一次函数选择填空专项训练
中考数学模拟题汇总《一次函数》专项练习(附答案)
中考数学模拟题汇总《一次函数》专项练习(附答案)一、选择题1.若函数y=(k﹣1)x+b+2是正比例函数,则( )A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠1,b=22.下列函数:①y=16x;②y=-4x;③y=3-12x;④y=3x2﹣2;⑤y=x2﹣(x﹣3)(x+2);⑥y=6x.其中,是一次函数的有( ).A.5个B.4个C.3个D.2个3.经过以下一组点可以画出函数y=2x图象的是( )A.(0,0)和(2,1)B.(1,2)和(-1,-2)C.(1,2)和(2,1)D.(-1,2)和(1,2)4.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )A.2B.﹣2C.4D.﹣45.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<36.一次函数y1=kx+b与y2=x+a的图象如图所示.则下列结论:①k<0;②a>0;③当x<3时,y1<y2,错误的个数是( )A.0B.1C.2D.37.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是( ).A.(0,﹣2)B.(32,0) C.(8,20) D.(12,12)8.在平面直角坐标系中,将直线l1:y=﹣3x﹣1平移后,得到直线l2:y=﹣3x+2,则下列平移方式正确的是( )A.将l1向左平移1个单位 B.将l1向右平移1个单位C.将l1向上平移2个单位 D.将l1向上平移1个单位9.下图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的一次函数表达式为( )A.y=95x+32 B.y=x+40 C.y=59x+32 D.y=59x+3110.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为( )A.x≥﹣8B.x≤﹣8C.x≥13D.x≤1311.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是( )A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y= (50-2x)(0<x<50)D.y= (50-x)(0<x<25)12.对于函数y=﹣2x+5,下列表述:①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x每增加1,y的值减少2;⑤该图象向左平移1个单位后的函数表达式是y=﹣2x+4.正确的是( )A.①③B.②⑤C.②④D.④⑤二、填空题13.点(0.5,y1),(2,y2)是一次函数y=﹣0.5x﹣3图像上的两点,则y1y2.(填“>”、“=”或“<”)14.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.15.如图,在△ABC中,∠ACB=90°,斜边AB在x轴上,点C在y轴的正半轴上,直线AC的解析式是y=-2x+4,则直线BC的解析式为_________________16.一次函数y= -4x+12的图象与x轴交点坐标是,与y轴交点坐标是,图象与坐标轴所围成的三角形面积是 .17.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为_________.18.如图,矩形ABCD边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD周长分成2:1两部分,则x值为.三、解答题19.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.20.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数 y=kx+b的图象与x轴的交点是A(a,0),求a的值.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=32x的图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.22.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.学校为奖励在艺术节系列活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价;(2)学校计划购买甲、乙两种奖品共1800件,其中购买乙种奖品的件数不超过甲种奖品件数的2倍,学校分别购买甲、乙两种奖品多少件才能使总费用最小?最小费用是多少元?24.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x<-1,求k的取值范围.25.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;(2)如图2,直角坐标系内有一点D(﹣1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE﹣DE|的最大值,并写出此时点E的坐标.参考答案1.B2.C3.B4.B5.D6.C7.C 8.B 9.A. 10.A 11.D 12.C. 13.答案为:>; 14.答案为:m <4且m ≠1 15.答案为:y=12x+4.16.答案为:(3,0),(0,12),18. 17.答案为:x <3 18.答案为:±23.19.解:(1)将x =2,y =﹣3代入y =kx ﹣4, 得﹣3=2k ﹣4,解得k=12.故一次函数的解析式为y=12x-4.(2)将y=12x-4的图象向上平移6个单位得y=12x+2,当y =0时,x =﹣4,故平移后的图象与x 轴交点的坐标为(﹣4,0). 20.解:(1)由题意知解得∴k ,b 的值分别为1,2. (2)由(1)得y =x +2.∴当y =0时,x =﹣2,即a =﹣2.21.解:(1)∵点P(2,n)在正比例函数y =32x 的图象上,∴n =32×2=3.把点P 的坐标(2,3)代入y =﹣x +m ,得 3=﹣2+m , ∴m =5.即m=5,n=3.(2)由(1)知,一次函数为y=﹣x+5,令x=0,得y=5,∴点B的坐标为(0,5),∴S△POB =12×5×2=5.22.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3.∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=-1.(2)当x=a时,yC =2a+1.当x=a时,yD=4-a.∵CD=2,∴|2a+1-(4-a)|=2,解得a=13或53.23.解:(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:,解得:.答:甲种奖品的单价为40元/件,乙种奖品的单价为30元/件.(2)设购买甲种奖品m件,则购买乙种奖品(1800﹣m)件,设购买两种奖品的总费用为w,∵购买乙种奖品的件数不超过甲种奖品件数的2倍,∴1800﹣m≤2m,∴m≥600.依题意,得:w=40m+30(1800﹣m)=10m+54000,∵10>0,∴w随m值的增大而增大,∴当学习购买600件甲种奖品、1200件乙种奖品时,总费用最小,最小费用是60000元.24.解:(1)①∵直线y=-2x+1过点B,点B的横坐标为-1,∴y=2+1=3,∴B(-1,3),∵直线y =kx +4过B 点, ∴3=-k +4,解得:k =1; ②∵k =1,∴一次函数解析式为:y =x +4, ∴A(0,4), ∵y =-2x +1, ∴C(0,1), ∴AC =4-1=3,∴△ABC 的面积为12×1×3=32.(2)∵直线y =kx +4(k ≠0)与x 轴交于点E(x 0,0),-2<x 0<-1, ∴当x 0=-2,则E(-2,0),代入y =kx +4得:0=-2k +4, 解得:k =2,当x 0=-1,则E(-1,0),代入y =kx +4得:0=-k +4, 解得:k =4,故k 的取值范围是:2<k <425.解:(1)如图1中,由题意知点A 、点C 的坐标分别为(﹣2,0)和(0,2) 设直线l 的函数表达式y =kx +b(k ≠0),经过点A(﹣2,0)和点C(0,2), 得解得,∴直线l 的解析式为y =x +2. 设点P 的坐标为(m ,m +2), 由题意得12×2×|m +2|=3, ∴m =1或m =﹣5.∴P(1,3),P ′(﹣5,﹣3).(2)如图2中,连接OD 交直线l 于点E ,则点E 为所求,此时|BE +DE|=|OE +DE|=OD ,OD 即为最大值.设OD所在直线为y=k1x(k1≠0),经过点D(﹣1,2),∴2=﹣k1,∴k1=﹣2,∴直线OD为y=﹣2x,由解得,∴点E的坐标为(﹣23,43),又∵点D的坐标为(﹣1,2),∴由勾股定理可得OD=5.即|BE+DE|的最小值为5.(3)如图3中,∵O与B关于直线l对称,∴BE=OE,∴|BE﹣DE|=|OE﹣DE|.由两边之差小于第三边知,当点O,D,E三点共线时,|OE﹣DE|的值最大,最大值为OD.∵D(﹣1,﹣2),∴直线OD的解析式为y=2x,OD=5,由,解得,∴点E(2,4),∴|BE﹣D′E|的最大值为5此时点E的坐标为(2,4).。
一次函数测试题3套(有答案)
----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=.y=C .D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+14.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分) 11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1). 23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢? 25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58x y =-⎧⎨=-⎩ 18.0;7 19.±6 20.y=x+2;421.①y=169x ;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t ≤3时,y=2.4;当t>3时,y=t-0.6. ②2.4元;6.4元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0.•6(80-x )]米, 共用B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得40≤x ≤44, 而x 为整数,∴x=40,41,42,43,44,∴y 与x 的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y 随x 的增大而增大, ∴当x=44时,y 最大=3820,即生产M 型号的时装44套时,该厂所获利润最大,最大利润是3820元.班级_____________座号____________姓名_____________成绩_________ __一.精心选一选(本大题共8道小题,每题4分,共32分)1、下列各图给出了变量x 与y 之间的函数是: ( ) A 、y=2x-1 B 、y=3C 、y=2x 2D 、y=-2x+1 3、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为:( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x 4、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b=+上,且0k <.若12x x >,则1y ,2y 的关系是:( ) A 、12y y > B 、12y y < C 、12y y =D 、无法确定.5、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( ) A 、 x>1 B 、 x>2 C 、 x<1 D 、 x<26、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( ) A 、(-1,-1) B 、(-1, 1) C 、(1, -1) D 、(1, 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )二.耐心填一填(本大题5小题,每小题4分,共20分) 八年级上学期第十四章《一次函数》单元测试----------------------------精品word文档值得下载 值得拥有---------------------------------------------- 10、请你写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数解析式 。
中考数学复习《一次函数》专项提升训练题-附带答案
中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。
一次函数经典练习题精心整理
一次函数练习一、选择题1.若23y x b =+-是正比例函数,则b 的值是( )A.0B.23C.23-D.32-2.当3-=x 时,函数732--=x x y 的函数值为 ( )A.-25B.-7C. 8D.113.函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( )A.0<kB.1>kC.1≤kD.1<k 4.一次函数1y x =--不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( )A 、y=2xB 、 y=2x -6C 、 y=5x -3D 、y=-x -3 6.一次函数的图象与直线y= -x+1平行,且过点(8,2),此一次函数的解析式为:( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x7.如果直线y =2x +m 与两坐标轴围成的三角形面积等于m ,则m 的值是( )A 、±3B 、3C 、±4D 、48.点A (1x ,1y )和B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是( )A 、12y y > B 、12y y < C 、12y y = D 、无法确定. 9.若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )A.第一象限B. 第二象限C.第三象限D.第四象限 10、一次函数y kx b =+(k b ,是常数,0k ≠0kx b +>的解集是()A.2x >- B .0x > C .2x <- D .0x <11.已知函数122y x =-+,当-1<x ≤1时,y 的取值范围是( )A.5322y -<≤B.3522y <<C.3522y <≤D.3522y ≤<12.已知两个一次函数y=x+3k 和y=2x -6的图象交点在y 轴上,则k 的值为( )A 、3B 、1C 、2D 、-213.已知一次函数y =k x -k ,若y 随x 的增大而减小,则该函数的图象经过( )A 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限14.当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )2 x)15.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k<0;②a>0;③当x<3时,y 1<y 2中,正确的个数是( ) A .0个 B .1个 C .2个 D .3个16.汽车由A地驶往相距120km 的B 地,它的平均速度是30km /h ,则汽车距B地路程s(km )与行驶时间t (h )的函数关系式及自变量t 的取值范围是( )A .S =120-30t (0≤t ≤4)B .S =120-30t (t >0)C .S =30t (0≤t ≤40)D .S =30t (t <4) 二、填空题1.若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n . 2.在函数21-=x y 中,自变量x 的取值范围是 。
中考数学复习《一次函数》专项提升训练题-附答案
中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。
一次函数测试题(最新人教版)
《一次函数》测试题一、选择题1.若正比例函数的图象经过点(—1,2),则这个图象必经过点…………………【 】 A. (1,2) B. (—1,—2) C. (2,—1) D. (1,—2)2.一次函数2y x =+的图象不经过………………………………………………【 】 A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.如果关于x 的一次函数1y kx k =+-的图角经过第一、三、四象限,则K 的取值范围【 】 A. k >0 B. k <0 C. 0 <k <1 D.k >14.将直线y=2x 向上平移2个单位后所得的直线的解析式………【 】 A. 22y x =+ B. 22y x =- C. 2(2)y x =+ D. 2(2)y x =-5.下列图象中分别给出了变量x 与y 之间的对应关系,其中表示y 是x 的函数的是【 】6.函数y ax b y bx a =+=+与的图象在同一坐标系内的大致位置是……………………【 】7.过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B。
该一次函数的解析式是【 】A. 23y x =+B. 3y x =-C.1322y x =-D. 3y x =-+ 8.函数y=2x 和y=ax+4的图象相交于点A (m ,3A . x >32B .x <3C .x <32D .x >3二、填空题9.已知函数3y mx m =+-是正比例函数,则m=________; 10.将直线162y x =-向左平移2个单位,得到直线是___________ x xyxy O33211.若关于x 的函数44y mx m =+-的图象经过点(1,3),则m=__________; 12.若直线L 平行于直线34y x =+,且过点(1,—2),则直线L 的解析式是____________ 13.若一次函数(4)21y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是______ 14.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是 ______________15.已知关于x 的一次函数3y kx =+的图象如图所示,则不等式30kx +<的解集是________ 16.已知,函数y=3x 的图象经过点A (-1,y 1),点B (-2,y 2),则y 1 y 2 17.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 . 18.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米. 三、解答题1.已知一次函数的图象经过M (1,3)和N (—2,12)两点。
一次函数训练一(关于象限判断)
一次函数训练一(经过象限的判定)方法:一次函数的解析式为y=kx+b (y=kx正比例函数 b 为0)1、先判断k 值,当k >0,函数一定会经过1、3象限。
当k ,函数一定会经过2、4象限。
2、再判断b 值,当b >0,函数向上平移;当b <0,函数向下平移;3、结合k 值和b 值,判断函数经过的象限(或不经过的象限)。
一、填空与选择1、一次函数36y x =--的图象不经过( )A 第一象限B 、第二象限C 、第三象限D 、第四象限2.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y=x +k 的图象大致是( ).xyO Axy OBxyOCxy OD3.一次函数k kx y -=的大致图象可能如图 ( )4、已知:一次函数y=(a-1)x+b 的图象如图所示,那么,a 、b 的取值范围是( )A 、a>1 ,b>0B 、a<1, b>0C 、a>0,b<0D 、a<0,b<05.下列图象中,以方程220y x --=6.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是( )A.1a> B.1a<C.0a> D.0a<7.下列图象中,以方程220y x--=的解为坐标的点组成的图象是()8、已知:一次函数y=(a-1)x+b的图象如图所示,那么,a、b的取值范围是()A、a>1 ,b>0B、a<1, b>0C、a>0,b<0D、a<0,b<09.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是( )A.1a> B.1a<C.0a> D.0a<10.若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx-k的图象不经过第( )象限()A.一B.二C.三 D.四11.已知正比例函数)0k(kxy≠=的函数值随的增大而增大,则一次函数kxy+=的图象大致x12.已知自变量为x 的一次函数y=a (x-b )的图象经过第二、三、四象限,则( • )A .a>0,b<0B .a<0,b>0C .a<0,b<0D .a>0,b>013.如图所示的图象中,不可能是关于x 的一次函数y=mx-(m-3)的图象的是( )14、一次函数y=5x-1的图像不经过第( )象限A .一B .二C .三D .四15、7.直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0, b>0C . k<0, b<0;D . k<0, b>0 16.关于函数12+-=x y ,下列结论正确的是 ( ) A .图象必经过点(﹣2,1) B .图象经过第一、二、三象限C .当21>x 时,0<y D .y 随x 的增大而增大17.已知一次函数y= ax+4与y = bx-2的图象在x 轴上相交于同一点,则ba的值是 ( ) A .4 B .-2 C . 12 D . - 1218.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )19.已知正比例函数)0k (kx y ≠= 的函数值随的增大而增大,则一次函数k x y +=的图象大致是 (点坐标1、关于x 轴对称,x不变y相反。
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
专题14:一次函数(填空题专练)(解析版)
专题14:一次函数(填空题专练)1.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”). 【答案】<【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可. 【解答】解:∵一次函数y =-2x +1中k =-2<0, ∴y 随x 的增大而减小, ∵x 1>x 2, ∴y 1<y 2. 故答案为<.【点评】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.2.一蓄水池中有水350m ,打开排水阀门开始放水,水池中的水量与放水时间的关系如下表所示.放水12分钟后,水池中水量为________3m .【答案】26【分析】根据题意可得蓄水量y =502t -,从而进行各选项的判断即可. 【解答】解:设蓄水量为y ,时间为t , 则可得y 502t =-,放水12分钟后,水池中水量为:3y 5021226m =-⨯=.故填:26.【点评】本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式. 3.如图所示,函数1y x =和214y x 33=+的图象相交于()1,1-,()2,2两点.当12y y >时,x 的取值范围是________.【答案】x 1<-或x 2>【分析】首先由已知得出1y x =或1y x =-又相交于()1,1-,()2,2两点,根据12y y >列出不等式求出x 的取值范围.【解答】解:当0x ≥时,1y x =,又21433y x =+, ∴ 两直线的交点为()2,2; 当0x <时,1y x =-,又21433y x =+, ∴ 两直线的交点为()1,1-,由图象可知:当12y y >时x 的取值范围为:1x <-或2x >.故答案为:1x <-或2x >.【点评】此题考查的是两条直线相交问题,关键要由已知列出不等式,注意象限和符号.4.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________. 【答案】-1【解析】试题分析:根据题意可得2k+3>0,k <0,解得﹣<k <0.因k 为整数,所以k=﹣1.考点:一次函数图象与系数的关系.5.将直线2y x =向下平移1个单位长度后得到的图像的函数解析式是______. 【答案】y=2x-1.【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1. 考点:一次函数的图象与几何变换6.已知正比例函数8xy =,则y 与x 间的比例系数是________. 【答案】18【分析】根据正比例函数的比例系数进行解答即可.【解答】正比例函数的解析式是()0y kx k =≠,k 是比例系数,188x y x ==,比例系数是18故答案为:18【分析】本题考查了正比例函数的比例系数,掌握正比例函数的比例系数的概念是解题的关键. 7.如图,已知函数y =2x +b 与函数y =kx -3的图象交于点P (4,-6),则不等式kx -3>2x +b 的解集是__________.【答案】x <4【分析】观察图象,函数y =kx -3的图象位于函数y =2x +b 图象的上方时对应x 的取值即为不等式kx -3>2x +b 的解集.【解答】由图象可得,当函数y =kx -3的图象位于函数y =2x +b 图象的上方时对应x 的取值为x <4, ∴不等式kx -3>2x +b 的解集是x <4. 故答案为x <4.【点评】本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想. 8.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____. 【答案】y =2x ﹣2.【解答】解:根据一次函数的平移,上加下减,可知一次函数的表达式为y=2x-2. 9.根据下表写出y 与x 之间的函数解析式: x -1 0 1 2 y 2-2-4写出y 与x 之间的函数解析式是__________,由此判定y 是x 的___________函数?【答案】y=-2x 正比例函数【分析】根据函数经过原点,设函数解析式为y=kx ,将任意一组值代入求出k 即可得到解析式,由此确定函数为正比例函数.【解答】由表格知:函数经过点(0,0), ∴该函数为正比例函数,设函数解析式为y=kx ,将点(1,-2)代入,得到k=-2, ∴函数解析式为y=-2x ,此函数为正比例函数, 故答案为:y=-2x ,正比例.【点评】此题考查待定系数法求函数解析式,判断函数是什么函数.10.直线PQ 上两点的坐标分别是()20,5P -,()10,20Q ,则这条直线所对应的一次函数的解析式为___________________ . 【答案】1152y x =+ 【分析】设一次函数的解析式为y=kx+b ,将点()20,5P -,()10,20Q 的坐标代入解方程组即可求出答案. 【解答】设一次函数的解析式为y=kx+b ,将点()20,5P -,()10,20Q 代入,得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩, ∴一次函数的解析式为1152y x =+, 故答案为:1152y x =+. 【点评】此题考查待定系数法求一次函数的解析式,设函数解析式为y=kx+b ,将已知的图象上的两个点的坐标代入,解方程组求出答案.11.等腰三角形ABC 周长为24,底边BC 长为y ,腰AB 长为x ,则y 关于x 的函数解析式及定义域是________.【答案】()242612y x x =-<<【分析】根据三角形的周长为24可得出2x+y=24,变形后即可得出y=-2x+24;根据三角形的边长大于0以及两腰之和大于底边,即可得出关于x 的一元一次不等式组,解之即可得出自变量x 的取值范围. 【解答】根据题意得:2x+y=24,∴y=-2x+24,∵x 、x 、y 为三角形的边, ∴22242240x x x -+-+⎧⎨⎩>>,∴6<x <12.故答案为:()242612y x x =-<<.【点评】本题考查了一次函数的应用、等腰三角形的性质、三角形三边关系以及三角形的周长,解题的关键是:(1)根据三角形的周长为20找出y 关于x 的函数解析式;(2)由三角形的边长为正值结合两腰之和大于底边,列出关于x 的一元一次不等式组.12.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s 与t 之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).【答案】①②④【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800-2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可. 【解答】解:①小明中途休息的时间是:60-40=20分钟,故本选项正确; ②小明休息前爬山的速度为28007040=(米/分钟),故本选项正确; ③小明在上述过程中所走路程为3800米,故本选项错误;’ ④因为小明休息后爬山的速度是380028002510060-=-(米/分钟),所以小明休息前爬山的平均速度大于小明休息前后爬山的平均速度,故本选项正确; 故答案为①②④.【点评】本题考查的知识点是函数图象,解题关键是从图象中获取必要的信息.13.点A 在正比例函数图像上,过点A 作x 轴的垂线,垂足是D ,若:3:2AD OD =,则此正比例函数的解析式是________. 【答案】32y x =或32y x =- 【分析】设3,AD a = ()0a >由题意可得2,OD a =得到A 的坐标,将之代入正比例解析式中求得k 值,即可得解.【解答】设3,AD a = ()0a >由题意可得2,OD a =故点A 的坐标为()2,3a a ±±,设正比例函数解析式为(),0y kx k =≠,23ak a ∴±=±,解得32k =±, 所以这个函数的解析式为32y x =或32y x =- 故答案为32y x =或32y x =-. 【点评】本题考查了正比例函数,能灵活应用待定系数法求解析式是解题关键. 14.已知一次函数y=2x-a 与y=3x+b 的图象交于轴上原点外的一点,则aa b+=________. 【答案】-2【解答】在一次函数y=2x−a 中,令y=0,得到x=a 2, 在一次函数y=3x+b 中,令y=0,得到x=−b 3, 由题意得:a2=−b 3,图象交于x 轴上原点外一点,则a≠0,且b≠0, 可以设a2=−b 3=k ,则a=2k ,b=−3k ,代入aa b+=−2. 故答案为−2.15.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.【答案】x≤1.【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1,故答案为:x≤1.【点评】本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.16.一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x -2 -1 0 1 2y 9 6 3 0 -3那么,一元一次方程kx+b=0在这里的解为________.【答案】x=1【分析】此题实际上是求当y=0时,所对应的x的值.【解答】根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:x=1.【点评】本题考查了一次函数与一元一次方程,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.17.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0 1 2 3y(升)100 92 84 76由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为0.【答案】12.5【分析】由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【解答】解:由题意可得:y=100-8t,当y=0时,0=100-8t解得:t=12.5.故答案为:12.5.【点评】本题考查函数关系式.注意贮满100L汽油的汽车,最多行驶的时间就是油箱中剩余油量为0时的t的值.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则方程组23x y bkx y-=-⎧⎨-=⎩的解是______.【答案】46 xy=⎧⎨=-⎩【分析】利用“方程组的解就是两个相应的一次函数图象的交点坐标”解决问题.【解答】解:∵点P(4,﹣6)为函数y=2x+b与函数y=kx﹣3的图象的交点,∴方程组23x y bkx y-=-⎧⎨-=⎩的解为46xy=⎧⎨=-⎩.故答案为46 xy=⎧⎨=-⎩.【点评】本题考查方程组的解就是两个相应的一次函数图象的交点坐标,将方程组的解转化为图像的交点问题,属于基础题型. 19.已知()15f x =-,()8311g x x =-,则()()15f g -+=______.【答案】13-【分析】由()15f x =-得()115f -=-,由()8311g x x =-得()52g =,代入求值即可.【解答】∵()15f x =-, ∴()115f -=-,∵()8311g x x =-∴()8523511g ==⨯- ∴()()1515213f g -+=-+=-, 故答案为:-13.【点评】本题考查的知识点是函数的值,难度不大,属于基础题目.20.已知函数y=(m ﹣1)2m x 是正比例函数,m=__;函数的图象经过____象限;y 随x 的减少而___. 【答案】﹣1 第二、四 增大【分析】根据正比例函数的定义可以求得m 的值,然后根据正比例函数的性质即可得到该函数的图象所在的象限和y 随x 的减小而如何变化. 【解答】∵函数y=(m ﹣1)2m x 是正比例函数, ∴2101m m -≠⎧⎨=⎩, 解得,m=﹣1, ∴y=﹣2x ,∴该函数的图象在第二、四象限,y 随x 的减小而增大. 故答案为:﹣1,第二、四,增大.【点评】本题考查了正比例函数的图象和性质,解答本题的关键是明确题意,利用正比例函数的性质解答. 21.正方形A 1B 1C 1O ,正方形A 2B 2C 2C 1,正方形A 3B 3C 3C 2,按如图所示的方式放置在平面直角坐标系中,若点A 1、A 2、A 3和C 1、C 2、C 3…分别在直线y =x+1和x 轴上,则点B 2019的坐标是_____.【答案】()2019201821,2-. 【分析】先求得A 1(0,1),OA 1=1,然后根据正方形的性质求出C 1(1,0),B 1(1,1),同样的方法求出C 2(3,0),B 2(3,2),C 3(7,0),B 3(7,4),……,从而有C n (2n -1,0),B m (2n -1,2n-1),由此即可求得答案. 【解答】当x=0时,y=x+1=1, ∴A 1(0,1),OA 1=1, ∵正方形A 1B 1C 1O , ∴A 1B 1=B 1C 1=OC 1=OA 1=1, ∴C 1(1,0),B 1(1,1), 当x=1时,y=x+1=2, ∴A 2(1,2),C 1A 2=2, ∵正方形A 2B 2C 2C 1, ∴A 2B 2=B 2C 2=C 1C 2=C 1A 1=2, ∴C 2(3,0),B 2(3,2), 当x=3时,y=x+1=4, ∴A 3(3,4),C 2A 3=4, ∵正方形A 3B 3C 3C 2, ∴A 3B 3=B 3C 3=C 2C 3=C 2A 3=4, ∴C 3(7,0),B 3(7,4), ……∴C n (2n -1,0),B m (2n -1,2n-1), ∴B 2019(22019-1,22018), 故答案为(22019-1,22018).【点评】本题考查一次函数图象上点的坐标特征、正方形的性质,解题的关键是明确题意,找出各个点之间的关系,利用数形结合的思想解答问题.22.如图,过点()2,0A 作x 轴的垂线与正比例函数y x =和3y x =的图象分别相交于点B ,C ,则OCB 的面积为________.【答案】4.【解析】【分析】把点A (2,0)的横坐标分别代入正比例函数y=x 和y=3x ,求得B 、C 点的坐标,进一步求得BC 的长度,利用三角形的面积求得答案即可.【解答】解:把2x =分别代入y x =和3y x =中,可得点B 的坐标是()2,2,点C 的坐标是()2,6,所以624BC =-=.因为点()2,0A ,所以2OA =,所以1142422OCB S BC OA =⋅=⨯⨯=. 【点评】此题考查两条直线的交点问题,三角形的面积,利用代入的方法求得B 、C 两点的坐标是解决问题的关键.23.若一次函数()22y a x a =++-的图象不经过第二象限,则a 的取值范围为________.【答案】22a -<≤【解析】【分析】先判断一次函数()22y a x a =++-经过第一、三、四象限或第一、三象限及原点,再根据一次函数的性质得到a+2>0且a-2≤0,然后求出两个不等式的公共部分即可.【解答】解:因为一次函数()22y a x a =++-的图象不经过第二象限,所以经过第一、三、四象限或第一、三象限及原点,所以20a +>且20a -≤,所以22a -<≤.【点评】本题考查了一次函数与系数的关系:对于一次函数y=kx+b ,它与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.当k >0,b >0⇔y=kx+b 的图象在一、二、三象限;k >0,b <0⇔y=kx+b 的图象在一、三、四象限;k <0,b >0⇔y=kx+b 的图象在一、二、四象限;k <0,b <0⇔y=kx+b 的图象在二、三、四象限.24.已知A (-1,1),B (1,1),在直线y = - x +4上找一点P ,使P A +PB 最小,则点P 坐标为_______.33【分析】先找B 点关于直线y = - x+4的对称点B ' ,求出直线AB ' 的函数解析式,求出AB '与直线y = - x+4的交点,即为所求P 点坐标.【解答】解:B (1,1)关于直线y = - x +4的对称点B '(3,3)设直线AB ' 的函数解析式:y=kx+b把A (-1,1)、B '(3,3)代入y=kx+b 得: 1=-k+b 3=3k+b ⎧⎨⎩解得1k=232b ⎧⎪⎪⎨⎪=⎪⎩∴1322y x =+ 联立解析式得:13224y x y x ⎧=+⎪⎨⎪=-+⎩解得:5373x y ⎧=⎪⎪⎨⎪=⎪⎩∴57(,)33P故答案为:57(,)33P【点评】本题考查了一次函数以及线段和最小,利用对称性找到点关于直线的对称点,联立解析式求出交点坐标,是解题的关键.25.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,设直线l 和八个正方形的最上面交点为A ,则直线l 的解析式是_____________.10【分析】如图,利用正方形的性质得到(0,3)B ,由于直线l 将这八个正方形分成面积相等的两部分,则5AOB S ∆=,然后根据三角形面积公式计算出AB 的长,从而可得A 点坐标.再由待定系数法求出直线l 的解析式.【解答】解:如图,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,415AOB S ∆∴=+=, 而3OB =,∴1·352AB =, 103AB ∴=, A ∴点坐标为10(3,3). 设直线l 的解析式为y kx =,∴1033k =,解得910k =, ∴直线l 的解析式为910y x = 故答案为910y x =. 【点评】本题考查了坐标与图形性质和待定系数法求函数解析式.由割补法得5AOB S ∆=求分割点A 的位置是解题关键.。
2022中考数学复习考点专项训练——一次函数
2022中考数学复习考点专项训练——一次函数一、选择题1. 设路程s,速度v,时间t,在关系式s=vt中,说法正确的是()A.当s一定时,v是常量,t是变量B.当v一定时,t是常量,s是变量C.当t一定时,t是常量,s,v是变量D.当t一定时,s是常量,v是变量2. 小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟3.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为( )A.y=2x+3B.y=2x−3C.y=2x+6D.y=2x−64.直线l:m(2x−y−5)+(3x−8y−14)=0被以A(1, 0)为圆心,2为半径的⊙A所截得的最短弦的长为()A.√2B.√3C.2√2D.2√35.已知函数图象如图所示,则此函数的解析式为()A .2y x =-B .2(10)y x x =--<<C .12y x =- D .1(10)2y x x =--<<6.在地球某地,地表以下岩层的温度y(∘C)与所处深度x(km)之间的关系可以近似地用表达式y =35x +20来表示,当自变量x 每增加1km 时,因变量y 的变化情况是()A.减少35∘CB.增加35∘CC.减少55∘CD.增加55∘C7.如图所示,△ABC 中,已知BC =16,高AD =10,动点Q 由C 点沿CB 向B 移动(不与点B 重合).设CQ 长为x ,△ACQ 的面积为S ,则S 与x 之间的函数关系式为()A.S =80−5xB.S =5xC.S =10xD.S =5x +808. 下列图形中,表示一次函数y mx n =+与正比例函数y mnx =(m 、n 为常数且0mn ≠)的图像是下图中的()9. 一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km ;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km ;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D.4个10. 已知函数y =√x 2−1,当x =−2时,函数值为()A.√3B.±√3C.3D.±311. 已知点()()1242y y -,,,都在直线122y x =-+上,则12y y ,大小关系是() A .12y y > B .12y y = C .12y y < D .不能比较12. 已知梯形ABCD 的四个顶点的坐标分別为A(−1, 0),B(5, 0),C(2, 2),D(0, 2),直线y =kx +2将梯形分成面积相等的两部分,则k 的值为()A.−23B.−29C.−47D.−27 13.汽车由A 地驶往相距120km 的B 地,它的平均速度是30km/h ,则汽车距B 地路程s (km)与行驶时间t(h)的函数关系式及自变量t 的取值范围是()A.S =120−30t (0≤t ≤4)B.S =120−30t (t >0)C.S =30t (0≤t ≤40)D.S =30t (t <4)14. 如果等腰三角形的周长为16,那么它的底边长y 与腰长x 之间的函数图像为()15.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是()A. B.C.D.二、填空题 16.已知函数y =−4x −3,当x =________时,函数值为0.17. 已知3a y ax -=,若y 是x 的正比例函数,则a 的值是.18. 已知函数y =(m −1)x |m|+3是一次函数,则m =________.19.已知关于x 的函数y =(k +3)x +|k|−3是正比例函数,则k 的值是________.20. 若一次函数12(1)12y k x k =-+-的图像不过第一象限,则k 的取值范围是___________. 21.小华用500元去购买单价为3元的一种商品,剩余的钱y (元)与购买这种商品的件数x (件)之间的函数关系是________.22. 重庆出租车夜间收费(单位:元)与行驶路程(单位:千米)之间的关系如图所示,如果勇勇乘出租车最远能到10公里,那么他恰有________元.23. 已知一次函数y kx b =+中,0kb <,则这样的一次函数的图像必经过的公共象限有个,即第象限.24. 某工人生产一种零件,完成定额20个,每天收入28元,如果超额生产一个零件,增加收入1.5元.写出该工人一天的收入y (元)与他生产的零件x (个)的函数关系式________.25.小明放学后步行回家,他离家的路程s (米)与步行时间t (分钟)的函数图象如图所示,则他步行回家的平均速度是________米/分钟.26. 已知y 是x 一次函数,表给出了部分对应值,m 的值是.27.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是____.28.在如图所示的平面直角坐标系中,点P 是直线y x =上的动点,()0A 1,,B(2,0)是x 轴上的两点,则PA PB +的最小值为______.29.某公司推销一种产品,公司付给推酬员的月报销有两种方案如图所示.设推销员推销产品的数量为x (件),付给推销员的月报酬为y (元).若公司决定改进“方案二”,保持基本工资不变,每件报酬增加m 元,使得当销售员销售产品达到40件时,两种方案的报酬差额不超过100元,则m 的取值范围是________.30.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,则b=_____.三、解答题31. 函数已知28(3)1my m x -=-+,当m 为何值时,y 是x 的一次函数?32.已知一次函数y =−2x +3.(1)求这个函数图象与x 轴的交点坐标;(2)当这个函数图象在x轴下方时,求自变量x的取值范围;(3)当这个函数图象在第一象限时,求自变量x的取值范围.33.已知函数y=(8-2m)x+m-2.(1)若函数图象经过原点,求m的值.(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.(3)若这个函数是一次函数,且图象经过第一、二、三象限,求m的取值范围.34. 直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的表达式.(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.35.在甲药店购买口罩,一次性购买数量不超过100个时,价格为3.5元/个;一次性购买数量超过100个时,其中100个的价格仍为3.5元/个,超过100个的部分价格为2.5元/个.(1)设在甲药店购买x个口罩,总费用为y元,请写出y与x的函数解析式;(2)乙药店销售同一种口罩,不论一次购买数量是多少,价格均为3元/个.若某单位需购买300个口罩,选择在哪个药店购买更便宜?36. 为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?37. 平面直角坐标系xOy中,点P的坐标为(m+1, m−1).(1)试判断点P是否在一次函数y=x−2的图象上,并说明理由;(2)如图,一次函数y=-x+3的图象与x轴、y轴分别相交于A,B,若点P在△AOB的内部,求m的取值范围.38. 图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自x+6,动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数表达式.(2)请通过计算说明甲、乙两人谁先到达一楼地面.39.A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.(1)设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.(2)若总运费不超过9 000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.40. 如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=−3的解.41. 某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6m3的速度注入乙池,甲、乙两个蓄水池中水的深度y(m)与注水时间x(h)之间的函数图象如图所示,结合图象回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数关系式.(2)求注水多长时间甲、乙两个蓄水池中水的深度相同.(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.x的图象上运动(不与O重合),连接AP.过42.在平面直角坐标系xOy中,已知A(0,2),动点P在y=√33点P作PQ⊥AP,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当△OPQ为等腰三角形时,求点Q的坐标.。
一次函数的认识练习题
一次函数的认识练习题一、选择题1. 下列哪个选项表示一次函数的一般形式?()A. y = ax² + bx + cB. y = ax + bC. D. y = x² + 12. 一次函数的图像是一条()A. 折线B. 曲线C. 椭圆D. 双曲线3. 一次函数y = 3x + 2的斜率为()A. 2B. 3C. 3D. 24. 一次函数y = x + 5的截距为()A. 5B. 5C. 1D. 1二、填空题1. 一次函数的图像是一条__________。
2. 一次函数y = 2x 3的斜率为__________,截距为__________。
3. 当x = 0时,一次函数y = 4x + 7的值为__________。
4. 一次函数的图像与x轴、y轴的交点分别为(__________,0)和(0,__________)。
三、判断题1. 一次函数的图像可以是一条水平线。
()2. 一次函数的斜率表示图像的倾斜程度,斜率越大,图像越陡峭。
()3. 一次函数y = x的图像经过原点。
()4. 两个一次函数的图像如果平行,则它们的斜率一定相等。
()四、简答题1. 请解释一次函数的定义及其图像特征。
2. 如何求一次函数的斜率和截距?3. 举例说明一次函数在实际生活中的应用。
五、应用题1. 某商店进行促销活动,满100元减20元。
请用一次函数表示顾客消费金额x(元)与实际支付金额y(元)之间的关系。
2. 小明从家出发,以每分钟60米的速度跑步,用一次函数表示小明跑步时间t(分钟)与跑步距离s(米)之间的关系。
3. 一辆汽车以恒定速度行驶,行驶了2小时后,路程为120公里。
请用一次函数表示汽车行驶时间t(小时)与行驶路程s(公里)之间的关系。
六、作图题1. 请在坐标系中作出一次函数y = 4x 2的图像。
2. 请画出一次函数y = x + 5和y = x 3的图像,并标出它们的交点。
七、计算题1. 已知一次函数的图像经过点(3, 5)和(6, 9),求该一次函数的表达式。
一次函数练习题及答案
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
一次函数基础训练题
一次函数基础训练题一.选择题(共6小题)1.下列函数中,是一次函数的是()A.y=B.y=﹣2x+1C.y=3D.y=x+x22.下列函数中,是一次函数的有()①y=;②y=3x+1;③y=;④y=kx﹣2.A.1个B.2个C.3个D.4个3.下列函数中,y是x的正比例函数的是()A.y=x+1B.y=x C.y=x2D.y=4.函数y=2x+1的图象过点()A.(﹣1,1)B.(﹣1,2)C.(0,1)D.(1,1)5.直线y1=kx+b和y2=bx+k在同一平面直角坐标系内的大致图象为()A.B.C.D.6.如图中表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab<0)图象的是()A.B.C.D.二.填空题(共6小题)7.一次函数y=kx+6中,当b=0时,它是一个函数,所以说正比例函数是一种的一次函数.8.函数y=(k+1)x﹣7中,当k满足时,它是一次函数.9.已知y关于x的函数y=(m+2)x+m2﹣4是正比例函数,则m的值是.10.如图,在平面直角坐标系中,已知点A(0,4),B(2,4),直线y=x+1上有一动点P,当P A=PB时,点P的坐标是.11.一次函数y=mx+n的图象如图所示,则代数式|m+n|﹣|m﹣n|化简后的结果为.12.正比例函数的图象特点:正比例函数的图象是一条的直线.三.解答题(共3小题)13.已知关于x的函数y=kx|﹣2k+3|﹣x+5是一次函数,求k的值.14.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系式.题中函数是一次函数吗?为什么?15.已知y=(k﹣3)x+k2﹣9是关于x的正比例函数,求当x=﹣4时,y的值.。
第六章《一次函数》专练(选择、填空题)(含解析)
第六章《一次函数》专练(选择、填空题)一.选择题1.(2018•呼和浩特)若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.1 2.(2018•荆门)在函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤1 3.(2018•徐州)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6 4.(2018•青海)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A.B.C.D.5.(2018•镇江)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35B.10:40C.10:45D.10:50 6.(2018•葫芦岛)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2B.x<﹣2C.x>4D.x<4 7.(2018•赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A.B.C.D.8.(2018•宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A.B.C.D.9.(2018•广元)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:5510.(2018•巴彦淖尔)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是()A.第24天的销售量为300件B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元D.第15天与第30天的日销售量相等11.(2018•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是()A.B.C.D.12.(2018•湖北)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个13.(2018•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃14.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.15.(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个16.(2018•邵阳)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界纪录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠17.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.18.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min19.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小20.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱21.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9B.7C.﹣9D.﹣7 22.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.23.(2017•巴彦淖尔)为积极响应市委、市政府提出的“绿色发展,赛过江南”的号召,市园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.25平方米B.50平方米C.75平方米D.100平方米24.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是()A.B.C.D.25.某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间x(分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是()①方式一每月主叫时间为300分钟时,月使用费为88元②每月主叫时间为350分钟和600分钟时,两种方式收费相同③每月主叫时间超过600分钟,选择方式一更省钱A.①②B.①③C.②③D.①②③26.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,慢车先出发一段时间,这辆列车之间的距离y(km)与慢车行驶的时间x(h)之间的函数关系如图所示,则慢车出发8h时,两列车相距()A.525km B.575.5km C.600km D.660km二.填空题27.(2018•济南)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.28.(2018•巴中)函数y=+中自变量x的取值范围是.29.(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.30.(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y 满足的关系式是.31.(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x (kx+b)<0的解集为.32.(2018•邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.33.(2018•杭州)某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.34.(2018•陇南)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.35.(2018•重庆)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.36.(2018•重庆)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.37.(2018•衢州)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.38.(2016•黄冈校级自主招生)如图,在一次自行车越野赛中,甲、乙两名选手所走的路程y(千米)随时间x(分钟)变化的图象(全程)分别用实线(O→A→B→C)与虚线(OD)表示,那么,在本次比赛过程中,乙领先甲时的x的取值范围是.39.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,分别以各自的速度在甲乙两地间匀速行驶,行驶1小时后,快车司机发现有重要文件遗忘在出发地,便立即返回出发地,拿上文件后(取文件时间不计)立即再从甲地开往乙地,结果快车先到达乙地,慢车继续行驶到甲地.设慢车行驶时间x(h),两车之间的距离为y(km),y与x的函数图象如图所示,则a=.40.一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B 地后,快递车再行驶h到达A地.答案与解析一.选择题1.【分析】直线解析式乘以2后和方程联立解答即可.【解答】解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0所以﹣b=﹣2b+2,解得:b=2,故选:B.【点评】此题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.2.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.3.【分析】由一次函数图象过(3,0)且过第二、四象限知b=﹣3k、k<0,代入不等式求解可得.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.【点评】本题主要考查一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元一次不等式的能力.4.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC 上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.5.【分析】根据速度之间的关系和函数图象解答即可.【解答】解:因为匀速行驶了一半的路程后将速度提高了20km/h,所以1小时后的路程为40km,速度为40km/h,所以以后的速度为20+40=60km/h,时间为分钟,故该车到达乙地的时间是当天上午10:40;故选:B.【点评】此题主要考查了函数的图象值,根据速度之间的关系和函数图象解答是解题关键.6.【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x>﹣2时,kx+b>4,故选:A.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象进行解答.7.【分析】根据题意得出兔子和乌龟的图象进行解答即可.【解答】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,故选:D.【点评】此题考查函数图象问题,本题需先读懂题意,根据实际情况找出正确函数图象即可.8.【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢进行分析即可.【解答】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,故选:D.【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.9.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.【分析】A、利用图象①即可解决问题;B、利用图象②求出函数解析式即可判断;C、求出销售量以及每件产品的利润即可解决问题;D、求出第15天与第30天的日销售量比较即可;【解答】解:A、根据图①可得第24天的销售量为300件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:,∴y=﹣t+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选:D.【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是故选:B.【点评】此题考查了函数的图象,由图象理解对应函数关系及其实际意义是解本题的关键.12.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.13.【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.【点评】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.14.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.15.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x 之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【解答】解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=60时,y=﹣0.2×60+15.8=3.8.因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,故选:D.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合和分类讨论的数学思想解答.18.【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.【点评】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.19.【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.21.【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.22.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.23.【分析】根据休息后2小时的绿化面积100平方米,即可判断;【解答】解:休息后园林队每小时绿化面积为==50平方米.故选:B.【点评】本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.24.【分析】根据去学校,可得与学校的距离逐渐减少,根据跑步比步行快,可得答案.【解答】解:由题意,得步行时,小明距离学校的路程S缓慢减少,匀速跑步时,小明距离学校的路程S迅速减少直至为零,故D符合题意,故选:D.【点评】本题考查了函数图象,理解题意与学校的距离逐渐减少是解题关键.25.【分析】①根据待定系数法求出方式一,当x≥200时的一次函数解析式,再求出y=88时x的值即可求解;②得出两交点坐标即可求解;③观察函数图形即可求解.【解答】解:①当x≥200时,设方式一的一次函数解析式为y=kx+b,依题意有,解得.则当x≥200时,方式一的一次函数解析式为y=0.2x+18,当y=88时,0.2x+18=88,解得x=350.故方式一每月主叫时间为350分钟时,月使用费为88元.题干原来的说法是错误的;②观察图形可知两交点坐标分别是(350,88),(600,138),故每月主叫时间为350分钟和600分钟时,两种方式收费相同.题干原来的说法是正确的;③观察图形可知每月主叫时间超过600分钟,选择方式一更省钱.题干原来的说法是正确的.故选:C.【点评】考查了一次函数的应用,渗透了函数与方程的思想,关键是求出x≥200时的一次函数解析式.26.【分析】根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地.那么慢车8h时,两车的距离就是慢车8h的路程.【解答】解:根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地,所以慢车出发8h时,两车相距75×8=600km.故选:C.【点评】本题是一道典型的识图题,考查学生结合实际情况从图中挖掘信息的能力,知道图象中每个数据表示的意义是解题关键二.填空题27.【分析】由图象得出解析式后联立方程组解答即可.【解答】解:由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.【点评】此题考查一次函数的应用,关键是由图象得出解析式解答.28.【分析】根据被开方数大于等于0,分母不等于0列不等式计算即可得解.【解答】解:由题意得,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.29.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.6。
一次函数练习题及答案
一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。
答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。
答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。
解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。
7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。
解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。
解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。
四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。
一次函数填空选择及答案
一次函数填空选择一.选择题(共19小题)1.(2014•济宁)函数y=中的自变量x 的取值范围是( )2.(2014•遂宁)在函数y=中,自变量x 的取值范围是( )中l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km )随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A .4个B .3个C .2个D .1个5.(2014•河南)如图,在Rt △ABC 中,∠C=90°,AC=1cm ,BC=2cm ,点P 从点A 出发,以1cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能够反映y 与x 之间函数关系的图象大致是( ). C D . .CD . . C D .11.(2014•邵阳)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是12.(2014•长春)如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()14.(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()x析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3≤19.(2014•济南)如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A.(,3)B.(,)C.(2,2)D.(2,4)二.填空题(共11小题)20.(2014•自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_________.21.(2014•成都)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_________y2.(填“>”“<”或“=”)22.(2014•大庆)图中直线是由直线l向上平移1个单位,向左平移2个单位得到的,则直线l对应的一次函数关系式为_________.23.(2014•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.24.(2014•烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.25.(2014•舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是_________.26.(2014•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为_________.27.(2014•株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于_________.28.(2014•黔东南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为_________.29.(2014•牡丹江)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为_________.30.(2014•江西模拟)已知四条直线:y=kx﹣3,y=﹣1,y=3,x=1所围成的四边形面积是12,则k的值是_________.一.选择题(共19小题)1.(2014•济宁)函数y=中的自变量x的取值范围是(A)2.(2014•遂宁)在函数y=中,自变量x的取值范围是(C)4.(2014•常州)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有(B)A.4个B.3个C.2个D.1个解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;所以正确的结论有三个:①②④,5.(2014•河南)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P 的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是(A).C D..C D..C D.﹣x+1上,则m的值为(B)A.﹣1 B.1 C.2 D.314.(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是(B)x式是(D)A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3≤19.(2014•济南)如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是(A),二.填空题(共11小题)20.(2014•自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7.21.(2014•成都)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)22.(2014•大庆)图中直线是由直线l向上平移1个单位,向左平移2个单位得到的,则直线l对应的一次函数关系式为y=x﹣2.23.(2014•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为﹣2≤x≤﹣1.24.(2014•烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4.25.(2014•舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).26.(2014•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为≤k≤3.27.(2014•株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于4.28.(2014•黔东南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.29.(2014•牡丹江)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为y=﹣x+.30.(2014•江西模拟)已知四条直线:y=kx﹣3,y=﹣1,y=3,x=1所围成的四边形面积是12,则k的值是﹣2或1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名
一、选择题:(每小题3分,共30分)
1.下列函数(1)y=πx (2)y=2x-1 (3)y=
1
x(4)y=2
2-x (5)y=x2-1中,一次函数的个数是()
A.4个B.3个C.2个D.1个
2.若y=(m-2)x+(m2-4)是正比例函数,则m的取值是()
A.2 B.-2 C.±2 D.任意实数
3.若直线y=kx+b中,k<0,b>0,则直线不经过()
A、第一象限
B、第二象限
C、第三象限
D、第四象限
4.如图所示图象中,函数m
mx
y+
=的图象可能是下列图象中()
D)
5)
A.1
4+
-
=x
y B. 6
)3
(2+
-
=x
y C. 6
)
2(3+
-
=x
y D.
2
x
y-
=
6.已知3
-
y与x成正比例,且x=2时,y=7,则y与x的函数关系式为()A.3
2+
=x
y B.3
2-
=x
y C.3
2
3+
=
-x
y D.3
3-
=x
y
7.下列各点,在一次函数y=2x+6的图象上的是()
A.(-5,4) B.(-4,1) C.(4,20) D.(-3,0)
8.点A)
,3(
1
y和点B)
,2
(
2
y
-都在直线3
2+
-
=x
y上,则
1
y和
2
y的大小关系是()
A.
1
y>
2
y B.
1
y<
2
y C.
1
y=
2
y D.不能确定
9.已知某一次函数的图像与直线1+
-
=x
y平行,且过点(8,2),那么此一次函数为()A.2
-
-
=x
y B.10
+
-
=x
y C.6
-
-
=x
y D.10
-
-
=x
y
10.等腰三角形的周长是40cm,腰长y (cm)是底边长x (cm)的函数解析式正确的是()A.y=-0.5x+20 ( 0<x<20) B.y=-0.5x+20 (10<x<20)
C.y=-2x+40 (10<x<20) D.y=-2x+40 (0<x<20)
11.已知一次函数图象过(1,2)且y随x的增大则减小,请写出一个符合条件的函数解析式.
12.一次函数y=-2x+4的图象与x轴交点坐标是,与y轴交点坐标是.
13.直线6
3+
=x
y与两坐标轴围成的三角形的面积是
14.若函数3
2+
=x
y与b
x
y2
3-
=的图象交于x轴于同一点,则b=__________.
15.已知一次函数k x
k
y)1
(-
=+3,则k= .
16.在平面直角坐标中,点A(x,4),B(0,8)和C(-4,0)在同一直线上,则x= .
17. 已知直线3
3-
=x
y向左平移4个单位后,则该直线解析式是.
姓名
一、选择题(每小题3分,共30分) 1. 函数的自变量的取值范围是( )
A .>1 B.>1且≠3 C .≥1 D .≥1且≠3
2.(2015•上海中考)下列y 关于x 的函数中,是正比例函数的为( )
A . 2y x =
B . 2y x =
C . 2x y =
D . 12x y +=
3.(2014•陕西中考)若点A (-2,m )在正比例函数y =-x 的图象上,则m 的值是( )
A . B.- C.1 D.-1
4.(2015·成都中考)一次函数y =2x +1的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
5. 已知一次函数y =kx +b 中y 随x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )
kx -44
为( )
A .y =-x -4
B .y =-2x -4
C .y =-3x +4
D .y =-3x -4
7. 小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地的距离y km 与已用时间x h 之间的关系,则小敏、小聪行走的速度分别是( )
A .3 km/h 和4 km/h
B .3 km/h 和3 km/h
C .4 km/h 和4 km/h
D .4 km/h 和3 km/h
8. 若甲、乙两弹簧的长度y cm 与所挂物体质量x kg 之间的函数表达式分
别为y =k 1x +b 1和y =k 2x +b 2,如图所示,所挂物体质量均为2 kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )
A.y 1> y 2
B.y 1=y 2
C.y 1<y 2
D.不能确定
9.如图所示,已知直线l :y 3x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线l 的 垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )
A .(0,64)
B .(0,128)
C .(0,256)
D .(0,512)
第7题图 第8题图 y x O y x O
y x O y x O C
图所示,在平面直角坐标系中,直线y =23x -23
与矩形ABCO 的边OC 、10. 如BC 分别交
于点E 、F ,已知OA =3,OC =4,则△CEF 的面积是( )
A .6
B .3
C .12
D .43
二、填空题(每小题3分,共24分)
11. 已知函数y =(m -1)2m x +1是一次函数,则m = .
12.( 2015·天津中考)若一次函数y =2x +b (b 为常数)的图象经过点(1,5),则b
的值为 . 13.已知A 地在B 地正南方3 km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离s (km )与所行的时间t (h )之间的函数图象如图所示,当行走3 h 后,他们之间的距离为 km. 14.(2015·海南中考)点(-1,1y )
、(2,2y )是直线y =2x +1上的两点,则1y ________2y .(填“>”或“=”或“<”)
15.如图所示,一次函数y =kx +b (k <0)的图象经过点A .当y <3时,x 的
取值范围是 .
16. 函数y =-3x +2的图象上存在点P ,使得点P •到x •轴的距离等于3,则点P •的坐标
为 .
17.(2014·浙江金华中考)小明从家跑步到学校,接着马上步行回家. 如图是小明离家
的路程y (米)与时间t (分)的函数图象,则小明回家的速度是每分钟步行 米.
18.据有关资料统计,两个城市之间每天的电话通话次数T 与这两个城市的人口数m 、n (单位:万人)以及两个城市间的距离d (单位:km )有T =2
kmn d 的关系(k 为常数).现测得A 、B 、C 三个城市的人口数及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B ,C 两个城市间每天的电话通话次数为_______(用t 表示). 第9题图 第10题图
第18题图
第15题图
第17题图。