初三数学相似三角形动点问题
相似三角形的动点问题题型(整理).doc
相似三角形的动点问题题型( 整理)相似三角形的动点问题一、动点型例 1、如图,已知等边三角形 ABC 中,点 D,E,F 分别为边 AB ,AC ,BC 的中点,M 为直线 BC 上一动点,△DMN 为等边三角形(点 M 的位置改变时,△ DMN 也随之整体移动).(1)如图 1,当点 M 在点 B 左侧时,请你判断EN 与 MF 有怎样的数量关系?点 F 是否在直线NE 上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M 在BC 上时,其它条件不变,(1)的结论中 EN 与 MF 的数量关系是否仍然成立?若成立,请利用图 2 证明;若不成立,请说明理由;(3)若点 M 在点 C 右侧时,请你在图 3 中画出相应的图形,并判断( 1)的结论中 EN 与 MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例 2、如图,在矩形 ABCD 中, AB=12cm ,BC=8cm .点 E、F、G 分别从点 A、B、C 三点同时出发,沿矩形的边按逆时针方向移动.点 E、 G 的速度均为 2cm/s,点 F 的速度为 4cm/s,当点 F 追上点 G(即点 F 与点 G 重合)时,三个点随之停止移动.设移动开始后第 t 秒时,△EFG 的面积为 S(cm2)(1)当 t=1 秒时, S 的值是多少?(2)写出 S 和 t 之间的函数解析式,并指出自变量 t 的取值范围(3)若点 F 在矩形的边 BC 上移动,当 t 为何值时,以点 E、B、F 为顶点的三角形与以点 F、C、G 为顶点的三角形相似?请说明理由.迁移应用1、如图,已知△ ABC 是边长为 6cm 的等边三角形,动点 P、Q 同时从 A、B 两点出发,分别沿AB、BC 匀速运动,其中点 P 运动的速度是 1cm/s,点 Q 运动的速度是2cm/s,当点 Q 到达点 C 时, P、 Q两点都停止运动,设运动时间为 t(s),(1)当 t=2 时,判断△ BPQ 的形状,并说明理由;(2)设△ BPQ 的面积为 S(cm2),求 S 与 t 的函数关系式;(3)作 QR//BA 交 AC 于点 R,连结 PR,当 t 为何值时,△ APR∽△ PRQ?2、如图,在直角梯形A BCD 中, AB ∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F 点以2cm/秒的速度在线段 AB 上由 A 向 B 匀速运动,E 点同时以 1cm/秒的速度在线段 BC 上由 B 向 C 匀速运动,设运动时间为 t 秒(0<t<5) .1)求证:△ ACD ∽△ BAC ;2)求: DC 的长;3)试探究:△BEF 可以为等腰三角形吗?若能,求 t 的值;若不能,请说明理由.3、如图,在直角梯形ABCD 中,AD ∥BC,∠B=90°,AD=6 ,BC=8 , AB=3 3,点 M 是 BC 的中点.点 P 从点 M 出发沿 MB 以每秒 1 个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿 BM 返回;点 Q 从点M 出发以每秒 1 个单位长的速度在射线 MC 上匀速运动.在点 P, Q的运动过程中,以 PQ 为边作等边三角形 EPQ,使它与梯形ABCD 在射线 BC 的同侧.点 P,Q 同时出发,当点 P 返回到点 M 时停止运动,点Q 也随之停止.设点P,Q 运动的时间是t 秒(t >0).(1)设 PQ 的长为 y,在点 P 从点 M 向点 B 运动的过程中,写出 y 与 t 之间的函数关系式(不必写 t 的取值范围);(2)当 BP=1 时,求△ EPQ 与梯形 ABCD 重叠部分的面积;(3)随着时间 t 的变化,线段 AD 会有一部分被△ EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出 t 的取值范围;若不能,请说明理由.二、动点加动线例 1、如图,在 Rt △ABC 中,∠C=90°,AC=3 ,AB=5 .点 P 从点 C 出发沿 CA 以每秒 1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿 AC 返回;点 Q 从点 A 出发沿 AB 以每秒1 个单位长的速度向点B 匀速运动.伴随着P、Q 的运动, DE 保持垂直平分 PQ,且交PQ 于点 D,交折线Q同时出发,当点P也随之停止.设点QB-BC-CP 于点 E.点 P、Q 到达点 B 时停止运动,点P、Q 运动的时间是 t 秒(t>0).(1)当 t=2 时,AP=,点Q到AC的距离是;(2)在点P 从 C 向 A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围(3)在点 E 从 B 向 C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求 t 的值.若不能,请说明理由;(4)当 DE 经过点 C 时,请直接写出t 的值.迁移应用1、如图,已知矩形 ABCD 的边长 AB=3cm ,BC=6cm .某一时刻,动点 M 从 A 点出发沿 AB 方向以 1cm/s 的速度向 B 点匀速运动;同时,动点N 从 D 点出发沿 DA 方向以 2cm/s 的速度向 A 点匀速运动,问:是否存在时刻 t,使以 A 、M 、 N 为顶点的三角形与△ ACD 相似?若存在,求 t的值.2、如图,正方形 ABCD 的边长为 4,E 是 BC 边的中点,点 P 在射线 AD 上,过 P 作 PF⊥AE于 F.(1)求证:△ PFA∽△ ABE ;(2)当点 P 在射线 AD 上运动时,设 PA=x,是否存在实数 x,使以 P,F,E 为顶点的三角形也与△ ABE相似?若存在,请求出 x 的值;若不存在,说明理由.3、如图,已知 A(8,0),B(0,6),两个动点P、Q 同时在△ OAB 的边上按逆时针方向(→ O →A→B→O→)运动,开始时点 P 在点 B 位置,点 Q 在点 O 位置,点 P 的运动速度为每秒 2 个单位,点 Q 的运动速度为每秒 1 个单位.(1)在前 3 秒内,求△ OPQ 的面积 S 与时间 t 之间的关系式;并求出△ OPQ 的最大面积;(2)在前 10 秒内,秋 P、Q 两点之间的最小距离,并求此时点 P、Q 的坐标;(3)在前 15 秒内,探究 PQ 平行于△ OAB 一边的情况,并求平行时点P、Q 的坐标.yBO A x4、已知:如图,在平面直角坐标系中,△ ABC 是直角三角形,∠ ACB ,点 A、C 的坐标分别为A(-3,0) ,C(1,0),BC AC34,(1)求过点 A 、B 的直线的函数表达式;(2)在 X 轴上找一点 D,连接 DB ,使得△ ADB与△ ABC 相似(不包括全等),并求点 D 的坐标;(3)在( 2)的条件下,如 P、Q 分别是 AB 和AD 上的动点,连接 PQ,设y B AP=DQ=m ,问是否存在这样的 m使得△ APQ 与△ ADB 相似,如存A O C x在,请求出 m 的值;如不存在,请说明理由.145、如图,四边形 OABC 是一张放在平面直角坐标系中的矩形纸片,点 A 在 x 轴上,点 C 在 Y 轴上,将边 BC 折叠,使点 B 落在边 OA 的点 D 处.已知折叠 CE= 5 5,且EA 3DA 4(1)判断 OCD 与△ ADE 是否相似?请说明理由;(2)求直线 CE 与 x 轴交点 P 的坐标;(3)是否存在过点 D 的直线 L ,使直线 L 、直线 CE 与 x 轴所围C yB成的三角形和△ CDE 相似?如 E 果存在,请直接写出其解析式并O D A x 画出相应的直线;如果不存在,请说明理由.6、△ ABC 中, AB=AC=5 ,BC=6 ,点 P 从点 B 开始沿 BC 边以每秒 1 的速度向点 C 运动,点 Q 从点 C 开始沿 CA 边以每秒 2 的速度向点 A 运动,DE 保持垂直平分 PQ,且交 PQ 于点 D,交BC 于点 E.点 P,Q 分别从 B,C 两点同时出发,当点 Q 运动到点 A 时,点 Q、p 停止运动,设它们运动的时间为 x.1)当 x=秒时,射线DE经过点C;2)当点 Q 运动时,设四边形 ABPQ 的面积为 y,求 y 与 x 的函数关系式;3)当点 Q 运动时,是否存在以P、Q、C 为顶点的三角形与△ PDE 相似?若存在,求出 x 的值;若不存在,请说明理由.7、如图,梯形 ABCD 中,AD∥BC,AB=CD=20cm ,AD=40cm ,∠ D=120°,点 P、Q 同时从 C 点出发,分别以 2cm/s 和 1cm/s 的速度沿着线段 CB 和线段 CD 运动,当 Q 到达点 D,点 P 也随之停止运动.设运动时间为 t(s)(1)当 t 为何值时,△ CPQ 与△ ABP 相似;(2)设△APQ 与梯形 ABCD 重合的面积为 S,求 S 与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD 中,AB ∥DC ,∠DAB=90 °, AD=2DC=4 ,AB=6 .动点 M 以每秒 1 个单位长的速度,从点 A 沿线段 AB 向点 B运动;同时点 P 以相同的速度,从点 C 沿折线 C-D-A 向点 A 运动.当点 M 到达点 B 时,两点同时停止运动.过点 M 作直线 l ∥AD ,与线段 CD 的交点为 E,与折线 A-C-B 的交点为 Q.点 M 运动的时间为 t(秒).(1)当 t=0.5 时,求线段 QM 的长;(2)当 0<t<2 时,如果以 C、P、Q 为顶点的三角形为直角三角形,求t 的值;(3)当 t>2 时,连接 PQ 交线段 AC 于点 R.请探究CQ是否为定值,若是,试求这个定值;若不RQ是,请说明理由.9、如图 1,直角梯形 ABCD 中,∠ A=∠B=90°,AD=AB=6cm ,BC=8cm ,点 E 从点 A 出发沿AD 方向以 1cm/s 的速度向中点 D 运动;点 F 从点 C 出发沿 CA 方向以 2cm/s 的速度向终点 A 运动,当点 E、点 F 中有一点运动到终点,另一点也随之停止.设运动时间为 ts.(1)当 t 为何值时,△ AEF 和△ ACD 相似?(2)如图 2,连接 BF,随着点 E、F 的运动,四边形 ABFE 可能是直角梯形?若可能,请求出t 的值及四边形 ABFE 的面积;若不能,请说明理由;(3)当 t 为何值时,△ AFE 的面积最大?最大值是多少?10、如图,在平面直角坐标系中.四边形OABC 是平行四边形.直线 l 经过 O、C 两点.点 A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段 OA 上从点 O 出发以每秒 1 个单位的速度向点 A 运动,同时动点 Q 从点 A 出发以每秒2 个单位的速度沿 A→B→C 的方向向点 C 运动,过点 P 作 PM 垂直于 x 轴,与折线 O 一 C-B 相交于点 M .当 P、Q 两点中有一点到达终点时,另一点也随之停止运动,设点 P、Q 运动的时间为 t 秒( t>0).△ MPQ 的面积为 S.(1)点 C 的坐标为,直线l 的解析式为。
(完整版)相似三角形的动点问题题型(整理)
相似三角形的动点问题一、动点型例1、如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例2、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.迁移应用1、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C时,P、Q两点都停止运动,设运动时间为t(s),(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?2、如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0<t<5).1)求证:△ACD∽△BAC;2)求:DC的长;3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.3、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M 是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.二、动点加动线例1、如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t 的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.迁移应用1、如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值.2、如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF ⊥AE 于F .(1)求证:△PFA ∽△ABE ;(2)当点P 在射线AD 上运动时,设PA=x ,是否存在实数x ,使以P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,说明理由.3、如图,已知A (8,0),B (0,6),两个动点P 、Q 同时在△OAB 的边上按逆时针方向(→O →A →B →O →)运动,开始时点P 在点B 位置,点Q 在点O 位置,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ 的面积S 与时间t 之间的关系式;并求出△OPQ 的最大面积; (2)在前10秒内,秋P 、Q 两点之间的最小距离,并求此时点P 、Q 的坐标;(3)在前15秒内,探究PQ 平行于△OAB 一边的情况,并求平行时点P 、Q 的坐标.4、已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB ,点A 、C 的坐标分别为A(-3,0),C(1,0),43AC BC , (1)求过点A 、B 的直线的函数表达式;(2)在X 轴上找一点D,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点Dyx O AB的坐标;(3)在(2)的条件下,如P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似,如存在,请求出m的值;如不存在,请说明理由.5、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在Y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=55,且43DAEA(1)判断OCD与△ADE是否相似?请说明理由;x(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线L,使直线L、直线CE与x轴所围成的三角形和△CDE相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存Array在,请说明理由.6、△ABC中,AB=AC=5,BC=6,点P从点B开始沿BC边以每秒1的速度向点C运动,点Q从点C开始沿CA边以每秒2的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q运动到点A时,点Q、p停止运动,设它们运动的时间为x.1)当x= 秒时,射线DE经过点C;2)当点Q运动时,设四边形ABPQ的面积为y,求y与x的函数关系式;3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x 的值;若不存在,请说明理由.7、如图,梯形ABCD中,AD∥BC,AB=CD=20cm,AD=40cm,∠D=120°,点P、Q同时从C点出发,分别以2cm/s和1cm/s的速度沿着线段CB和线段CD运动,当Q到达点D,点P也随之停止运动.设运动时间为t(s)(1)当t为何值时,△CPQ与△ABP相似;(2)设△APQ与梯形ABCD重合的面积为S,求S与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD 的交点为E ,与折线A-C-B 的交点为Q .点M 运动的时间为t (秒). (1)当t=0.5时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值; (3)当t >2时,连接PQ 交线段AC 于点R .请探究RQCQ是否为定值,若是,试求这个定值;若不是,请说明理由.9、如图1,直角梯形ABCD 中,∠A=∠B=90°,AD=AB=6cm ,BC=8cm ,点E 从点A 出发沿AD 方向以1cm/s 的速度向中点D 运动;点F 从点C 出发沿CA 方向以2cm/s 的速度向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.(1)当t为何值时,△AEF和△ACD相似?(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;(3)当t为何值时,△AFE的面积最大?最大值是多少?10、如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为。
相似三角形中的动点问题—2023-2024学年九年级数学下册(苏科版)(解析版)
相似三角形中的动点问题【典例1】如图,在矩形ABCD中,AB=4,AD=2,动点P从点A开始以每秒2个单位长度沿AB向终点B运动,同时,动点Q从点C开始沿C−D−A以每秒3个单位长度向终点A运动,它们同时到达终点.连接PQ交AC于点E.过点E作EF⊥PQ,交直线CD于点F.(1)当点Q在线段CD上时,求证:CEAE =32.(2)当DQ=1时,求△APE的面积.(3)在P,Q的运动过程中,是否存在某一位置,使得以点E,F,Q为顶点的三角形与△ABC相似?若存在,求BP的长;若不存在,请说明理由.(1)证明△CQE∽△APE(2)①当点Q在CD上时,如图1,CQ=CD−DQ=3.过点E作AB的垂线交AB于点M,交CD于点N.②当点Q在AD上时,如图2,作EM⊥AB于点M,设EM=ℎ,再利用相似三角形的性质求解三角形的高,再利用面积公式计算即可;(3)分三种情况讨论:①当点Q在CD上时,设CQ=3t,则AP=2t,若点F在Q的右侧,如图3,当△FEQ∽△ABC,则∠1=∠2,作PH⊥CD于点H,而∠B=∠PHQ=90°,∴△ABC∽△PHQ,则PHQH =ABBC=2,从而可得答案;若点F在Q的左侧,如图4,△FEQ∽△ABC,点F与点C重合,从而可得答案;②当点Q在AD上时,如图5,△FEQ∽△ABC,EFEQ =BABC=2,∠FEG=∠B=90°,作EN⊥CD于点N,EG⊥AD于点G.,则∠NEQ=90°,再结合相似三角形的性质建立方程可得答案.(1)当点Q在线段CD上时,由题意可得:AB∥CD,CQ=3t,AP=2t,∴△CQE∽△APE,∴CE AE =CQAP=32.(2)①当点Q在CD上时,如图1,CQ=CD−DQ=3.过点E作AB的垂线交AB于点M,交CD于点N.由CQAP =V点QV点P=32,得AP=2.由△CQE∽△APE,得ENEM =CEAE=32,∴EM=25MN=45,∴S△APE=12AP⋅EM=12×2×45=45.②当点Q在AD上时,如图2,作EM⊥AB于点M,设EM=ℎ.AQ=AD−DQ=1,AP=23(CD+DQ)=103.同理:△AME∽△ABC,∴EM AM =BCAB=12,∴AM=2EM=2ℎ.同理:△PME∽△PAQ,得EMPM =AQPA=1103=310,∴PM=103EM=103ℎ.∴AP=PM+AM=103ℎ+2ℎ=103,解得ℎ=58,∴S△APE=12AP⋅EM=12×103×58=2524.∴△APE 的面积为45或2524.(3)①当点Q 在CD 上时,设CQ =3t ,则AP =2t .若点F 在Q 的右侧,如图3,当△FEQ∽△ABC ,则∠1=∠2.作PH ⊥CD 于点H ,而∠B =∠PHQ =90°, ∴△ABC ∽△PHQ ,则PHQH =ABBC =2, ∴QH =12PH =1.∵HD =AP =2t ,∴CD =CQ +QH +HD =3t +1+2t =4, 解得t =35.∴BP =4−2t =4−65=145.若点F 在Q 的左侧,如图4,△△ABC ,点F 与点C 重合.∵AC =√AB 2+BC 2=√42+22=2√5, 又∵CEAE =32 ∴AE =25AC =4√55. ∵由△FEQ∽△ABC 结合对顶角可得:∠AEP =∠B =90°,而∠PAE =∠BAC , ∴△AEP∽△ABC ,∴AE AB =APAC ,即4√554=2√5,则AP =2,∴BP =AB −AP =2.②当点Q 在AD 上时,如图5,△FEQ∽△ABC ,EFEQ =BABC =2,∠FEG =∠B =90°, 作EN ⊥CD 于点N ,EG ⊥AD 于点G .,则∠NEQ =90°,由∠FEQ =∠NEG =90°,得∠FEN =∠QEG , ∴Rt △FEN∽Rt △QEG , ∴ENEG =EFEQ =2. 同理可得:AGEG =BCAB=12, 设AG =k ,则EG =2AG =2k ,EN =2EG =4k . ∴DG =EN =4k ,AD =AG +DG =5k , 由AD =2,得5k =2,k =25, ∴AG =25,EG =45. 由题意,AQ BP =V 点Q V 点P=6−3t 4−2t=32,设AQ =3x ,则BP =2x ,AP =4−2x ,QG =AQ −AG =3x −25, 由△QGE∽△QAP ,得EGAP =QGQA ,即454−2x =3x−253x,化简,得15x 2−26x +4=0, 解得x 1=13+√10915(舍去),x 2=13−√10915.∴BP =2x =26−2√10915. 综上所述,BP 的长为145或2或26−2√10915.1.(2023秋·江苏常州·九年级常州市第二十四中学校考阶段练习)如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒1cm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;(3)当t为何值时,△EOP与△BOA相似.【思路点拨】(1)由于EF//x轴,则S△PEF=12⋅EF⋅OE,t=9时,OE=9,关键是求EF.易证△BEF∽△BOA,则EFOA=BEBO,从而求出EF的长度,得出△PEF(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.即可得解.【解题过程】(1)∵EF//OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴EFOA =BEBO,当t=9时,OE=9,OA=20,OB=15,BE=OB−OE=15−9=6,∴EF=20×615=8,∴S△PEF=12EF⋅OE=12×8×9=36(cm2);(2)不存在.理由:∵△BEF∽△BOA,∴EF=BE⋅OABO =(15−t)⋅2015=43(15−t),∴12×43(15−t)×t=40,整理,得t2−15t+60=0,∵△=152−4×1×60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于40cm2的t值;(3)当∠EPO=∠BAO时,△EOP∽△BOA,∴OPOA =OEOB,即20−2t20=t15,解得t=6;当∠EPO=∠ABO时,△EOP∽△AOB,∴OPOB =OEOA,即20−2t15=t20,解得t=8011.∴当t=6s或t=8011s时,△EOP与△BOA相似.2.(2022·四川·九年级专题练习)如图1,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从点A出发,沿AB以1cm/s的速度向点B匀速运动:同时点N从点D出发,沿DA方向以2cm/s的速度向点A匀速运动,点N运动到点A时停止运动,运动时间为t.(1)若△AMN是等腰直角三角形,则t=___________(直接写出结果).(2)是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值,若不存在,请说明理由.(3)如图2,连接CN 、CM ,试求CN +2CM 的最小值. 【思路点拨】(1)根据题意可知只有AM =AN 时,△AMN 是等腰直角三角形,再根据题意可用t 表示出AM =t ,AN =6−2t ,列出等式,解出t 即可;(2)分类讨论①当△ACD ∼△NMA 时和②当△CAD ∼△NMA 时,列出比例式,代入数据,即可求解; (3)取CN 中点E ,作E 点关于CD 的对称点E ′,连接CE ′.作M 点关于BC 的对称点M ′,连接CM ′,E ′M ′.根据作图可知CE ′=CE ,CM ′=CM ,即可知当CE ′+CM ′最小时CN +2CM 最小,即最小值为E ′M ′的长.连接E ′E 并延长,交CD 于点F ,AB 于点G .由作图结合题意易求出E ′G =E ′F +AD =t +6,BG =12AB =32,BM ′=BM =AB −AM =3−t ,从而可求出GM ′=BG +BM ′=92−t .在Rt △E ′GM ′中,利用勾股定理可求出E ′M ′=√E ′G 2+GM ′2=√2(t +34)2+4418,最后根据二次函数的性质,即得出t =0时,√2(t +34)2+4418最小,即此时E ′M ′=152,故可求出CN +2CM 的最小值为15.【解题过程】(1)∵∠MAN =90°,∴若△AMN 是等腰直角三角形时,只有AM =AN .根据题意可知AM =t ,DN =2t AN =AD −DN =6−2t , ∴t =6−2t , 解得t =2, 故答案为:2.(2)∵∠MAN =∠ADC =90°,∴以A 、M 、N 为顶点的三角形与△ACD 相似分为两种情况, ①当△ACD ∼△NMA 时,有ADAN =CDAM ,即66−2t =3t , 解得:t =32;②当△CAD ∼△NMA 时,有ADAM =CDAN ,即6t =36−2t , 解得:t =125.当t =32或t =125时,以A 、M 、N 为顶点的三角形与△ACD 相似;(3)如图,取CN中点E,作E点关于CD的对称点E′,连接CE′.作M点关于BC的对称点M′,连接CM′,E′M′.根据作图可知CE′=CE,CM′=CM,∴CN+2CM=2(CE+CM)=2(CE′+CM′),∴当CE′+CM′最小时CN+2CM最小,∵CE′+CM′≥E′M′,∴CE′+CM′的最小值为E′M′的长,即CN+2CM的最小值为2E′M′的长.如图,连接E′E并延长,交CD于点F,AB于点G.∵作E点关于CD的对称点E′,∴E′F//AD,E′F=EF.又∵E为中点,∴E′F=EF=12DN=t,G为AB中点,∴E′G=E′F+AD=t+6,BG=12AB=32.∵作M点关于BC的对称点M′,∴BM′=BM=AB−AM=3−t,∴GM′=BG+BM′=32+3−t=92−t.在Rt△E′GM′中,E′M′=√E′G2+GM′2=√(6+t)2+(92−t)2=√2(t+34)2+4418,∵t≥0,2>0∴t=0时,√2(t+34)2+4418最小,即E′M′=√2×(34)2+4418=152.∴CN+2CM=2E′M′=15.3.(2022秋·江苏泰州·九年级校联考阶段练习)如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△P AB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.【思路点拨】(1)根据勾股定理得出AC,进而利用相似三角形的判定和性质解答即可;(2)根据全等三角形的性质和勾股定理解答即可;(3)根据相似三角形的判定和性质以及勾股定理解答即可.【解题过程】解:(1)连接BE,由已知:在Rt△ADC中,AC=√AD2+DC2=√32+42=5,当AP=m=1时,PC=AC﹣AP=5﹣1=4,∵PE⊥CD,∴∠PEC=∠ADC=90°,∵∠ACD=∠PCE,∴△ACD∽△PCE,∴AD PE =ACPC,即3PE=54,∴PE=125;(2)如图1,当△P AB≌△PEB时,∴P A =PE ,∵AP =m ,则PC =5﹣m , 由(1)得:△ACD ∽△PCE , ∴3PE =55−m, ∴PE =3(5−m)5,由P A =PE ,即3(5−m)5=m ,解得:m =158, ∴EC =√PC 2−PE 2=√(5−158)2−(158)2=52,∴BE =√EC 2+BC 2=√(52)2+32=√312≠AB ,∴△P AB 与△PEB 不全等, ∴不能使得△P AB ≌△PEB ;(3)如图2,延长EP 交AB 于G ,∵BP ⊥PF , ∴∠BPF =90°, ∴∠EPF +∠BPG =90°, ∵EG ⊥AB , ∴∠PGB =90°, ∴∠BPG +∠PBG =90°, ∴∠PBG =∠EPF , ∵∠PEF =∠PGB =90°, ∴△BPG ∽△PFE ,∴BG PE =PGEF,由(1)得:△PCE∽△ACD,PE=3(5−m)5,∴EC DC =PCAC,即EC4=5−m5,∴EC=4(5−m)5,∴BG=EC=4(5−m)5,∴3−3(5−m)54(5−m)5−n=4(5−m)3(5−m)=43,∴5m+4n=16.4.(2023秋·河北保定·九年级统考期末)如图(1),在矩形ABCD中,AB=6cm,tan∠ABD=43,E、F 分别是AB、BD中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D 出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ,设运动时间为ts(0<t<4),解答下列问题:∴t=1(1)当0<t<2.5时,FQ=______.(用含有t的式子表示)(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)当t为______时,△PQF为等腰三角形?(直接写出结果).【思路点拨】(1)先由题目条件求出AD,再利用勾股定理求出DF,当0<t<2.5时,接着判断出点Q的位置,即可求解.(2)先判断出△QMF∽△BEF,进而得出,再利用面积公式建立方程求解即可.(3)分点Q在DF和BF上,利用相似三角形的性质建立方程求解即可得出结论.【解题过程】(1)在矩形ABCD中,∠A=90°∴在直角三角形DBA中tan∠ABD=ADAB =AD6=43∴AD=8∵E、F分别是AB、BD中点,∴EF=12AD=4∵BD=√AB2+AD2=10∴DF=12BD=5∴Q从D到F的时间为52=2.5当0<t<2.5时,Q在线段DF上,∴FQ=DF−DQ=5−2t.故答案为:5−2t.(2)过点Q作QM⊥EF交EF延长线于点M,可知:QM∥BE,∴△QMF∽△BEF,∴QM BE =QFBF,∴QM3=5−2t5,可得QM=35(5−2t),∴S△PFQ=12×PF⋅QM=12×(4−t)×35(5−2t)=0.6=35,解得:t=92(舍去)或t=2,∴当t=2时,△PQF的面积为0.6cm2;故答案为:t=2.(3)当点Q在DF上时,如图PF=QF∴4−t=5−2t∴t=1当点Q在BF上时,如图PF=QF∴4−t=2t−5∴t=3当PQ=FQ时,如图∴12(4−t)2t−5=45∴t=207当PF=PQ时,如图∴12(2t−5)4−t=45∴t=19 6所以t=1或3或207或196时,△PQF为等腰三角形.故答案为:t=1或3或207或196.5.(2023秋·山东青岛·九年级山东省青岛第五十九中学校考阶段练习)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止运动.设运动时间为t秒.(1)用含t的代数式分别表示线段CP=_______________、CQ=_______________.(2)在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,请说明理由.(3)是否存在某一时刻t,使得△CPQ为直角三角形?若存在,求出所有满足条件的t的值;若不存在,请说明理由.【思路点拨】(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长,据此求解即可;(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t之间的函数关系式;利用S△CPQ:S△ABC=9:100建立t的方程,解方程即可解决问题;(3)分两种情况,利用相似三角形得出比例式建立方程求解,即可得出结论.【解题过程】(1)解:如图1,∵∠ACB=90°,AC=8,BC=6,∴AB =√62+82=10,∵CD ⊥AB ,∴S △ABC =12BC ⋅AC =12AB ⋅CD , ∴CD =BC·AC AB =6×810=245,由题意得CQ =PD =t ,∴CP =245−t故答案为:t ,245−t ;(2)解:过点P 作PH ⊥AC ,垂足为H ,如图2所示.由题可知CQ =PD =t ,CP =245−t ,∵∠ACB =∠CDB =90°,∴∠HCP =90°−∠DCB =∠B ,∵PH ⊥AC ,∴∠CHP =90°,∴∠CHP =∠ACB ,∴△CHP ∽△BCA ,∴ PH AC =PC AB , ∴ PH 8=4.8−t 10,∴PH =9625−45t ,∴S △CPQ =12CQ ⋅PH =12t (9625−45t)=−25t 2+4825t ;存在某一时刻t ,使得S ΔCPQ :S ΔABC =9:100,∵S ΔABC =12×6×8=24,且S △CPQ :S △ABC =9:100,∴(−25t 2+4825t):24=9:100,整理得:5t 2−24t +27=0,即(5t −9)(t −3)=0,解得:t =95或t =3,∵0≤t ≤245, ∴当t =95秒或t =3秒时,S ΔCPQ :S ΔABC =9:100; (3)解:由(2)知∠ACD =∠B ①当∠CPQ =∠BCA =90°时,∴△CPQ ∽△BCA ,∴CP BC =CQ AB ,∴245−t 6=t 10, ∴t =3;②当∠CQP =∠BCA =90°时,∴△CQP ∽△BCA ,∴CP AB =CQ BC ,∴245−t 10=t 6∴t=95,即:t为3秒或95秒时,△CPQ为直角三角形.6.(2022·山东青岛·统考一模)如图,在矩形ABCD中,BD是对角线,AB=6cm,BC=8cm.点E从点D 出发,沿DA方向匀速运动,速度是2cm/s;点F从点B出发,沿BD方向匀速运动,速度是1cm/s,MN 是过点F的直线,分别交AB、BC于点M、N,且在运动过程中始终保持MN⊥BD.连接EM、EN、EF,两点同时出发,设运动时间为t(s)(0<t<3.6),请回答下列问题:(1)求当t为何值时,△EFD~△ABD?(2)设四边形BMEN的面积为S(cm2),求S关于t之间的函数关系式;(3)求当t为何值时,△EFD为等腰三角形;(4)将△EMN沿直线MN t的值;若不存在,请说明理由;【思路点拨】(1)由题意得,DE=2t,BF=t,在Rt△ABD中,BD=10,DF=BD=BF=10-t,当△ABD∼△EFD,利用对应边成比例,即可求出t值;(2)证得△BFM∼△BAD,可求出BM=53t,BN=54t,AM=AB-BM=6-53t,代入面积表达式,即可求出关系式;(3)分种情况进行讨论即可,注意结果是否符合;(4)假设t值存在,则四边形EKCD为矩形,利用勾股定理表示出EN2=EK2+NK2=16916t2−52t+100,EM2=AM2+AE2=616t2−52t+100,可知t=0,不符合题意,可知不存在符合的t值.【解题过程】(1)解:由题意得,DE=2t,BF=t,∵四边形ABCD为矩形,∴∠BAD=90°,在Rt△ABD中,BD=√AB2+AD2=√62+82=10,∴DF=BD=BF=10-t,当△ABD∼△EFD时,则EDAD =DFDB,即2t8=10−t10,解得:t=207.即当t为207时,△EFD~△ABD;(2)∵MN⊥BD,∴∠MFB=90°,∵∠MBF=∠MBF,∴△BFM∼△BAD,∴BF AB =BMBD,即t6=BM10,∴BM=53t,同理BN=54t,∴AM=AB-BM=6-53t,S=S梯形ABNE −S△AME=(8−2t+54t)×62−(8−2t)×(6−53t)2=−53t2+12512t,即S关于t之间的函数关系式为:S=−53t2+12512t;(3)ED=DF时,则2t=10-t,解得:t=103;ED=EF时,过点E作EG⊥BF于G,∵ED=EF,∴△EFD为等腰三角形,又∵EG⊥DF,∴DG=12DF=10−t2,∵∠EDG=∠BDA,∠EGD=∠BAD=90°,∴△EGD∼△BAD,∴DG AD =EDBD,即10−t28=2t10,∴t=5021;EF=FD时,过点F作FH⊥AD,∵EF=FD,∴△EFD为等腰三角形,又∵FH⊥ED,∴HD=12ED=t,∵∠ADB=∠HDF,∠BAD=∠FHD,∴△DHF∼△DAB,即t8=10−t10,∴t=409>3.6(舍去);综上所述,当t=103或5021时,△EFD为等腰三角形;(4)假设存在符合题意的t,则EM=EN,过点E作EK⊥BC交BC于K,则四边形EKCD为矩形,∴ED=CK=2t,EK=CD=6,NK=BC-BN-CK=8−54t−2t=8−134t,∴EN2=EK2+NK2=62+(842=16916t2−52t+100,EM2=AM2+AE2=(6−53t)2+(8−2t)2=616t2−52t+100,∴169 16t2−52t+100=619t2−52t+100,即t1=t2=0,∵t=0不符合题意,∴不存在符合题意的t.7.(2023春·山东青岛·九年级专题练习)已知,在菱形ABCD中,对角线AC,BD相交于点O,AC=6cm,BD=8cm.延长BC至点E,使CE=BC,连接ED,点F从点E出发,沿ED方向向点D运动,速度为1cm s⁄,过点F作FG⊥ED垂足为点F交CE于点G;点H从点A出发,沿AD方向向点D运动,速度为1cm s⁄,过点H作HP∥AB,交BD于点P,当F点停止运动时,点H也停止运动.设运动时间为t(0<t≤3),解答下列问题:(1)求证:∠BDE=90°;(2)是否存在某一时刻t,使G点在ED的垂直平分线上?若存在,求出t值;若不存在,请说明理由.(3)设六边形PCGFDH的面积为S(cm2),求S与t的函数关系式;(4)连接HG,是否存在某一时刻t,使HG∥AC?若存在,求出t值;若不存在,请说明理由.【思路点拨】(1)根据菱形和等腰三角形的性质,得四边形ACED为平行四边形、∠E=∠CDE,从而完成证明;(2)根据平行四边形和垂直平分线的性质分析,即可得到答案;(3)根据菱形和勾股定理的性质,得CE;延长CP,交AD于点M,根据相似三角形的性质,得MD;设AD和BC的距离为ℎ,根据三角形面积的性质,得ℎ=245cm,根据相似三角形的性质得S△GFES△BDE=t6,通过计算即可得到答案;(4)根据相似三角形的性质,得GE=5t3cm,根据平行四边形和一元一次方程的性质计算,即可得到答案.【解题过程】(1)∵菱形ABCD,∴AC⊥BD,AD=BC,AD//BC,AO=CO=12AC,BO=DO=12BD,∴∠CBD+∠ACB=90°,∠CBD=∠CDB,∵CE=BC,∴AD=CE,CD=CE,∴四边形ACED为平行四边形,∠E=∠CDE,∴AC//DE,∴∠ACB=∠E,∴∠CDB+∠CDE=90°,即∠BDE=90°;(2)∵四边形ACED为平行四边形,∴DE=AC=6cm,∵FG⊥ED,∴当EF=DF=12DE时,使G点在ED的垂直平分线上,∴t=12DE1cm s⁄=3s;(3)∵点F从点E出发,沿ED方向向点D运动,速度为1cm s⁄,点H从点A出发,沿AD方向向点D运动,速度为1cm s⁄,∴AH=EF=t(cm),∵AC⊥BD,AC=6cm,BD=8cm,AO=CO=12AC,BO=DO=12BD,∴CE=BC=CD=AD=√(12AC)2+(12BD)2=5cm,∴DH=AD−AH=5−t(cm),∵菱形ABCD,∴∠ADP=∠CDP,∵HP,∴∠HPD=∠CDP,∴∠ADP=∠HPD,∴PH=DH,如图,延长CP,交AD于点M,∵HP,∴∠MHP=∠MDC,∵∠PMH=∠CMD,∴△MPH∽△MCD,∴S△MPH S△MCD =PHCD=DHCD=5−t5,MHMD=MHMH+DH=PHCD=5−t5,∴MH MH+5−t =5−t5,∴MH=(5−t)2t,∴MD=MH+DH=(5−t)2t +5−t=5(5−t)t,设AD和BC的距离为ℎ,∴S△ACD=12AC×OD=12AD×ℎ,∴ℎ=245cm,∵∠BDE=90°,FG⊥ED,∴△GFE∽△BDE,∴S△GFE S△BDE =EFDE=t6,∴六边形PCGFDH的面积,=S△MCD−S△MPH+S△CDE−S△GFE=S△MCD−5−t5×S△MCD+S△CDE−t6×S△BDE=t5×S△MCD+S△CDE−t6×S△BDE=t5×12×MD×ℎ+12×CE×ℎ−t6×12×(BC+CE)×ℎ=t5×12×5(5−t)t×245+12×5×245−t6×12×10×245=12−12t5+12−4t=24−32t5cm,∴S=24−32t5(0<t≤3);(4)∵△GFE∽△BDE,∴GE BE =EFDES,∴GE=EF×BEDE =t×(BC+CE)6=t×106=5t3cm,∵DH=AD−AH=5−t(cm),当GE=DH时,得5t3=5−t,∴t=158,∵AD//BE,GE=DH,∴四边形HGED为平行四边形,∴HG//DE,∵AC//DE,∴HG//AC,∴当t=158时,HG//AC.8.(2022秋·山西运城·九年级校考阶段练习)如图,已知梯形ABCD中,AD∥BC,AD=1,AB=BC=4,CD=5.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B→A→D→C方向,向点C运动:动点Q从点C出发,以1cm/s 的速度,沿C→D→A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①在运动过程中,是否存在这样的t P、D、Q为顶点的三角形恰好是以DP为底的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△COE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.【思路点拨】(1)作DF∥AB交BC于F,即易证四边形ABFD是平行四边形,从而可求出DF=AB=3,BF=AD=1,CF=3.再利用勾股定理逆定理即可证∠ABC=∠DFC=90°,最后利用梯形的面积公式计算即可;(2)①在图1的基础上作QG⊥AB于G,易证四边形BEQG是矩形,即得出BG=EQ,QG=BE.又易证△CEQ∽△CFD,得出EQDF =CECF=CQCD,从而可用t表示出CE=35t,EQ=45t,BG=45t,QG=BE=4−35t.PG=t5,即可利用勾股定理得出PQ2=(15t)2+(4−35t)2,最后根据等腰三角形的定义列出等式,解出t即可;②分类讨论当△PAD∽△QEC时和当△PAD∽△CEQ时,根据对应边成比例计算即可.【解题过程】(1)如图1,作DF∥AB交BC于F,∵AD∥BC,∴四边形ABFD是平行四边形,∴DF=AB=3,BF=AD=1,∴CF=BC−BF=3.∵32+42=52,即CF2+DF2=CD2,∴∠DFF=90°,∴∠ABC=∠DFC=90°,∴S梯形ABCD =12(1+4)×4=10;(2)①如图2,在图1的基础上作QG⊥AB于G,由题意可知t≤6.∵∠B=∠QEB=90°,∴四边形BEQG是矩形,∴BG=EQ,QG=BE.∵EQ∥DF,∴△CEQ∽△CFD,∴EQ DF =CECF=CQCD,∴EQ 4=CE 3=t 5, ∴CE =35t ,EQ =45t ,∴BG =45t ,QG =BE =BC −CE =4−35t .在Rt △PQG 中,PG =BP −BG =t −45t =t 5, ∴PQ 2=PG 2+QG 2=(15t)2+(4−35t)2,由PQ 2=DQ 2得,(15t)2+(4−35t)2=(5−t)2, 解得:t 1=13−√1092,t 2=13+√1092(舍去), ∴当t =13−√1092时,使得以P 、D 、Q 为顶点的三角形恰好是以DP 为底的等腰三角形;②如图3,当△PAD∽△QEC 时,∵∠A =∠QEC =90°,∴PA AD =QE CE,即AP 1=43, ∴AP =43,∴t =4−43=83; 当△PAD∽△CEQ 时,∴PA AD =CE QE ,即PA 1=34,∴PA =34,∴t =4−34=134.综上所述:t =83或134.9.(2022秋·陕西咸阳·九年级期末)在平面直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图①,当t=3时,求DF的长;(2)如图②,当点E在线段AB上移动的过程中,DFDE的大小是否发生变化?若变化,请说明理由;若不变,请求出DFDE的值;(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t<3时的值.【思路点拨】(1)当t=3时,可知DE//OA,DE=12OA=4,则四边形DFAE是矩形,得DF=AE=3;(2)作DM⊥OA于点M,DN⊥AB N,根据两个角相等,可证明ΔDMF∽ΔDNE,得DFDE =DMDN=34;(3)作DM⊥OA于点M,DN⊥AB于点N,则点G为EF的三等分点,利用(2)同理可得E、F的坐标,从而得出点G的坐标,代入直线AD的解析式即可解决问题.【解题过程】(1)当t=3时,E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE//OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)DFDE的大小不变,理由如下:如图,作DM⊥OA于点M,DN⊥AB于点N,∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM//AB,DN//OA,∴BDDO =BNNA,DOBD=OMMA,∵点D是OB的中点,∴M,N分别是OA,OB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴ΔDMF∽ΔDNE,∴DFDE =DMDN=34;(3)作DM⊥OA于点M,DN⊥AB于点N,若AD将ΔDEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点,如图,NE=3−t,由ΔDMF∽ΔDNE得,MF=34(3−t),∴AF=4+MF=−34t+254,∵点G为EF的三等分点,∴G(3t+7112,23 t),设直线AD的表达式为y=kx+b,将A(8,0),D(4,3)代入得{8k+b=04k+b3,解得{k=−34b=6,∴直线AD的表达式为y=−34x+6,将G(3t+7112,23t)代入得:t=7541,∴当t<3时的值为t=7541.10.(2022秋·河北邯郸·九年级邯郸市第二十三中学校考期末)如图(1),在四边形ABCD中,AB∥DC,CB⊥AB,AB=14cm,BC=CD=6cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为1cm/s.点P和点Q同时出发,设运动的时间为t(s),0<t<10.(1)用含t的代数式表示AP;(2)当以点A、P、Q为顶点的三角形与△ABD相似时,求t的值;(3)如图(2),延长QP、BD,两延长线相交于点M,当ΔQMB为直角三角形时,直接写出....t的值.【思路点拨】(1)作DH⊥AB于H,得矩形DHBC,则CD=BH=6cm,DH=BC=6cm,AH=8cm,由勾股定理可求得AD的长,从而可得AP;(2)分两种相似情况加以考虑,根据对应边成比例即可完成;(3)分∠QMB=90°和∠MQB=90°两种情况考虑即可,再由相似三角形的性质即可求得t的值.【解题过程】(1)如图,作DH⊥AB于H则四边形DHBC是矩形∴CD=BH=6cm,DH=BC=6cm∴AH=8cm在RtΔADH中,由勾股定理得AD=√DH2+AH2=√62+82=10(cm)∵DP=tcm∴AP=AD−DP=(10−t)cm(2)①当ΔAPQ∽ΔADB时则有APAQ =ADAB∴10−tt =1014解得:t=356②当ΔAPQ∽ΔABD时则有APAQ =ABAD∴10−tt =1410解得:t=256综上所述,当t=356或256时,以点A、P、Q为顶点的三角形与△ABD相似;(3)①当∠QMB=90°时,ΔQMB为直角三角形如图,过点P作PN⊥AB于N,DH⊥AB于H∴∠PNQ=∠BHD∵∠QMB=90°∴∠PQN+∠DBH=90°∵∠PQN+∠QPN=90°∴∠QPN=∠DBH∴ΔPNQ∽ΔBHD∴QN PN =DHBH=66=1即QN=PN∵PN∥DH∴ΔAPN∽ΔADH∴PN AP =DHAD=610=35,ANAP=AHAD=810=45∴PN=35AP=35(10−t),AN=45AP=45(10−t)∴QN=AN−AQ=45(10−t)−t=8−95t由QN=PN得:8−95t=35(10−t)解得:t=53②当∠MQB=90°时,ΔQMB为直角三角形,如图则PQ∥DH∴ΔAPQ∽ΔADH∴AQ AP =AHAD=45∴AQ=45AP即t=45(10−t)解得:t=409综上所述,当t=53或409时,ΔQMB是直角三角形.11.(2022秋·山东青岛·九年级统考期中)如图1,在RtΔABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB 于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)当ΔPQC 是等腰三角形时,请直接写出t 值为 .(2)如图2,在运动过程中是否存在某一时刻t ,使得沿PC 翻折ΔCPQ 所得到的四边形CQPM 是菱形?若存在,求出t 的值;若不存在,请说明理由;(3)如图3,连接BP ,设四边形BPQC 的面积为S .求S 与t 之间的函数关系式;(4)是否存在某一时刻t ,使得P 、Q 、B 三点共线?若存在,求出t 的值;若不存在,请说明理由. 【思路点拨】(1)根据勾股定理及等面积法可求CD ,由等腰三角形的性质分PC =QC 、PC =QP 、PQ =CQ 三种情况讨论即可求解;(2)根据菱形的性质可知,当PQ =CQ 时复合题意,过点Q 作QF ⊥CD ,证ΔABC ∼ΔQCF ,得CF =35t ,由PC =2×35t =245−t ,即可求解;(3)过点Q 作QH ⊥CD ,证ΔABC ∼ΔQCH ,得10t=8QH,即QH =45t ,证ΔABC ∼ΔBCD ,得BD =185,由S =S Δ⬚PCQ +S ΔBPC =12PC ⋅QH +12PC ⋅BD 即可求解; (4)过点P 作PG ⊥BC ,可得,ΔABC ∼ΔCPG ,得245−t 10=CG8,即CG =45(245−t),BG =6−45(245−t),由S ΔPBC =12PC ⋅BD =12BC ⋅PG 可得PG =35(245−t),由CQPG =66−45(245−t),当ΔBCQ ∼ΔBGP 时,B 、P 、Q 三点共线,得t35(245−t)=66−45(245−t),即可求解;【解题过程】(1)解:∵∠ACB =90°,AC =8,BC =6, ∴AB =√AC 2+BC 2=√82+62=10, ∵CD ⊥AB , ∴CD =AC⋅BC AB=6×810=245,∵ΔPQC 是等腰三角形,①当PC =QC 时,即245−t =t ,解得:t =125;②当PC =QP 时,如图,过点P 作PE ⊥AC ,∵PC =QP ,PE ⊥AC , ∴QE =CE ,∵PE ⊥AC ,CD ⊥AB ,∠ACB =90°, ∴∠A =∠ACD , ∴ΔABC ∼ΔPCE , ∴AB PC=BC EC, 即,10245−t=612t,解得:t =14455.③当PQ =CQ 时,过点Q 作QF ⊥CD ,∵∠A =∠ACD , ∴ΔABC ∼ΔQCF , ∴ABQC =BCCF,即10t =6CF , ∴CF =35t ,∵PQ =CQ ,QF ⊥CD , ∴CF =PF =35t , ∴PC =2×35t =245−t ,解得:t=2411,故当ΔPQC是等腰三角形时,t值为125或14455或2411.(2)当PQ=CQ时,四边形CQPM是菱形,过点Q作QF⊥CD,∵∠A=∠ACD,∴ΔABC∼ΔQCF,∴AB QC =BCCF,即10t=6CF,∴CF=35t,∵PQ=CQ,QF⊥CD,∴CF=PF=35t,∴PC=2×35t=245−t,解得:t=2411,(3)如图,过点Q作QH⊥CD,∵∠A=∠ACD,∴ΔABC∼ΔQCH,∴AB QC =ACQH,即10t=8QH,∴QH =45t ,易证ΔABC ∼ΔBCD ,AB BC=BC BD ,即106=6BD ,解得:BD =185.S =S Δ⬚PCQ +S ΔBPC =12PC ⋅QH +12PC ⋅BD =12×(245−t)(45t +185)=−25t 2+325t +21625;(4)如图过点P 作PG ⊥BC ,可得,ΔABC ∼ΔCPG ,∴CPAB =CGAC ,即245−t 10=CG 8,∴CG =45(245−t), ∴BG =6−45(245−t),∵S ΔPBC =12PC ⋅BD =12BC ⋅PG , ∴PG =PC⋅BD BC =(245−t)×1856=35(245−t),∴CQPG =t 35(245−t),BCBG =66−45(245−t),当ΔBCQ ∼ΔBGP 时,B 、P 、Q 三点共线, 所有t35(245−t)=66−45(245−t),解得:t 1=12√6−185,t 2=−12√6−185(舍去), ∴当t =12√6−185时,P 、Q 、B 三点共线.12.(2023秋·浙江金华·九年级统考期末)如图1,在矩形ABCD 中,AB =6,BC =3,动点P 从点A 出发,沿AB 边以每秒2个单位的速度向点B 运动,同时,动点Q 从点B 出发,沿BC −CD 匀速向终点D 运动,点P 、Q 同时到达终点,BD 与PQ 交于点E .过点B 作BF ⊥PQ 于点F .设点P 、Q 的运动时间为t 秒.(1)求点Q的运动速度.(2)如图2,当点Q与点C重合时,求BE的长.(3)在点P、Q的运动过程中,是否存在某一时刻,使得以B、E、F为顶点的三角形与△BCD相似?若存在,求运动时间t的值;若不存在,请说明理由.【思路点拨】(1)求出点P运动的时间即Q运动的时间计算解题即可;(2)当点Q与点C重合时,求出BD长,利用△EPB∽△ECD解题即可;(3)分①点Q在BC边上,②点Q在DC边上,点Q在P的右侧时,③点Q在DC边上,点Q在P的左侧时三种情况利用三角形相似解题即可.【解题过程】(1)解:由题可知点P运动的时间为62=3s,点Q运动的速度为:3+63=3,(2)如图,当点Q与点C重合时,∴t=33=1∴BP=AB−AP=6−2×1=4,在Rt△BDC中,BD=√BC2+CD2=√32+62=3√5,∵AB∥CD∴△EPB∽△ECD∴BE ED =BPCD即3√5−BE=46解得:BE =65√5(3)解:∵BF ⊥PQ ∴∠BFE =∠C =90°,当△BEF ∽△BDC 时,则∠BEF =∠BDC ∴PQ ∥CD 不符合题意, 当△BEF ∽△DBC 时, ∴∠BEF =∠DBC , 当点Q 在BC 边上∴BQ =EQ =3t ,EP =PQ −3t 过点Q 作QH ∥CD 交BD 于点H , 则AB ∥CD ∥QH ,∴HQBP =EQ EP ,HQCD=BQ BC∴HQ =EQ×BP EP =3t(6−2t)PQ−3t,∴3t(6−2t)PQ−3t6=3t 3,解得:PQ =2t +3,在Rt △PQB 中,PB 2+BQ 2=PQ 2 即(2t +3)2=(6−2t)2+(3t)2, 解得:t =1或t =3(舍去)当点Q 在DC 边上,点Q 在P 的右侧时, 如图,过Q 作QH ∥BC 交AB 、BD 于点H 、M ,则HB=QC=3t−3,DQ=9−3t ∵QH∥BC,BC∥AD∴QH∥BC∥AD,∴△BMH∽△BDA∴HM AD =HBAB即3t−36=HM3解得HM=32t−32,∴QE=MQ=3−(32t−32)=92−32t,PH=6−2t−(3t−3)=9−5t∵AB∥CD∴△BPE∽△DQE∴PB DQ =PEEQ即6−2t9−3t =PE92−32t,解得PE=3−t∴PQ=PE+EQ=3−t+92−32t=152−52t在Rt△PQH中,PH2+HQ2=PQ2即(152−52t)2=(9−5t)2+32解得t=95或t=1(舍去);如图,当点Q在P的左侧时,过Q作QH∥BC交AB、BD于点H、M,则∠PEB=∠EDQ=∠DEQ=∠PBE∴PE=PB=6−2t,EQ=QD=9−3t,∴PQ=6−2t+9−3t=15−5t在Rt △PQH 中,PH 2+HQ 2=PQ 2 即(15−5t)2=(9−5t)2+32 解得t =94综上所述,当t =1或t =95或t =94时,以B 、E 、F 为顶点的三角形与△BCD 相似13.(2023秋·江苏无锡·九年级无锡市南长实验中学校考阶段练习)如图,在平面直角坐标系中,点B (6,5),过点B 作x 轴的垂线,垂足为A ,作y 轴的垂线,垂足为C .点D 从O 出发,沿y 轴正方向以每秒1个单位长度运动;点E 从O 出发,沿x 轴正方向以每秒3个单位长度运动;点F 从B 出发,沿BA 方向以每秒2个单位长度运动.当E 点运动到点A 时,三点随之停止运动.运动过程中△ODE 关于直线DE 的对称图形是△O ′DE ,设运动时间为t .(1)用含t 的代数式分别表示点E ,点F 的坐标;(2)若△ODE 与以点A ,E ,F 为顶点的三角形相似,求t 的值;(3)是否存在这样的t ,使得以D ,E ,F ,O′所围成的四边形中有一组对边平行?若存在,求出t 的值;若不存在,请说明理由. 【思路点拨】(1)由题可得OE =3t ,OD =t ,BF =2t ,易证四边形OABC 是矩形,从而得到AB =OC ,BC =OA ,即可求出AF , OE ,即可求出点E ,点F 的坐标(2)只需两种情况讨论①当△ODE ∽△AEF ,②当△ODE ∽△AFE ,然后运用相似三角形的性质即可求解;(3)过点O′作x轴的平行线与y轴交于点M,与过点E的y轴的平行线交于点N,如图1,易得△MDO′∽△NO′E,设MO′=a,根据相似三角形的性质可得出a=35t,然后分两种情况讨论即可求解.【解题过程】(1)由题可得OE=3t,OD=t,BF=2t,∵BA⊥x轴,BC⊥y轴,∠AOC=90°,∴∠AOC=∠BAO=∠BCO=90°,∴四边形OABC是矩形,∴AB=OC,BC=OA,∵B(12,10),∴BC=OA=12,AB=OC=10,∴AF=10−2t,OE=12−3t,∴点E的坐标为(3t,0),点F的坐标为(12,10−2t);(2)①当△ODE∽△AEF时,则有ODAE =OEAF,∴t 12−3t =3t10−2t,解得t1=0(舍去),t2=267,②当△ODE∽△AFE时,则有ODAF =OEAE,∴t 10−2t =3t12−3t,解得t1=0(舍去),t2=6,∵点E运动到点A时,三点随之停止运动,∴3t≤12,∴t≤4,∴t=6舍去,综上所述:t的值为267;(3)过点O′作x轴的平行线与y轴交于点M,与过点E的y轴的平行线交于点N,如图1,则有∠DMN=90°,∠N=90°,由折叠可得:DO′=DO=t,O′E=OE=3t,∠DO′E=∠DOE=90°,∴∠DMO′=∠N=90°,∠MDO′=90°−∠MO′D=∠NO′E,∴△MDO′∽△NO′E,∴MO′NE =MDNO′=O′DEO′=t3t=13,∴NE=3MO′,NO′=3MD,设MO′=a,则有OM=NE=3a,NO′=3t−a,MD=3a−t,∴3t−a=3(3a−t),解得:a=35t,∴MO′=35t,OM=95t,∴点O′的坐标为(35t,95t),①若DO′∥EF,如图2,延长O′D交x轴于S,则有O′M∥OS,∠DSE=∠FEA,∴∠MO′D=∠DSE=∠FEA,∵∠O′MD=∠EAF=90°,∴∠O ′MD ∽∠EAF ,∴MO ′AE =MD AF , ∴35t 6−3t =95t−t 5−2t ,解得:t 1=0(舍去),t 2=32, 经检验:t =32是分式方程的解, ②若OF∥DE ,如图3,过点O ′作x 轴的平行线与AB 交于点Q ,延长DE 交 BA 的延长线于点T ,同①可得 :△DOE ∽△FQO ′,∴OD QF =OE QO ′,t95t−(5−2t )=3t 6−35t ,解得t 1=0(舍去),t 2=74,综上所述:t 的值为32或74. 14.(2023秋·吉林长春·九年级长春市解放大路学校校考阶段练习)如图,在Rt △ABC 中,∠C =90°,AC =3,AB =5,点D 为边AB 上一点且BD =2.动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向终点B 运动,且点P 不与点A 、B 、D 重合.过动点P 作PQ ⊥AB 交折线AC −CB 于点Q ,作点P 关于点D 的对称点E ,连结QE .设点P 的运动时间为t 秒.(1)当点Q 与点C 重合时,t =________;(2)用含t的代数式表示PE的长;(3)当△PEQ∽△CAB时,求t的值;(4)当Q在BC上运动时,若△BEQ为等腰三角形,直接写出此时t的值.【思路点拨】(1)利用面积计算即可;(2)分两种情况讨论即可;(3)由△PEQ∽△CAB可得PEAC =PQBC,代入线段计算即可;(4)画出图形,分类讨论即可.【解题过程】(1)∵∠C=90°,AC=3,AB=5,∴BC=√AB2−AC2=4,当点Q与点C重合时,S△ABC=12AC⋅BC=12PQ⋅AB∴S△ABC=12×3×4=12PQ×5∴PQ=125,∴PA=√AC2−PQ2=95,∴t=PA÷1=95,故答案为:95;(2)由题意可得,PA=t,PB=AB−PA=5−t,AD=AB−BD=3∵点P关于点D的对称点E,∴PD=DE,∴PE=2PD,当点P在点D的右边时,0<t<3,此时PD=AD−PA=3−t=DE,∴PE=2PD=6−2t,当点P在点D的左边时,3<t<5,此时PD=PA−AD=t−3=DE,∴PE=2PD=2t−6,综上所述,PE ={6−2t(0<t <3)2t −6(3<t <5)(3)当0<t ≤95时,点Q 在AC 边上,点P 在点D 的右边,PE =6−2t ∵∠APQ =∠ACB =90°∴△PAQ ∽△CAB ,∴PA AC=PQ BC , ∴t 3=PQ 4∴PQ =43t ∵△PEQ ∽△CAB∴PE AC =PQ BC ∴6−2t 3=43t 4 ∴t =2(舍)当95<t <3时,点Q 在BC 边上,点P 在点D 的右边,PE =6−2t ,∵∠BPQ =∠ACB =90°∴△PBQ ∽△CBA ,∴BP BC =PQ AC =BQ AB , ∴5−t 4=PQ 3=BQ 5 ∴PQ =34(5−t),BQ =54(5−t)∵△PEQ ∽△CAB∴PE AC =PQ BC ∴6−2t 3=34(5−t)4t =5123,当3<t<5时,点Q在BC边上,点P在点D的左边,此时PQ=34(5−t),PE=2t−6∵△PEQ∽△CAB∴PE AC =PQBC∴2t−63=34(5−t)4t=141 41综上,当△PEQ∽△CAB时,t=5123,t=14141(4)当当Q在BC上运动时,95<t<5,当95<t<3时,点Q在BC边上,点P在点D的右边,PE=6−2t,PQ=34(5−t)此时△BEQ为钝角三角形,若△BEQ为等腰三角形,则EB=EQ=AB−PE−PA=5−(6−2t)−t=t−1,在Rt△PQE中,PQ2+PE2=QE2,∴[34(5−t)]2+(6−2t)2=(t−1)2,此方程无解当3<t<5时,点Q在BC边上,点P在点D的左边,PE=2t−6,PQ=34(5−t),BE=PA−PE=t−(2t−6)=6−t,BQ=54(5−t)。
相似三角形汇总5相似中的动点问题
相似三角形提高一、相似三角形动点问题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB 1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF ⊥AC 交射线BB1于F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD=AB ,并求出此时DE 的长度;(2)当△DEG 与△ACB 相似时,求t 的值.2.如图,在△ABC 中,∠ABC =90°,AB=6m ,BC=8m ,动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1m/s 的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s 时,求△CPQ 的面积;②求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式;(2)在P ,Q 移动的过程中,当△CPQ 为等腰三角形时,求出t 的值.3.如图1,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 在边AB 上运动,DE 平分∠CDB 交边BC 于点E ,EM ⊥BD ,垂足为M ,EN ⊥CD ,垂足为N .(1)当AD =CD 时,求证:DE ∥AC ;(2)探究:AD 为何值时,△BME 与△CNE 相似?4.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,当P 点到达B 点时,Q 点随之停止运动.设运动的时间为x .(1)当x 为何值时,PQ ∥BC ?(2)△APQ 与△CQB 能否相似?若能,求出AP 的长;若不能说明理由.5.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t (s )表示移动的时间(0<t <6)。
九年级数学动点问题之相似三角形
因动点产生的相似三角形问题(一)例1、直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.三点.(1) 写出点A 、B 、C 、D 的坐标;的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.的坐标;若不存在,请说明理由.图1 思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角..图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角. 2.用待定系数法求抛物线的解析式,用配方法求顶点坐标..用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ =90°是解题的前提.°是解题的前提.4.△ABQ 与△COD 相似,相似,按照直角边的比分两种情况,按照直角边的比分两种情况,按照直角边的比分两种情况,每种情况又按照点每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.个. 例2、Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)ky k x =¹在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO与△EFP 相似,求点P 的坐标.的坐标.图1 思路点拨1.探求m 与n 的数量关系,用m 表示点B 、D 、E 的坐标,是解题的突破口.的坐标,是解题的突破口. 2.第(2)题留给第(3)题的隐含条件是FD //x 轴.轴.3.如果△AEO 与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况.相似,因为夹角相等,根据对应边成比例,分两种情况. 例3、如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36为S,A1、B1的坐标分别为的坐标;时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、的值;若不存在,请说明理由.抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2 思路点拨1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注.通过代数变形就可以了.意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变.变化的直线PQ的斜率,因此假设直线PQ与AB的交点G在x轴轴的上方.的下方,或者假设交点G在x轴的上方.例4、如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n上.=++上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边为菱形,求平移后抛物线的表达式;形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.图1 思路点拨1.点A与点B的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法的长. 中;第(2)题用来计算平移的距离;第(3)题用来求点B′的坐标、AC和B′C的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变..抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC与△B′CD相似,根据菱形的性质,∠BAC=∠CB′D,因此按照夹角的两边对应成比例,分两种情况讨论.两边对应成比例,分两种情况讨论.例5、如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.)三点.(1)求此抛物线的解析式;)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;存在,请说明理由; (3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便.轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长..数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.3.按照两条直角边对应成比例,分两种情况列方程..按照两条直角边对应成比例,分两种情况列方程.4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .例6、如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;的函数关系式,并写出函数的定义域;(2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.的长;若不存在,请说明理由.图1 备用图备用图 备用图备用图思路点拨 1.先解读背景图,△ABC 是等腰三角形,那么第(3)题中符合条件的△DEF 也是等腰三角形.腰三角形.2.用含有x 的式子表示BD 、DE 、MN 是解答第(2)题的先决条件,注意点E 的位置不同,DE 、MN 表示的形式分两种情况.表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.合题意.4.第(3)题按照DE 为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.们轻松解题.。
动点问题之相似三角形
动点问题之相似三角形1.(2022•桂林)如图,抛物线y=-x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.2.(2022•辽宁)抛物线y=ax2-2x+c经过点A(3,0),点C(0,-3),直线y=-x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图①,点P为直线AC下方抛物线上的点,连接PA,PC,△BAF的面积记为S1,△PAC的面积记为S2,当S2=38 S1时.求点P的横坐标;(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.3.(2022•山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D 放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.4.(2022•衡阳)如图,已知抛物线y=x2-x-2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=-x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△NCM 与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.5.(2022•恩施州)在平面直角坐标系中,O 为坐标原点,抛物线y =-x 2+c 与y 轴交于点P (0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y =-x 2+c 向左平移1个单位长度,记平移后的抛物线顶点为Q ,平移后的抛物线与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .判断以B 、C 、Q 三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC 与抛物线y =-x 2+c 交于M 、N 两点(点N 在点M 的右侧),请探究在x 轴上是否存在点T ,使得以B 、N 、T 三点为顶点的三角形与△ABC 相似,若存在,请求出点T 的坐标;若不存在,请说明理由.(4)若将抛物线y =-x 2+c 进行适当的平移,当平移后的抛物线与直线BC 最多只有一个公共点时,请直接写出抛物线y =-x 2+c 平移的最短距离并求出此时抛物线的顶点坐标.6.(2022•贵港)如图,已知抛物线y =-x 2+bx +c 经过A (0,3)和B (72,-94)两点,直线AB 与x 轴相交于点C ,P 是直线AB 上方的抛物线上的一个动点,PD ⊥x 轴交AB 于点D .(1)求该抛物线的表达式;(2)若PE ∥x 轴交AB 于点E ,求PD +PE 的最大值;(3)若以A ,P ,D 为顶点的三角形与△AOC 相似,请直接写出所有满足条件的点P ,点D 的坐标.7.(2022•金华)如图,在菱形ABCD 中,AB =10,sinB =35,点E 从点B 出发沿折线B -C -D 向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA =FG .(2)若EF =FG ,当EF 过AC 中点时,求AG 的长.(3)已知FG =8,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与△BEF 相似(包括全等)?8.(2022•玉林)如图,已知抛物线:y =-2x 2+bx +c 与x 轴交于点A ,B (2,0)(A 在B 的左侧),与y 轴交于点C ,对称轴是直线x =12,P 是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D 为线段OC 的中点,则△POD 能否是等边三角形?请说明理由;(3)过点P 作x 轴的垂线与线段BC 交于点M ,垂足为点H ,若以P ,M ,C 为顶点的三角形与△BMH 相似,求点P 的坐标.9.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A (1,0),B(4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿C E向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x 轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|<9)与抛物线4只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.。
部编数学九年级下册专题15相似三角形之动点问题(解析版)含答案
专题15 相似三角形之动点问题1.如图,在Rt ABC V 中,9034C AC BC Ð=°==,,,点E 是直角边AC 上动点,点F 是斜边AB 上的动点(点F 与A B 、两点均不重合).且EF 平分Rt ABC V 的周长,设AE 长为x .(1)试用含x 的代数式表示AF = ;(2)若AEF △的面积为165,求x 的值;(3)当AEF △是等腰三角形时,求出此时AE 的长.∵BC AC FD ⊥,∴BC DF ∥.∴FDA BCA ∽V V ∴BC DF AB AF =,即∵EMA C Ð=Ð=∴EAM BAC ∽V V ∴AE AM AB AC=,1(6)x -同理FAN BAC ∽V V ∴FA AN AB AC=,∴16253x x -=,2.如图,在ABC V 中,90ABC а=,4AB =,3BC =,点P 从点A 出发,沿线段AB 以每秒5个单位长度的速度向终点B 运动,当点P 不与点A 、B 重合时,作点P 关于直线AC 的对称点Q ,连结PQ ,以PQ 、PB 为边作PBMQ Y .设PBMQ Y 与ABC V 重叠部分图形的面积为S ,点P 的运动时间为t 秒.(1)直接用含t 的代数式表示线段PQ 的长并写出t 的取值范围;(2)当点M 落在边AC 上时,求t 的值及此时PBMQ Y 的面积;(3)求S 与t 之间的函数关系式;(4)当PBMQ Y 的对角线的交点到ABC V 的两个顶点的距离相等时,直接写出t 的值.由意得5AP t =,PO QO =∴225AC AB BC +==,∵ABC AOP ∽△△,AC BC \=1122ABC S AB BC AC =×=Q △125AB BC BM AC ×\==∵四边形PQMB 是平行四边形,(45PQMB TQO S S S t =-=-Y △当2455t << 时,如图3﹣BT AC⊥Q 125AB BC BT AC \==g 2224AT AB BT \=-=则AK CK =,设AK CK =在Rt CBK V 中,2CK BC =∴()22234x x =+-,解得258x =,∵OL AB ∥,QO OB = ,∴直线OL 平分QP ,∴点L 在线段PQ 上,且AL ∴5t =.3.如图,在矩形ABCD 中,BC CD >,,BC CD 分别是一元二次方程214480x x -+=的两个根,连结BD ,动点P 从B 出发,以1个单位每秒速度,沿BD 方向运动,同时,动点Q 从点D 出发,以同样的速度沿射线DA 运动,当点P 到达点D 时,点Q 即停止运动,设运动时间为t 秒.以PQ 为斜边作Rt PQM D ,使点M 落在线段BD 上.(1)求线段BD 的长度;D面积的最大值;(2)求PDQ(3)当PQMD与BCDD相似时,求t的值.4.如图,在ABC V 中,10cm AB = ,20cm BC =,点P 从点A 开始沿AB 边向B 点以2cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm /s 的速度移动,如果P Q , 分别从A B , 同时出发,问经过几秒钟,△△P B Q A B C : .5.如图,在ABC V 中,90C Ð=°,6AC =,8BC =,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF Ð=°,EF 交射线BC 于点F .设BE x =,BED V 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED V 相似,求BED V 的面积.【点睛】本题主要考查了相似三角形的性质,函数关系式.注意(2)中都要分情况进行讨论:要分BEF Ð时钝角还是锐角进行分类讨论,不要丢掉任何一种情况.6.如图,矩形ABCD 中,AD AB ==25, ,P 为CD 边上的动点,当ADP △与BCP V 相似时,求DP 长.7.如图,在ABC V 中,908C AC Ð=°=,cm ,动点P 从点C 出发沿着C B A --的方向以2cm/s 的速度向终点A 运动,另一动点Q 同时从点A 出发沿着AC 方向以1cm/s 的速度向终点C 运动,P 、Q 两点同时到达各自的终点,设运动时间为t (s ).APQ V 的面积为2cm S .(1)求BC的长;(2)求S与t的函数关系式,并写出的取值范围;V相似?(3)当t为多少秒时,以P、C、Q为顶点的三角形和ABC8.如图,在ABC V 中,8cm 10cm AB AC ==、,点P 从A 出发,以2cm/s 的速度向B 运动,同时点Q 从C 出发,以3cm/s 的速度向A 运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为s t ,(1)则AP = ;AQ = ____ (用含t 的代数式表示)(2)求运动时间t 的值为多少时,以A 、P 、Q 为顶点的三角形与ABC V 相似?9.如图1,在Rt ABC △中,=90=6cm =8cm ACB AC BC а,,,动点P 从点B 出发,在BA 边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒()02t <<,连接PQ .(1)若BPQ V 与ABC V 相似,求t 的值;(2)直接写出BPQ V 是等腰三角形时t 的值;(3)如图2,连接AQ 、CP ,若AQ CP ⊥,求t 的值.则12BG PB ==∵=QBG ABC ÐÐ∴BGQ BCA ~V V BG BQ =5∵PM BC ACB ⊥Ð,∴PM AC ∥,10.如图1,在ABC V 中,90,3,4BCA AC BC а===,点P 为斜边AB 上一点,过点P 作射线PD PE ⊥,分别交AC 、BC 于点D ,E .(1)问题产生∶若P 为AB 中点,当,PD AC PE BC ⊥⊥时,PD PE= ;(2)问题延伸:在(1)的情况下,将若∠DPE 绕着点P 旋转到图2的位置,PD PE 的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;(3)问题解决:如图3,连接DE ,若PDE V 与ABC V 相似,求BP 的值.(3)如图2,连接CP,如图3,当PDE △∽△∵90DPE ACB Ð+Ð=°∴点C 、D 、P 、E 共圆,综上所述:165BP =或【点睛】本题考查相似三角形的判定和性质.通过添加合适的辅助线证明三角形相似是解题的关键.同时,本题考查了三角形的中位线定理,以及利用四点共圆证明角相等,是一道综合题.11.如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为245∵QE⊥AO,BO⊥AO,∴QE∥BO,∴△AEQ∽△AOB,∴45QE BOAQ AB==44812.如图,在矩形ABCD中,12AB=cm,=3AD cm,点E、F同时分别从D、B两点出发,以1cm/s 的速度沿DC、BA向终点C、A运动,点G、H分别为AE、CF的中点,设运动时间为t(s).(1)求证:四边形EGFH是平行四边形.(2)填空:①当t为______s时,四边形EGFH是菱形;②当t为______s时,四边形EGFH是矩形.13.如图,在Rt △ABC 中,∠C =90°,AC =4cm ,BC =8cm ,点D ,E 分别为边AB ,AC 的中点,连结DE ,点P 从点B 出发,沿折线BD -DE -EA 运动,到点A 后立即停止.点P 在BD 的速度运动,在折线DE -EA 上以1cm/s 的速度运动.在点P 的运动过程中,过点P 作PQ ⊥BC 于点Q ,以PQ 为边作正方形PQMN ,点M 在线段BQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上时,求正方形PQMN 的边长.(2)当点N 落在边AB 上时,求t 的值.(3)在点P 的整个运动过程中,记正方形PQMN 与△ABC 重叠部分图形面积为S (cm ²),求S 与t 的函数关系式,写出相应t的取值范围.14.如图,矩形ABCD 中,15AB cm =,10BC cm =,动点P 从点A 出发,沿AB 边以2/s cm 的速度cm的速度向点A匀速移动,一个动点到达端向点B匀速移动,动点Q从点D出发,沿DA边以1/s点时,另一个动点也停止运动,点P,Q同时出发,设运动时间为s t.(1)当t为何值时,APQ△的面积为216cm(2)t为何值时,以A,P,Q为顶点的三角形与ABCV相似.【点睛】本题主要考查了相似三角形的判定,一元二次方程的解法等知识,熟练掌握相似三角形的判定是解题的关键,同时注意分类讨论思想的运用.15.阅读与思考如图是两位同学对一道习题的交流,请认真阅读下列对话并完成相应的任务.解决问题:(1)写出正确的比例式及后续解答.(2)指出另一个错误,并给出正确解答.拓展延伸:(3)如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,直接写出t的值;若不存在,请说明理由.16.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA向点A 以1厘米/秒的速度移动,点Q从点B开始沿BO向点O以1厘米/秒的速度移动.当一点运动到终点时,另一点也随之停止.如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6),求当V POQ与V AOB相似时t的值.17.如图,△ABC中,AB=AC=10cm.BC=16cm,动点P从点C出发沿线段CB以2cm/s的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也停止运动,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的⊙Q与射线BA、线段BC分别交于点D,E,连接DP.(1)当t为何值时,线段DP与⊙Q相切;(2)若⊙Q与线段DP只有一个公共点,求t的取值范围;(3)当△APC是等腰三角形时,直接写出t的值.18.如图,在△ABC中,∠C=90°,BC=8,AC=6,点P,Q同时从点B出发,点P以每秒5个单位长度的速度沿折线BA﹣AC运动,点Q以每秒3个单位长度的速度沿折线BC﹣CA运动,当点P,Q相遇时,两点同时停止运动,设点P运动的时间为t秒,△PBQ的面积为S.(1)当P,Q两点相遇时,t= 秒;(2)求S关于t的函数关系式,并直接写出t的取值范围.90PHB C \Ð=Ð=°,B B ÐÐ=Q ,ΔΔABC PBH \∽,\PH BP AC AB=,165PC t =-,113(16522S PQ PC t t =´=´´-当833t ……时,如图,248PQ t =-,118(248)22S PQ BC t =´=´-=-19.如图,在Rt△ABC 中,∠C=90°,AC=16,BC=12.动点P 从点B 出发,沿线段BA 以每秒 2 个单位长度的速度向终点 A 运动,同时动点Q 从点 A 出发,沿折线AC—CB 以每秒 2 个单位长度的速度向点 B 运动.当点P 到达终点时,点Q 也停止运动.设运动的时间为t 秒.(1)AB= ;(2)用含t 的代数式表示线段CQ 的长;(3)当Q 在AC 上运动时,若以点A、P、Q为顶点的三角形与△ABC 相似,求t 的值;(4)设点O 是PA 的中点,当OQ 与△ABC 的一边垂直时,请直接写出t 的值.【点睛】本题考查了勾股定理,动点问题,相似三角形的性质与判定,分类讨论是解题的关键.20.如图,抛物线23y ax bx =+-交x 轴于()30A -,,()10B ,两点,与y 轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE V 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC V 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.【分析】(1)把()30A -,和()10B ,的坐标代入抛物线解析求出a 和b 即可求解;(2)求出直线AC 的解析式为3y x =--,设()223P n n n +-,,则()3G n n --,,由三角形面积可得出1n =-或2n =-,则可得出答案;(3)分两种情况,①若AON ABC V V ∽,②若AON ACB V V ∽,由相似三角形的性质可求出ON 的长,求出N 点坐标,联立直线ON 和抛物线的解析式可求出答案.(1)解:∵抛物线y =a 2x +bx -3交x 轴于()30A -,,()10B ,两点,∴933030a b a b --=ìí+-=î ,解得12a b =ìí=î,∴该抛物线的解析式为223y x x =+-;(2)解:∵抛物线的解析式为223y x x =+-,∴0x =时,=3y -,∴()03C -,,∴AO OC =.∵=90AOC а,∴45CAO Ð=°.∵PM OA ⊥,PE AC ⊥,∴45PGM PGE GPE Ð=Ð=Ð=°,设直线AC 的解析式为y kx m =+,∴303k m m +=ìí=-î ,∴13k m =-ìí=-î,∴直线AC 的解析式为3y x =--,设()223P n n n +-,,则()3G n n --,,∴94 AK=,∴93344 OK=-=,∴39,44Næö--ç÷èø,∴直线ON的解析式为3y=。
初三数学相似三角形的动点问题
初三数学---相似三角形的动点问题模型:图務中,如果存在一个或者两个动点,求两个动点与某一个定点所构成的三角邢与原三角形相似 如图:RtAABC 中,AB=8, AO10*点卩以每秒1个单位由A 点向B 点够动,点Q 以每秒2个单位由匚点向A 点移动,当其中一点到达时,两个运动的点同时停止运动,问:如杲设运动吋间为匚当t 为 多少时’ AAPQ 与△ABC 相似?分祈:(1)动点:在本筷型中,卩、Q 为两个动点,线段AP 、BP. CQ. AQ 长随时莊找生改变.但是, AP 段代表P 点移动的距离,可以用 ________________ 来表示,那么BP 线段可以用 ____ 来表示一同理,CQ 线段代表Q 点移动的距离,可以用 ______ 表示,AQ 则囲 _______ 養示.(2)相似:两种情况:①△APQ S AABC;②厶APQ S AACB证明:〒先 AP 二 __ , BP= ___________ , CQ=_______, AQ= __________①当△APQ S AABC 时②当△APQ CO AACB 时AP _ <)AE - <AP L?AC _:t ( \ t _ f ? a~ r \d'lQ _ ( 3:X =.-.t =当亡=或上=时’ AAPQ 与△ABC 相似.总结:在劫点型间題中,我们要注意两项:1,把国形中所有变化的議段的长度全部用字母表示出来; 2. 在求证三角瑙相似时,要记住有两种情况!例1在RtAABC中,ZC=90D , AO20cm. BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点(:出发’沿线段OJ也向点B方向运动.如果点卩的速度是4切/秒「点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点吋,就停止运动.设运动的时间为t秒,(1)用含t的代数式表示RtACPQ的血积Sj <2)当说秋时*人Q两点之间的距离是务少?(3)当t为多少秒时,以点C.Q为顶点的三箱形与比相似?例2如图*在矩形ABCD中,AB-12CJT, BC-ficm,点卩沿妞边从点A开始向点B以2cm/s的速度移动:点◎沿DA边从点D开始问点A以lcm/s的速度’如果化Q同时出发,用t (s)袤示移动的时虬共屮0<t<6(那么:(1)当t为何值时,△QA卩是等腰直角三角形?住)求四边形QAPC的谄枳,提出一牛与计算结果有关的结论;(3)当t为何值时,以点Q、A. P为顶点的三角形与△ABC相似?A P U例3如圈所示,在A ABC BA=BC=20cm J AC=30cm,点卩从A 点出发,沿着屈以每秒4伽的速度向11 点运动;同时点Q 从匚点出发,沿CA 以每秋3cm 的速度向A 点运动’设运动时间为x, {门当x 为何值时,能,请说明理由.例巾如图,在平面直角坐标系内,己知点A (0,6X 点H (8+0),动点卩从点A 幵始在线段AO 上以每秒I 个单位长度的速度向点0移动*同时动点Q 从点R 开始在线段BA 上以每秒2个单位抵度的速度向点A 移动’设点巴Q 移动的时间为t 秒.(D 求直线AB K 解析式;(2)当t 为何值时+ MPQ 与MOR 相伽课堂练习PQ//BC?的值* (3) AAPQ 能否与ACQB 相似?若能,求出2的长;若不<3)当t 为何值时’ 24MPQ 的血积为g 个平方单位?*砒Q1*如图*直角梯形ABCD中,AD/7BC. AB丄BC,若AD=2, BC=3, AB^7,动点P在AB上,则使△PAD与△PBC相似的PA的值?(求出所有可能的情形)2.如图’在长方形ABCD中,AB-2T BC=4, Q是DC边的中点,P为一动点,若点P从B点出发:以1个单位/秒的速度沿着BC方向运动.设从点B出发运动了1秒,(1)写出AAQP的面积y关于x的函数关系式.并求出自变量從的取值范围.(2)问当x取何值时,AAQP是等腰三角形?3,如图,AABC中,ZC=90° , AC=3cm, BC=4cm,动点P从点B岀发以2cm/s的速度向点C移动,动点Q 从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,耍使ACPQ与ACBA相似「所需要的时间是多少秒?P4. i □图,正方形ABCD 的边长为4, E 是BC 边的中点,点P 在射线AD 上,过P 点作PF 丄AE 丁 F. 1 )求证:A PFA^A ABE :<2)当点P 在射线AD 上运动时,设PA=x,是否存在实数也使以P 、F 、E 为顶点的三角形也与A ABE相似?若存在,请求出x 的值:若不存在,说明理由*5. 如图,已^flAABC 是边长是6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中,点P 运动的速度是Icm/s,点Q 送动的速度是2cm/s.当点Q 到达点C 时,P 、Q 两点 都停止运动,设运动时间为t, (I)当"2时,判断ZXBPQ 的形状,并说明理由;(2)设ABPQ 的面积为 S,求S 与I 的函数关系式:(3)作QR//BA 交AC 于点R,连接PR*当t 为何值时,AAPR^APRQ?BRC。
相似三角形的动点问题题型(整理)
相似三角形的动点问题题型(整理) 相似三角形的动点问题一、动点型例1、已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形。
当点M在点B左侧时,可以得出结论:EN与MF相等且点F不在直线NE上。
当点M在BC上时,该结论仍然成立,可以利用图2证明。
若点M在点C右侧时,画出相应的图形,可以直接得出结论,不必证明或说明理由。
例2、在矩形ABCD中,AB=12cm,BC=8cm。
点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动。
点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G时,三个点随之停止移动。
设移动开始后第t秒时,△EFG的面积为S(cm2)。
1)当t=1秒时,S的值为多少?2)S与t之间的函数解析式为S=2t^2+4t,自变量t的取值范围为0<t<2.3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似。
理由是BC与FG平行,因此△BEF与△FCG相似,当EF=FG 时,两个三角形相似,即t=1秒。
二、迁移应用1、已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s)。
1)当t=2时,可以判断△BPQ为等腰三角形,因为BP=2PQ,且∠BPQ=120°。
2)设△BPQ的面积为S(cm2),则S=6t/(5+t),其中0<t<2.3)作QR//BA交AC于点R,连结PR,当t=2时,可以得出△APR∽△PRQ,因为∠RAP=∠QRP且∠APR=∠RPQ。
2、在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5)。
初三数学相似三角形动点问题
1、如图,在梯形ABCD 中,//AD BC ,点E 在对角线BD 上,且DCE ADB ∠=∠,如果9BC =,CD ∶BD = 2∶3,求CE 的长.2、如图,已知在△ABC 中,AE=AC ,AH ⊥CE ,垂足K ,BH ⊥AH ,垂足H ,AH 交BC 于D 。
求证:△ABH ∽△ACK3、已知:如图,AD 是RT △ABC 的角平分线,AD 的垂直平分线EF 交CB 的延长线于点F, 求证:FC FB FD ∙=2 AEF B D CA B CDE4、已知:如图,四边形ABCD 中,∠A=∠BCD=900,过C 作对角线BD 的垂线交BD 、AD 于点E 、F 。
求证:DA DF CD ∙=2 DF AEB C5、如图;以DE 为轴,折叠等边△ABC ,顶点A 正好落在BC 边上F点, 求证;△DBF ∽△FCE6.如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.128:33l y x =+2:216l y x =-+C l l 12,、x A B 、DEFG D E 、12l l 、F G 、x G B ABC △DEFG DE EF DEFG x (012)t t ≤≤DEFG ABC △S S t t7、如图,已知AB//EF//CD 。
若AB=6厘米,CD=9厘米,求EF8、如图,已知AB//EF//CD 。
若AB=a, CD=b , EF=c, 求证;c b a 111=+9、如图,的对角线交于O ,OE 交BC 于E ,交AB 的延长线于F ,若AB=a ,BC=b ,BF=c ,求 BEB10、如图;在△ABC 中,∠BAC=120°,AD 平分∠BAC 交BC 于D求证:AC AB AD111+=11.如图,在ABC 中,AD=DB,∠1=∠2,试说明△ABC ∽△EAD 。
相似三角形-动点问题
CN 相似三角形中动点问题1、如图正方形ABCD 的边长为2,AE=EB ,线段MN 的两端点分别在CB 、CD 上滑动,且MN=1,当CM 为何值时△AED 与以M 、N 、C 为顶点的三角形相似?2、已知△ABC 中,∠A=90°,AB=4,AC=3,点E 是边AB 上一动点,且EF ∥BC 。
(1) 在AB 上是否存在点E 运动到某一位置时,使△AEF 的面积与四边形EBCF 的面积相等?如果存在,求出AE 的长;如果不存在,简要说明理由。
(2) 在AB 上是否存在点E 运动到某一位置时,使△AEF 的周长与四边形EBCF 的周长相等?如果存在,求出AE 的长;如果不存在,简要说明理由。
3、如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F.(1)ΔABE 与ΔADF 相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF 的长。
4、如图,在△ABC 中,AB=8,BC=7,AC=6,有一动点P 从A 沿AB 移动到B ,移动速度为2单位/秒,有一动点Q 从C 沿CA 移动到A ,移动速度为1单位/秒,问两动点同时移动多少时间时,△PQA 与△BCA 相似。
5.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?2.(2008年江苏省南通市)如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E.(1)求证:AB ·AF =CB ·CD(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点.设DP =xcm (x >0),四边形BCDP 的面积为ycm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.。
(word完整版)相似三角形动点问题题型
动点问题 题型方法归纳动态几何特点—---问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置.) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨. 一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;图(3)B图(1)B图(2)2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形. 注意:第(3)问按直角位置分类讨论OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;t s.问当t (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位(3)若OC OB的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.Array注意:发现并充分运用特殊角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。
相似三角形汇总5相似中的动点问题
相似三角形提高一、相似三角形动点问题∥AC.动点D从点A出1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中, ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC 向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB 交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm 的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。
相似三角形的动点问题题型(整理)
相似三角形的动点问题一、动点型例1、如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例2、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.迁移应用1、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C时,P、Q两点都停止运动,设运动时间为t(s),(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?2、如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0<t<5).1)求证:△ACD∽△BAC;2)求:DC的长;3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.3、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M 是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.二、动点加动线例1、如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t 的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.迁移应用1、如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值.2、如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF ⊥AE 于F .(1)求证:△PFA ∽△ABE ;(2)当点P 在射线AD 上运动时,设PA=x ,是否存在实数x ,使以P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,说明理由.3、如图,已知A (8,0),B (0,6),两个动点P 、Q 同时在△OAB 的边上按逆时针方向(→O →A →B →O →)运动,开始时点P 在点B 位置,点Q 在点O 位置,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ 的面积S 与时间t 之间的关系式;并求出△OPQ 的最大面积; (2)在前10秒内,秋P 、Q 两点之间的最小距离,并求此时点P 、Q 的坐标;(3)在前15秒内,探究PQ 平行于△OAB 一边的情况,并求平行时点P 、Q 的坐标.4、已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB ,点A 、C 的坐标分别为A(-3,0),C(1,0),43AC BC , (1)求过点A 、B 的直线的函数表达式;(2)在X 轴上找一点D,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点Dyx O AB的坐标;(3)在(2)的条件下,如P 、Q 分别是AB 和AD 上的动点,连接PQ ,设AP=DQ=m ,问是否存在这样的m 使得△APQ 与△ADB 相似,如存在,请求出m 的值;如不存在,请说明理由.5、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C在Y 轴上,将边BC 折叠,使点B 落在边OA 的点D 处.已知折叠CE=55,且43DAEA (1)判断OCD 与△ADE 是否相似?请说明理由;A C OB xy(2)求直线CE 与x 轴交点P 的坐标; (3)是否存在过点D 的直线L ,使直线L 、直线CE 与x 轴所围成的三角形和△CDE 相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.6、△ABC 中,AB=AC=5,BC=6,点P 从点B 开始沿BC 边以每秒1的速度向点C 运动,点Q 从点C 开始沿CA 边以每秒2的速度向点A 运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交BC 于点E .点P ,Q 分别从B ,C 两点同时出发,当点Q 运动到点A 时,点Q 、p 停止运动,设它们运动的时间为x .1)当x= 秒时,射线DE 经过点C ;O xy CB E D A2)当点Q运动时,设四边形ABPQ的面积为y,求y与x的函数关系式;3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x的值;若不存在,请说明理由.7、如图,梯形ABCD中,AD∥BC,AB=CD=20cm,AD=40cm,∠D=120°,点P、Q同时从C点出发,分别以2cm/s和1cm/s的速度沿着线段CB和线段CD运动,当Q到达点D,点P也随之停止运动.设运动时间为t(s)(1)当t为何值时,△CPQ与△ABP相似;(2)设△APQ与梯形ABCD重合的面积为S,求S与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD 的交点为E ,与折线A-C-B 的交点为Q .点M 运动的时间为t (秒). (1)当t=0.5时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值; (3)当t >2时,连接PQ 交线段AC 于点R .请探究RQCQ是否为定值,若是,试求这个定值;若不是,请说明理由.9、如图1,直角梯形ABCD 中,∠A=∠B=90°,AD=AB=6cm ,BC=8cm ,点E 从点A 出发沿AD 方向以1cm/s 的速度向中点D 运动;点F 从点C 出发沿CA 方向以2cm/s 的速度向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.(1)当t为何值时,△AEF和△ACD相似?(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;(3)当t为何值时,△AFE的面积最大?最大值是多少?10、如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为。
相似三角形之动点问题(解析版)九年级数学下册常考点微专题提分精练(人教版)
专题15 相似三角形之动点问题1.如图,在Rt ABC 中,9034C AC BC ∠=︒==,,,点E 是直角边AC 上动点,点F 是斜边AB 上的动点(点F 与A B 、两点均不重合).且EF 平分Rt ABC 的周长,设AE 长为x .(1)试用含x 的代数式表示AF = ;(2)若AEF △的面积为165,求x 的值; (3)当AEF △是等腰三角形时,求出此时AE 的长. 证明FDA BCA ∽,根据相似三角形的性质得出即可求解; AE =,②AE EF =,③Rt ABC 中,由勾股定理得:∴ABC 的周长512=.AE AF +=6AF AE =-故答案为:(2)过点AC .∴BC AC FD AC ⊥⊥,,∴FDA BCA ∽.BC DF AB AF =,即456=2445x DF -=, AEF △的面积为165∴90EMA C EAM CAB ∠=∠=︒∠=∠,,∴EAM BAC ∽,AE AM AB AC=, 1(6)253x x -=,同理FAN BAC∽,ANAC=,123xx=,3611,.如图,在ABC中,秒5个单位长度的速度向终点B运动,当点P不与点A、B重合时,作点P关于直线AC的对称点Q,连结PQ,以PQ、PB为边作PBMQ.设PBMQ与ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)直接用含t的代数式表示线段PQ的长并写出t的取值范围;(2)当点M落在边AC上时,求t的值及此时PBMQ的面积;(3)求S与t之间的函数关系式;(4)当PBMQ的对角线的交点到ABC的两个顶点的距离相等时,直接写出t的值.由意得5AP t =,PO QO =,在Rt ABC △中,AB =4,BC =3,11ABC S =△AB BM ∴=∴四边形PQMB PQ BM ∴=PBMQ S BM =3)当0<4196PQMB S S -△BT AC⊥125AB BCBTAC∴==22AT AB BT∴=-=AOP ABC∽△△::AP OA OP AC∴=3OP t∴=OT AT∴=∴(12S OP=则AK CK=,设AK CK x==.Rt CBK中,(234=+-258x=,=,∴OL AB∥,QO OB-+=x x14480根,连结BD,动点P从B出发,以1个单位每秒速度,沿BD方向运动,同时,动点Q从点D出发,以同样的速度沿射线DA运动,当点P到达点D时,点Q即停止运动,设运动时∆,使点M落在线段BD上.间为t秒.以PQ为斜边作Rt PQM(1)求线段BD 的长度;(2)求PDQ ∆面积的最大值;(3)当PQM ∆与BCD ∆相似时,求t 的值. DBA ∆4t 50BDC ∆时PM BC958t - 50DBC ∆时PM DC956t - 40DBC ∆时BDC ∆时综上,当5013t =或【点睛】本题考查相似三角形的动点问题,别注意分类讨论..如图,在ABC 中,P A B 2cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm /s 的速度移动,如果P Q , 分别从A B , 同时出发,问经过几秒钟,△△PBQ ABC .△ABC ,△ABC ,则20cm BC =420t ,解方程得,△ABC ,则2t ,解方程得,或5s 2时,△△ABC ,故答案是:1s 或5s 2【点睛】本题主要考查相似三角形性质的应用,掌握相似三角形的性质是解题的关键..如图,在ABC 中,90C ∠=︒,一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED 相似,求BED 的面积.在ABC 中,2AB AC =E 为AB 上动点可与5x =时,C 到AB 的距离为AC CB h AB ⨯=BEH BAC ∴∽EH BE AC AB= 35AC BE EH x AB ⋅== 12DEBS BD EH =⋅=6165y x =(2)由题意知90BEF ∠≠︒,故可以分两种情况.为顶点的三角形与BED 相似,又知EH BC H ⊥于综上所述,BED 的面积是【点睛】本题主要考查了相似三角形的性质,函数关系式.注意(2)中都要分情况进行讨论:要分BEF ∠时钝角还是锐角进行分类讨论,不要丢掉任何一种情况. 6.如图,矩形ABCD 中,AD AB ==25 , ,P 为CD 边上的动点,当ADP △与BCP 相似时,求DP 长.【答案】1DP = 或4 或2.5PBC ∽分两类情况讨论即可;PBC ∽时,2x 1 或4x = 1= 或4 本题考查了相似三角形与动点问题;在ABC 中,的速度向终点A 运动,另一动点Q 同时从点A 出发沿着AC 方向以1cm/s 的速度向终点C 运动,P 、Q 两点同时到达各自的终点,设运动时间为t (s ).APQ 的面积为2cm S .(1)求BC的长;(2)求S与t的函数关系式,并写出的取值范围;(3)当t为多少秒时,以P、C、Q为顶点的三角形和ABC相似?∴APH ABC ∆∆,PH BC, 6cm AB ==,2106t PH =, 486t -,AQ AC.如图,在ABC中,同时点Q从C出发,以3cm/s的速度向A运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为s t,(1)则AP=;AQ=____ (用含t的代数式表示)(2)求运动时间t的值为多少时,以A、P、Q为顶点的三角形与ABC相似?为顶点的三角形与ABC 相似,为顶点的三角形与ABC 相似.相似三角形的动点问题,=8cm BC ,,动点边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒()02t <<,连接PQ .(1)若BPQ 与ABC 相似,求t 的值;(2)直接写出BPQ 是等腰三角形时t 的值;(3)如图2,连接AQ 、CP ,若AQ CP ⊥,求t 的值.(2)BPQ 是等腰三角形时78t =【分析】(1)根据勾股定理可得①BPQ BAC ~,②BPQ BCA ~,根据相似三角形的性质将10cm 8cm BC =,代入计算即可得;BGQ BCA ~,得到比例式进而即可求解;(3)设AQ ,CP 交于点得3cm PM t =,BM ,再证出ACQ CMP ~,根据相似三角形的性质即可得.(1)解:∴=90ACB AC ∠︒,当BPQ BAC ~时,84=8t -, =1;当BPQ BCA ~时,BP BC 84=10t -, 4132=, 综上,t 的值为1或4132;15∴BGQ BCA ~,BG BQ BC BA =即582=810t -解得:6457t =; 综上所述:BPQ 是等腰三角形时解:如图,设AQ ,CP∴=90PM BC ACB ⊥∠︒,,BAC △,PM BM AC BC =,即3cm t =,BM (=8BC BM -+=90NCA ∠∠∴ACQ CMP ~,AC CQ CM MP=,即68-解得78t =, 经检验78t =是该分式方程的解.,在ABC 中,线PD PE ⊥,分别交AC 、BC 于点D ,E .(1)问题产生∴若P 为AB 中点,当,PD AC PE BC ⊥⊥时,PD PE= ; (2)问题延伸:在(1)的情况下,将若∴DPE 绕着点P 旋转到图2的位置,PD PE 的值是否会发生改变?如果不变,请证明;如果改变,请说明理由;(3)问题解决:如图3,连接DE,若PDE与ABC相似,求BP的值.是ABC的中位线,利用中位线定理即可得解;PM BC PN∥是ABC的中位线,得到,PNE,得到,即可得证;︒=︒,CAB∽△,利用90180,利用相似比即可得解,当(3)如图3,当PDE CBA △∽△时,则PDE B ∠=∠,165段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)当t为何值时,∴APQ与∴AOB相似?(2)当t为何值时,∴APQ的面积为24 5∴QE∴AO,BO∴AO,以1cm/s的速度沿DC、BA向终点C、A运动,点G、H分别为AE、CF的中点,设运动时间为t(s).(1)求证:四边形EGFH是平行四边形.(2)填空:①当t为______s时,四边形EGFH是菱形;②当t为______s时,四边形EGFH是矩形.∴四边形EGFH是菱形,G是AE的中点.点,连结DE ,点P 从点B 出发,沿折线BD -DE -EA 运动,到点A 后立即停止.点P 在BD 的速度运动,在折线DE -EA 上以1cm/s 的速度运动.在点P 的运动过程中,过点P 作PQ ∴BC 于点Q ,以PQ 为边作正方形PQMN ,点M 在线段BQ 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上时,求正方形PQMN 的边长.(2)当点N 落在边AB 上时,求t 的值.(3)在点P 的整个运动过程中,记正方形PQMN 与∴ABC 重叠部分图形面积为S (cm ²),求S 与t 的函数关系式,写出相应t 的取值范围.(2)(3)∴PQ∥AC,∴DP=t-2,PQ=MQ=2,20∴PE=t-2-4=t-6,∴PE =t-6,P A 的速度向点B 匀速移动,动点Q 从点D 出发,沿DA 边以1/s cm 的速度向点A 匀速移动,一个动点到达端点时,另一个动点也停止运动,点P ,Q 同时出发,设运动时间为s t .(1)当t 为何值时,APQ △的面积为216cm(2)t 为何值时,以A ,P ,Q 为顶点的三角形与ABC 相似.为顶点的三角形与ABC APQ 的面积为(12102t ∴⋅⋅解得2t =或07.5t<< ABC∠=∴当BCAB=为顶点的三角形与ABC相似,1010 152∴=解得307t=为顶点的三角形与ABC相似.一元二次方程的解法等知识,角形的判定是解题的关键,同时注意分类讨论思想的运用.如图是两位同学对一道习题的交流,请认真阅读下列对话并完成相应的任务.解决问题:(1)写出正确的比例式及后续解答.(2)指出另一个错误,并给出正确解答.拓展延伸:(3)如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,是否存在时刻t,使以A,M,N为顶点的三角形与∴ACD相似?若存在,直接写出t的值;若不存在,请说明理由.DE AD )根据题意可知有两种情况分别是AMNDCA 和AMN DAC ,然后列出方程进行∴ADEABC 正确比例式是:DE BC =AD AB BC AB ⋅=()AB BD AB -5⨯5 另一个错误是没有进行分类讨论,如图,过点DE AD 第一种:当AMN DCA 时,,则AN =6-2t ,第二种:当AMN DAC时,AN,DC,,向点A以1厘米/秒的速度移动,点Q从点B开始沿BO向点O以1厘米/秒的速度移动.当一点运动到终点时,另一点也随之停止.如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6),求当POQ与AOB相似时t的值.【答案】4或2∴ 当t=4或t=2时,∴POQ与∴AOB相似.【点睛】本题考查相似三角形的性质、解一元一次方程,熟练掌握相似三角形的对应边成比例是解答的关键.17.如图,△ABC中,AB=AC=10cm.BC=16cm,动点P从点C出发沿线段CB以2cm/s 的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也停止运动,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的∴Q与射线BA、线段BC分别交于点D,E,连接DP.(1)当t为何值时,线段DP与∴Q相切;(2)若∴Q与线段DP只有一个公共点,求t的取值范围;(3)当△APC是等腰三角形时,直接写出t的值.1 DE AN∴AB=AC=10cm,BC=16cm,AN∴BC,则2t =10,5个单位长度的速度沿折线BA ﹣AC 运动,点Q 以每秒3个单位长度的速度沿折线BC ﹣CA 运动,当点P ,Q 相遇时,两点同时停止运动,设点P 运动的时间为t 秒,∴PBQ 的面积为S .(1)当P ,Q 两点相遇时,t = 秒;(2)求S 关于t 的函数关系式,并直接写出t 的取值范围.2(02)824(2)3896(3)3t t t t <+<+.02t <时,当823t <时,当833t 时,利用三角形相似和三角形的的关系式.90C ∠=6AC =, AB ∴=53t t ∴+3.∴当P ,两点相遇时,3t =秒,故答案为:(2)02t <时,当823t <时,ABC ∆中,过点P 作PH ⊥90PHB C ∴∠=∠=︒,B ∠∠=ΔABC ∴∽∴PH BP AC AB=5BP t =,3PH t ∴=3BQ t =,132S ∴=⨯当823t <时,如图,165PCt =-,833t 时,如图,248PQ t =-,2(02)824(2)3896(3)3t t t t <+<+. 【点睛】本题主要考查了动点问题的函数图象,解决问题的关键是理清图象的含义即会识图.通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、中,∴C =90°以每秒 2 个单位长度的速度向终点 A 运动,同时动点 Q 从点 A 出发,沿折线 AC —CB 以每秒 2 个单位长度的速度向点 B 运动.当点 P 到达终点时,点 Q 也停止运动.设运动的时间为 t 秒.(1)AB = ;(2)用含 t 的代数式表示线段 CQ 的长;(3)当Q 在AC 上运动时,若以点A、P、Q为顶点的三角形与∴ABC 相似,求t 的值;(4)设点O 是P A 的中点,当OQ 与∴ABC 的一边垂直时,请直接写出t 的值.∴(4)OP OB =∴QP QB =点 O 是12OP ∴=B B ∠=∠BOQ BCA ∴∽,BQ OB AB BC∴=, ()1202222016t t -∴=, 解得50t =, AC BC ⊥OQ AC ∴∥BOQ BAC ∴∽,BQ OB BC AB∴=, ()1202221620t t -∴=, ∴207t =,AOQ ABC ∴∽,AQ AO AC AB∴=, 2AQ AC BC t =+-=122AO AP PB t =+=+2821012t t -+∴解得11013t =【点睛】本题考查了勾股定理,动点问题,相似三角形的性质与判定,分类讨论是解题的关20.如图,抛物线3y ax bx =+-交轴于,两点,与轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由. 若AON ABC ∽,②若AON ACB ∽,由相似三角形的性质可求出点坐标,联立直线ON 和抛物线的解析式可求出答案.交x 轴于()30A -,,()10,两点,S=PEG12PG4PG=2为顶点的三角形与ABC相似,可分两种情况:∽,若AON ABCOA=,AB3=,49∽,若AON ACBOA=,AC3=,32=,22)--,,12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,在梯形ABCD 中,//AD BC ,点E 在对角线BD 上,
且DCE ADB ∠=∠,如果9BC =,CD ∶BD = 2∶3,求CE 的长.
2、如图,已知在△ABC 中,AE=AC ,AH ⊥CE ,垂足K ,BH ⊥AH ,垂足H ,AH 交BC
于D 。
求证:△ABH ∽△ACK
3、已知:如图,AD 是RT △ABC 的角平分线,AD 的垂直平分线EF 交CB 的延长线于点F, 求证:FC FB FD ∙=2 A
E
F B D C
A B C
D
E
4、已知:如图,四边形ABCD 中,∠A=∠BCD=900,过C 作对角线BD 的垂线交BD 、AD 于点E 、F 。
求证:DA DF CD ∙=2 D
F
A
E
B C
5、如图;以DE 为轴,折叠等边△ABC ,顶点A 正好落在BC 边上F 点, 求证;△DBF ∽△FCE
6.如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.
(1)求的面积;
(2)求矩形的边与的长;
(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.
128
:33
l y x =
+2:216l y x =-+C l l 12,、x A B 、DEFG D E 、12l l 、F G 、x G B ABC △DEFG DE EF DEFG x (012)t t ≤≤DEFG ABC △S S t t
7、如图,已知AB//EF//CD 。
若AB=6厘米,CD=9厘米,求EF
8、如图,已知AB//EF//CD 。
若AB=a, CD=b , EF=c, 求证;c b a 111=
+
9、如图,
的对角线交于O ,OE 交BC 于E ,交AB 的延长线于F ,若AB=a ,BC=b ,BF=c ,求 BE
B
10、如图;在△ABC 中,∠BAC=120°,AD 平分∠BAC 交BC 于D
求证:AC AB AD
1
11+
=
11.如图,在ABC 中,AD=DB,∠1=∠2,试说明△ABC ∽△EAD 。
12.如图,已知△ABC中CE⊥AB于E,BF⊥AC于F,求证:ΔAEF ∽ΔACB 。
13.如图,∠ACB =∠ADC =900
,AC =6,AD =2。
问当AB 的长为多少时,这两个直角三角
形相似?
D
C
B
A
14. 如图,点D 是△ABC 内一点,点E 是△ABC 外的一点,且∠1=∠2,∠3=∠4,图中有与∠ACB 相等的角吗?如果有,请找出来,并说明理由。
15.如图,先把一矩形ABCD 纸片对折,设折痕为MN ,再把B 点叠在折痕线上,得到△ABE.过B 点折纸片使D 点叠在直线AD 上,得折痕PQ 。
(1)求证:△PBE∽△QAB;(2)你认为△PBE 和△BAE 相似吗?如果相似给出证明,若不相似请说明理由。
16..已知平行四边形ABCD 中,AE ∶EB=1∶2,求△AEF 与△CDF 的周长比,如果S △AEF =6cm 2,求S △CDF .
17.如下图,已知在△ABC 中,AD 平分∠BAC,EM 是AD 的中垂线,交BC 延长线于
E.求证:DE 2=BE·CE
.
A D C
B N M
C B E P N A
18.已知如图,在平行四边形ABCD 中,DE=BF,求证:
DQ CD =PQ
PD
.
19.如果四边形ABCD 的对角线交于O ,过O 作直线OG ∥AB 交BC 于E ,交AD 于F ,交CD 的延长线于G ,求证:OG 2=GE·GF.
20.如下图,在△ABC 中,D 、E 分别为BC 的三等分点,CM 为AB 上的中线,CM 分
别交AE 、AD 于F 、G ,则CF ∶FG ∶GM=5∶3∶2
21.下图中,E 为平行四边形ABCD 的对角线AC 上一点,AE ∶EC=1∶3,BE 的延长线交CD 的延长线于G ,交AD 于F ,求证:BF ∶FG=1∶2.
22.如图①,点A ',B '的坐标分别为(2,0)和(0,4-),将A B O ''△绕点O 按逆时针方向旋转90°后得ABO △,点
A '的对应点是点A ,点
B '的对应点是点B .
(1)写出A ,B 两点的坐标,并求出直线AB 的解析式;
(2)将ABO △沿着垂直于x 轴的线段CD 折叠,如图②,使点B 落在x 轴上,点B 的对应点为点E .设点C 的坐标为(0x ,),C D E
△与ABO △重叠部分的面积为S .试求出S
与x 之间的函数关系式(包括自变量x 取值范围)
23.直线与坐标轴分别交于、两点,、的长分别是方程的两根()
,动点从点出发,沿路线→→以每秒1个单位长度的速度运动,到达点时运动停止.
(1)直接写出、两点的坐标;
(2)设点的运动时间为(秒),的面积为,求与之间的函数关系式(不必写出自变量的取值范围);
在坐标轴上是否存在点,使以、的坐标;若不存在,请说3AD =,5DC =,10BC =,梯形的高
以每秒2个单位长度的速度向终点C 运CD 以每秒1个单位长度的速度向终
t (秒)
. A B ∥时,求t 的t 为何值
)0(≠+=k b kx y A B OA OB 048142=+-x x OB OA >P O O B A A A B P t OPA ∆S
S t M O
M (第26题图)
25.:如图所示,在ΔABC 中,BA=BC=20cm ,AC=30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x 。
(1)当x 为何值时,PQ ∥BC ?(2)当
3
1
=
∆∆ABC BCQ S S ,求ABC BPQ S S ∆∆的值;(3)ΔAPQ 能否与ΔCQB 相似?若能,求出AP 的长;若不能,请说明理由。
26:如图,已知直线l 的函数表达式为4
83
y x =-+,且l 与x 轴,y 轴分别交于A
B ,两点,动点Q 从B 点开始在线段BA 上以每秒2个单位长度的速度向点A 移动,同时动点P 从A 点开始在线段AO 上以每秒1个单位长度的速度向点O 移动,设点Q P ,移动的时间为t 秒.
(1)求出点A
B ,的坐标; (2)当t 为何值时,APQ △与AOB △相似?
(3)求出(2)中当APQ △与AOB △相似时,线段PQ 所
在直线的函数表达式.。