纤维素与半纤维素的化学性质及区别
植物纤维化学
植物纤维化学植物纤维化学是研究植物中纤维素及其化学加工和应用的一门学科。
植物纤维作为一种自然的、可再生的生物大分子材料,在生产和生活中具有广泛的应用。
例如,纸张、纺织品、建筑材料等众多行业都离不开植物纤维这一重要资源。
植物纤维化学旨在深入了解植物纤维的化学组成、结构与性质,制定优化的加工工艺,拓展其新的使用领域。
一、植物纤维的化学组成植物纤维的主要化学成分是纤维素和半纤维素。
纤维素是一种多糖,由葡萄糖单元通过β-1,4-糖苷键连接而成。
半纤维素也是一种多糖,包括木聚糖、半乳糖、甘露聚糖等。
此外,植物纤维还有少量的酚类物质和蛋白质。
纤维素和半纤维素的含量和比例因植物种类和部位不同而变化。
在棉花中,纤维素含量占80%以上,半纤维素含量较低;而在木质植物中,两者含量相近。
二、植物纤维的结构植物纤维的结构可分为两种类型:原生纤维和次生纤维。
原生纤维是由原生细胞壁构成的,例如棉纤维和亚麻纤维。
原生纤维的直径较细,一般小于20微米;因其生长仅发生一次,其结构较简单,只包括纤维素、半纤维素和细胞壁质量。
次生纤维是由次生细胞壁构成的,例如木质素。
次生纤维的直径较粗,一般为20-50微米;其结构复杂,包括三部分:原生细胞壁、次生细胞壁的中层和次生细胞壁的内层。
三、植物纤维化学加工植物纤维在工业上常通过化学方法进行加工。
主要包括以下几个步骤:去除杂质、碱处理、漂白、纤维素膨胀、染色和强化。
去除杂质:将植物纤维进行筛分、清洗、熬软等步骤,去除与纤维相连的非纤维物质,如叶片、树枝等。
碱处理:将去除杂质后的植物纤维浸泡在碱液中,使纤维得到脱脂、脱胶、脱色等处理。
常用的碱液包括氢氧化钠、碳酸钠及亚硫酸等。
漂白:碱处理后的植物纤维中仍含有少量的杂质和色素。
漂白是将这些杂质和色素分离出来,使纤维得到漂白和增白的效果。
漂白剂主要有氯和过氧化氢等。
纤维素膨胀:纤维素膨胀是将处理后的植物纤维浸泡在化学溶液中,使其膨胀,并形成纤维素膜。
纤维素、半纤维素、木质素测定
纤维素含量的计算:纤维素=ADF(%)-经72%硫酸处理后的残渣(%)酸性洗涤木质素(ADL)含量的计算:ADL(%)=残渣(%)-灰分(硅酸盐,%)酸性洗涤木质素和酸不溶灰分(AIA)测定的优化:把酸性洗涤纤维置于50ml烧杯中,加入5ml 72%硫酸,20℃水解3h,然后加水45ml,室温过夜,次日用已称恒重的3号砂芯漏斗过滤,水洗残渣至pH6.5,于60℃烘干,称重。
把剩余残渣在马福炉中550℃经2.5h灰化,测得灰分重量。
洗涤优化:经过实际试验,发现中性洗涤纤维测定和酸性洗涤纤维测定中用丙酮冲洗这步效果不大,测量精度要求不高时,可省略。
方法一:化学滴定法(我们测定出来的结果较文献报道偏低)(一)纤维素含量的测定1.0.1N2.K(2)(3)(4)(5)(6)(7)定,用去(8)(9)1. 0.5%淀粉,2.(1)(2)5min (3)(4)(5)(6)(7)(8)(9)移液管吸取10mL滤液,加入10mL碱性铜试剂,盖好在沸水中煮15min(10)冷却,加入5mL草酸-硫酸混合液,加入0.5mL 0.5%淀粉,用0.01N硫代硫酸钠溶液滴定至蓝色消失,用去b mL(11)取10mL碱性铜试剂,加5mL草酸-硫酸混合液,再加10mL滤液,加入0.5mL 0.5%的淀粉,0.01N硫代硫酸钠溶液滴定至蓝色消失,用去a mL(12)生物质中半纤维素的含量计算公式x% = 0.9×100 [ 248-(a-b)](a-b)/10000×10×n(三)木质素含量的测定1. 所需溶液1%醋酸,丙酮,73%硫酸,10%氯化钡溶液,0.5N重铬酸钾溶液,浓硫酸,0.1 N硫酸亚铁铵溶液,试亚铁灵指示剂。
2. 实验步骤(1)标定新配的0.1N硫酸亚铁铵溶液, 滴定度为K(2)称取自然风干的生物质粉末0.05-0.1g,数值为n(3)装入离心管,加入10mL 1%醋酸,摇动5min混匀(4)离心,用5mL 1%醋酸洗沉淀(5)加丙酮3-4mL,在摇荡的情况下浸泡3min,洗三次(6)用玻璃棒将沉淀沿管壁分散开,将离心管放热水中使沉淀充分干燥(7)在干燥沉淀中加入73%硫酸3mL,用玻璃棒搅匀,挤压成均匀的浆液(8)室温下放置一夜(9)加入10mL蒸馏水,搅匀,置沸水中5min(10)冷却,加入0.5mL 10%氯化钡溶液,搅匀,离心,倒出清液,分别用10mL蒸馏水冲洗沉淀两次,每次要混匀原理:生物质(浒苔、锯末和玉米秸秆)在加热的情况下用醋酸和硝酸的混合液处理,在这种情况下,细胞间的物质被溶解,纤维素也分解成单个的纤维,木质素、半纤维素和其它的物质也被除去。
纤维素的结构及性质
一.结构纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。
在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。
纤维素的结构确定为β—D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚体,其结构中没有分支.纤维素的化学式:C6H10O5化学结构的实验分子式为(C6H10O5)n早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复单元所组成,也已证明重复单元是纤维二糖。
纤维素中碳、氢、氧三种元素的比例是:碳含量为44。
44%,氢含量为6.17%,氧含量为49.39%。
一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成。
O OOOOOOOO1→4)苷键β-D-葡萄糖纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。
其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。
纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。
天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。
纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。
表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成项目纤维素木质素半纤维素结构单元吡喃型D-葡萄糖基G、S、H D-木糖、苷露糖、L-阿拉伯糖、半乳糖、葡萄糖醛酸结构单元间连接键β-1,4-糖苷键多种醚键和C—C键,主要是β—O-4型醚键主链大多为β—1,4—糖苷键、支链为β—1,2-糖苷键、β—1,3—糖苷键、β-1,6—糖苷键聚合度几百到几万4000 200以下聚合物β—1,4-葡聚糖G木质素、GS木质素、GSH木质素木聚糖类、半乳糖葡萄糖苷露聚糖、葡萄糖甘露聚糖结构由结晶区和无定型区两相组成立体线性分子α不定型的、非均一的、非线性的三维立体聚合物有少量结晶区的空间结构不均一的分子,大多为无定型三类成分之间的连接氢键与半纤维素之间有化学健作用与木质素之间有化学健作用天然纤维素原料除上述三大类组分外,尚含有少量的果胶、含氮化合物和无机物成分。
纤维素和半纤维素【植物纤维化学】
纤维素
引言
• 纤维素是自然界中资源最丰富的有机物质,它 是所有植物细胞的“骨架”,它与半纤维素、 木素一起构成了植物细胞壁物质,在木材中含 量约为50%左右,纤维素由碳、氢、氧三种元素 组成,C占44.4%,H占6.2%,O占49.4%,其分子 式为(C6H10O5)n,分子量为162n,以葡萄糖基构成。
§5-2 纤维素的存在、分离和测定方法
1、存在
纤维素大家并不陌生,如棉花、纸张等,离开 了纤维素,人们无法生活,纤维素是自然界中 储备量最大,分布最广的天然有机物。纤维素 是高等植物成熟细胞壁的主要组成物质。
木材:40%~50%
禾本科植物:40%~45%
苧麻皮:80%~90%
棉花:95%~99%
树皮 : 20-30%
2、分离、测定
为了获得纯度较高的纤维素,必须对植物纤维原料 进行处理,从中分离出纤维素,目前有两种途径, 一种是对棉纤维素进行分离和精制,因为棉花纤维 素含纤维素95%-99%,仅含少量的脂肪、蜡、果胶 质和聚戊糖。
实验室精制系将棉花用苯-醇混合液脱脂后,再用 1%氢氧化钠溶液在氮气流下煮沸,可以得到相当纯 净的纤维素(纯度在99%以上)。
试剂
后处理
1:4的酸醇 热水洗
NaClO2 氯水6g/L
30%H2O2 +冰醋酸
冰水洗 NaClO2+热素
英国人克劳斯和贝文(Cross and Bevan)于1880年提出的 分离纤维素的方法,所得的纤维素称之为克贝纤维素或简 称为C.B纤维素。该法用氯气处理润湿的无抽提物试料,使 木素转化为氯化木素,然后用亚硫酸及2%亚硫酸钠溶液洗 涤,以溶出木素。重复以上处理,直至加入亚硫酸钠后仅 显淡红色为止。
半纤维素资料
半纤维素
什么是半纤维素?
半纤维素是一种类似纤维素的多糖类化合物,常见于植物细胞壁和纤维素共存。
半纤维素通常由葡萄糖单元以外的其他糖单元构成,如木糖、阿拉伯糖等,因此其结构比纤维素稍复杂。
半纤维素在植物细胞壁中起到支持和结构稳定性的作用,并对植物的生长和发育具有重要影响。
半纤维素的性质
半纤维素与纤维素一样,也是一种不溶于水的复杂多糖,但相较于纤维素,半
纤维素在一定条件下可以溶解于一些化学试剂中,如稀的氢氧化钠溶液。
这种性质使得半纤维素在工业上具有一定的可加工性和应用潜力。
半纤维素的应用
1. 食品工业
在食品工业中,半纤维素常被用作食品添加剂,如增稠剂、乳化剂和稳定剂等。
其具有优良的胶凝和保水性能,可以改善食品的口感和质地,并增加食品的稳定性和口感的持久性。
2. 医药领域
半纤维素在医药领域也有广泛的应用,常被用作制剂的包衣剂、填料和稳定剂等。
其无毒、无臭、不刺激皮肤的特性使得半纤维素成为许多口服制剂和外用制剂中常见的成分。
3. 纺织工业
由于其具有一定的结构稳定性和可染性,半纤维素在纺织工业中被广泛应用于
纺织品的生产加工过程中。
其与其他纤维素类化合物的混纺可以增加纺织品的柔软度和光泽度,使得纺织品更加适合穿着舒适。
总结
半纤维素作为一种重要的多糖化合物,在食品工业、医药领域和纺织工业等领
域中都具有重要的应用价值。
其独特的结构和性质使得半纤维素成为许多产品和工艺中不可或缺的一环,为生产制造领域带来了便利和多样性。
纤维素、半纤维素和木质素的软化温度
纤维素、半纤维素和木质素的软化温度全文共四篇示例,供读者参考第一篇示例:纤维素、半纤维素和木质素是植物细胞壁的三大主要成分,它们在植物生长和组织结构中起着重要作用。
纤维素是由葡萄糖分子经过聚合而成的多糖类物质,半纤维素主要由木糖和甘露糖等单糖组成,而木质素则主要由芳香族化合物构成。
在工业生产中,纤维素、半纤维素和木质素常常需要进行软化处理,以便更好地提取其中的有效成分。
而软化的关键参数之一就是软化温度。
软化温度是指在一定温度范围内,这些纤维素、半纤维素和木质素会变得柔软易处理。
下面我们将分别介绍纤维素、半纤维素和木质素的软化温度。
纤维素的软化温度一般在200-240摄氏度左右。
这是因为纤维素的结构较为复杂,其中的葡萄糖分子通过β-1,4-糖苷键连接在一起,形成了长链结构。
在较高的温度下,这些糖苷键开始断裂,使得纤维素分子间的相互作用减弱,进而使得纤维素变得柔软易处理。
在工业生产中,常常需要在200摄氏度以上的高温下对纤维素进行软化处理。
纤维素、半纤维素和木质素的软化温度都较高,需要在较高温度下进行处理。
对于不同的工业生产过程,需要根据具体的纤维素、半纤维素和木质素的含量和结构特点,选择合适的软化温度和软化方法,以便更好地提取其中的有效成分。
希望以上内容能对您有所帮助。
第二篇示例:纤维素、半纤维素和木质素是植物细胞壁的三大主要成分,它们在植物体内起着支撑和保护细胞的作用。
在工业生产过程中,这三种物质的软化温度对于纤维素、半纤维素和木质素的分离和提取至关重要。
本文将就这三种物质的软化温度进行深入的探讨。
让我们来了解一下这三种物质的概念和特性。
纤维素是一种由葡萄糖分子经β-1,4-糖苷键连接而成的高聚物,是植物细胞壁中含量最高的一种成分。
纤维素的分子结构稳定,有着很高的抗拉强度和抗压强度,因此在许多工业应用中被广泛使用。
半纤维素是一类多糖类物质,通常由葡萄糖、木糖、甘露糖、半乳糖等单糖组成,它们通过不同类型的键连接在一起形成复杂的结构。
纤维素,半纤维素和果胶的化学式
纤维素、半纤维素和果胶是常见的植物性纤维素类化合物,它们在植物细胞壁中起着重要的结构和功能作用。
本文将围绕这三种化合物的化学式展开介绍,以期为读者提供更深入的了解。
一、纤维素纤维素是一种多糖类化合物,由数百到数千个β-葡萄糖分子通过1,4-葡萄糖苷键连接而成。
其化学式如下所示:(C6H10O5)n在天然界中,纤维素是最常见的有机化合物之一,广泛存在于植物细胞壁中。
由于其特殊的结构和化学性质,纤维素具有良好的机械强度和耐酸碱性,被广泛用于纸张、纤维素制品、食品工业等领域。
二、半纤维素半纤维素是一种多糖类化合物,通常由葡萄糖、木糖、甘露糖等单糖单体组成,通过β-1,4-和β-1,3-的糖苷键连接而成。
其化学式如下所示:(C5H8O4)n与纤维素相比,半纤维素的分子结构更为多样,同时也具有较强的水溶性。
在植物细胞壁中,半纤维素主要存在于次生壁和中间层,对植物细胞壁的可塑性和抗拉伸性起着重要作用。
三、果胶果胶是一种多糖类化合物,由甲基半乳糖和半乳糖单糖单体通过α-1,4-的糖苷键连接而成。
其化学式如下所示:(C6H10O7)n作为一种水溶性纤维素类物质,果胶具有良好的凝胶性能,常用于食品工业中作为增稠剂和胶凝剂。
果胶也具有一定的抗氧化性能,对于保护食品中的营养成分具有一定作用。
在植物细胞壁中,果胶主要存在于原生质和中间层,对植物细胞的结构和机械性能起着重要的调节作用。
纤维素、半纤维素和果胶作为植物细胞壁中的重要组分,对于植物的生长发育和生理代谢具有重要意义。
它们的化学式和分子结构决定了其在自然界和工业应用中所具有的特殊性质和功能。
希望通过本文的介绍,读者能够对这三种化合物有更深入的了解,为相关领域的研究与应用提供一定的参考价值。
纤维素、半纤维素和果胶作为植物细胞壁中的重要成分,不仅在植物生长发育中发挥着重要的结构和保护作用,同时在工业和食品领域也有着广泛的应用。
接下来我们将更深入探讨这三种化合物的特性和应用。
第三节 半纤维素的化学性质 半纤维素与纤维素在化学结构上的比较:
2、1-3连接的聚木糖反应 ①酮式变烯醇式结构 ②C5位脱质子,形成类酮结构 ③β-烷氧基消除反应 ④烯醇式变酮式 ⑤加成,形成C5间变糖酸
此类降解反应主要存在于针叶木和阔叶木中, 草类原料很少。
在剥皮反应中,会产生: ①D-吡喃式葡萄糖还原性末端基 ②D-吡喃式甘露糖还原性末端基 ③D-吡喃式半乳糖还原性末端基 ④D-吡喃式木糖还原性末端基 ⑤连有其他糖基的D-吡喃式木糖还原性末端基 纤维素一样,半纤维素的碱性剥皮反应发 生到一定程度,也会终止,其终止反应同纤维 素。
(二) 剥皮反应
从还原性末端基开始,发生β-烷氧基消除反 应,逐个糖基进行。以聚木糖为例: 1、1-4连接聚木糖: ① 酮式变烯醇式结构 ② 烯醇式变酮式,形成β-烷氧基结构 ③ 诱导效应,双键转移 ④ β-烷氧基消除反应 ⑤ 烯醇式变酮式 ⑥ 羰基加成变醇式 ⑦ 分子重排,得C5异变糖酸
第三节 半纤维素的化学性质
半纤维素与纤维素在化学结构上的比较:
1、组成半纤维素的糖基种类多 2、半纤维素上含有短的支链,还原性末端基较多 3、糖基的构型复杂,有吡喃式、呋喃式,连接键 有β-苷键、α-苷键,连接位置有1-2,1-3,14,1-6连接 因此,半纤维的化学反应要复杂的多。
一、酸性水解
与纤维素酸性水解类似,半纤维素的苷键在酸性 介质中会裂开,使半纤维素发生降解。 由于半纤维素与纤维素结构上的不同,半纤维素 各糖苷键的水解速度有差异。
三、纤维素的酶降解
四、半纤维素在化学制浆中的变化
被酸性亚硫酸盐 法或亚硫酸氢盐 法在pH=乳糖葡萄糖甘露糖、 聚4-O甲基葡萄糖醛酸 阿拉伯糖木糖和果胶等 的针叶木
半纤维素和纤维素最终的水解产物
半纤维素和纤维素最终的水解产物一、介绍在生物质材料的水解过程中,半纤维素和纤维素是两种重要的成分,它们的水解产物对于生物质资源的综合利用具有重要意义。
本文将从水解产物的角度展开对半纤维素和纤维素的深度探讨,并探究它们在资源化利用中的应用前景。
二、半纤维素的水解产物半纤维素是一类多糖聚合物,主要由木糖、木聚糖、甘露聚糖、阿拉伯聚糖等组成。
在水解过程中,半纤维素首先产生大量的低聚糖,如木糖三糖、木糖二糖和木糖等。
这些低聚糖具有良好的生物降解性和发酵性,可以用于生产生物燃料、生物材料和生物化学品等。
半纤维素的水解产物还包括一些小分子化合物,如醛、酮、酸和醇类物质。
这些化合物具有较高的活性,可用于合成化工原料和医药中间体,具有广阔的应用前景。
三、纤维素的水解产物纤维素是一种由葡萄糖组成的线性聚合物,其水解产物主要包括葡萄糖和部分低聚糖。
葡萄糖是一种重要的生物能源,可以用于生产生物燃料、酒精和乙醇等。
纤维素水解还会产生一定量的木糖和木聚糖等低聚糖,这些低聚糖也具有很高的利用价值。
另外,纤维素水解常常会生成一些酚类化合物,如羟基苯、糠醛、furfuryl alcohol等,这些物质具有较高的抗氧化性和抗菌性,可以用于食品添加剂、抗氧化剂和医药领域。
四、对半纤维素和纤维素水解产物的个人观点和理解从水解产物的角度来看,半纤维素和纤维素的水解产物具有广泛的应用前景,涉及生物燃料、生物材料、生物化学品、化工原料、医药中间体和食品添加剂等多个领域。
这为生物质资源的综合利用提供了重要的技术支持,也有助于缓解能源危机和环境污染问题。
总结回顾半纤维素和纤维素的水解产物具有丰富的种类和广泛的应用前景,为生物质资源的综合利用提供了重要的技术支持。
在今后的研究和开发中,需要深入探索水解产物的性质和应用,推动其产业化应用,实现生物质资源的可持续利用和循环利用。
结语通过对半纤维素和纤维素水解产物的深度探讨,希望读者能对生物质资源的综合利用有更全面、深刻和灵活的理解。
木材学考试复习资料
一、解释下列概念(共计30分)1.形成层:形成层位于树皮和木质部之间,是包裹整个树干、树枝、树根的一个连续的鞘状层2. 纤丝倾角:微纤丝排列方向和细胞轴所成的角度。
3.纤维饱和点:细胞腔中自由水慢慢蒸发,当细胞腔中没有自由水,而细胞壁中结合水的量处于饱和状态,这时的状态称为纤维饱和点4.纹孔:木材细胞壁加厚产生次生壁时,初生壁上未被增厚的部分,即次生壁上的凹陷5. 管孔:导管是绝大多数阔叶树材所具有的中空状轴向疏导组织,在横切面上可以看到许多大小不等的孔眼,称为管孔6. 径列复管孔:指由两个或两个以上管孔相连成径向排列,除了两端的管孔为圆形外,在中间的部分管孔为扁平状8. 直纹理:直纹理是指木材轴向细胞排列方向基本与树干长轴平行。
9. 斜纹理:斜纹理指木材轴向细胞排列方向与树干长轴不平行。
10.非叠生形成层:多数树种的形成层原始细胞排列不整齐,即他们的排列上下交错,不在同一水平面上,这种形成层称为非叠生形成层。
11.微纤丝角:细胞壁S2层中微纤丝的方向和细胞轴所成的角度,角度愈大木材性能越低。
12.非结晶区:当纤维素分子链排列的致密程度减小、分子链间形成较大的间隙时,分子链与分子链之间的结合力下降,纤维素分子链间的平行度下降,此类纤维素大分子链排列特征被称为纤维素非结晶区13.具缘纹孔:指次生壁在纹孔膜上方成拱形纹孔缘的纹孔,它是厚壁细胞上存在的纹孔类型15.纹孔塞:在针叶树材中,轴向管胞壁上的具缘纹孔的纹孔膜中间形成初生加厚,其微纤丝呈同心圆状,加厚部分被称为纹孔塞。
18.松弛:在恒定应变条件下,应力随着时间的延长而逐渐减少的现象称为应力松弛19.应力木:在倾斜的树干或树干的夹角超过正常范围的树枝中所出现的畸形结构20.热扩散率:即导温系数。
它的物理意义是表征材料在冷却或加热的非稳定状态过程中,各点温度迅速趋于一致的能力(即各点达到同一温度的速度)21.弹性模量:物体产生单位应变所需要的应力,它表征材料抵抗变性能力的大小,是表示材料力学性质的重要常数。
植物纤维化学复习总结
植物纤维化学复习总结植物纤维化学总结第⼀章1、纤维素(Cellulose) 半纤维素(Hemicellulose)⽊素(Lignin)针叶材(needle leaved wood或soft wood)阔叶材(leaf wood 或hard wood)草类(straw)2、α—纤维素:⽤17.5%NaOH或(24%KOH)溶液在20℃下处理综纤维素或漂⽩化学浆45min,将其中的⾮纤维素碳⽔化合物⼤部分溶出,留下的纤维素及抗碱的⾮纤维素碳⽔化合物,分别称为综纤维素的α-纤维素或化学浆的α-纤维素。
英⽂翻译:The holo-cellulose or bleached chemical pulp is treated with 17.5% sodium hydroxide solution or 24% potassium hydroxide solution at 20 centigrade for 45 minitues; most of the hemicellulose is released and the complex composed of residual cellulose and anti-alkali hemicellulose is called α-cellulose of holocellulose or α-cellulose of chemical pulp.(重点)3、有机溶剂抽出物及其对制浆造纸的影响。
针叶材的抽出物:针叶⽊中,松⽊和柏⽊的有机溶剂抽出物的含量是⽐较⾼的(尤其在⼼材中),其主要成分为松⾹酸(Rosin Acids)、萜烯类化合物、脂肪酸(Fatty Acids)及不皂化物。
针叶⽊有机溶剂抽出物主要存在于树脂道和射线薄壁细胞中,⼼材含量⽐边材含量⾼。
阔叶⽊的抽出物:主要含游离的已酯化的脂肪酸、中性物、多酚类化合物,不含或只含少量松⾹酸。
主要存在于⽊射线和⽊薄壁细胞中。
纤维素、半纤维素、木质素测定
原理采用范氏(Van Soest)的洗涤纤维分析法测定中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)原理: 植物性饲料经中性洗涤剂煮沸处理,不溶解的残渣为中性洗涤纤维,主要为细胞壁成分,其中包括半纤维素、纤维素、木质素和硅酸盐。
植物性饲料经酸性洗涤剂处理,剩余的残渣为酸性洗涤纤维,其中包括纤维素、木质素和硅酸盐。
酸性洗涤纤维经72%硫酸处理后的残渣为木质素和硅酸盐,从酸性洗涤纤维值中减去72%硫酸处理后的残渣为饲料的纤维素含量。
将72%硫酸处理后的残渣灰化,在灰化过程中逸出的部分为酸性洗涤木质素(ADL)的含量。
试剂的配制中性洗涤剂(3%十二烷基硫酸钠):准确称取18.6g乙二胺四乙酸二钠(EDTA,C10H14O8Na2•2H2O,分析纯)和6.8g硼酸钠(Na2B4O7•10H2O,分析纯)放入烧杯中,加入少量蒸馏水,加热溶解后,再加入30g十二烷基硫酸钠(C12H25NaO4S,分析纯)和 10ml乙二醇乙醚(C4H10O2,分析纯);再称取4.56 g无水磷酸氢二钠(Na2HPO4,分析纯)置于另一烧杯中,加入少量蒸馏水微微加热溶解后,倒入前一个烧杯中,在容量瓶中稀释至1000ml,其中pH 值约为6.9~7.1(pH值一般勿需调整); 1N 硫酸:量取约27.87 ml浓硫酸(分析纯,比重1.84,98%),徐徐加入已装有500ml蒸馏水的烧杯中,冷却后注入1000ml容量瓶定容,标定;酸性洗涤剂(2%十六烷三甲基溴化铵):称取20g十六烷三甲基溴化铵(CTAB,分析纯)溶于1000ml1N硫酸,必要时过滤;中性洗涤纤维测定准确称取1.0000g样品(通过40目筛)置于直筒烧杯中,加入100ml中性洗涤剂和数滴十氢化萘及0.5g无水亚硫酸钠。
将烧杯套上冷凝装置于电炉上,在5~10min内煮沸,并持续保持微沸60min。
煮沸完毕后,取下直筒烧杯,将烧杯中溶液倒入安装在抽滤瓶上的已知重量的玻璃坩埚中进行过滤,将烧杯中的残渣全部移入,并用沸水冲洗玻璃坩埚与残渣,直洗至滤液呈中性为止。
半纤维素
半纤维素半纤维素的定义与应用半纤维素是一种天然的高分子有机化合物,含有大量的羟基和甲基基团。
它可由一些植物纤维的细胞壁提取得到,包括木质部纤维素、果胶、木质素等。
半纤维素在生物界广泛存在,具有丰富的资源和多样的应用潜力。
半纤维素在纤维素结构中与纤维素通过羟基键连接,形成三维网状结构,具有较高的稳定性和抗水解性。
半纤维素的化学结构决定了它在材料工业、食品工业、制药工业和环境领域的广泛应用。
首先,半纤维素在材料工业中起到重要作用。
由于半纤维素具有天然的强韧性和耐水解性,可作为增强剂用于增强纸张、纤维板和塑料等材料的力学性能。
此外,半纤维素还可以用于制备纤维素薄膜、纳米纤维素等新材料,这些材料在生物医学、电子器件和能源存储等领域具有广泛的应用前景。
其次,半纤维素在食品工业中有着重要的用途。
半纤维素具有良好的保湿性和增稠性能,可以作为食品添加剂用于调整食品的黏度、口感和稳定性。
例如,半纤维素可用于制备果冻、冰淇淋和酸奶等食品,改善其质地和口感。
此外,半纤维素还可以作为食品纤维素补充剂,增加食品的纤维含量,对人体健康有益。
第三,半纤维素在制药工业中也发挥着重要的作用。
半纤维素具有较低的毒性和良好的生物相容性,可以用于制备药物缓释系统和细胞培养基等药物应用材料。
此外,半纤维素还可以作为制剂增稠剂、胶囊制剂的包衣剂和制备微球等制药工艺的辅助剂。
最后,半纤维素在环境领域中有着广泛的应用前景。
半纤维素作为可再生材料,具有很高的可降解性和低的环境影响。
它可以用于制备土壤修复剂、废水处理剂和环境纤维素材料等,对环境污染的修复和治理具有重要意义。
总之,半纤维素是一种重要的天然高分子有机化合物,具有广泛的应用前景。
它在材料工业、食品工业、制药工业和环境领域中发挥着重要作用。
随着科学技术的不断发展,我们相信半纤维素的应用将继续扩展,为人类社会的发展做出更大的贡献。
造纸名词解释 填空 概念辨析
名词解释:1:纤维素:由B—D葡萄糖基通过1,4—苷键连接而成的线性高分子化合物。
2半纤维素:是由多种糖基,糖醛酸基所组成,并且分子中往往带有支链的复合聚糖的总称。
3木素:由苯环丙烷结果单元(C6-C3)通过醚键,碳碳键联接而成的芳香族高分子化合物。
4果胶物料:果胶质与其他聚糖如阿拉伯糖,聚半乳糖和少量L-鼠李糖等半生在一起形成一个复合体。
5.超结构:超过一般光子显微镜的分辨能力的细节。
6.热塑性:在某一温度下,木素由玻璃态向橡胶态变的性质。
8.聚合度:纤维素分子中的B—D葡萄糖基含量即为纤维素分子的聚合度(DP)。
9.降解:高分子化合物在受到化学,光照,加热,机械等作用时聚合度下降的现象。
10.综纤维素:又称总纤维素,指造纸植物纤维原料中的纤维素和半纤维素的总称。
11.α-纤维素:包括纤维素和抗碱的半纤维素。
β-纤维素:为高度降解的纤维素和半纤维素。
γ-纤维素:全为半纤维素。
12.助色基团:能使吸收波长向长波方想移动的杂原子团(含有维未共用电子对)eg:-cooH,-OH,-NH2,-CL 等。
13. 工业半纤维素:β-及γ-纤维素的合称。
14.发色集团:含有П电子的不饱和基团。
15.MWL:磨木木素(贝克曼木素)。
CC:细胞角隅。
CML:复合胞间层。
BNL:布劳斯天然木素。
LCC:木素—碳水化合物复合体。
16.硅干扰:原料中的硅,在碱法制浆过成中形成的Na2SiO3,溶于碱法废液中,大量的Na2SiO3,将使废液黏度升高洗浆时黑液提取率降低,对黑夜的蒸发,燃烧,苛化,白泥回收等过程都带来麻烦即为硅干扰。
17.树脂障碍:在酸时纸浆中,树木的有机溶剂抽出物被加热,软化成油状物漂浮在浆水体系中,易粘附在浆池壁,洗浆箱,纸张等地方,给生产过程和纸张质量带来不良影响,成为树脂障碍。
18.纤维形态:包括纤维的长度、宽带、壁厚、腔径以及由这些指标组合而成的其他形态指标,如长宽比,壁腔比以及纤维的粗度等。
19.纤维粗度:每100m长度的绝干纤维的重量(mg)用dg表示。
精制棉的质量品质对纤维素醚生产的影响
精制棉的质量品质对纤维素醚生产的影响纤维素醚原料——精制棉,对其品质的要求,随精制棉的种类及纤维素醚的产品品种的不同而不同。
为了说明精制棉的质量品质,现从化学成分、物理-化学性质和工艺性质三个方面加以概述。
1.化学成分1.1α-纤维素及半纤维素精制棉中α-纤维素及半纤维素的含量,表征精制棉的质量品质。
在工业方面,将漂白化学精制棉用20℃的17.5%NaOH(重量浓度)溶液处理45分钟,不溶解而残的部分,称为α-纤维素。
所得溶解部分,称为半纤维素。
工业半纤维素是指包括原料中的半纤维素和由于纤维素降解而产生的溶于上述浓度碱液中的降解纤维素。
提高精制棉的α-纤维素含量,有利于提高醚化产品的收率,提高设备生产能力,降低化学药品单位消耗和提高醚化产品的质量。
目前,采用精制棉为原料,其α-纤维素含量最高,在92-99%之间。
精制棉中半纤维素含量过高,对生产过程和成品质量有以下影响。
①对碱化过程的影响精制棉碱化时,半纤维素可大量溶于碱液中,使碱液的粘度增高,影响碱液渗入精制棉内部的速度,这样会造成以下不良后果:a、使碱化反应不彻底、不完全,所得碱纤维素不均匀,影响产品的最终质量。
b、碱纤维素颜色明显变深,最终影响HPMC的外观,使其颜色发黄,白度降低。
c、由于半纤维素溶解,使得最终产品的收率降低。
d、由于半纤维素的溶解,使得工艺废水中的COD增高,给处进废水增加了难度。
②对醚化过程的影响由于半纤维素也能起醚化反应,且反应速度比纤维素快。
因此,半纤维素含量高的精制棉醚化时,半纤维素会更快的消耗醚化剂,影响纤维素的醚化均匀性及醚化度,造成醚化剂的利用率降低。
③延缓碱纤维素的降解(制备高粘度HPMC)半纤维素的平均聚合度比α-纤维素低,因此,半纤维素末端潜在的醛基数量比纤维素多,醛基易被氧化,在生产过程中将消耗反应介质中的大量的氧,因此,可使碱纤维素降解减慢。
对高粘羟丙基甲基纤维素醚的制备来说,这是有利的,因可减缓纤维素聚合度降解,有利于产品粘度的提高;但对于药用级低粘产品来说,可使氧化剂的消耗增大,不利于粘度的降低。
纤维素与半纤维素的化学性质及区别
纤维素与半纤维素共同存在于大多数植物细胞壁中。
纤维素全部由葡萄糖单位聚合而成,而半纤维素是一种杂聚多糖,常含有木糖,甘露糖,半乳糖,鼠李糖,阿拉伯糖等单糖单位。
在酸性环境下半纤维素远较纤维素易于水解。
半纤维素比纤维素的分子要小,大约含有500到3000个单糖单位,后者大约含有7000到15000个。
半纤维素是分支的聚糖,而纤维素是不分支的。
半纤维素具有亲水性能,可以造成细胞壁的润胀,赋予纤维弹性。
一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。
第四章-1 半纤维素的结构、组成及分离
HO HO
阿 拉 伯 糖
H HO H H
葡 萄 糖
HO HO H H
H H OH OH CH2OH CHO
甘 露 糖
CH2OH CHO H HO HO H OH H H OH CH2OH H CHO OH H OH OH COOH CHO
半 乳 糖
HO H H
葡 萄 糖 醛 酸
H HO H H
OH H OCH 3 OH COOH
轻工科学与工程学院
6
Wood Chemistry
4、性质差别
物理化学性质:半纤维素比纤维素更易发生吸湿、润 胀 溶解等 胀、溶解等。
化学性质:纤维素能发生的反应,如酸性水解、碱性 降解等,半纤维素都能发生,且更易进行。
轻工科学与工程学院
二、半纤维素的命名 原则:
侧链在前,主链在后; 糖基少的在前,多的在后; 糖基少的在前 多的在后;
OH H OH
-D-葡萄糖醛酸
4-O-甲基- -D-葡萄糖醛酸
-D-半乳糖醛酸
轻工科学与工程学院
构成半纤维素的主要糖基(Fischer投影式)
CHO H HO H OH H OH CH2OH
Wood Chemistry
CHO H OH H H CH2OH
CHO
CHO OH H OH OH
木 糖
1→3
1→6 1→6 1→6 1→6
6
1 (2/3) (1/3) 少量
平均聚合度:~220,多分散性大d Chemistry
3- -D-Galp-1 6 1 -D-Gal D G lp 6 1 -D-Galp
3- -D-Galp-1 6 1 -D-Gal D G lp 6 1 -D-Galp
半纤维素热分解温度
半纤维素热分解温度半纤维素是一类多糖类物质,由于其复杂的结构和化学性质,其热分解温度成为研究的重要参数。
本文将从半纤维素的定义、热分解反应机理、热分解温度的影响因素以及相关应用等方面进行探讨。
一、半纤维素的定义半纤维素是一类在植物细胞壁中存在的多糖类物质,与纤维素和木质素共同构成了植物细胞壁的主要组分。
半纤维素的结构复杂,由于其不同来源和组成的差异,其热分解温度也存在一定的差异。
二、热分解反应机理半纤维素的热分解反应是一系列复杂的化学反应过程。
一般来说,半纤维素的热分解主要包括两个阶段,即干燥和裂解。
在干燥阶段,半纤维素中的水分会被蒸发掉,此时温度较低。
随着温度的升高,半纤维素开始发生裂解反应,产生一系列的裂解产物,如甲醛、乙醛等。
三、热分解温度的影响因素半纤维素的热分解温度受到多个因素的影响。
首先,半纤维素的来源和组成会影响其热分解温度,不同来源和组成的半纤维素具有不同的化学键强度和稳定性。
其次,半纤维素的结晶度也会影响热分解温度,结晶度较高的半纤维素分子间键强度较大,热分解温度也较高。
此外,半纤维素中还可能存在其他化合物的存在,如木质素和纤维素等,这些化合物对热分解温度也会有一定的影响。
四、相关应用半纤维素的热分解温度在纤维素乙醇燃料生产中具有重要意义。
纤维素乙醇燃料是一种可再生能源,其生产过程中需要对纤维素进行热解,将其转化为乙醇。
半纤维素的热分解温度可以指导纤维素乙醇燃料的生产过程,提高乙醇的产率和纯度。
半纤维素的热分解温度还与纤维素纤维的热稳定性有关,对于纤维素纤维的加工和利用也具有一定的指导意义。
研究纤维素纤维的热分解温度可以为纤维素纤维的改性和功能化提供依据,拓展其在纺织、医药等领域的应用。
半纤维素热分解温度作为研究的重要参数,在纤维素乙醇燃料生产和纤维素纤维加工利用等领域具有重要的应用价值。
通过深入研究半纤维素的热分解机理和影响因素,可以为相关领域的科学研究和工程应用提供理论基础和技术支持。
木材化学知识点总结归纳
木材化学知识点总结归纳一、木材的化学组成1. 木材主要由纤维素、半纤维素和木质素三种化学成分组成。
其中,纤维素是木材中含量最多的成分,占据了木材的大部分,通常约占木材干重的40-50%。
纤维素分子是由葡萄糖分子经由β-1,4-键连接而成的长链聚合物,具有很强的结晶性和拉伸性。
半纤维素是一种多糖类物质,主要由葡萄糖、木糖和甘露糖等单糖组成,是一种支链聚合物,能够增加木材的柔韧性和弹性。
木质素是木材中的第三大成分,是一种由苯丙烷单体聚合而成的高分子化合物,具有很好的抗腐蚀性和耐受性。
2. 木材中还含有少量的脂肪、酚类、树脂、以及矿物质等成分。
这些成分对木材的性质和用途都有一定的影响。
3. 木材的化学组成是决定木材性能和用途的关键因素,因此对木材的化学组成进行深入了解,对于木材的加工和利用具有重要意义。
二、木材的化学性质1. 木材具有吸湿性、膨胀性和收缩性等性质。
由于木材中的纤维素和半纤维素含有大量的羟基基团,使得木材具有很强的吸水性和膨胀性。
而在干燥条件下,木材会失去吸湿性,并出现收缩现象。
2. 木材具有很强的化学稳定性和抗腐蚀性。
木材中含有的木质素具有很好的抗腐蚀性,使得木材能够在湿润和高温条件下仍然保持其结构和性能。
3. 木材还具有较好的燃烧性能。
木质素是一种含有大量的芳香族和脂肪族羟基的高分子化合物,因此具有较好的燃烧性能。
但由于木材中的脂肪和树脂含量较低,所以木材的燃烧速度并不高。
4. 木材还具有一定的抗弯性、抗压性、抗拉性等物理力学性能。
这些性能与木材的化学组成和化学结构密切相关。
三、木材的化学加工1. 木材的化学加工主要包括干燥、防腐、着色、改性等过程。
干燥是指将原木材中的水分蒸发或挥发出去的过程,以提高木材的稳定性和耐久性。
防腐是指利用一些化学防腐剂或者热处理等方法,使木材具有较好的防腐性。
着色是指利用染料或者其他着色剂对木材进行染色加工,以获得一定的色彩效果。
改性是指通过一些特殊的化学或物理方法,对木材的化学组成和结构进行改变,以获得特定的性能和用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纤维素与半纤维素的化学性质及区别
纤维素与半纤维素共同存在于大多数植物细胞壁中。
纤维素全部由葡萄糖单位聚合而成,而半纤维素是一种杂聚多糖,常含有木糖,甘露糖,半乳糖,鼠李糖,阿拉伯糖等单糖单位。
在酸性环境下半纤维素远较纤维素易于水解。
半纤维素比纤维素的分子要小,大约含有500到3000个单糖单位,后者大约含有7000到15000个。
半纤维素是分支的聚糖,而纤维素是不分支的。
半纤维素具有亲水性能,可以造成细胞壁的润胀,赋予纤维弹性。
一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。