华北电力大学过程计算机控制课设DDC串级回路PID闭环

合集下载

过程控制课程设计酸性化工液体贮槽温度控制系统的设计

过程控制课程设计酸性化工液体贮槽温度控制系统的设计

辽宁工业大学过程控制系统课程设计(论文)题目:酸性化工液体贮槽温度控制系统的设计院(系):电气工程学院专业班级:学号:学生姓名:指导教师:起止时间:2012.12.24-2013.01.04本科生课程设计(论文)课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器Array注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要温度控制系统是控制系统中最为常见的控制类型,主要由温度变送器、调节器、执行器、被控对象四个部分组成。

本文根据设计任务设计了酸性化工液体贮槽温度控制系统的设计,首先进行了方案的论证,本系统采用前馈-反馈复合式控制系统,对储槽内酸性液体的温度进行控制。

系统采用HSLW-F防腐型温度变送器对储槽内的酸性液体进行检测,采用ZAZP 电动精小型单座气开式调节阀控制蒸汽的进入量,采用FUJI PXR7 (PXW7) PID调节器来调节系统的控制品质。

通过以上几种调节规律的分析,工艺要求储槽内液体温度达到一定的范围,这里储槽内液体温度是工艺的操作指标。

温度控制器TC1是在正常情况下工作的,由于温度对象的容量滞后比较大,因此,温度控制器应该选择比例积分微分的控制规律,系统为消除进料温度波动带来的干扰,为使前馈温度控制器TC2能迅速地投入工作,前馈制器应选为比例式控制规律。

关键词:温度控制系统;执行器;变送器;控制器目录第1章绪论 (1)1.1 过程控制系统的特点及分类 (1)1.2 温度控制技术的发展 (1)1.3 酸性化工液体贮槽温度控制系统概述 (2)第2章系统方案论证 (3)2.1 设计的任务分析 (3)2.2 单回路控制系统 (3)2.3 前馈-反馈复合式控制系统 (4)第3章控制系统的设计 (7)3.1 变送器的选择 (7)3.2 执行器的选择 (8)3.3 控制器控制规律的选择 (9)3.4 控制器的正、反作用的选择 (11)第4章系统仿真 (12)第5章设计总结 (14)参考文献 (15)第1章绪论1.1过程控制系统的特点及分类过程控制通常是指连续生产过程的自动控制,是自动化技术最重要的组成部分之一。

华北电力大学过程控制课程设计

华北电力大学过程控制课程设计

课程设计报告( 2008 -- 2009 年度第二学期)名称:过程控制课程设计题目:华润登封电厂300MW机组蒸汽温度控制系统分析院系:自动化系班级:测控0603班学号:200602030308学生姓名:指导教师:金秀章设计周数:一周成绩:日期:2009 年7 月2 日《过程控制》课程设计(分析类)任务书一、目的与要求1.目的:通过本课程设计,使学生巩固《过程控制》所学内容,培养学生的分析、设计能力。

2.要求:能够对指定现场应用控制系统进行正确分析。

二、主要内容1.题目:华润登封电厂300MW机组过热蒸汽温度控制系统分析2.内容:1)查阅2-3篇相关资料;2)对指定现场应用控制系统SAMA图进行分析:分析控制系统构成,掌握工作原理,判断调节器正反作用,分析自动跟踪与无扰切换,分析主要逻辑;3)撰写分析说明。

三、进度计划四、设计成果要求1.对指定控制系统SAMA图进行分析,力求分析正确。

2.撰写分析报告。

五、考核方式设计报告+答辩学生姓名:指导教师:金秀章2009年7月2日一、课程设计的目的与要求1. 目的:通过本课程设计,使学生巩固《过程控制》所学内容,培养学生的分析、设计能力。

2. 要求:能够对指定现场应用控制系统进行正确分析。

二、设计正文 控制系统的构成:华润登封电厂300MW 机组过热蒸汽温度控制系统:汽包所产生的饱和蒸汽先流经低温对流过热器进行低温过热,然后依次流经前屏过热器、后屏过热器和高温对流过热器后送入汽轮机。

(一)、一级减温调节系统 1 . SAMA 图纸:SAMA-B-402 .一过入口、出口蒸汽温度,均采用二选均标准逻辑。

3 .一级减温水流量,需进行温度补偿。

补偿公式如下:()t f kkqm****1∆P =∆P =ρ其中:())()(t f normal t t ρρ=,tnormal 为减温水正常运行温度(或标定温度)。

缺省温度:tnormal =165℃(暂定)说明:目前暂无减温水温度侧点,需设定正常运行温度;4. 工作原理:一级减温调节系统包括一个喷水调节阀,两个过热器入口蒸汽温度,A 、B 侧过热器出口蒸汽温度(各一个)。

华北电力大学自动控制原理(精)

华北电力大学自动控制原理(精)


方框图的绘制
方框图的绘制

绘制依据:基于系统物理模型对应的原始方程组的 象函数表达式,或基于电网络的复阻抗表示形式。 绘制思路:从系统的输入到输出,按信号的传递方 向和形式以及传递强度,分别用信号线、方框、和 点或引出点依次表示成方框图的形式。 应用举例:
双容水箱


无源网络
双容水箱
பைடு நூலகம்
直流电动机系统实例

解题依据

Ra
La Ia Ma Ea
Ja ML
基尔霍夫定律; 运动学定律; Ua 直流发电机相关定律。


求取过程
Uf
if
dIa R aIa E a U a 电网络平衡方程 L a dt E a K eω 电动势平衡方程 dω Ma ML 机械平衡方程 J a dt M a KCIa 转矩平衡方程
传递函数的特征及性质
1、传递函数表征了系统对输入信号的传递能力,是系统的 固有特性,与输入信号类型及大小无关。 2、传递函数只适用于线性连续定常系统。 3、传递函数仅描述系统的输入/输出特性。不同的物理系统 可以有相同的传递函数。同一系统中,不同物理量之间对 应的传递函数也不相同。 4、初始条件为零时,系统单位脉冲响应的拉氏变换为系统 的传递函数。 5、实际系统中有n≥m,n称为系统的阶数; 6、传递函数是系统性能分析的最简形式之一。
FB ( t ) f
d y( t ) dt
Fk ( t ) k y ( t )
d2y (t ) d y (t ) m f k y (t ) F(t ) 2 d t dt
关注:系统中蓄能元件的个数与微分方程阶 数的关系。
机械旋转实例

华北电力大学电力工程系各学科课程教学大纲(定稿)学习资料

华北电力大学电力工程系各学科课程教学大纲(定稿)学习资料

华北电力大学电力工程系各学科教学大纲(定稿)目录《GIS装置及其绝缘技术》课程教学大纲 (1)《变电站综合自动化》课程教学大纲 (3)《超高压电网继电保护专题》课程教学大纲 (5)《城市供电》课程教学大纲 (7)《大型电机故障诊断》课程教学大纲 (9)《大型发电机与变压器运行》课程教学大纲 (10)《单片机原理及应用》课程教学大纲 (12)《电磁测量》课程教学大纲 (14)《电磁场数值计算》课程教学大纲 (16)《电磁场与电磁波》课程教学大纲 (18)《电磁兼容技术》课程教学大纲 (20)《电动力学》课程教学大纲 (22)《电工技术基础》课程教学大纲 (25)《电工学B》课程教学大纲 (27)《电机控制技术》课程教学大纲 (30)《电机学1》课程教学大纲 (31)《电机学2》课程教学大纲 (34)《电机状态监测》课程教学大纲 (36)《电力电子技术》课程教学大纲 (38)《电力电子技术应用》课程教学大纲 (41)《电力电子学基础》课程教学大纲 (43)《电力负荷预测》课程教学大纲 (45)《电力工程A》课程教学大纲 (47)《电力工程B》课程教学大纲 (49)《电力生产过程与动力设备》课程教学大纲 (51)《电力生产技术概论》课程教学大纲 (54)《电力市场运营理论与技术》课程教学大纲 (56)《电力系统调度运行与控制》课程教学大纲 (58)《电力系统分析基础》课程教学大纲 (60)《电力系统故障分析》课程教学大纲 (62)《电力系统规划与可靠性》课程教学大纲 (64)《电力系统过电压》课程教学大纲 (68)《电力系统继电保护原理》课程教学大纲 (71)《电力系统可靠性》课程教学大纲 (74)《电力系统数字仿真》课程教学大纲 (76)《电力系统稳定》课程教学大纲 (80)《电力系统谐波与无功补偿》课程教学大纲 (82)《电力系统远程监控技术》课程教学大纲 (84)《电力系统远程监控原理》课程教学大纲 (86)《电力系统暂态分析》课程教学大纲 (88)《电力系统主设备保护》课程教学大纲 (90)《电力系统自动化》课程教学大纲 (92)《电路计算机辅助分析》课程教学大纲 (94)《电路理论A(1)》课程教学大纲 (96)《电路理论A(2)》课程教学大纲 (99)《电路理论(B)》课程教学大纲 (101)《电路理论B(1)》课程教学大纲 (104)《电路理论B(2)》课程教学大纲 (106)《电路实验》课程教学大纲 (108)《电路实验(1)》课程教学大纲 (111)《电路实验(2)》课程教学大纲 (113)《电能计量》课程教学大纲 (115)《电能质量概论》课程教学大纲 (117)《电气工程概论》课程教学大纲 (119)《电气控制技术》课程教学大纲 (120)《电气设备在线监测和故障诊断》课程教学大纲 (122)《电气与电子系统设计》课程教学大纲 (124)《发电厂电气部分》课程教学大纲 (126)《高电压技术》课程教学大纲 (130)《高电压技术在非电力系统中的应用》课程教学大纲 (132)《高电压绝缘》课程教学大纲 (134)《高电压试验技术》课程教学大纲 (136)《高压电气设备状态维修》课程教学大纲 (138)《高压电器》课程教学大纲 (140)《工程电磁场》课程教学大纲 (143)《供电系统电能质量》课程教学大纲 (145)《光纤技术及应用》课程教学大纲 (147)《交流电机调速》课程教学大纲 (149)《可编序程控制器应用》课程教学大纲 (151)《控制电机》课程教学大纲 (153)《配电自动化》课程教学大纲 (155)《人工智能及其在电力系统中的应用》课程教学大纲 (157)《输电线路设计基础》课程教学大纲 (161)《数值计算方法》课程教学大纲 (163)《数字信号处理(电)》课程教学大纲 (165)《微机保护原理》课程教学大纲 (167)《微机检测技术》课程教学大纲 (169)《微机原理与接口技术A》课程教学大纲 (171)《现代用电技术》课程教学大纲 (174)《新能源发电技术》课程教学大纲 (177)《信号分析与处理》课程教学大纲 (179)《信号与系统》课程教学大纲 (182)《虚拟仪器技术》课程教学大纲 (185)《用电管理与监察》课程教学大纲 (187)《用电营销与管理》课程教学大纲 (189)《直流输电与FACTS技术》课程教学大纲 (191)《中压电网运行分析与接地保护》课程教学大纲 (194)《专业英语阅读(电气)》课程教学大纲 (196)《自动控制理论B》课程教学大纲 (198)《GIS装置及其绝缘技术》课程教学大纲课程编号:00200010课程名称:GIS装置及其绝缘技术英文名称:GIS Equipment and Insulation Technology总学时:24 总学分 1.5适用学生:电气工程及其自动化专业先修课程:《高电压技术》一、课程性质、目的和任务本课程是电气工程及其自动化专业的专业选修课。

过程控制作业答案

过程控制作业答案

作 业第二章:2-6某水槽如题图2-1所示。

其中A 1为槽的截面积,R 1、R 2均为线性水阻,Q i 为流入量,Q 1和Q 2为流出量要求:(1)写出以水位h 1为输出量,Q i 为输入量的对象动态方程;(2)写出对象的传递函数G(s)并指出其增益K 和时间常数T 的数值。

图2-1解:1)平衡状态: 02010Q Q Q i +=2)当非平衡时: i i i Q Q Q ∆+=0;1011Q Q Q ∆+=;2022Q Q Q ∆+= 质量守恒:211Q Q Q dthd A i ∆-∆-∆=∆ 对应每个阀门,线性水阻:11R h Q ∆=∆;22R h Q ∆=∆ 动态方程:i Q R hR h dt h d A ∆=∆+∆+∆2113) 传递函数:)()()11(211s Q s H R R S A i =++1)11(1)()()(211+=++==Ts KR R S A s Q s H s G i这里:21121212111111R R A T R R R R R R K +=+=+=;2Q112-7建立三容体系统h 3与控制量u 之间的动态方程和传递数,见题图2-2。

解:如图为三个单链单容对像模型。

被控参考△h 3的动态方程: 3233Q Q dth d c ∆-∆=∆;22R h Q ∆=∆;33R hQ ∆=∆; 2122Q Q dth d c ∆-∆=∆;11R h Q ∆=∆ 111Q Q dth d c i ∆-∆=∆ u K Q i ∆=∆ 得多容体动态方程:uKR h dth d c R c R c R dt h d c c R R c c R R c c R R dt h d c c c R R R ∆=∆+∆+++∆+++∆333332211232313132322121333321321)()(传递函数:322133)()()(a s a s a s Ks U s H s G +++==; 这里:32132133213213321321332211232132131313232212111;c c c R R R kR K c c c R R R a c c c R R R c R c R c R a c c c R R R c c R R c c R R c c R R a ==++=++=2-8已知题图2-3中气罐的容积为V ,入口处气体压力,P 1和气罐 内气体温度T 均为常数。

PID控制算法(PID控制原理与程序流程)

PID控制算法(PID控制原理与程序流程)

PID控制算法(PID控制原理与程序流程)⼀、PID控制原理与程序流程(⼀)过程控制的基本概念过程控制――对⽣产过程的某⼀或某些物理参数进⾏的⾃动控制。

1、模拟控制系统图5-1-1 基本模拟反馈控制回路被控量的值由传感器或变送器来检测,这个值与给定值进⾏⽐较,得到偏差,模拟调节器依⼀定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执⾏器作⽤于过程。

控制规律⽤对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。

2、微机过程控制系统图5-1-2 微机过程控制系统基本框图以微型计算机作为控制器。

控制规律的实现,是通过软件来完成的。

改变控制规律,只要改变相应的程序即可。

3、数字控制系统DDC图5-1-3 DDC系统构成框图DDC(Direct Digital Congtrol)系统是计算机⽤于过程控制的最典型的⼀种系统。

微型计算机通过过程输⼊通道对⼀个或多个物理量进⾏检测,并根据确定的控制规律(算法)进⾏计算,通过输出通道直接去控制执⾏机构,使各被控量达到预定的要求。

由于计算机的决策直接作⽤于过程,故称为直接数字控制。

DDC系统也是计算机在⼯业应⽤中最普遍的⼀种形式。

(⼆)模拟PID调节器1、模拟PID控制系统组成图5-1-4 模拟PID控制系统原理框图2、模拟PID调节器的微分⽅程和传输函数PID调节器是⼀种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的⽐例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进⾏控制。

a、PID调节器的微分⽅程式中b、PID调节器的传输函数a、⽐例环节:即时成⽐例地反应控制系统的偏差信号e(t),偏差⼀旦产⽣,调节器⽴即产⽣控制作⽤以减⼩偏差。

b、积分环节:主要⽤于消除静差,提⾼系统的⽆差度。

积分作⽤的强弱取决于积分时间常数TI,TI越⼤,积分作⽤越弱,反之则越强。

c、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太⼤之前,在系统中引⼊⼀个有效的早期修正信号,从⽽加快系统的动作速度,减⼩调节时间。

过程控制系统

过程控制系统

3.余差 余差 余差是指过渡过程结束后,被控量新的稳态值与设定值的差值. 余差是指过渡过程结束后,被控量新的稳态值与设定值的差值. 是指过渡过程结束后 它是过程控制系统稳态准确性的衡量指标. 它是过程控制系统稳态准确性的衡量指标. 4.调节时间 和振荡频率 调节时间ts和振荡频率 调节时间 调节时间ts是从过渡过程开始到结束的时间. 调节时间 是从过渡过程开始到结束的时间. 是从过渡过程开始到结束的时间 过渡过程的振荡频率是振荡周期的倒数, 过渡过程的振荡频率是振荡周期的倒数,即 振荡频率是振荡周期的倒数 在同样的振荡频率下,衰减比越大则调节时间越短; 在同样的振荡频率下,衰减比越大则调节时间越短;当衰减比相 同时,则振荡频率越高,调节时间越短. 同时,则振荡频率越高,调节时间越短. 振荡频率在一定程度上也可作为衡量过程控制系统快速性的指标. 振荡频率在一定程度上也可作为衡量过程控制系统快速性的指标. SCAU
教学方法和要求
课堂理论讲授为主 结合工程项目,要求同学们能进行分析工 业过程的控制原理 能够设计简单的单回路控制系统 使用Matlab完成特殊控制的仿真
考试和成绩评定方法
考试方式:闭卷 期末成绩比例:平时SCAU
第一章 绪论
过程控制与自控原理的关系 过程控制的任务与目标 过程系统的组成和特点 性能指标 过程控制发展的概况 控制策略与算法进展
SCAU
3 生产过程的要求 安全性:生产过程中,确保人身和设备安全, 生产过程中,确保人身和设备安全, 生产过程中 是最重要和最基本的要求. 是最重要和最基本的要求 稳定性:系统抑制外部干扰,保持生产过程 系统抑制外部干扰, 系统抑制外部干扰 长期稳定运行的能力. 长期稳定运行的能力 经济性:低成本高效益是过程控制的另一个 低成本高效益是过程控制的另一个 目标. 目标 4 举例 液位控制 火力发电厂 热交换温度控制系统

华电考研复试班-华北电力大学控制与计算机工程学院控制工程专硕考研复试经验分享

华电考研复试班-华北电力大学控制与计算机工程学院控制工程专硕考研复试经验分享

华电考研复试班-华北电力大学控制与计算机工程学院控制工程专硕考研复试经验分享华北电力大学是教育部直属全国重点大学,是国家“211工程”和“985工程优势学科平台”重点建设大学。

2017年,学校进入国家“双一流”建设高校行列,重点建设能源电力科学与工程学科群,全面开启了建设世界一流学科和高水平研究型大学新征程。

学校1958年创建于北京,原名北京电力学院。

学校长期隶属于国家电力部门管理。

2003年,学校划转教育部管理,现由国家电网有限公司、中国南方电网有限公司、中国华能集团有限公司、中国大唐集团有限公司、中国华电集团有限公司、国家能源投资集团有限责任公司、国家电力投资集团有限公司、中国长江三峡集团有限公司、中国广核集团有限公司、中国电力建设集团有限公司、中国能源建设集团有限公司、广东省粤电集团有限公司等12家特大型电力集团和中国电力企业联合会组成的理事会与教育部共建。

学校校部设在北京,分设保定校区,两地实行一体化管理。

学校现有教职工近3千人,全日制在校本科生2万余人,研究生近1万人。

学校占地1600余亩,建筑面积100余万平方米。

2009年11月,为适应学校发展战略的需要,增强学科的交叉融合,提升学科整体水平,将自动化系和计算机系合并,成立控制与计算机工程学院。

学校在北京校部设立控制与计算机工程学院,保定校区设立自动化系与计算机系。

控制与计算机工程学院的成立,为打造学校学科品牌,提升专业学科水平,深化校内体制改革,优化内部管理创造了条件,有利于进一步理顺和完善校内管理体制和运行机制。

学院现拥有控制科学与工程一级学科博士点、博士后科研流动站。

拥有控制科学与工程、计算机科学与技术、软件工程三个一级学科硕士点。

其中,控制科学与工程一级学科博士点下设控制理论与控制工程、检测技术与自动化装置、模式识别与智能系统、信息安全以及系统分析、运筹与控制等五个二级学科博士点。

拥有控制工程、计算机技术、软件工程3个工程硕士专业学位授予权。

数字控制理论及应用(讲稿)第二章 数字控制系统的组成

数字控制理论及应用(讲稿)第二章  数字控制系统的组成

第二章 数字控制系统的组成第一节 数字控制系统硬件及软件组成一、 硬件部分计算机控制系统的硬件包括主机、接口电路、过程输入/输出通道、外部设备、操作台等。

1、主机它是过程计算机控制系统的核心,由中央处理器(CPU)和内存储器组成。

主机根据输入通道送来的被控对象的状态参数,按照预先制定的控制算法编好的程序,自动进行信息处理、分析、计算,并作出相应的控制决策,然后通过输出通道发出控制命令,使被控对象按照预定的规律工作。

2、接口电路它是主机与外部设备、输入/输出通道进行信息交换的桥梁。

在过程计算机控制系统中,主机接收数据或者向外发布命令和数据都是通过接口电路进行的,接口电路完成主机与其它设备的协调工作,实现信息的传送。

3、过程输入/输出通道过程输入输出(I/O)通道在微机和生产过程之间起着信号传递与变换的纽带作用,它是主机和被控对象实现信息传送与交换的通道。

模拟量输入通道把反映生产过程或设备工况的模拟信号转换为数字信号送给微机;模拟量输出通道则把微机输出的数字控制信号转换为模拟信号(电压或电流)作用于执行设备,实现生产过程的自动控制。

微机通过开关量(脉冲量、数字量)输入通道输入反映生产过程或设备工况的开关信号(如继电器接点、行程开关、按纽等)或脉冲信号;通过开关量(数字量)输出通道控制那些能接受开关(数字)信号的电器设备。

1)、模拟量输入(AI)通道:生产过程中各种连续的物理量(如温度、流量、压力、液位、位移、速度、电流、电压以及气体或液体的PH值、浓度、浊度等),只要由在线仪表将其转换为相应的标准模拟量电信号,均可送入模拟量输入通道进行处理。

2)、模拟量输出(AO)通道:模拟量输出通道一般是输出4~20mA(或1~5V)的连续的直流电流信号,用来控制各种直行程或角行程电动执行机构的行程,或通过调速装置(如各种变频调速器)控制各种电机的转速,亦可通过电-气转换器或电-液转换器来控制各种气动或液动执行机构,例如控制气动阀门的开度等等。

计算机控制系统功能之直接数字控制

计算机控制系统功能之直接数字控制

计算机控制系统功能之直接数字控制
直接数字控制(Direct Digital Control,DDC)系统是计算机用于工业过程控制最普遍的一种方式,其框图如图所示。

1)原理:一台计算机对被控对象的多个被控参数进行巡回检测,将检测值与设定值进行比较,按照PID 规律或其他直接数字控制方法进行控制运算,然后输出控制量。

控制输出量经过驱动电路带动执行机构,调节生产过程,使得被控参数值稳定在设定值的一定范围内。

2)特点:计算机直接参与控制,系统经计算机构成了闭环。

3)优点:利用计算机的分时能力,一台计算机能取代多个模拟调制器,实现多回路的PID 调节。

在不改变系统硬件的条件下,通过修改程序就能实现多种较复杂的控制规律,如串级控制、前馈控制、非线性控制、自适应控制、最优控制等。

1。

汽轮机DEH控制系统华北电力大学ppt课件

汽轮机DEH控制系统华北电力大学ppt课件

汽轮机调节系统发展简介
第一代汽轮机调节系统是机械离心式调 速器,至今已有一百多年历史。
第二代是液压式汽轮机调节系统,大约 出现在二、三十年代。第二代调节系统 中均采用了机械传动或感应环节。因此 也可称为机械、液压式调节系统。它相 对第一代调节系统而言,在响应速度、 调节精度和减小迟缓方面有了很大的提 高。
如果此时汽机辅机故障,主要是凝汽汽 真空低,则会产生RB 信号来关小阀门。
如果此时主汽压力过低,当主汽压力低 保护投入时,则会产生TPL信号来关小阀 门。注意,主汽压低保护信号TPL 是单 向的,它为负值,它只在气压很低的时 候才动作;主气压控制信号时双向,它 投入时,当压力出现波动时,就不断频 繁动作。
当升速率设为100转每分钟时,经过除法器的 运算,每一个周期0.2秒内转速给定值增加三分 之一转,一分钟之内实现升速率为100转。要 想改变升速率,就要改变除法器的参数,除数 该为150时,能实现升速率为200转每分钟。
当转速上升到了2900转,以一定速率关 小GV,TV开度不变,转速下降。当转速 下降到2850 r/min时,GV保持不变,TV 以一定速全开。当TV全开后,阀门切换结 束。在以后的升速率和升负荷的过程中, 均由高压调门GV来控制汽机的进汽量。
汽轮机的操作方式和目标值的产生
CCS机组协调控制方式 由CCS指令直接控制 高压调门的开度。
OA操作员自动控制方式 操作员直接设置目 标值和速率。并网前,设定的是目标速度和升 速率;并网后,设定的是目标负荷和升负荷率。
AS自同期方式 接受自同期装置来的增减命令, 调节机组的电压频率。
ATC汽机自启动程序控制 控制系统根据汽机 的状态 和转子的应力来设转速升率或升负荷 率,达到自动控制的目的

过程控制课程设计--前馈-反馈控制系统的设计与整定

过程控制课程设计--前馈-反馈控制系统的设计与整定

过程控制课程设计--前馈-反馈控制系统的设计与整定北华航天工业学院课程设计报告(论文)设计课题:过程控制专业班级:学生姓名:指导教师:设计时间:201311.25-2013.12.06北华航天工业学院电子工程系过程控制课程设计任务书指导教师:教研室主任:2013年12月6日内容摘要自本世纪30年代以来,自动化技术获得了惊人的成就,已在工业和国民经济各行各业起着关键的作用。

自动化水平已成为衡量各行各业现代化水平的一个重要标志。

自动控制按输入量的变化规律分类,可分恒值控制系统(Fixed Set-Point Control System)、随动控制系统(Follow-up Control System)、过程控制系统(Process Control System)。

前馈-反馈控制系统的设计与整定,采用自动控制技术,实现对水箱液位的过程控制。

首先对被控对象的模型进行分析。

然后,根据被控对象模型和被控过程特性并加入PID调节器设计流量控制系统,采用动态仿真技术对控制系统的性能进行分析。

关键词:自动化过程控制PID目录一概述 (1)二方案设计与论证 (2)2.1 前馈控制 (2)2.2 反馈控制 (2)2.3 前馈-反馈控制 (3)2.4前馈-反馈控制系统PID算法 (4)2.5 控制方案的论证 (5)2.5.1控制方案的可靠性 (5)2.5.2控制方案的安全性 (5)2.5.3控制方案的经济性 (5)三仪表的选择与参数的设定………………………………………………………6 3.1 设备型号 (6)3.2 调节器及其参数的设置 (7)3.3 仪器仪表的组合安装 (8)3.4 计算机的参数设置 (9)四实验步骤…………………………………………………………………………9 五实验结果………………………………………………………………………10 六结论 (11)七心得体会………………………………………………………………………12 八参考文献………………………………………………………………………13一、概述PCT—I型过程控制实验装置是基于工业过程物理模拟对象,它集自动化仪表技术,计算机技术,通讯技术,自动控制技术为一体的多功能实验装置。

复杂过程控制系统--串级控制专业教学

复杂过程控制系统--串级控制专业教学
1.燃料压力、热值变化f2(t)和烟筒抽力变化f3(t) ----二次扰动或副回路扰动
2.被加热物料的流量和初温变化f1(t)----一次扰动 或主回路扰动
7
技术教育
3.一次扰动和二次扰动同时存在
假设调节阀为气开式,主、副调节器均为反 作用。如果一、二次扰动的作用使主、副被控参 数同时增大或同时减少,主、副调节器对调节阀 的控制方向是一致的,即大幅度关小或开大阀门, 加强控制作用,使炉出口温度很快调回到给定值 上。
串级控制系统主回路是一个定值控制系统。主 参数的选择和主回路的设计可以按照单回路控制 系统的设计原则进行。串级控制系统的设计主要 是副参数的选择和副回路的设计以及主、副回路 关系的考虑。
1.副回路应包括尽可能多的扰动
副回路对于包含在其内的二次扰动以及非线 性、参数变化有很强的抑制能力与一定的自适应 能力,因此副回路应包括生产过程中变化剧烈且 幅度大的主要扰动。
❖ 图4-5串级控制系统抗干扰能力可用下式表示:
QC2
(s)
=
Y1 (s)/X 1 (s) Y1(s)/F2 (s)
=
WC1 (s)W'02 (s) W *02 (s)
=
WC1
(s)WC2
(s)WV
(s)
14
技术教育
为了与单回路控制系统比较,用同样方法可得 出单回路控制系统(图4—1a)输出Y(s)对输入 X(s)的传递函数。
副调节器选P控制规律:副参数的设置是为了 保证主参数的控制质量,可以在一定范围内变化, 允许有余差。一般不引入积分(会延长控制过程, 减弱副回路的快速作用)。也不引入微分(副回路本 身起着快速作用,再引入微分规律会使调节阀动作 过大,对控制不利)。
29

华电考研复试班-华北电力大学自动化系控制工程专硕考研复试经验分享

华电考研复试班-华北电力大学自动化系控制工程专硕考研复试经验分享

华电考研复试班-华北电力大学自动化系控制工程专硕考研复试经验分享华北电力大学是教育部直属全国重点大学,是国家“211工程”和“985工程优势学科平台”重点建设大学。

2017年,学校进入国家“双一流”建设高校行列,重点建设能源电力科学与工程学科群,全面开启了建设世界一流学科和高水平研究型大学新征程。

学校1958年创建于北京,原名北京电力学院。

学校长期隶属于国家电力部门管理。

2003年,学校划转教育部管理,现由国家电网有限公司、中国南方电网有限公司、中国华能集团有限公司、中国大唐集团有限公司、中国华电集团有限公司、国家能源投资集团有限责任公司、国家电力投资集团有限公司、中国长江三峡集团有限公司、中国广核集团有限公司、中国电力建设集团有限公司、中国能源建设集团有限公司、广东省粤电集团有限公司等12家特大型电力集团和中国电力企业联合会组成的理事会与教育部共建。

学校校部设在北京,分设保定校区,两地实行一体化管理。

学校现有教职工近3千人,全日制在校本科生2万余人,研究生近1万人。

学校占地1600余亩,建筑面积100余万平方米。

华北电力大学自动化系主要以电力系统发电侧为行业背景,从事人才培养和科学研究,设有大学最早的学科和专业。

现拥有:“自动化”和“测控技术与仪器”两个本科生专业;一个国家级实验教学中心“电力生产全过程虚拟仿真实验教学中心”,一个省级工程技术研究中心“河北省电力生产过程仿真与优化控制工程技术研究中心”;两个教学研究室,一个本科生实验中心,多个教学和科研团队。

具有“控制理论与控制工程”二级学科博士学位授予权,“控制科学与工程”一级学科硕士学位授予权,“控制工程”专业硕士学位授予权。

在校生1300余人。

我们秉承“以不息为体,以日新为道”的理念,近年来以“博士化、工程化、国际化”为目标不断加强教师队伍的建设和培养。

自动化系拥有一支勇于创新、团结和谐的教职工队伍,现有专任教师45名,其中高级职称占73%,具有博士学位的比例达80%,40%以上教师具有赴美、加、英、澳、俄、日等国从事访问学者及科学研究的经历,大部分教师长期从事电力系统生产领域的科研工作,具有扎实的实践经验和工程技术基础。

过程控制课程设计600MW超临界直流锅炉主汽温控制系统-主汽温控制-.

过程控制课程设计600MW超临界直流锅炉主汽温控制系统-主汽温控制-.

课程设计报告(2013—2014年度第二学期)名称:过程控制技术与系统题目:600MW超临界直流锅炉主汽温控制系统院系:控制与计算机工程学院班级:姓名:学号:设计周数: 1 周日期: 2014 年6月30日《过程控制》课程设计任务书一、目的与要求“过程控制课程设计”是“过程控制”课程的一个重要组成部分。

通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。

二、主要内容1.根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图;2.根据确定控制设备和测量取样点和调节机构,绘制控制系统工艺流程图(PID图);3.根据确定的自动化水平和系统功能,选择控制仪表,完成控制系统SAMA图(包括系统功能图和系统逻辑图);4.对所设计的系统进行仿真试验并进行系统整定;5.编写设计说明书。

三、进度计划四、设计(实验)成果要求1.绘制所设计热工控制系统的SAMA图;2.根据已给对象,用MATABL进行控制系统仿真整定,并打印整定效果曲线;3.撰写设计报告五、考核方式提交设计报告及答辩学生姓名:简一帆指导教师:张建华2014年 6月 30 日一、课程设计目的与要求1. 通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。

2. 掌握过程控制系统设计的两个阶段:设计前期工作及设计工作。

2.1设计前期工作(1)查阅资料。

对被控对象动态特性进行分析,确定控制系统的被调量和调节量。

(2)确定自动化水平。

包括确定自动控制范围、控制质量指标、报警设限及手自动切换水平。

(3)提出仪表选型原则。

包括测量、变送、调节及执行仪表的选型。

2.2设计工作(1)根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图。

串级pid控制原理

串级pid控制原理

串级pid控制原理串级PID控制是一种常见的控制策略,在工业自动化系统中广泛应用。

它基于PID控制器的基本原理,通过串联多个PID 控制器来提高系统的稳定性和响应速度。

串级PID控制器由两个或多个PID控制器组成,每个控制器负责不同的控制环节。

第一个控制器接收系统的输入,计算并输出一个中间变量。

中间变量作为第二个控制器的输入,第二个控制器进一步计算并输出最终的控制信号。

串级PID控制器的主要原理如下:1. 内外环控制:串级PID控制器通常由内环和外环控制组成。

内环控制器负责快速响应系统的瞬态过程,例如消除瞬时误差和减小超调量。

外环控制器负责稳定系统的长期行为,例如使系统快速返回到设定值并抵抗负载变化。

2. 内环控制器:内环控制器通常具有较高的比例增益和较快的响应速度,它能迅速调整控制信号以消除内环控制误差。

内环控制器的输出作为外环控制器的输入,它们通过中间变量进行信息交流。

3. 外环控制器:外环控制器通过比较实际输出和设定值来计算外环控制误差,并相应地调整控制信号。

外环控制器通常具有较低的比例增益和较慢的响应速度,以避免产生过多的振荡和超调。

4. 中间变量:内环控制器的输出作为中间变量,传递给外环控制器。

中间变量可以是系统的某些测量值,例如温度、液位或压力。

通过使用中间变量,内环和外环控制器可以实现信息传递和协同控制。

串级PID控制器通过将多个PID控制器组合在一起,能够提高系统的整体控制性能。

内环控制器负责快速响应系统的瞬态变化,外环控制器负责稳定系统的长期行为。

通过合理设置PID参数和中间变量的选择,可以实现更精确和稳定的控制。

PID串级控制.ppt

PID串级控制.ppt

情况三:一次干扰和二次干扰同时存在
➢ 主、副变量同向变化 主、副调节器共同作用,执行阀的开度大幅度变化,使得
炉出口温度很快恢复到设定值。 ➢ 主、副变量反向变化
两种干扰作用相互抵消,或燃料油流量只作很小的调整。
通过分析可知:副控制器具有“粗调”的作用,而主控制 器具有“细调”的作用,两者互相配合,控制质量必然高于单回 路控制系统。
2、应用于纯延时较大的过程 当对象纯延时较大,用单回路控制系统不能满足控制性能
指标时,可以采用串级控制系统:在离控制阀较近、纯延时较 小的地方选择一个副参数,把干扰纳入副回路中。 例:网前箱温度-温度串级控制系统
72o C
61o C
滞后0s
要求:最大偏差不超过 1o C 如果纸浆流量波动 35kg / min
二、串级控制系统的工作过程(参见P198)
仍以管式加热炉出口温度控制为例,分析温度-流量串级控 制系统克服干扰的过程。
调节阀:气开式 温度调节器、流量调节器:反作用
情况一:干扰来自燃料油流量的变化
• 初始阶段,出口温度不变,温度控制器的输出不变,流量控 制器就按照变化了的测量值与没变的设定值之差进行控制, 改变执行阀的原有开度,使燃料油向原来的设定值靠近。
4、对负荷变化有一定的适应能力 某控制系统方框图如下:
X1(S)
W(c S)
W0(2 S) H(S)
W0(1 S) Y1(S)
无串级时,开环传函: G(S) Wc (S)W02 (S)W01(S)
有串级时,开环传函:
G(
S
)
Wc
(S
)
1
W02 (S ) W02 (S )H
(
S
)
W01

串级pid控制原理

串级pid控制原理

串级pid控制原理串级PID控制原理。

串级PID控制是一种常见的控制系统设计方法,它通过串联多个PID控制器来实现对复杂系统的精确控制。

在本文中,我们将介绍串级PID控制的原理及其应用。

首先,我们来了解一下PID控制器的基本原理。

PID控制器是一种常用的闭环控制器,它由比例(P)、积分(I)和微分(D)三个部分组成。

比例部分对系统的当前误差进行响应,积分部分对系统历史误差进行积累,微分部分对系统的变化速度进行调节。

通过合理调节PID参数,可以实现对系统的稳定控制。

在一些复杂的控制系统中,单个PID控制器往往难以满足对系统的精确控制需求。

这时就需要使用串级PID控制器。

串级PID控制器由多个PID控制器串联而成,每个PID控制器负责对系统的一个特定部分进行控制,最终实现对整个系统的精确控制。

串级PID控制器的原理可以通过一个简单的例子来说明。

假设有一个水箱,我们需要控制水箱中水位的高度。

如果只使用一个PID控制器,它可能无法同时兼顾到水位的稳定性和快速响应性。

这时,我们可以使用串级PID控制器,将水箱分为两个部分,上部和下部。

上部水位由一个PID控制器进行控制,下部水位由另一个PID控制器进行控制。

这样,就可以分别调节上部和下部水位的控制效果,最终实现对整个水箱水位的精确控制。

在实际应用中,串级PID控制器可以应用于许多领域,如温度控制、压力控制、流量控制等。

通过合理设计串级PID控制器的结构和参数,可以实现对复杂系统的高精度控制。

需要注意的是,在设计串级PID控制器时,需要考虑各个PID控制器之间的协调性。

不同PID控制器之间可能存在交叉影响,需要通过合理的参数调节来避免这种影响,确保整个系统的稳定性和性能。

总之,串级PID控制器是一种有效的控制系统设计方法,它通过串联多个PID 控制器来实现对复杂系统的精确控制。

在实际应用中,需要合理设计串级PID控制器的结构和参数,以实现对系统的高精度控制。

PID控制

PID控制

------来源网络,仅供参考;控制控制系统,目前,PID控有利用PID PID控------来源网络,仅供参考1.1 开环控制系统路。

1.2制系统。

1.3收敛的;通常用上升时间来定量描述。

------来源网络,仅供参考1.4 PID控制的原理和特点70PID控,或不能通PID控比例(P系数Kp,要积分控制。

------来源网络,仅供参考积分(I)控制此,比例+微分(D用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

------来源网络,仅供参考这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅用,------来源网络,仅供参考§2 PID控制器频率分析PID§PID:PPIDy------来源网络,仅供参考u(、PI、PD或PID------来源网络,仅供参考------来源网络,仅供参考------来源网络,仅供参考K p>1 a. b. c.K p<1与K p-90 0 -18090 0 -90 0 -180PD图PD对系统性能的改善PD例:PDPIPoPI例:PI§uPIDG(s) + KI2 )sPID思考题:§§3§ 3给定值被控变量yDDC系统的特点:K c ——T d ——e ——给定值与测量值之差? ? 1 de d dt + ? ? ? P = k e + edt +T ? cT s ——●位置型? ) ? ?P e●增量型PID控制算式第(n-1)?)?2?? ?P n = P n ?1 + e )?n?2?e n?2)K IK D dK D = Kc T s●实用递推算式 (偏差系数控制算式) 将增量型?P n = e n ?2 ? T dT s? A = K 1? c ? 则有:●特殊形式的PID算式●●对增量型?P n = n?2) ●●n●●不完全微分的PID算式E(s) P pi(si i=0将微分部分化成微分方程:T d PK dP d(n令:+T sdK dP d(n) = BP d(n?1)+ T d Kc [e(n)? e(n?1)] Array BP d(n?1) P d(n) =2) + BP d(n? 2) ⋃ P d(n?1) =]?P d(n) = K c e?1)+ e(n? 2)]+ee●● 四点中心差分法e(n-3) e e(n-1) t (nT)? 2i =0i =0§3-2 DDC系统PID控制参数的选择及整定§3-2-1●●成分系统15-20 5 s主●§3-2-2量化问题解:一般D/A的字长可选小于或等于A/D字长。

过程控制复习 判断题

过程控制复习  判断题

1。

过程控制系统中,需要控制的工艺设备(塔、容器、贮糟等)、机器称为被控对象。

(√)2。

扰动量是作用于生产过程对象并引起被控变量变化的随机因素。

(×)答案:扰动量是除操纵变量外作用于生产过程对象并引起被控变量变化的随机因素。

3. 由调节器输出至被调参数间的所有环节称为干扰通道。

(×)答案:由调节器输出至被调参数间的所有环节称为调节通道.4。

过程控制系统的偏差是指设定值与测量值之差.(√)5。

由控制阀操纵,能使被控变量恢复到设定值的物料量或能量即为操纵变量。

(√)6。

按控制系统的输出信号是否反馈到系统的输入端可分为开环系统和闭环系统.(√)7。

在闭环控制系统中,按照设定值的情况不同,可分为定值控制系统、前馈控制系统、程序控制系统。

(×) 答案:在闭环控制系统中,按照设定值的情况不同,可分为定值控制系统、随动控制系统、程序控制系统.8。

在一个定值控制系统中,被控变量不随时间变化的平衡状态,也即被控变量变化率等于零的状态,称为系统的动态。

(×)答案:在一个定值控制系统中,被控变量不随时间变化的平衡状态,也即被控变量变化率等于零的状态,称为系统的静态, 静态是一种相对静止状态。

9。

对一个系统总是希望能够做到余差小,最大偏差小,调节时间短,回复快。

(√)10。

时间常数越小,被控变量的变化越慢,达到新的稳态值所需的时间也越长。

(×)答案:时间常数越大,被控变量的变化越慢,达到新的稳态值所需的时间也越长。

11。

时间常数指当对象受到阶跃输入作用后,被控变量达到新稳态值的63.2 %所需要的时间。

(√) 12. 对干扰通道时间常数越小越好,这样干扰的影响和缓,控制就容易。

(×)答案:时间常数越大越好,这样干扰的影响和缓,控制就容易.13。

放大倍数K 取决于稳态下的数值,是反映静态特性的参数。

(√)14. 对于控制通道来说希望τ越大越好,而对扰动通道来说希望τ适度小点好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告
名称:过程计算机控制
题目:DDC串级回路PID闭环
控制系统的设计及实时仿真院系:控计
班级:
学号:
学生:
同组人:
指导教师:明扬
设计周数:一周
一、设计目的
1.学习并了解用高级语言(C语言)实现数字PID控制算法模块程序的方法;
2.比较验证理想微分PID和实际微分PID控制算法阶跃响应,加深对上述两种算法各自特点的认
识;
3.学习了解用模拟计算机使用方法;
4.学习掌握A/D、D/A转换接口板的使用方法;
5.了解一种微机中断定时的方法;
6.学习掌握通过A/D、D/A转换用计算机获取被控对象动态特性的方法;
7.通过实时仿真实验掌握DDC单回路控制程序编制及调试方法。

二、实验仪器
(1)微型计算机一台,系统软件Windows 98或DOS (不能使用无直接I/O能力的NT或XP系统), 装Turbo C 2.0/3.0集成开发环境软件;
(2)模拟计算机一台(XMN-1型);
(3)通用数据采集控制板一块(PCL-812PG型)。

三、PID的离散化
理想微分PID 算法的传递函数形式为:⎪⎪⎭

⎝⎛++=s T s T K s G d i p 11)(
采用向后差分法对上式进行离散,得出其差分方程形式为: u[k]=u[k-1]+q0*e[2]+q1*e[1]+q2*e[0];
其中各项系数为:
q0=kp*(1+T/Ti+Td/T);
q1=-kp*(1+2*Td/T);
q2=kp*Td/T;
实际微分PID 算法的传递函数形式为:⎪⎪⎭
⎫ ⎝⎛+++=s T s T s T K s G d i f p 111)( 采用向后差分法对上式进行离散化,写成差分方程的形式为:
u[k]=c0*(Δu[k-1])+c1*e[k]+c2*e[k-1]+c3*e[k-2]+u[k-1];
其中各项系数为:
c0=Tf/(T+Tf);
c1=kp*T/(T+Tf)*(1+T/Ti+Td/T);
c2=-kp*T/(T+Tf)*(1+2*Td/T);
c3=kp*Td/(T+Tf);
四、硬件二阶惯性环节搭建
利用模拟计算机中的电容电阻及运算放大器,搭接二阶惯性环节,仿真一个被控对象。

其传递函
数为2)
1()(+=Ts K s G ,硬件电路如下:
图中各元件参数如下:
R3=R2=510K ;R1=R4=R5=R6=R7=1M ;C1=C2=C=4.7uF ;
则可得:K=(R5/R1)*(R6/R4)=1
T1=T2=R5*C1=R6*C2=1000000*0.0000047=4.7s
所以G (s )=1/(4.7s+1)*(4.7s+1)
搭建好硬件电路后,将PLCD-780插入IPC 机箱插槽,用导线将PLCD-780中的A/D 、D/A 、电源的接线端子与所搭二阶惯性环节的输出、输入端口及机箱上的电源连接,组成一个完整的PID 闭环控制系统,为通信做好准备。

五、实验结果
(1)理想和实际PID 阶跃响应曲线
(2)被控对象(实物搭建二阶惯性环节)阶跃响应曲线
上图通过D/A输出一个1伏左右的信号输入模拟的被控对象(惯性环节),A/D采集对象的输入信号及其响应,再使D/A输出一个幅度为2伏左右的阶跃信号,同时采集输入输出信号。

然后,D/A再反向在输出一个幅度为2伏左右负的阶跃信号,同时采集输入输出信号,得出仿真对象飞升特性曲线。

程序中,通过按键实现模拟对象输入信号的加减。

当按下H按键时,且按下U键时,D/A输出一。

相关文档
最新文档