AB交⊙O于E,连接PE,∴∠BPC=∠OPE,∵∠CPD为直径AB的“回旋角”,∴∠APD=∠BPC,∴∠OPE=∠APD,∵∠APD+∠CPD+∠BPC=180°,∴∠OPE+∠CPD+∠BPC=180°,∴点D,P,E三点共线,∴∠CED=∠COD=22.5°,∴∠OPE=90°﹣22.5°=67.5°,∴∠APD=∠BPC=67.5°,∴∠CPD=45°,即:“回旋角”∠CPD的度数为45°,(3)①当点P在半径OA上时,如图2,过点C作CF⊥AB交⊙O于F,连接PF,∴PF=PC,同(2)的方法得,点D,P,F在同一条直线上,∵直径AB的“回旋角”为120°,∴∠APD=∠BPC=30°,∴∠CPF=60°,∴△PCF是等边三角形,∴∠CFD=60°,连接OC,OD,∴∠COD=120°,过点O作OG⊥CD于G,∴CD=2DG,∠DOG=∠COD=60°,∴DG=OD sin∠DOG=13×sin60°=,∴CD=13,∵△PCD的周长为24+13,∴PD+PC=24,∵PC=PF,∴PD+PF=DF=24,过O作OH⊥DF于H,∴DH=DF=12,在Rt△OHD中,OH==5,在Rt△OHP中,∠OPH=30°,∴OP=10,∴AP=OA﹣OP=3;②当点P在半径OB上时,同①的方法得,BP=3,∴AP=AB﹣BP=23,即:满足条件的AP的长为3或23.23.解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.24.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CPM===.25.解:(1)由已知得:,解得:,故抛物线的表达式为:y=x2﹣2x﹣6,同理可得直线AC的表达式为:y=﹣3x﹣6;(2)联立,解得:x=﹣,直线y=﹣x+m与y轴的交点为(0,m),S==6,△AOC由题意得:×=3,解得:m=﹣2或﹣10(舍去﹣10),∴m=﹣2;(3)∵OA=2,OC=6,∴,①当△DEB∽△AOC时,则,如图1,过点E作EF⊥直线x=2,垂足为F,过点B作BG⊥EF,垂足为G,则Rt△BEG∽Rt△EDF,则,则BG=3EF,设点E(h,k),则BG=﹣k,FE=h﹣2,则﹣k=3(h﹣2),即k=6﹣3h,∵点E在二次函数上,故:h2﹣2h﹣6=6﹣3h,解得:h=4或﹣6(舍去﹣6),则点E(4,﹣6);②当△BED∽△AOC时,,过点E作ME⊥直线x=2,垂足为M,过点B作BN⊥ME,垂足为N,则Rt△BEN∽Rt△EDM,则,则NB=EM,设点E(p,q),则BN=﹣q,EM=p﹣2,则﹣q=(p﹣2),解得:p=或(舍去);故点E坐标为(4,﹣6)或(,).。

2020届东营市东营区胜利一中中考数学模拟试卷(5月份)(含解析)

2020届东营市东营区胜利一中中考数学模拟试卷(5月份)(含解析)

2020届东营市东营区胜利一中中考数学模拟试卷(5月份)一、选择题(本大题共10小题,共30.0分)1. 丁丁做了以下4道计算题:①(−1)2004=2004;②0−(−1)=1;③−12+13=−16;④12+(−12)=−1.请你帮他检查一下,他一共做对了( ) A. 1题 B. 2题 C. 3题 D. 4题2. 下列结论中,正确的是( )A. −7<−8B. 85.5°=85°30′C. −|−9|=9D. 2a +a 2=3a 23. 如图是一个三视图,则它所对应的几何体是( )A. B. C. D.4. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=22°,那么∠2的度数是( )A. 22°B. 78°C. 68°D. 70°5. 为培养学生综合素质能力、拓展视野,长铁一中初一年级决定带领同学外出参加游学活动,并对外出学生进行分组管理,若每组分7人,则剩余3人;若每组分8人,则少5人,设在此次外出游学中,长铁一中学生总人数为x 和应分成的组数为y ,依题意得方程组为( )A. {7y =x +38y +5=xB. {7x +3=y 8x −5=yC. {7y =x −38y =x +5D. {7y =x +38y =x +5 6. 若整数a 关于x 的不等式组{x+a2+3−x ≤1x −2a <0有解,且使关于x 的分式方程x−3x −a−23−x =1有整数解,则符合条件的所有整数a 的和是( )A. 28B. 30C. 32D. 347.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.8.标枪飞行的路线是一条抛物线,不考虑空气阻力,标枪距离地面的高度ℎ(单位:m)与标枪被掷出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①标枪距离地面的最大高度为20m;②标枪飞行路线的对称轴是直线t=9;③标2枪被掷出9s时落地;④标枪被掷出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A. 1B. 2C. 3D. 49.在平面直角坐标系中,四边形ABCD是菱形,其中点B的坐标是(0,2),点D的坐标是(4√3,2),点M和点N是两个动点,其中点M从点B出发沿BA以每秒1个单位的速度做匀速运动,到点A后停止,同时点N从B点出发沿折线BC→CD以每秒2个单位的速度做匀速运动,如果其中一点停止运动,则另一点也停止运动.设M、N两点的运动时间为x,△BMN的面积是y,下列图象中能表示y与x的函数关系的图象大致是()A. B.C. D.10.如图,在正方形ABCD中,E是AB上一点,BE=4,AE=3BE,P是AC上一动点,则PB+PE的最小值是()A. 12+8√2B. 20C. 12+4√10D. 16√2二、填空题(本大题共8小题,共28.0分)11.港珠澳大桥全长55000米,是世界上最长的跨海大桥,它极大地缩短了香港、珠海和澳门三地间的时空距离,被英国《卫报》誉为“新世界七大奇迹”.港珠澳大桥的长度用科学记数法表示为______米.12.分解因式:ax4−ay4=______.的值13.已知关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,那么代数式ab2(a−2)2+b2−4为______.14.如图,A点的坐标为(−1,5),B点的坐标为(3,3),C点的坐标为(5,3),D点的坐标为(3,−1).小明发现线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是___________.15.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是______.x交于点A,并与y轴交于点B(0,−4),△16.已知,一次函数y=kx+b的图象与正比例函数y=13AOB的面积为6,则kb=______ .17.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,…,若∠A=70°,则∠A n−1A n B n−1的度数为______.(用含n的代数式表示)18.已知平面上点O(0,0),A(4,2),B(6,0),直线y=mx−4m+2将△OAB分成面积相等的两部分,则m的值为______ .三、计算题(本大题共1小题,共7.0分)19.(1)计算:−14+|−3|−(−12)−3+(2−√3)0;(2)先化简,再求值:b2a2−ab ÷(a2−b2a2−2ab+b2+ab−a),其中a=−2,b=13.四、解答题(本大题共6小题,共55.0分)20.某校随机抽取部分学生,对“学习习惯”进行问卷调查,设计的问题:对自己做错的题目进行整理,分析,改正;答案选项为:A.很少,B.有时,C.常常,D.总是,将调查结果的数据进行了整理,绘制成部分统计图.请根据图中信息,解答下列问题:(1)填空:a=______ %,b=______ %,“常常”对应圆心角度数为______ ;(2)请你直接补全条形统计图;(3)若该校有3600名学生,请你估计其中“常常”对错题进行整理,分析,改正的学生有多少名?21.成都市某学校计划建一个长方形种植园,如图,种植园的一边靠墙,另三边用周长为30m的篱笆围成,已知墙长为18m,设这个种植园垂直于墙的一边长为x(m),种植园面积为y(m2).(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)根据实际需要,要求这个种植园的面积为100m2,求x的值;(3)当x为多少m时,这个种植园的面积最大,并求出最大值.22.如图,在△ABC中,D为AB边上的一点,∠A=36°,AC=BC,AC2=AD⋅AB.(1)求证:△ADC和△BDC都是等腰三角形.(2)若AB=1,求AC的值(精确到0.001).23.如图,工件上有一个V形槽,测得它的上口宽为30mm,深为12mm.求V形角∠ACB的大小(可以使用计算器,精确到0.1°).24.如图,平面直角坐标系中,点A(a,0),B(b,2),且a,b满足|a−1|+(3a+4−b)2=0,过B作BC⊥x轴于点C.(1)求点A、点B的坐标.(2)若点D在线段AC上,且OD=2OA,过点D作DM⊥AB于E,交y轴正半轴于点M,求点M的坐标.(3)在(2)的条件下,在平面内是否存在点N,使△DMN是以MD为直角边的等腰直角三角形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.25. 如图,抛物线y =ax 2−2ax +b 经过点C(0,−32),且与x 轴交于点A 、点B ,若tan∠ACO =23.(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 是线段OB 上一动点(不与点B 重合),∠MPQ =45°,射线PQ 与线段BM 交于点Q ,当△MPQ 为等腰三角形时,求点P 的坐标.【答案与解析】1.答案:B解析:解:①(−1)2004=1,故此选项错误;②0−(−1)=1,此选项正确;③−12+13=−16,此选项正确;④12+(−12)=0,故此选项错误.故正确的有2个.故选:B.分别利用乘方以及有理数加减运算法则判断得出答案即可.此题主要考查了有理数的加减运算以及乘方运算,熟练掌握运算法则是解题关键.2.答案:B解析:解:∵|−7|=7,|−8|=8,7<8,∴−7>−8,∴选项A不正确;∵1°=60′,∴0.5°=30′,∴85.5°=85°30′,∴选项B正确;∵−|−9|=−9,∴选项C不正确;∵2a+a2≠3a2,∴选项D不正确.故选:B.A:两个负数,绝对值大的其值反而小,据此判断即可.B :根据1°=60′,可得0.5°=30′,所以85.5°=85°30′,据此判断即可.C :负有理数的绝对值是它的相反数,据此判断即可.D :根据合并同类项的方法判断即可.(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数−a ;③当a 是零时,a 的绝对值是零.(3)此题还考查了度分秒的换算,以及合并同类项的方法,要熟练掌握.3.答案:B解析:试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. ∵俯视图为长方形中间一个直径与长方形的宽相等的圆,∴可以得到该几何体为选项B 的图形.故选B .4.答案:C解析:解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°−∠1=90°−22°=68°,∵a//b ,∴∠2=∠3=68°.故选C .由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.5.答案:C解析:解:若设此次外出总人数为x ,应分成的组数为y ,由题意,可列方程组{7y =x −38y =x +5, 故选C .此题中的等量关系有:①若每组分7人,则剩余3人;②若每组8人,则少5人.据此可列方程组. 本题主要考查由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.6.答案:A解析:本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.先根据不等式组有解得a 的取值范围,利用分式方程有整数解,对比a 的取值,找出符合条件的a 值,并相加.解:解不等式组得{x ≥a +4x <2a, ∵此不等式组有解,∴2a >a +4,解得a >4, 解分式方程x−3x −a−23−x =1得x =95−a , ∵分式方程有整数解,∴5−a =±1或−3或±9,解得:a =4或6或8或−4或14,∴符合这两个条件的a 的值的和为6+8+14=28,故选:A .7.答案:B解析:本题考查了求简单随机事件的概率.从1,2,…,9,10这十个数中随机取出一个数,共有十种等可能结果,而取出的数是3的倍数的有三种,分别为3,6,9,故P =,故选B . 8.答案:B解析:本题考查二次函数的应用.求出抛物线的解析式是解题的关键,属于中考常考题型.由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为ℎ=at(t −9),把(1,8)代入可得a=−1,可得ℎ=−t2+9t=−(t−4.5)2+20.25,由此即可一一判断.解:由题意,抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1,∴ℎ=−t2+9t=−(t−4.5)2+20.25,∴标枪距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,ℎ=0,∴标枪被掷出9s时落地,故③正确,∵t=1.5时,ℎ=11.25,故④错误.∴正确的有②③,故选:B.9.答案:D解析:根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案.本题主要考查了动点问题的函数图象问题,根据几何知识求出函数解析式是解题的关键,要注意认真总结.解:当0<x≤2时,此时M在AB上,N在BC上;如图1:连接BD,AC,交于点O,连接NM,过点C作CP⊥AB垂足为点P,∴∠CPB=90°,∵四边形ABCD是菱形,其中点B的坐标是(0,2),点D的坐标是(4√3,2),∴BO=2√3,CO=2,∴BC=AB=√BO2+CO2=4,∵AC=4,∴△ABC是等边三角形,∴∠ABC=60°,∴CP=BC⋅sin60°=4×√32=2√3,BP=BC⋅cos60°=2,∵BN=2x,BM=x,∴BMBP =x2,BNBC=2x4=x2,∴BMBP =BNBC,又∵∠NBM=∠CBP,∴△NBM∽△CBP,∴∠NMB=∠CPB=90°,BM BP =BNBC=MNCP=x2,∴MN=12CP=x2×2√3=√3x,∴y=12BM×MN=12×x×√3x=√32x²;当2<x≤4时,此时M在AB上,N在CD上;如图2:作NE⊥AB,垂足为E,∵四边形ABCD是菱形,∴AB//CD,∴NE=CP=2√3,BM=x,∴y=12⋅x⋅2√3=√3x=√3x,∴y={√32x2(0<x≤2)√3x(2<x≤4).故选D.10.答案:B解析:解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=4,AE=3BE,∴AE=12,AB=16,∴DE=√122+162=20,故PB+PE的最小值是20.故选:B.由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.本题考查了轴对称−最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.11.答案:5.5×104解析:解:将55000用科学记数法表示为5.5×104.故答案为:5.5×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.答案:a(x2+y2)(x+y)(x−y)解析:解:原式=a(x4−y4)=a(x2+y2)(x2−y2)=a(x2+y2)(x+y)(x−y).故答案为:a(x2+y2)(x+y)(x−y).首先提公因式a,再利用平方差进行二次分解即可.此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.答案:4解析:解:∵关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,∴a≠0且△=0,即b2−4a=0,即b2=4a,∴原式=ab2a2−4a+4+b2−4=a×4aa2=4.故答案为4.根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到a≠0且△=0,即b2−4a=0,即b2=4a,再把原式变形为原式=ab2a2−4a+4+b2−4,然后把b2=4a计算即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.答案:(1,1)或(4,4)解析:解:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示,∵A点的坐标为(−1,5),B点的坐标为(3,3),∴E点的坐标为(1,1);②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示,∵A点的坐标为(−1,5),B点的坐标为(3,3),∴M点的坐标为(4,4).综上所述:这个旋转中心的坐标为(1,1)或(4,4).故答案为:(1,1)或(4,4).分点A的对应点为C或D两种情况考虑:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心.此题得解.本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.15.答案:58解析:列表将所有等可能的结果列举出来,然后求得两次抽出的卡片所标数字不同的情况,再利用概率公式求解即可.考查了列表与树状图的知识,用到的知识点为:概率=所求情况数与总情况数之比.解:列表得:∵共有16种等可能的结果,两次抽出的卡片所标数字不同的有10种,∴两次抽出的卡片所标数字不同的概率是1016=58.故答案为:58.16.答案:4或−203解析:解:把(0,−4)代入y=kx+b,得到b=−4;则OB=4,设A的横坐标是m,则根据△AOB的面积为6,得到12×4×|m|=6,解得m=±3.把x=±3代入正比例函数y=13x,解得y=±1,则A的坐标是(3,1)或(−3,−1).当A是(3,1)时,代入y=kx−4,得到k=53.则kb=−53×4=−203;当A是(−3,−1)时,代入y=kx−4,得到k=−1,则kb=(−1)×(−4)=4.故答案为4或−203.一次函数经过点(0,−4),代入即可求得b的值,即已知△AOB中,OB的值,根据△AOB的面积为6,即可求得k的值,从而求解.本题主要考查了待定系数法求函数解析式,把三角形面积以及线段的长的问题转化为点的坐标的问题.17.答案:70°2n−1解析:解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1=∠BA1A2=35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=12×17.5°=35°4,∴∠A n−1A n B n−1=70°2n−1.故答案为:70°2n−1.根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n−1A n B n−1的度数.本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.18.答案:2解析:解:设点C为线段OB的中点,则点C的坐标为(3,0),如图所示.∵y=mx−4m+2=(x−4)m+2,∴当x=4时,y=(4−4)m+2=2,∴直线y=mx−4m+2过三角形的顶点A(4,2).∵直线y=mx−4m+2将△OAB分成面积相等的的两部分,∴直线y=mx−4m+2过点C(3,0),∴0=3m −4m +2,∴m =2.故答案为2.设点C 为线段OB 的中点,则点C 的坐标为(3,0),利用一次函数图象上点的坐标特征可得出直线y =mx −4m +2过三角形的顶点A(4,2),结合直线y =mx −4m +2将△OAB 分成面积相等的的两部分,可得出直线y =mx −4m +2过点C(3,0),再利用一次函数图象上点的坐标特征可求出m 的值. 本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,找出关于m 的一元一次方程是解题的关键.19.答案:解:(1)−14+|−3|−(−12)−3+(2−√3)0=−1+3−(−8)+1=−1+3+8+1=11;(2)b 2a 2−ab ÷(a 2−b 2a 2−2ab +b 2+a b −a) =b 2a(a −b)÷[(a +b)(a −b)(a −b)2−a a −b] =b 2a(a −b)÷(a +b a −b −a a −b) =b 2÷a +b −a =b 2a(a −b)⋅a −b b=b a, 当a =−2,b =13时,原式=13−2=−16.解析:(1)根据有理数的乘方、绝对值和负整数指数幂、零指数幂可以解答本题;(2)根据分式的加法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.本题考查分式的化简求值、绝对值、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.20.答案:12 36 108°解析:解:(1)调查总人数:44÷22%=200(人),a=24×100%=12%,200×100%=36%,b=72200“常常”对应圆心角度数为:360°×30%=108°,故答案为:12;36;108°;(2)“常常”所对的人数:200×30%=60(人),如图所示:;(3)3600×30%=1080(人),答:“常常”对错题进行整理,分析,改正的学生有1080名.(1)首先计算出抽查的学生总数,然后再计算a、b的值即可;(2)计算出“常常”所对的人数,然后再补图即可;(3)利用样本估计总体的方法计算即可.此题主要考查了条形统计图,关键是读懂统计图,正确从统计图中得到必要的信息是解决问题的关键.21.答案:解:(1)根据题意得:y=(30−2x)x=−2x2+30x,(2)由题意得:−2x2+30x=100,解得:x1=5,x2=10,∵30−2x≤18,∴x≥6,∴x=10,(3)∵y=−2x2+30x=−2(x−7.5)2+112.5,∴当x=7.5时,这个种植园的面积的最大,最大面积为112.5m2.解析:(1)根据题意即可求得y与x的函数关系式为y=(30−2x)x;(2)根据“种植园的面积为100m2”列出一元二次方程,解之可得;(3)根据二次函数的最值问题,即可求得这个种植园的面积最大值.此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.22.答案:(1)证明:∵AC2=AD⋅AB,∴ACAD =ABAC,且∠CAD=∠BAC,∴△ACD∽△ABC,∴∠ACD=∠B,又∵AC=BC,∴∠A=∠B=36°,∴∠A=∠ACD=36°,∴AD=CD,即△ADC为等腰三角形,∴∠CDB=2∠A=72°,且∠B=36°,∴∠BCD=∠CDB=72°,∴BC=BD,∴△BDC为等腰三角形;(2)解:如图,过C作CE⊥AB于点E,∵AC=BC,∴AE=12AB=12,在Rt△ACE中,cos∠A=AEAC,∴12AC=cos36°,∴AC=12cos36°≈120.8090=0.618.∴AC≈0.618.解析:(1)由条件可证明△ACD∽△ABC,可得∠ACD=∠B=36°,可求得DC=DA,且∠CDB=∠DCB=72°,可得BC=BD,可证得结论;(2)过C作AE⊥AB,利用等腰三角形的性质可知AE=12,在Rt△ACE中利用∠A的余弦值可求得AC.本题主要考查相似三角形的判定和性质及等腰三角形的判定和性质,掌握相似三角形的对应角相等和等角对等边是解题的关键.23.答案:解:如图,连接AB,作CD⊥AB于D.∵CA=CB,CD⊥AB,∴AD=DB=12AB=15mm,∠ACD=∠DCB,∵CD=12mm,∵tan∠ACD=ADCD =1512=1.25,∴∠ACD≈51.33°,∴∠ACB=2∠ACD≈102.7°.解析:如图,连接AB,作CD⊥AB于D.利用等腰三角形的性质求出∠ACD即可解决问题.本题考查解直角三角形的应用,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.答案:解:(1)∵|a−1|+(3a+4−b)2=0,又∵|a−1|≥0,(3a+4−b)2≥0,∴{a−1=03a+4−b=0,∴{a=1b=7,∴A(1,0),B(7,2).(2)∵MD⊥AB,BC⊥AC,∴∠MOD=∠AED=∠ACB=90°,∴∠OMD+∠ODM=90°,∠ODM+∠CAB=90°,∴∠OMD=∠CAB,∵A(1,0),B(0,7),∴OA=1,OC=7,AC=6,BC=2,∵OD=2OA,∴OD=BC=2,∴△OMD≌△ACB(AAS),∴OM=AC=6,∴M(0,6).(3)当∠DMN=90°,DM=DN时,可得N1(6,8),N2(−6,4).当∠MDN=90°.MD=MN时,可得N3(−4,−2),N4(8,2).综上所述,满足条件的点N的坐标为(6,8)或(−6,4)或(−4,−2)或(8,2).解析:【试题解析】本题属于三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.(1)利用非负数的性质求出a,b即可解决问题.(2)证明△OMD≌△ACB(AAS),可得OM=AC=6解决问题.(3)分两种情形利用正方形的性质以及全等三角形的性质解决问题即可.),25.答案:解:(1)∵抛物线y=ax2−2ax+b经过点C(0,−32∴b =−32, ∴OC =32, ∵tan∠ACO =23, ∴OA =1,∴点A 的坐标是:(−1,0),把(−1,0)代入y =ax 2−2ax −32得;a =12,∴此抛物线的解析式为:y =12x 2−x −32,(2)①过点M 作MP ⊥AB ,垂足为点P ,过点P 作PQ ⊥MB ,垂足为点Q ,∵点M 的坐标为:(1,−2),点B 的坐标为:(3,0),∴PB =PM =2,∴∠PMQ =45°,∴∠MPQ =45°,∴PQ =MQ ,∴点P 的坐标为(1,0);②当∠MPQ =45°,PM =PQ 时,设点P 的坐标为(m,0),则BP =3−m ,∵∠M =∠M ,∠MPQ =∠MBP ,∴△MPQ∽△MBP ,∴MPMB =PQBP ,∵PM =PQ ,∴MB =BP ,∵MB =√22+22=2√2,∴2√2=3−m ,∴m =3−2√2,∴点P 的坐标为(3−2√2,0);③当∠MPQ =45°,PM =QM 时,点P 与点A 重合,(当PM =QM 时,∠MPQ =∠MQP =45°,所以∠M =90°,又因为∠B =45°,所以△MBP 是等腰直角三角形,所以,点M 在线段BP 的垂直平分线上.又点M是抛物线的顶点,所以,点M在BA的垂直平分线上,所以,点P与点A重合)∵点P是线段OB上一动点,∴不合题意,舍去.综上所述:点P(1,0),(3−2√2,0).解析:(1)根据抛物线y=ax2−2ax+b经过点C(0,−32),求出b=−32,再根据tan∠ACO=23,求出点A的坐标,再代入y=ax2−2ax−32即可得出此抛物线的解析式;(2)①过点M作MP⊥AB,垂足为点P,过点P作PQ⊥MB,垂足为点Q,先求出PB=PM=2,再根据∠PMQ=45°,得出∠MPQ= 45°,再求出点P的坐标即可;②当∠MPQ=45°,PM=PQ时,设点P的坐标为(m,0),则BP=3−m,根据△MPQ∽△MBP,得出MB=BP,2√2=3−m,求出m的值即可得出点P的坐标,再根据点P是线段OB上一动点,得出不合题意,舍去;③当∠MPQ=45°,PM=QM时,点P与点A重合,得出不合题意,舍去.此题考查了二次函数的综合,用到的知识点是二次函数的图象与性质,关键是根据题意画出所有图形,注意把不合题意的结果舍去.。

2020年山东省东营市中考数学全真模拟试卷1解析版

2020年山东省东营市中考数学全真模拟试卷1解析版

2020年山东省东营市中考数学全真模拟试卷1解析版一、选择题(每小题3分,共30分)1.的倒数的相反数为()A.﹣3B.3C.D.2.下列运算错误的是()A.a+2a=3a B.(a2)3=a6C.a2•a3=a5D.a6÷a3=a23.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°4.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是5.不等式组的解集,在数轴上表示正确的是()A.B.C.D.6.用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是()cm.A.30B.50C.60D.807.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 8.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)9.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.810.如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆⊙O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(共8小题,每小题3分,满分24分)11.我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口数为人.12.分解因式:2a2﹣8b2=.13.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是.14.已知是方程组的解,则a2﹣b2=.15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y 轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(a,b),则a与b的数量关系为.16.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是.17.如图,在直升机的镜头下,观测牡丹园A处的俯角为30°,B处的俯角为45°,如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为米.(结果保留根号)18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x 轴上,点O,B1,B2,B3,…都在直线1上,则点A2019的坐标是.三、解答题:(本大意共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤)19.(11分)(1)计算:(﹣1)2019+(sin30°)﹣1+()0﹣|3﹣|+82019×(﹣0.125)2019(2)解方程:+1=20.(8分)为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有人,将条形图补充完整;(2)扇形图中m=,n=;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.21.(8分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,∠ABC的平分线BF交AD于点F,交BC于点D.(1)求证:BE=EF;(2)若DE=4,DF=3,求AF的长.22.(8分)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.23.(9分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?24.(10分)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据,易证△AFG≌,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF =45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.25.(12分)已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2019年山东省东营市广饶县中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:根据相反数和倒数的定义得:﹣的倒数为﹣3,﹣3的相反数为3.故选:B.2.【解答】解:∵a+2a=3a,∴选项A不符合题意;∵(a2)3=a6,∴选项B不符合题意;∵a2•a3=a5,∴选项C不符合题意;∵a6÷a3=a3,∴选项D符合题意.故选:D.3.【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选:B.4.【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为吨2.故选:C.5.【解答】解:由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选:A.6.【解答】解:设这个扇形铁皮的半径为R,底面圆的半径为r,根据题意得2πr=,即r=R,因为r2+402=R2,所以(R)2+402=R2,解得R=50,即这个扇形铁皮的半径为50cm.故选:B.7.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.8.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.9.【解答】解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.10.【解答】解:①∵四边形ABCD是菱形,∴AB=BC=DC=AD,又∵AB=BD,∴△ABD和△BCD是等边三角形,∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°,又∵B、C、D、G四个点在同一个圆上,∴∠DCH=∠DBF,∠GDH=∠BCH,∴∠ADE=∠ADB﹣∠GDH=60°﹣∠EDB,∠DCH=∠BCD﹣∠BCH=60°﹣∠BCH,∴∠ADE=∠DCH,∴∠ADE=∠DBF,在△ADE和△DBF中,∴△ADE≌△DBF(ASA)∴AE=DF故①正确,②由①中证得∠ADE=∠DBF,∴∠EDB=∠FBA,∵B、C、D、G四个点在同一个圆上,∠BDC=60°,∠DBC=60°,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGE=180°﹣∠BGC﹣∠DGC=180°﹣60°﹣60°=60°,∴∠FGD=60°,∴∠FGH=120°,又∵∠ADB=60°,∴F、G、H、D四个点在同一个圆上,∴∠EDB=∠HFB,∴∠FBA=∠HFB,∴FH∥AB,故②正确,③∵B、C、D、G四个点在同一个圆上,∠DBC=60°,∴∠DGH=∠DBC=60°,∵∠EGB=60°,∴∠DGH=∠EGB,由①中证得∠ADE=∠DBF,∴∠EDB=∠FBA,∴△DGH∽△BGE,故③正确,④如下图∵CG为⊙O的直径,点B、C、D、G四个点在同一个圆⊙O上,∴∠GBC=∠GDC=90°,∴∠ABF=120°﹣90°=30°,∵∠A=60°,∴∠AFB=90°,∵AB=BD,∴DF=AF,故④正确,正确的有①②③④;故选:D.二、填空题(共8小题,每小题3分,满分24分)11.【解答】解:46亿=4.6×109.故答案为:4.6×10912.【解答】解:2a2﹣8b2,=2(a2﹣4b2),=2(a+2b)(a﹣2b).故答案为:2(a+2b)(a﹣2b).13.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:=.14.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.15.【解答】解:利用作图得点OP为第二象限的角平分线,所以a+b=0.故答案为a+b=0.16.【解答】解:设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3).故答案为:﹣(a+3).17.【解答】解:∵EC∥AD,∴∠A=30°,∠CBD=45°,CD=200,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tan A=,∴AD=,在Rt△BCD中,∠CDB=90°,∠CBD=45°∴DB=CD=200,∴AB=AD﹣DB=200﹣200,答:A、B两点间的距离为(200﹣200)米.故答案为:(200﹣200)18.【解答】解:∵△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点O,B1,B2,B3,…都在直线1上,∴点B1的坐标为(),点B2的坐标为(1,),点B3的坐标(),…,点B n的坐标为(),∴点A n的坐标为(,),∴点A2019的坐标为(),即A2019的坐标为().故答案为:()三、解答题:(本大意共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤)19.【解答】解:(1)原式=﹣1+2+1﹣3+3﹣1=4﹣3;(2)去分母得:2x+4+x2+2x=x2,解得:x=﹣1,经检验x=﹣1是分式方程的解.20.【解答】解:(1)∵根据两种统计图知地方戏曲的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100人,参加民族乐器的有100﹣32﹣25﹣13=30人,统计图为:(2)∵m%=×100%=25%,∴m=25,n=×360=108,故答案为:25,108;(3)树状图分析如下:∵共有12种情况,恰好选中甲、乙的有2种,∴P(选中甲、乙)==.21.【解答】(1)证明:∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,∴EB=EF;(2)解:∵DE=4,DF=3,∴BE=EF=DE+DF=7,∵∠5=∠4,∠BED=∠AEB,∴△EBD∽△EAB,∴=,即=,∴EA=,∴AF=AE﹣EF=﹣7=.22.【解答】解:(1)将点A(2,3)代入解析式y=,得:k=6;(2)将D(3,m)代入反比例解析式y=,得:m==2,∴点D坐标为(3,2),设直线AD解析式为y=kx+b,将A(2,3)与D(3,2)代入得:,解得:则直线AD解析式为y=﹣x+5;(3)过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB∥x轴,∴BM⊥y轴,∴MB∥CN,∴△OCN∽△OBM,∵C为OB的中点,即=,∴=()2,∵A,C都在双曲线y=上,∴S△OCN=S△AOM=3,由=,得:S△AOB=9,则△AOB面积为9.23.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.24.【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.(3)猜想:DE2=BD2+EC2,证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.25.【解答】解:(1)∵B(1,0),∴OB=1;∵OC=3BO,∴C(0,﹣3);(1分)∵y=ax2+3ax+c过B(1,0)、C(0,﹣3),∴;解这个方程组,得∴抛物线的解析式为:(2分)(2)过点D作DM∥y轴分别交线段AC和x轴于点M、N 在中,令y=0,得方程解这个方程,得x1=﹣4,x2=1∴A(﹣4,0)设直线AC的解析式为y=kx+b∴解这个方程组,得∴AC的解析式为:∵S四边形ABCD=S△ABC+S△ADC==设,(4分)当x=﹣2时,DM有最大值3此时四边形ABCD面积有最大值(5分)(3)如图所示,①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形,∵C(0,﹣3)∴设P1(x,﹣3)∴解得x1=0,x2=﹣3∴P1(﹣3,﹣3);②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP 为平行四边形,∵C(0,﹣3)∴设P(x,3),∴,x2+3x﹣8=0解得或,此时存在点和综上所述存在3个点符合题意,坐标分别是P1(﹣3,﹣3),,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣C.﹣=D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A. B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC与阴影部分为相似三角形.10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC 交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是①②③.【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CECO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CECO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

相关文档
最新文档