大学物理标准答案(9、10、13、14、15、16章)

合集下载

四川师范大学大学物理波动光学(13、14、15章)题解

四川师范大学大学物理波动光学(13、14、15章)题解

第十三章 光的干涉13–1 在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e ,波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的位相差 。

解:加入透明薄膜后,两束相干光的光程差为n 1e –n 2e ,则位相差为e n n e n e n )(2)(22121-=-=∆λλλλφ13–2 如图13-1所示,波长为λ的平行单色光垂直照射到两个劈尖上,两劈尖角分别为21θθ和,折射率分别为n 1和n 2,若二者分别形成的干涉条纹的明条纹间距相等,则21,θθ,n 1和n 2之间的关系是 。

解:劈尖薄膜干涉明条纹间距为θλθλn n L 2sin 2≈=( 很小) 两劈尖干涉明条纹间距相等221122θλθλn n =,所以 2211θθn n =或1221n n =θθ13–3 用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是: ; 。

解:因为干涉条纹的间距与两缝间距成反比,与屏与双缝之间的距离成正比。

故填“使两缝间距变小;使屏与双缝之间的距离变大。

”13–4 用波长为λ的单色光垂直照射如图13-2示的劈尖膜(n 1>n 2>n 3),观察反射光干涉,从劈尖顶开始算起,第2条明条纹中心所对应的膜厚度e = 。

解:劈尖干涉(n 1>n 2>n 3)从n 1射向n 2时无半波损失,产生明条纹的条件为2n 2e = k ,k = 0,1,2,3…在e = 0时,两相干光相差为0,形成明纹。

第2条明条纹中心所对应的膜厚度为k = 1,即2n 2e = ,则22n e λ=。

13–5 若在迈克耳孙干涉仪的可动反射镜移动0.620mm 的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为 。

解:设迈克耳孙干涉仪空气膜厚度变化为e ,对应于可动反射镜的移动,干涉条纹每移动一条,厚度变化2λ,现移动2300条,厚度变化mm 620.022300=⨯=λ∆e ,则 = 。

大学物理第九章习题答案

大学物理第九章习题答案

第九章 真空中的静电场9–1 如图9-1所示,电量为+q 的三个点电荷,分别放在边长为a 的等边三角形ABC 的三个顶点上,为使每个点电荷受力为零,可在三角形中心处放另一点电荷Q ,则Q 的电量为 。

解:由对称性可知,只要某个顶点上的电荷受力为零即可。

C 处电荷所受合力为零,需使中心处的点电荷Q 对它的引力F 与A ,B 两个顶点处电荷的对它的斥力F 1,F 2三力平衡,如图9-2所示,即)21(F F F +-=因此12cos30F F ︒=即2202cos304πq aε=︒解得q Q 33=9-2 真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+λ 和-λ,点P 1和P 2与两带电线共面,其位置如图9-3所示,取向右为坐标x 正向,则1P E = ,2P E = 。

解:(1)P 1点场强为无限长均匀带电直线λ,-λ在该点产生的场强的矢量和,即λλ-+=E E E 1P其大小为i i i E dd d P 000ππ2π21ελελελ=+=方向沿x 轴正方向。

(2)同理可得i i i E dd d P 000π3π2)3(π22ελελελ-=-=方向沿x 轴负方向。

图9–2图9-3C B图9–19-3 一个点电荷+q 位于一边长为L 的立方体的中心,如图9-4所示,则通过立方体一面的电通量为 。

如果该电荷移到立方体的一个顶角上,那么通过立方体每一面的电通量是 。

解:(1)点电荷+q 位于立方体的中心,则通过立方体的每一面的电通量相等,所以通过每一面的通量为总通量的1/6,根据高斯定理1d in Sq ε⋅=∑⎰⎰E S ,其中S 为立方体的各面所形成的闭合高斯面,所以,通过任一面的电通量为0d 6Sqε⋅=⎰⎰E S 。

(2)当电荷+q 移至立方体的一个顶角上,与+q 相连的三个侧面ABCD 、ABFE 、BCHF 上各点的E 均平行于各自的平面,故通过这三个平面的电通量为零,为了求另三个面上的电通量,可以以+q 为中心,补作另外7个大小相同的立方体,形成边长为2L 且与原边平行的大立方体,如图9–5所示,这个大立方体的每一个面的电通电都相等,且均等于6εq ,对原立方体而言,每个面的面积为大立方体一个面的面积的1/4,则每个面的电通量也为大立方体一个面的电通量的1/4,即此时通过立方体每一面的电通量为0111d 4624Sqε⋅⋅=⎰⎰E S 。

大学物理 上海交通大学 16章 课后习题答案

大学物理 上海交通大学 16章 课后习题答案

习题1616-1.如图所示,金属圆环半径为R ,位于磁感应强度为B 的均匀磁场中,圆环平面与磁场方向垂直。

当圆环以恒定速度v 在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a 、b 间的电势差。

解:(1)由法拉第电磁感应定律i d dt εΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势0i ε=;(2)利用:()aab b v B dlε=⨯⋅⎰,有:22ab Bv R Bv Rε=⋅=。

【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线中通有电流A I 0.5=,在与其相距cm 5.0=d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4=l ,宽cm 0.2=a 。

不计线圈自感,若线圈以速度cm/s 0.3=v 沿垂直于长导线的方向向右 运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。

首先用0l B dl I μ⋅=∑⎰求出电场分布,易得:02I B r μπ=, 则矩形线圈内的磁通量为:00ln 22x axI I l x a l dr r x μμππ++Φ=⋅=⎰,由i d Nd t εΦ=-,有:011()2i N I l d xx a x dt μεπ=--⋅+∴当x d =时,有:041.92102()i N I l a vVd a μεπ-==⨯+。

解法二:利用动生电动势公式解决。

由0l B dl Iμ⋅=∑⎰求出电场分布,易得:02I B r μπ=,考虑线圈框架的两个平行长直导线部分产生动生电动势,近端部分:11NB l v ε=, 远端部分:22NB lvε=,则:12εεε=-=00411() 1.921022()N I N I a l v l v Vd d a d d a μμππ--==⨯++。

16-3.如图所示,长直导线中通有电流强度为I 的电流,长为l 的金属棒ab 与长直导线共面且垂直于导线放置,其a 端离导线为d ,并以速度v 平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a 、U b 的电势大小。

《大学物理》课后习题答案

《大学物理》课后习题答案

《大学物理》课后习题答案习题4-12HLh4-12 一个器壁竖直的开口水槽,如图所示,水的深度为H =10m ,在水面下h =3m 处的侧壁开一个小孔。

试求:(1)从小孔射出的水流在槽底的水平射程L 是多少?(2)h 为何值时射程最远?最远射程是多少? 解:(1)设水槽表面压强为p 1,流速为v 1,高度为h 1,小孔处压强为p 2,流速为v 2,高度为h 2,由伯努利方程得:222212112121gh v p gh v p ρρρρ++=++ 根据题中的条件可知: 21121,0,h h h v p p p -==== 由上式解得:gh v 22=由运动学方程:221gt h H =-,解得: gh H t )(2-=水平射程为:)(m 17.9)310(34)(42=-⨯⨯=-==h H h t v L(2)根据极值条件,令0=dhdL ,L出现最大值, 即22=--hhH h H ,解得:h=5m此时L的最大值为10m 。

4-14 水在粗细不均匀的水平管中作稳定流解:刚性双原子气体分子的自由度5i = (1)氧气分子的平均平动动能 2321k331.3810(2730) 5.710J 22kT ε--==⨯⨯⨯+≈⨯ 平均转动动能2321t 22 1.3810(2730) 3.810J22kT ε--==⨯⨯⨯+≈⨯ (2)34.010kg-⨯氧气的内能323' 4.01058.312737.110J 232102m i E RT M --⨯==⨯⨯⨯≈⨯⨯ 34.010kg-⨯氦气的内能333' 4.01038.31273 3.410J 24102m i E RT M --⨯==⨯⨯⨯≈⨯⨯5-17 储有1mol 氧气(可视为刚性分子),容积为31m 的容器以110m s υ-=⋅速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。

试求气体的温度及压强各升高了多少?解:分子热运动增加的能量为23211'80%32101080% 1.28J 22E m v -∆=⨯=⨯⨯⨯⨯= 又由理想气体内能公式2i E RT ν=可得2iE R T ν∆=∆,则222 1.286.1610K 558.31E T R -∆⨯∆==≈⨯⨯由理想气体状态方程pV RT ν=可得28.31 6.16100.51Pa1R Tp V ν-∆⨯⨯∆==≈6-10 一压强为51.010Pa ⨯,体积为331.010m -⨯的氧气自0C 加热到100C ,问:(1)当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2)在等压和等体过程中各作了多少功? 解:(1)压强不变,即等压过程:对初状态应用理想气体状态方程111p V RT ν= ,代入到p()2iQR R Tν=+∆中,得5311p 1 1.010 1.0105()()(1)100222732pV i i Q R R T R R T RT ν-⨯⨯⨯=+∆=+∆=⨯+⨯21.2810J=⨯体积不变时,即等体过程:对初状态应用理想气体状态方程111p V RT ν= ,代入到V2iQR T ν=∆中,得5311V 1 1.010 1.010510091.6J222732pV i i Q R T R T RT ν-⨯⨯⨯=∆=∆=⨯⨯≈(2)等体过程,系统对外不做功,即0J W =;r R r RE Or(D) E ∝1/r 222等压过程:内能的变化量91.6J 2iE R T ν∆=∆=,由热力学第一定律可得12891.636.4JW Q E =-∆=-=6-12 2mol 的理想气体在300K 时,从33410m -⨯等温压缩到33110m -⨯,求气体所做的功和放出的热量? 解:等温过程:E ∆=;3211ln28.31300ln 6.910J 4T T V Q W RT V ν===⨯⨯⨯≈-⨯ 6-17 一卡诺热机的低温热源温度为7C ,效率为40%,若要将其效率提高到50%,问高温热源的温度应提高多少?解:由21-1=T Tη得原高温热源的温度为 21280467K 110.4T T η===--50%η=时对应的高温热源的温度为21280'560K 1'10.5T T η===-- 高温热源应提高的温度为560K 467K =93K -7-2 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为[ ]。

大物下习题答案

大物下习题答案

习题1111-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆心O点的场强。

解:以O为坐标原点建立xOy坐标,如图所示。

①对于半无限长导线A∞在O点的场强:有:(cos cos)42(sin sin)42AxA yERERλπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B∞在O点的场强:有:(sin sin)42(cos cos)42B xB yERERλπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB圆弧在O点的场强:有:200200cos(sin sin)442sin(cos cos)442AB xAB yE dR RE dR Rππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O xERλπε=,04O yERλπε=,得:0()4OE i jRλπε=+。

或写成场强:0E==,方向45。

11-5.带电细线弯成半径为R的半圆形,电荷线密度为0sinλλϕ=,式中λ为一常数,ϕ为半径R与x轴所成的夹角,如图所示.试求环心O处的电场强度。

解:如图,200sin44ddldER Rλϕϕλπεπε==,cossinxydE dEdE dEϕϕ==⎧⎪⎨⎪⎩考虑到对称性,有:0=xE;∴200000000sin(1cos2)sin4428yd dE dE dER R Rππλϕϕλλϕϕϕπεπεε-=====⎰⎰⎰⎰,方向沿y轴负向。

11-15.图示为一个均匀带电的球壳,其电荷体密度为ρ,球壳内表面半径为1R,外表面半径为2R .设无穷远处为电势零点,xyE求空腔内任一点的电势。

解:当1r R <时,因高斯面内不包围电荷,有:10E =,当12R r R <<时,有:203132031323)(4)(34r R r r R r E ερπεπρ-=-=,当2r R >时,有:20313220313233)(4)(34r R R r R R E ερπεπρ-=-=,以无穷远处为电势零点,有:21223R R R U E d r E d r ∞=⋅+⋅⎰⎰⎰⎰∞-+-=2R dr r R R dr r R r R R203132203133)(3)(21ερερ)(221220R R -=ερ。

大学物理答案第十六章

大学物理答案第十六章

第十六章 机械波16-1 一波源作简谐振动,周期s 010.=T ,振幅m 40.=A ,当0=t 时,振动位移恰为正方向的最大值.设此方程以m/s 400=v 的速度沿直线传播,试求(1)此波的波函数;(2)距波源m 2和m 16处质点的振动方程和初相;(3)距波源15m 和m 16处质点振动的相位差.分析 波源的周期和频率就是机械波的周期和频率,对于平面波,在忽略传播过程中的能量损失的情况下,波源的振幅就是波的振幅,如果已知波速或波长以及波源的初相,就能给出波函数.由上一章的讨论可知,当给出振动的初始位置和运动方向时,振动的初相就确定了.由波函数可以获得波线上任一点的振动方程;以及任一时刻波线上各点的位移,即波形.波线上相位差为π2质点间的距离(也可视为两个相邻的相位相同点间的距离)为一个波长.解 (1)波源的角频率为rad/s 200rad/s 01.022πππω===T 初始时波源振动达正方向的最大值,即0=ϕ,波源的振动方程为)200cos(4.0π=y已知m/s 400=v ,波函数为)400(200cos 4.0x t y -=π 0>x (2)由波函数得m 2=x 处振动方程为)200cos(4.0)4002(200cos 4.0πππ-=-=t y 该处质点初相为π.m 16=x 处振动方程为m 8200404001620040)cos(.)(cos .πππ-=-=t y 该处质点初相为π8或0. (3)两点相位差为 201.0400151622ππλ∆πϕ∆=⨯-==x 15m 处质点相位超前.16-2 已知平面波波函数).(cos .x t y -=5220π.式中x 、y 以米计,t 以秒计,试求(1)波长、周期、波速;(2)在m 1=x 处质点的振动方程;(3)在s 40.=t 时,该处质点的位移和速度.这是原点处的质点在哪一时刻的运动状态?再经过s 40.后该运动状态传至何处?分析 本题强调这样的概念:波的传播过程是振动状态(或相位)的传播过程.在单位时间振动状态(或相位)传播的距离称为波的传播速度,也称为相速度,即本书中的波速v (以区别于反映振幅或能量传播的群速度).波在介质中传播时,波线上各质点仍在各自的平衡位置附近振动,并不跟随波前进,质点的振动速度为ty u d d =. 解 (1)将波函数).(cos .x t y -=5220π与简谐波的标准形式对比,得m/s 5.2 /s rad 5.2==v πωm2m 8.05.2s 8.0s 5.222=⨯=====T T v λππωπ (2)由波函数得m 1=x 处的振动方程为m )5.2cos(2.0 )5.21(5.2cos 2.0)5.2(5.2cos 2.01ππππ-=-=-==t t x t y x(3)由波函数得s 040.=t 时m 1=x 处质点的位移为m 205215220040.).(.cos ..=-==t t y π 该时刻该质点振动速度为0521525220d d 040040=-⨯-====..).(.sin ..t t t t y u ππ 是原点处质点在052140=-)..(时刻的振动状态. 再经过s 40.该运动状态传播的距离m 1524040=⨯==...v x即传至距该处m 1或距原点m 2处.16-3 如图16-3,一平面简谐波在空间传播,已知波线上某点P 的振动规律为)cos(ϕω+=t A y ,根据图中所示的两种情况,分别列出以O 为原点的波函数.分析 本题可以沿两条思路求解:(1)由于波线上各点的相位依次落后, 根据两点间的距离可以判断O 点比P 点相位超前多少或落后多少, 因已知P 点的振动方程,就能写出O 点的振动方程,再写出以O 为原点的波函数.(2) 从P 点的振动方程直接写出以P 为原点的波函数,根据波函数的物理意义写出O 点的振动方程,再写出O 为原点的波函数.下面给出第一种解法.解 (1)第一种情况,波沿x 轴正向传播,O 点的相位比P 点超前vω, 所以O 点的振动方程为)](cos[ϕωω++=v l t A y 以O 为原点的波函数为)])(cos[)]()(cos[ϕωϕωω+--=++-=vv v l x t A l x t A y (2)第二种情况,波沿x 轴负向传播,O 点在P 点右侧,O 点的相位比P 点超前vl ω,所以O 点的振动方程为 )](cos[ϕωω++=vl t A y 以O 为原点的波函数为)])(cos[]()(cos[ϕωϕωω+++=++--=vv v l x t A l x t A y 16-4 一平面余弦波在T t 43=时的波形如图16-4(a )所示(T 为周期), 此波以v =36m/s 的速度沿x 轴正向传播, (1)画出t =0时刻的波形图;(2) 求O 、P 点的振动初相;写出O 点的振动方程及以O 为原点的波函数.分析 波形曲线,即y-x 图,给出了某一时刻波线上各点的位移.已知波速时,从T t 43= 时的波形可以推出t =0或t=T 时的波形,从而可得O 点的振动方程, 进而求出O 为原点的波函数.图16-4解 (1) T t 43=时刻的波形沿x 轴负向移动λ43即为t=0时的波形,或沿x 轴正向移动λ41即得t=T 时的波形,如图16-4(b). (2) 由图16-4(a)得 m,40 m,20..==λA 又m/s 36=v对O 点有,t =0时,有0cos 0==ϕA y (1) 0sin 0<-=ϕωA v (2) 由(1)式得2πϕ±=,由(2)式得0sin >ϕ,所以应取2πϕ=对P 点, t =0时,有 2.0cos 0==ϕA y P (3)0sin 0=-=ϕωA P v (4)因A =0.2m ,由(3)式得0=ϕ,满足(4)式.(3)波的角频率 rad/s 180rad/s 403622ππλπω=⨯==.vO 点的振动方程为 )cos(.218020ππ+=t y m 以O 为原点的波函数为 ])(cos[.23618020ππ+-=x t y m 16-5 一平面波在t =0时的波形曲线如图16-5中曲线(I)所示,波沿x 轴正向传播,经过t =0.5s 后, 波形变为曲线(II). 已知波的周期1≥T s, 试由图中所给条件, 求(1)波函数;(2)A 点的振动方程.分析 从波形曲线(I)可以求出振幅、波长以及O 点的初相. 但另一个重要的常数ω需结合两条波形曲线考虑. 从图上不难看出, 在0.5s 波形在x 轴正向移动0.1m ,于是可以计算出波速.再根据周期、波长、波速间的关系求出周期,进而求出角频率.解 由图16-5知, A =0.1m, 40.=λm, 20501010....===t v m/s 22040===..v T λs πππω===222T rad/s 对O 点 0cos 0==ϕA y(1)0sin 0<-=ϕωA v (2)由(1)式得2πϕ±=,由(2)式得0sin >ϕ,所以应取2πϕ=故O 点的振动方程为 )cos(.210ππ+=t y m 以O 为原点的波函数为 ])(cos[.]).(cos[.251022010ππππ+-=+-=x t x t y m (2)将10.=A x m 代入上式,得A 点的振动方程为10210510t t y πππcos .]).(cos[.=+⨯-=m16-6 一平面波的波函数为 )sin(.x t y 20050010+=π,式中x ,y 以m 为单位,t 以s 为单位, 试求:(1)波的振幅、频率、波长和波速;(2)何时原点处第一次出现波峰;(3)当t =1s 时,最靠近原点的两个波峰位置.分析 本书约定波函数以余弦函数表示, 因此可先把题目给的波函数化为余弦函数.分列在原点两侧的第一个波峰应是最靠近原点的波峰.解 (1)波函数化为余弦函数形式为 ])(cos[.2100252010πππ-+=x t y m m 1014.3100 25Hz, m,01.0 2-⨯====πλνA m/s 79025101432..=⨯⨯==-Tv λ(2) 将x=0, y=A 代入波函数,当第一次出现波峰时,有 02252=-ππ)(t 得 t =0.01s(3) 将t =1s 代入波函数得t=1s 时的波形方程x x y 200010220050010sin .)cos(.=-+=ππ 欲出现波峰需满足条件:)0,1,2.....( 212200=+±=k k x π)(sin 得最靠近原点的两波峰位置为 m 1035.2 23200 -1,m1085.7 2200 ,02231--⨯-=-==⨯===x x k x x k ππ16-7 沿x 轴负向传播的平面简谐波在t =2s 时的波形如图16-17(a), 波速v =0.5m/s, 求O 点的振动方程及此波的波函数.分析 由已知条件算出T =4s. 欲从t =2s 时的波形求出t =0时的波形, 只需将t =2s 时的波形曲线沿x 轴负向移动半个波长即得. 从t =0时的波形便可求出振动方程的几个常数.解 从图16-7(a)知s 4s 5.02===vλT rad/s 5.02==Tπω 可得t =0时的波形如图16-7(b). 从图知O 点将向下运动,于是O 点在t =0时有0cos 0==ϕA y (1)0sin 0<-=ϕωA v (2) 由(1)式得2πϕ±=,由(2)式得0sin >ϕ,所以应取2πϕ=O 点的振动方程为 )cos(.2250ππ+=t y m 以O 为原点的波函数为 ]).(cos[.250250ππ++=x t y m16-8 一平面简谐波沿x 轴负向传播, 波长为,λ P 处质点元的振动规律如图16-8. (1)求P 点的振动方程; (2)设OP=d , 求此波以O 为原点的波函数.分析 振动曲线是描绘波线上某点位移与时间关系的曲线,即y-t 图.通过振动曲线可知P 点的初始条件.有了P 点的初始条件,可得P 点的振动方程.由于波沿x 轴负向传播,因而O 点的相位比P 点落后.解 (1)由振动曲线知P 点在t =0时有A A y -==ϕcos 0 (1)0sin 0=-=ϕωA v(2)由(1)式得πϕ=,满足(2)式. 因T =4s ,则 ππω5.02==Trad/s 所以P 点的振动方程为 )cos(ππ+=t A y 2 m (2)波沿x 轴负向传播, P 点相位比O 点超前,所以O 点的振动方程为])(cos[])(cos[πλπππ+-=+-=d t A v d t A y 4220 m有 4λλ==T v以O 为原点的波函数为 ])(cos[])(cos[πλπππ+-+=+-+=d x t A v d x t A y 4422m 16-9 图16-9 (a)是一平面简谐波在t =0时的波形曲线. P 点位于波线上时P 点将向上运动.再观察波形图上x =1.5m 处的质点,当t =0时位于最大位移处,此后一定要向下运动回到平衡位置.既然t =0时P 点将向上最大位移处运动, 而1.5m 处质点已从最大位移返回,便可判断出P 点(1m 处)的相位比1.5m 处质点落后,所以波沿x 轴负向传播.解 从图16-9(a)知 2=λm, T =0.2s, A =0.2m.m/s 10 rad/s 102====TT λππωv 从图16-9 (b)P 点的振动曲线并结合波形曲线(a), 判断出波沿x 轴负向传播, 因而t =0时O 点向下运动,O 点初相由下两式决定:0cos 0==ϕωA y (1)0sin 0<-=ϕωA v (2)由(1)式得2πϕ±=,由(2)式得0sin >ϕ,所以应取2πϕ=得波函数为 ])(cos[.2101020ππ++=x t y m 16-10 两相干波源S 1、S 2具有相同的振幅、频率和初相位.已知振幅A =0.01m,频率为100Hz, 初相位为零. 两波源相距30m, 相向发出二简谐波, 波长为5m. 试求: (1)两波源的振动方程; (2)在两波源连线中点处的合振动方程. 分析 相干波在相遇点的合振幅是各列波在相遇点引起的振动的合成.解 (1) 已知ππνωω200221=== rad/s所以S 1、S 2的振动方程为t t A y y πφω2000100201cos .)cos(=+==(2) 如图16-10, 取S 1为坐标原点, 向右为正. 第一列波到达波源连线中点P 的振动方程为)](cos[λνπP x t A y -=21)(cos .)](cos[.310020105151002010-=-=t t ππ 第二列波到达P 点的振动方程为)](2cos[22λνπPx x t A y --=)(cos .)](cos[.310020105151002010-=-=t t ππ 所以P 点的合振动方程式为 )(cos .3100202021-=+=t y y y π m16-11 一简谐空气波, 沿直径为0.14m 的圆柱形管传播, 波的平均强度为3109-⨯W/m 2, 频率为300Hz, 波速为300m/s. 求: (1)波的平均能量密度和最大能量密度; (2)每两个相邻同相面间的波中含有的能量.分析 本题涉及的概念有: 能量密度、平均能量密度、平均能流、能流密度或波的强度. 从能量密度)(sin vx t A w -=ωρω222看到, 介质单位体积中的能量不守恒, 随时间作周期变化, 在给定时刻能量又随单位体积平衡位置坐标x 作周期变化,因此波的传播既是振动相位的传播又是能量的传播,因此而称为行波.解 (1)平均能量密度为 2221A w ρω= 平均强度为 v A I 2221ρω= 3533J/m 103J/m 300109--⨯=⨯==v I w 能量密度为 )(sin 222vx t A w -=ωρω 最大能量密度为 353522max J/m 106J/m 10322--⨯=⨯⨯===w A w ρω(2)相邻同相面间隔的距离为一个波长,即 1300300===νλv m 相邻同相面间的波中含有能量J 1062.4J )07.0(14.31037252--⨯=⨯⨯⨯===λπr w V w W16-12 一简谐波在弹性介质中传播, 波速31001⨯=.v m/s, 振幅A =1.0×10-4m, 频率31001⨯=.νHz. 若介质的密度3kg/m 800=ρ, 求: (1)该波的能流密度; (2) 若有一平面面积s=4.0×10-4m 2, 波速v 与该平面法线e n 的夹角为︒60, 求一分钟通过该面积的平均能流.解 (1)能流密度为2523242322W/m 1058.1W/m 10)100.1()1014.32(80021 21⨯=⨯⨯⨯⨯⨯⨯⨯==-v A I ρω (2)一分钟通过垂直于波传播方向的平均能流为W 1089.1W 6060cos 100.41058.1345⨯=⨯⨯⨯⨯⨯==-οIst P16-13 若太阳能电池板的接收面积为13cm 2, 当正对太阳时, 电池板产生0.45V 电压, 并提供0.20A 电流. 设太的能流密度为1.0×103W/m 2, 求太阳能转变为电能的效率.分析 1s 太阳能电池板产生的电能与1s 电池板吸收的太阳能之比就是能量转换效率.本题提供的太阳的能流密度是一常识性数据.解 1 s 太阳能电池吸收的太阳能为J 3.1J 1013100.143=⨯⨯⨯==-Is W产生的电能为 E = 0.2×0.45 J = 0.09 J所以转换效率为%9.6%1003.109.0=⨯=W E 16-14 两相干平面波波源A 、B 相距20m, 作同频率、同方向和等振幅的振动, 它们所发出的波的频率为100Hz ,波速为200m/s ,相向传播, 且A 处为波峰时, B 处为波谷, 求AB 连线上因干涉而静止的各点的位置.分析 两相干波等振幅,所以相干减弱点的振幅为零,即因干涉而静止.A 处为波峰时B 处恰为波谷, 表明波源A 与波源B 的相位差为π. 解 两相干平面波波长为 2100200===νλv m 两平面波相向传播,相遇点在两波源之间,设P 在A 、B 间,距离波源A 为x ,如图16-14,设波源B 相位比波源A 超前π,有x x xx l A B ππππλππϕϕ21922202)(2+-=--=---=- 相遇点为干涉静止时需满足条件为),2,1,0( )12(Λ±±=+=-k k A B πϕϕ得 πππ)12(219+=+-k x所以AB 连线上因干涉而静止点的位置为x = k+10 m )9,,2,1,0(±±±=Λk16-15 如图16-15, 两列波长均为λ的相干简谐波, 分别通过图中的O 1和O 2点, 通过O 1点的简谐波在M 1M 2平面反射后与通过O 2点的简谐波在P 点相遇. 假定波在M 1M 2平面反射时有半波损失, O 1和O 2两点的振动方程分别为t A y πcos 10=和)2/cos(20ππ+=t A y , 且O 1m +mP =8λ, O 2P =3λ, 求: (1)两列波分别在P 点引起的振动的振动方程; (2)P 点的合振幅(分析 通过O 1的简谐波在M 1M 2平面的m 点反射,反射时有半波损失,即对于通过O 1的简谐波, M 1M 2平面是波密介质, 反射时反射波的相位改变π.介质无吸收,即表明振幅保持不变.解 (1) 222===ππωπT s 在M 1M 2面上反射有半波损失, 所以通过O 1点的简谐波在P 点的振动方程为)cos()cos(])(cos[πππππλλπ-=-=+-=t A t A t A y P 158221 通过O 2点的简谐波在P 点的振动方程为)cos(])(cos[223222πππλλπ+=+-=t A t A y P (2)由(16-22)式, P 点合振动的振幅为A A A A 222222=++=)cos(ππ合16-16 如图16-16(a), 三列波长均为λ的简谐波, 各自通过S 1、S 2、S 3后在P 点相遇,求P 点的振动方程. 设三列简谐波在 S 1、S 2、S 3 振动的振动方程分别为)/cos(,cos ),/cos(222321πωωπω-==+=t A y A y t A y ,且S 2P =4λ,S 1P =S 3P =5λ, 并设介质无吸收.分析 振动的合成采用旋转矢量法最简便.本题可用旋转矢量法先求第一、二个振动的合振动,再与第三个合成. 以此类推可作多个振动的合成.解 三列简谐波在P 点的振动方程分别为)cos()cos(])(cos[232192521πωπωπλλπ-=-=+-=t A t A T t A y P t A t A T t A y P ωπωλλπcos )cos()](cos[=-=-=8422 )cos()cos(])(cos[22210225223πωππωπλλπ-=--=--=t A t A T t A y P 先将第一列波在P 点引起振动的旋转矢量A 1与第三列波在P 点引起振动的旋转矢量A 3合成,合旋转矢量为A 13, 如图16-16(b). 合振动方程为 )cos(313πω+=t A y)cos(2πω-=t A y 合 16-17 沿弦线传播的一入射波的波函数为)./cos(λπωx t A y 21-=设波在x=L 处(B 点)反射, (1)反射点为自由端, 写出以B 为原点的反射波的波函数; (2)反射端为固定端又如何?分析 考虑在自由端反射的反射波无半波损失,在固定端反射的反射波有半波损失,结合波函数的物理意义, 可写出B 点的振动方程.沿入射波的传播方向, 波线上各点相位依次落后,且注意到入射波的波函数是以O 为原点.B 点的坐标为x B =L ,于是以B 为原点的反射波传到坐标x 点时, 传播距离是L-x.解 (1)如图16-17, 反射点B 为自由端时, 反射波无半波损失,B 点坐标x B =L ,B 点振动方程为 )cos(λπωL t A y B 2-= 反射波沿BO 方向传播, BO 间各点的相位均落后于B 点, BO 上坐标为x 的任一点t 时刻相位为)()()(x L t x L L t --=---2222λπωλπλπω 所以B 点为自由端时, 以其为原点的反射波波函数为)cos(λπωx L t A y --=22反(2)当反射点B 为固定端时, 反射波有半波损失,以B 为原点的反射波波函数为)cos(πλπω+--=x L t A y 22反 16-18 两列波在同一直线上传播, 波速均为 1 m/s.它们的波函数分别为),(cos .),(cos .t x y t x y +=-=ππ05005021 式中各量均采用国际单位制. (1)试说明在直线上形成驻波, 并给出波腹、波节的位置; (2)求在x =1.2m 处的振幅.分析 两列在同一直线上沿正反方向传播的等振幅相干波叠加形成驻波.驻波波函数为.cos )cos (t xA y πνλπ222= λπxA 22cos 为振幅项.结合书上对驻波的讨论, 可总结出驻波区别于行波的两个特点:在驻波中无能量传播, 无相位传播.解 两波函数改写为)(cos .)(cos .x t y x t y +=-=ππ05005021所以这两列波是在同一直线上沿正反方向传播的等振幅的相干波,在直线上叠加形成驻波,(16-24)式给出驻波波函数的形式为t x A y πνλπ222cos cos = 与已知条件比较,知 m/s 2 rad/s, , m 050====T v A λπω.得 22==ωπT s ,501.==Tν Hz , 2==vT λm. 所以驻波波函数为t x y ππcos cos .10= m当 x 满足1=x πcos 时出现波腹, 即 ππk x = (k =0,1,2,…..)解出x=k m 出现波腹.当 x 满足0cos =x π时出现波节, 即212ππ)(+=k x (k =0,1,2,…..) 解出)(1221+=k x m 出现波节. (2)x =1.2m 处的振幅为 0810********..cos .cos ..====ππx x A m .16-19 如图16-19, 位于x =0 处的波源O 作简谐振动, 产生振幅为A , 周期为T ,波长为λ的平面简谐波. 波沿x 轴负向传播, 在波密介质表面B 处反射.若t =0时波源位移为正最大, 且OB=L, 求:(1)入射波的波函数; (2)以B 为原点的反射波的波函数; (3)设L =43λ, 证明BO 间形成驻波, 并给出因干涉而静止的点的位置.分析 将入射波的波函数写出后与习题16-17 联系应不难求解. 解题时需十分留心的是题目已把坐标取定, B 点的坐标L x B -=.解 (1)波源的初相由下式给出A A y ==ϕcos 0 (1)0sin 0>=ϕA v (2) 从(1)式解出 0=ϕ满足(2)式, 故 0=ϕ 所以以O 为原点, 沿x 轴负向传播的入射波波函数为 )(cos λπx T t A y +=21 (2)B 点坐标x B =-L , 且B 点为波密介质表面一点, 在B 点反射的反射波有半波损失,B 点的振动方程为])(2cos[πλπ+-=L T t A y B 振 反射波沿x 轴正向传播, BO 间坐标为-x 的任一点t 时刻相位为πλππλλπ++-=++--)()(x L T t x L L T t 222 所以以B 为原点的反射波波函数为])(cos[πλπ++-=x L T t A y 222 (3) 因43λ=L ,所以入射波波函数为 )(cos λπx T t A y +=21 反射波波函数为)(cos ]))((cos[λππλλπx T t A x T t A y -=++-=243222 BO 间两波叠加, 合成波为t Tx A y y y πλπ2221cos cos =+= 为驻波.因干涉而静止点的位置满足 02=λπx cos即λ412+±=k x (k =0,1,2,….),且],[L x 0∈,所以BO 间因干涉而静止的点为 λλ4341, 处. 16-20 站在铁路附近的观察者, 听到迎面开来的火车笛声频率为440Hz,当火车驶过后, 笛声的频率降为390Hz, 设声音速度为340m/s, 求火车的速度.分析 据已知, 观察者相对于介质静止, 波源(汽笛)先向着观察者运动后又背离观察者,对照(16-29)式不难求解.解 设1ν和2ν分别为观察者听到的火车迎面开来和驶过时的频率, ν为汽笛的固有频率. 设声速为V, v 为火车速度,火车的汽笛是波源. 据(16-29)式, 火车向着观察者运动v>0, 有 ννvV V -=1 火车背着观察者运动v<0, 有 ννvV V +=2 两式相除得 vV v V -+=21νν 解出火车速度 m/s 5.20m/s 3403904403904402121=⨯+-=+-=V ννννv 16-21 水下甲潜艇静止, 乙潜艇以航速v 向着甲运动. 为了测定乙潜艇的航速, 甲潜艇上的人员用声纳装置向乙潜艇发出频率为0ν的超声波. 若甲潜艇收到的反射波的频率为ν, 试确定ν与0ν、v 间的关系(已知超声波在水中传播速度为u ).分析 超声波是指频率高于2000Hz 的机械纵波,具有频率高、波长短、强度大特点,因而有良好的定向传播性能和很强的穿透本领. 由于海水导电性能好,对电磁波有很强的吸收,因而依赖发射、接收电磁波而工作的电磁雷达无法在海水中使用. 利用超声波制成的超声波雷达——声纳应运而生.解 超声波从甲传到乙时, 甲为波源静止,频率为0ν. 乙为接收者,以v 向着甲运动, v<0. 据(16-28)式, 乙接收到的频率为 0ννuv +='u 超声波从乙传到甲时,甲为接收者,静止. 乙为波源,频率为ν',以v 向着甲运动, v>0. 由(16-29)式, 甲接收到的反射波频率为 0νννv -u v v +='-=u u u。

吴百诗,大学物理习题解析答案1,2,3,4目录

吴百诗,大学物理习题解析答案1,2,3,4目录

吴百诗,《大学物理(下册)(第3次修订本B)》荣获国家教委优秀教材一等奖
大学物理习题解析答案2_西安交通大学出版社_吴百诗
文件(一)页码顺序P.1,10;P.100~109;P.11,P.110~119;P.12;P.120~129;P.13;P.130~139;P.14;P.140~149; P.15;P150~159;P.16;P.160~169;P.17。

第2章牛顿运动定律习题
第3章功和能习题(文件四)
第4章冲量和动量习题(文件四)
第5章刚体力学基础动量矩习题(文件四)
第6章机械振动基础习题第11章(文件二)
第7章机械波习题第12章(文件二)
第8章热力学习题第9章(文件二)
第9章气体动理论习题第10章(文件二)
《大学物理(下册)(第3次修订本B)》。

第10章静电场习题第6章(文件一、四)
第11章恒定电流的磁场习题第7章(文件一)
第12章电磁感应与电磁场习题第8章(文件一)
第13章波动光学基础习题(文件三)
第14章狭义相对论力学基础习题(文件三)
第15章量子物理基础习题(文件三)
第16章原子核物理和粒子物理简介习题(文件三)
第17章固体物理简介激光习题(文件三)。

大学物理标准答案第9章

大学物理标准答案第9章

第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max<<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律 ()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图 分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得 300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图 分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 ∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++= r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ 9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 ⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 . 题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势 R εQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布 ()()()22021********* π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则 rεQ Q V 0213π4+= (2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 ⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的 ()x x R εσx r rr εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 V 1695π40==xεq V 1-20m V 5649π4⋅==x εq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度m/s 1037.927⨯==m E v k题 9-27。

大学物理第16章习题解答

大学物理第16章习题解答

两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚
柱之间的距离 L 变小,则在 L 范围内干涉条纹的( )
(A) 数目减小,间距变大
(B) 数目减小,间距不变
(C) 数目不变,间距变小
(D) 数目增加,间距变小
题 16-3 图 分析与解 图(a)装置形成的劈尖等效图如图(b)所示.图中 d 为两滚柱的直径差, b 为两相邻明(或暗)条纹间距.因为 d 不变,当 L 变小时,θ 变大,L′、b 均变小.
2
Δ2 -Δ1 =(n -1)d =(k2 -k1 )λ 式中(k2 -k1 )可以理解为移过点 P 的条纹数(本题为 5).因此,对于这类问题,求解 光程差的变化量是解题的关键.
解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点 O,有
∆2 − ∆1 = (n2 − 1)d = 5λ
将有关数据代入可得
第 5 条暗环的半径为 3.0 ×10−3 m 。求透镜凸面的曲率半径和 k 的值。
解 第 k 个暗环的半径为
4
,
(1)
当 时,为中心的暗点,当 个暗环,对应于 ,其半径为
时,为第 1 条暗环,等等。第 k 个暗环之外的第 5
(2) 将以上两式平方后相除,得
, 将数值代入并求出 k 值,得
, . 将 k 值代入式(1),可求得透镜凸面的曲率半径,为
解:根据牛顿环干涉的实验结果,有
根据已知条件
rk = kRλ / n
r1 = Rλ / n, r4 = 2 Rλ / n

∆r = Rλ / n ∆r ' = Rλ '/ n可得 因此有∆源自 (')2=
λ
'

大学物理9-17章习题答案

大学物理9-17章习题答案

习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由.(1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由λdD x =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2= 中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆.因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。

12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图解: (1)由l2λθ=,2λk e k =知,各级条纹向棱边方向移动,条纹间距不变;(2)各级条纹向棱边方向移动,且条纹变密.12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度. 解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动.12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离. 解: (1)由λk dD x =明知,λ22.01010.63⨯⨯=,∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λdD x mm12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7= ∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为22)(12λλδ+=+-=Dx d r r第一明纹处,对应λδ= ∴25105.44.0250102.72--⨯=⨯⨯⨯==dD x λmm12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000 oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k kk ne ),2,1,0(⋅⋅⋅=k ①当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=nk e λoA12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kkne 101082==λ当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值? 解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k oA令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm(4)141≈=∆lL N 条12-14 用=λ 5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2)3105.15.12500092929-⨯=⨯⨯==⨯=∆ne nλλ mm(因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k 个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ. 解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯=31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-=∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k oA12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率. 解: 由牛顿环明环公式2)12(21λR k D r -==空nR k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==DD n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长.解: 由 2λN d ∆=∆得 102410322.0223-⨯⨯=∆∆=Nd λ710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度.解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带.∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小?答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin nk λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密. 如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =sin 知,衍射角ϕ变大,条纹变稀; (2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =sin ;斜入射时,λθϕk a '=-)sin (sin ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样 说明?答:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =s in ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景. 13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1)a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ可知,当k ab a k '+=时明纹缺级.(1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级; (3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强.(2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞.13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为)12(sin +=k a ϕ 2λ 当6000=λoA 时,2=kx λλ=时,3=k 重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2xλ得 4286600075=⨯=x λoA13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆半角宽度为naλθ1sin-=(1)空气中,1=n ,所以3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m33101100.51010.0105000sin ----⨯=⨯⨯=θ rad(2)浸入水中,33.1=n ,所以有33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m331011076.3101.033.1105000sin----⨯≈⨯⨯⨯=θ rad13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-fx故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm当 3=k ,得60003=λoA4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=oA由λϕk b a =+sin )(知,最多见到的条纹级数max k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m(1)由光栅衍射明纹公式λϕk b a =+sin )(,因1=k ,又fx ==ϕϕtan sin所以有λ=+fx b a 1)(即 62101100.51060105000---⨯⨯⨯⨯=+=ba f x λ2100.6-⨯=m 6= cm(2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈fx ϕϕ故22103010602121--⨯=⨯⨯==f x m 30= cm这就是中央明条纹的位移值.13-16 波长6000=λoA 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在 20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a 101060003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足λϕk b a =+sin )( λϕk a '=sin解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m (3)由λϕk b a =+sin )(λϕsin )(b a k +=当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λba k因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹? 解:(1)中央明纹宽度为02.010501048002270⨯⨯⨯⨯==-f al λmm 4.2=cm(2)由缺级条件λϕk a '=sin λϕk b a =+sin )(知k k ab a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度47105.302.010500022.122.1--⨯=⨯⨯==Dλθ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式Dλθ22.1= ∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射?解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA2=k 时,91.1245sin 75.22=⨯⨯=︒λoA3=k 时,30.1389.3==λoA4=k 时, 97.0489.3==λoA故只有30.13=λoA 和97.04=λoA 的X 射线能产生强反射.习题十四14-1 自然光是否一定不是单色光?线偏振光是否一定是单色光?答:自然光不能说一定不是单色光.因为它只强调存在大量的、各个方向的光矢量,并未要求各方向光矢量的频率不一样.线偏振光也不一定是单色光.因为它只要求光的振动方向同一,并未要求各光矢的频率相同.14-2 用哪些方法可以获得线偏振光?怎样用实验来检验线偏振光、部分偏振光和自然光?答:略.14-3 一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光,试说明这束光是怎样入射的?其偏振状态如何?答:这束光是以布儒斯特角入射的.其偏振态为平行入射面的线偏振光. 14-4 什么是光轴、主截面和主平面?什么是寻常光线和非常光线?它们的振动方向和各自的主平面有何关系? 答:略.14-5 在单轴晶体中,e 光是否总是以e n c /的速率传播?哪个方向以0/n c 的速率传播?答:e 光沿不同方向传播速率不等,并不是以0/n c 的速率传播.沿光轴方向以0/n c 的速率传播.14-6是否只有自然光入射晶体时才能产生O 光和e 光? 答:否.线偏振光不沿光轴入射晶体时,也能产生O 光和e 光.14-7投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过130°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍? 解:由马吕斯定律有0o2018330cos 2I I I ==0ο2024145cos 2I I I ==0ο2038160cos 2I I I ==所以透过检偏器后光的强度分别是0I 的83,41,81倍.14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少? 解:由马吕斯定律ο20160cos 2I I =80I =32930cos 30cos 20ο2ο20I I I ==∴ 25.2491==I I14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少?解:(1) max 120131cos 2I I I ==α又 20max I I =∴ ,601I I =故 'ο11124454,33cos ,31cos ===ααα.(2) 0220231cos 2I I I ==α∴ 'ο221635,32cos ==αα14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少? 解:(1),140.1tan 0=i ∴'ο02854=i(2) 'ο0ο323590=-=i y14-11 利用布儒斯特定律怎样测定不透明介质的折射率?若测得釉质在空气中的起偏振角为58°,求釉质的折射率. 解:由158tan οn =,故60.1=n14-12 光由空气射入折射率为n 的玻璃.在题14-12图所示的各种情况中,用黑点和短线把反射光和折射光的振动方向表示出来,并标明是线偏振光还是部分偏振光.图中.arctan ,00n i i i =≠题图14-12 解:见图.题解14-12图题14-13图*14-13如果一个二分之一波片或四分之一波片的光轴与起偏器的偏振化方向成30°角,试问从二分之一波片还是从四分之一波片透射出来的光将是:(1)线偏振光?(2)圆偏振光?(3)椭圆偏振光?为什么?解:从偏振片出射的线偏振光进入晶(波)片后分解为e o ,光,仍沿原方向前进,但振方向相互垂直(o 光矢垂直光轴,e 光矢平行光轴).设入射波片的线偏振光振幅为A ,则有A.2130sin ,A 2330cos οο====A A A A o e∴ e o A A ≠e o , 光虽沿同一方向前进,但传播速度不同,因此两光通过晶片后有光程差.若为二分之一波片,e o ,光通过它后有光程差2λ=∆,位相差πϕ=∆,所以透射的是线偏振光.因为由相互垂直振动的合成得ϕϕ∆=∆-+22222sincos 2eo eoA A xy A yA x∴ 0)(2=+eoA y A x即 x A A y oe -=若为四分之一波片,则e o ,光的,4λ=∆位相差2πϕ=∆,此时1s i n ,0c o s =∆=∆ϕϕ∴12222=+eoA yA x即透射光是椭圆偏振光.*14-14 将厚度为1mm 且垂直于光轴切出的石英晶片,放在两平行的偏振片之间,对某一波长的光波,经过晶片后振动面旋转了20°.问石英晶片的厚度变为多少时,该波长的光将完全不能通过?解:通过晶片的振动面旋转的角度ϕ与晶片厚度d 成正比.要使该波长的光完全不能通过第二偏振片,必须使通过晶片的光矢量的振动面旋转ο90. ∴ 1212::d d =ϕϕmm 5.412090οο1122=⨯==d d ϕϕ习题十六16-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ16-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度.解:炉壁小孔视为绝对黑体,其辐出度242m W 108.22cm W 8.22)(--⋅⨯=⋅=T M B 按斯特藩-玻尔兹曼定律:=)(T M B 4T σ41844)1067.5108.22()(-⨯⨯==σT M T BK 1042.110)67.58.22(3341⨯=⨯=16-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大? 解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV 0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-16-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE16-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少?解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π16-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时, 则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ16-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.16-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少?解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ16-9 波长ο0A 708.0=λ的X 射线在石腊上受到康普顿散射,求在2π和π方向上所散射的X 射线波长各是多大? 解:在2πϕ=方向上:ο1283134200A0243.0m 1043.24sin1031011.91063.622sin2Δ=⨯=⨯⨯⨯⨯⨯==-=---πϕλλλcm h散射波长ο0A 732.00248.0708.0Δ=+=+=λλλ 在πϕ=方向上ο120200A 0486.0m 1086.422sin2Δ=⨯===-=-cm h cm h ϕλλλ散射波长 ο0A 756.00486.0708.0Δ=+=+=λλλ16-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+=此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE16-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ16-12 实验发现基态氢原子可吸收能量为12.75eV 的光子.(1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上.解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n-=-=+-解得 4=n或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题16-12图 题16-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.16-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题16-14图16-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ16-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍?解: eV 09.12]11[6.1321=-=-n E E n26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.16-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.16-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏16-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少? 解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ16-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少?解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量 eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m ∴ cp c m >>20 ∴ MeV 51.0)()(202202==+=c m c m cp E16-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少?解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k 中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh p h λ16-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=16-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度。

大学物理下15章习题参考答案中国石油大学

大学物理下15章习题参考答案中国石油大学

15章习题参考答案15-3求各图中点P 处磁感应强度的大小和方向。

[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。

(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。

对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。

半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。

所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。

15-4在半径为R 和r 的两圆周之间,有一总匝数为N 的均匀密绕平面线圈,通有电流I ,方向如图所示。

求中心O 处的磁感应强度。

[解] 由题意知,均匀密绕平面线圈等效于通以 I NI 圆盘,设单位长度线圈匝数为nrR Nn -= 建立如图坐标,取一半径为x 厚度为dx 的 圆环,其等效电流为:x rR NIx j I d d d -==)(2d 2d d 000r R x xNI xIB -==μμrR r R NIr R x xNI B B RrNIln)(2)(2d d 0000-=-==⎰⎰μμ所以 方向垂直纸面向外.15-5电流均匀地流过一无限长薄壁半圆筒,设电流I =5.0A ,圆筒半径 R =m 100.12⨯如图所示。

大学物理教程第9章习题答案

大学物理教程第9章习题答案

⼤学物理教程第9章习题答案思考题9.1 为什么要引进视见函数?答:辐射通量虽然是⼀个反映光辐射强弱程度的客观物理量,但是,它并不能完整地反映出由光能量所引起的⼈们的主观感觉——视觉的强度(即明亮程度).因为⼈的眼睛对于不同波长的光波具有不同的敏感度,不同波长的数量不相等的辐射通量可能引起相等的视觉强度,⽽相等的辐射通量的不同波长的光,却不能引起相同的视觉强度.所以⽤视见函数概念反映⼈的眼睛对于不同波长的光波具有不同的敏感度.它表⽰⼈眼对光的敏感程度随波长变化的关系.9.2 在杨⽒双缝实验中,若将⼊射光由正⼊射改为斜⼊射,则屏幕上⼲涉图样如何改变?答:⼲涉条纹沿着垂直条纹的⽅向整体移动。

9.3 将劈尖由空⽓中放⼊折射率为n 的介质中,条纹间距如何变化?答:条纹间距变⼩。

9.4 在单缝的夫琅⽲费衍射中,单缝宽度对衍射图样有何影响?答:单缝宽度越⼩衍射图样的中央亮纹越宽。

9.5什么是缺级?产⽣缺级的条件是什么?答:当衍射⾓θ满⾜光栅⽅程λθk b a ±=+sin )(时应产⽣主极⼤明条纹,但如果衍射⾓⼜恰好满⾜单缝衍射的暗纹条件λk a '±=sin ,那么这时这些主极⼤明条纹将消失,这种现象就是缺级。

两个条件联⽴得...)2,1,0(=''±=k k k λ,即所缺的级数由光栅常数d 和缝宽a 的⽐值决定。

9.6 偏振现象反映光波的什么性质?答:偏振现象表明光波是横波。

9.7 试解释我们看到的天空是蓝⾊的⽽宇航员看到的天空却是⿊⾊的?答:我们看到的天空是蓝⾊的是由于空⽓对太阳光散射造成的。

⽽在宇宙空间中,物质的分布密度极低,对太阳光的散射也就基本不存在,所以宇航员看到的天空是⿊⾊的。

习题9.1 某汽车前灯发光强度为75,000cd ,光束发散⽴体⾓为5Sr ,求其发出的光通量。

解:发光强度I 为光通量F 对⽴体⾓Ω的微分Ωd dFI =所以375000575000=?===??ΩΩI Id F lm9.2 ⼀光源辐射出555nm 和610nm 的光,两者的辐射通量分别为2W 和1W ,视见函数分别为1.000和0.503,求光源发出的总光通量各为多少?解:(1)1366000.12683)()(683=??==λΦλV F lm52.343503.01683)()(683=??==λΦλV F lm9.3 ⼀氦氖激光器发出1?10-2W 的激光束,其波长为6.328?10-7m ,激光束的⽴体⾓为3.14?10-6Sr ,已知该激光的视见函数为0.24。

湖南大学物理(2)第14,15章课后习题参考答案

湖南大学物理(2)第14,15章课后习题参考答案

第14章 稳恒电流的磁场 一、选择题1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负.三 计算题1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得:)(220R r r RIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r R I Rd 2020⎰π=μπ=40Iμ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ1 m2. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1) 芯子中的B 值和芯子截面的磁通量. (2) 在r< R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2, )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=SS B dΦr b rNId 2π=μ12ln2R R NIbπ=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑iI02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与x x d +处,作一个单位长窄条, 其面积为 x S d 1d ⋅=.窄条处的磁感强度 202RIxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x RIx20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度,设线圈中的电流强度为I .解:如图,CD 、AF 在P 点产生的 B = 0x2EF D E BC AB B B B B B+++= )sin (sin 4120ββμ-π=aIB AB , 方向⊗其中 2/1)2/(sin 2==a a β,0sin 1=β∴ a I B AB π=240μ, 同理, a IB BC π=240μ,方向⊗.同样)28/(0a I B B EF D E π==μ,方向⊙.∴ aI B π=2420μaIπ-240μaIπ=820μ 方向⊗.5. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅= αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有 2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.P7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B 的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。

大学物理16章物理答案2

大学物理16章物理答案2

16.8 如图所示的两个同轴圆形导体线圈,小线圈在大线圈上面.两线圈的距离为x ,设x 远大于圆半径R .大线圈中通有电流I 时,若半径为r 的小线圈中的磁场可看作是均匀的,且以速率v = d x /d t 运动.求x = NR 时,小线圈中的感应电动势为多少?感应电流的方向如何?[解答]环电流在轴线上产生的磁感应强度为20223/22()IR B x R μ=+,当x >>R 时,磁感应强度为2032IR B x μ≈.小线圈的面积为S = πr 2,通过的磁通量为22032IR r BS x πμΦ=≈,当小线圈运动时,感应电动势为22043d d 2IR r v t x πμΦε=-≈,当x = NR 时,感应电动势为204232Ir v N R πμε≈.感应电流的磁场与原磁场的方向相同,感应电流的方向与原电流的环绕方向相同.16.9 如图所示,匀强磁场B 与矩形导线回路的法线n 成θ = 60°角,图17.8图16.9B = kt (k 为大于零的常数).长为L 的导体杆AB 以匀速v 向右平动,求回路中t 时刻的感应电动势的大小和方向(设t = 0时,x = 0).[解答]经过时间t ,导体杆运动的距离为x = vt ,扫过的面积为 S = Lx = Lvt , 通过此面积的磁通量为Φ = B ·S = BS cos θ = Lvkt 2/2. 感应电动势的大小为ε = d Φ/d t = Lvkt .由于回路中磁通量在增加,而感应电流的磁通量阻碍原磁通量增加,其磁场与原磁场的方向相反,所以感应电动势的方向是顺时针的.16.10长为b ,宽为a 的矩形线圈ABCD 与无限长直截流导线共面,且线圈的长边平行于长直导线,线圈以速度v 向右平动,t 时刻基AD 边距离长直导线为x ;且长直导线中的电流按I = I 0cos ωt 规律随时间变化,如图所示.求回路中的电动势ε.[解答]电流I 在r 处产生的磁感应强度为2I B r μπ=,穿过面积元d S = b d r 的磁通量为0d d d 2IbB S r r μΦπ==,穿过矩形线圈ABCD 的磁通量为图16.10001d ln()22x a x Ib Ib x a r r x μμΦππ++==⎰,回路中的电动势为d d t Φε=-0d 11d [ln()()]2d d b x a I xI x t x a x t μπ+=-+-+00cos [ln()sin ]2()I b x a av t t x x x a μωωωπ+=++.显然,第一项是由于磁场变化产生的感生电动势,第二项是由于线圈运动产生的动生电动势.16.11如图,一个矩形的金属线框,边长分别为a 和b (b 足够长).金属线框的质量为m ,自感系数为L ,忽略电阻.线框的长边与x 轴平行,它以速度v 0沿x 轴的方向从磁场外进入磁感应强度为B 0的均匀磁场中,B 0的方向垂直矩形线框平面.求矩形线框在磁场中速度与时间的关系式v = v (t )和沿x 轴方向移动的距离与时间的关系式x = x (t ).[解答]由于b 边很长,所以线框只有右边在做切割磁力线的运动.当线框速度为v 时,产生的动生电动势为 ε = B 0av .当线框中的电流为i 时,产生的自感电动势的大小为d d L i Ltε=.根据欧姆定律得 ε + εL = iR ,图16.11由于不计电阻,所以有0d 0d i B av Lt +=.①右边所受的力为 F = iaB 0, 根据牛顿第二定律得微分得 ②联立①和②式得微分方程2202()d 0d aB v v t mL +=,这是简谐振动的微分方程,其通解为sin v A B=+.当t = 0时,v = v 0,所以A = v 0.加速度a t = d v /d t)A B=-+,当t = 0时,a t = 0,所以B = 0.速度方程为0v v =.由于v = d x /d t ,所以0d c dx v t v t ==⎰⎰0v C aB =+.当t = 0时,x = 0,所以C = 0,所以位移方程为0x v aB =.16.12 如图所示的圆面积内,匀强磁场B 的方向垂直于圆面积向里,圆半径R = 12cm ,d B /d t =10-2T·s -1.求图中a 、b 、c 三点的涡旋电场为多少(b为圆心)?设ab = 10cm ,bc = 15cm . [解答](1)当点在磁场之中时,以b 为圆心,以r 为半径作一圆形环中,其周长为C = 2πr ,面积为 S = πr 2.取环路的逆时针方向为正,根据右手螺旋法则,面积的法向方向垂直纸面向外。

大学物理习题答案-第16章-电磁场

大学物理习题答案-第16章-电磁场

第16章 电磁场 参考答案一、选择题1(A),2(A),3(C),4(C),5(D),6(D),7(C),8(B),9(B),10(B) 二、填空题(1). )2/cos(/d d π+==t A NbB t x NbB ωωε 或t NBbA ωωεsin =. (2). πBnR 2, O . (3). 相同(或221R B ω), 沿曲线由中心向外.(4). 小于, 有关. (5). 0 (6). )8/(2220a I πμ. (7). 9.6 J.(8). ⎰⎰⋅∂∂S S D t ϖϖd 或 t D /d d Φ , ⎰⎰⋅∂∂-SS B t ϖϖd 或 t m /d d Φ-. (9). t E R d /d 02επ, 与E ϖ方向相同(或由正极板垂直指向负极板).(10).t B r d /d 21.三 计算题1. 如图所示,有一半径为r =10 cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B ϖ中(B = 0.5 T ).圆形线圈可绕通过圆心的轴O 1O 2转动,转速 n =600 rev/min .求圆线圈自图示的初始位置转过π21时,(1) 线圈中的瞬时电流值(线圈的电阻R 为 100 Ω,不计自感);(2) 圆心处的磁感强度.(μ0 =4π×10-7 H/m)解:(1) 设线圈转至任意位置时圆线圈的法向与磁场之间的夹角为θ,则通过该圆线圈平面的磁通量为θΦcos 2r B π=, nt t π==2ωθ∴ nt r B ππ=2cos 2Φ在任意时刻线圈中的感应电动势为nt n r NB tNπππ=Φ-=2sin 2d d 2 nt n BNr ππ=2sin 222 t ΤI nt R n NBr R i m π=ππ==22sin 2sin 22 当线圈转过π /2时,t =T /4,则 987.0/22=π==2R NBn r I i m A(2) 由圆线圈中电流I m 在圆心处激发的磁场为==')2/(0r NI B m μ 6.20×10-4 T方向在图面内向下,故此时圆心处的实际磁感强度的大小500.0)(2/1220≈'+=B B B T 方向与磁场B ρ的方向基本相同.ϖ2. 如图所示,真空中一长直导线通有电流I (t ) =I 0e -λt (式中I 0、λ为常量,t 为时间),有一带滑动边的矩形导线框与长直导线平行共面,二者相距a .矩形线框的滑动边与长直导线垂直,它的长度为b ,并且以匀速v ϖ(方向平行长直导线)滑动.若忽略线框中的自感电动势,并设开始时滑动边与对边重合,试求任意时刻t 在矩形线框内的感应电动势 i 并讨论 i 方向.解:线框内既有感生又有动生电动势.设顺时针绕向为 i 的正方向.由 i = -d Φ /dt 出发,先求任意时刻t 的Φ (t )⎰⋅=S B t ρϖd )(Φy t x yt I ba ad )(2)(0⎰+π=μaba t x t I +π=ln )()(20μ 再求Φ (t )对t 的导数:)d d d d )((ln 2d )(d 0txI x t I b ba t t ++π=μΦ ab a t I t+-π=-ln )1(e 200λμλv )(t x v =∴ i ab a t I tt +-π=-=-ln )1(e 2d d 00λμΦλvi 方向:λ t <1时,逆时针;λ t >1时,顺时针.3. 如图所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转.O 1O 2在离细杆a 端L /5处.若已知地磁场在竖直方向的分量为B ϖ.求ab 两端间的电势差b a U U -.解:Ob 间的动生电动势:⎰⎰=⋅⨯=5/405/401d d )L L l Bl l B ωϖϖϖv ( 225016)54(21BL L B ωω== b 点电势高于O 点. Oa 间的动生电动势:⎰⎰⋅=⨯=5/05/02d d )L L l Bl l B ωϖϖϖv ( 22501)51(21BL L B ωω== a 点电势高于O 点. ∴ 22125016501BL BL U U b a ωω-=-=- 221035015BL BL ωω-=-=I (t )v ϖI (t ) x (t )b4. 有一很长的长方的U 形导轨,与水平面成θ角,裸导线ab 可在导轨上无摩擦地下滑,导轨位于磁感强度B ϖ竖直向上的均匀磁场中,如图所示.设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计,abcd 形成电路,t =0时,v =0. 试求:导线ab 下滑的速度v 与时间t 的函数关系.解:ab 导线在磁场中运动产生的感应电动势 θcos v Bl i = abcd 回路中流过的电流 θcos RBl R I ii v ==ab 载流导线在磁场中受到的安培力沿导轨方向上的分力为: θθθcos cos cos Bl RBl Bl I F i v ==由牛顿第二定律: t mBl R Bl mg d d cos cos sin vv =-θθθ mR l B g t θθ222cos sin d d v v-=令 θsin g A =,)/(cos 222mR l B c θ= 则 )/(d d v v c A t -=利用t = 0,v = 0 有⎰⎰⎰---=-=vv v v v v 000)d(1d c A c A c c A d t t Ac A ct v--=ln1 ∴ )e 1(cos sin )e 1(222ct ctl B mgR c A ---=-=θθv5. 一根长为l ,质量为m ,电阻为R 的导线ab 沿两平行的导电轨道无摩擦下滑,如图所示.轨道平面的倾角为θ,导线ab 与轨道组成矩形闭合导电回路abdc .整个系统处在竖直向上的均匀磁场B ϖ中,忽略轨道电阻.求ab 导线下滑所达到的稳定速度.解∶动生电动势θcos Bl i v = RBl RI iθcos v ==导线受到的安培力 lB I f m =ab 导线下滑达到稳定速度时重力和磁力在导轨方向的分力相平衡 θθcos sin m f mg =θθθcos cos sin lB RBl mg v =∴ θθ222cos sin l B mgR =vdϖ6. 已知,一根长的同轴电缆由半径为R 1的空心圆柱导体壳和另一半径为R 2的外圆柱导体壳组成,两导体壳间为真空.忽略电缆自身电阻,设电缆中通有电流i ,导体间电势差为U ,求(1) 两导体壳之间的电场强度E ϖ和磁感强度B ϖ. (2) 电缆单位长度的自感L 和电容C .解:(1) 根据安培环路定理i l B 0d μ⎰=⋅ϖϖ和长直条件及轴对称性可知,在R 2 >r > R 1 (r 为轴线到场点的半径)区域有 )2/(0r I B π=μB ϖ方向与内导体壳电流方向成右手螺旋关系.根据高斯定理:⎰⋅=0/d εQ S E ϖϖ和长直条件及轴对称性可知,在R 2 >r > R 1区域有r E 02/ελπ=E ϖ方向沿半径指向电势降落方向,式中λ为电缆内导体壳上单位长度上的电荷.由两导体间电势差U ,可求得 )/ln(2120R R U ελπ=, ∴ )/ln(12R R r UE =(2) 在电缆的两个导体壳之间单位长度的磁通量为 1200ln 2d 221R R ir riR R π=π=⎰μμΦ 单位长度电缆的自感系数为12ln2R R iL π==μΦ由电容定义又知单位长度电缆的电容应为 )/ln(2120R R UC ελπ==7. 两线圈顺接,如图(a),1、4间的总自感为1.0 H .在它们的形状和位置都不变的情况下,如图(b)那样反接后1、3之间的总自感为0.4 H .求两线圈之间的互感系数.解:设顺接的总自感为L S ,反接的总自感为L F . ∵ M L L L S 221++= M L L L F 221-+=∴ 4/)(F S L L M -== 0.15 H8. 如图所示,真空中一矩形线圈宽和长分别为2a 和b ,通有电流I 2,可绕其中心对称轴OO '转动.与轴平行且相距为d +a 处有一固定不动的长直电流I 1,开始时矩形线圈与长直电流在同一平面内,求:(1) 在图示位置时,I 1产生的磁场通过线圈平面的磁通量;(2) 线圈与直线电流间的互感系数. (3) 保持I 1、I 2不变,使线圈绕轴OO '转过90°外力要做多少功? 解:(1) 按题意是指图示位置时的Φ.123(a)顺接(b) 反接Ibdad bI bdx xI ad d2ln2210210+π=π=⎰+μμΦ (2) dad bI M 2ln201+π==μΦ(3)dad bI I I A 2ln22102+π==∆μΦ9. 一根电缆由半径为R 1和R 2的两个薄圆筒形导体组成,在两圆筒中间填充磁导率为μ 的均匀磁介质.电缆内层导体通电流I ,外层导体作为电流返回路径,如图所示.求长度为l 的一段电缆内的磁场储存的能量.解: ⎰∑⋅=i I l H ϖϖd , I rH =π2 (R 1< r < R 2)r I H π=2, r I H B π==2μμ2222)2(22r I B w m π==μμμ l r r w V w W m m m ⋅π==d 2d d r rl r Id 2)2(222ππ=μ∴ ⎰⎰π==2121d 4d 2R R R R m m rrl I W W μ122ln4R R lI π=μ四 研讨题1. 我们考虑这样一个例子: 设一个半径为R 的导体圆盘绕通过其中心的垂直轴在磁场中作角速度为ω的匀速转动,并假设磁场B 均匀且与轴线平行,如图所示。

智慧树知到《大学物理实验》章节测试答案

智慧树知到《大学物理实验》章节测试答案

鏅烘収鏍戠煡鍒般€婂ぇ瀛︾墿鐞嗗疄楠屻€嬬珷鑺傛祴璇曠瓟妗?缁1銆佷笅鍒楀悇涓墿鐞嗛噺鍝釜涓嶆槸鐩存帴娴嬮噺閲?A:绫冲昂娴嬮噺闀垮害B:琛ㄨ鏃堕棿C:澶╂灠绉拌川閲?D:鍦嗘煴浣撶殑浣撶Н绛旀: 鍦嗘煴浣撶殑浣撶Н2銆佺湡鍊兼槸瀹㈣瀛樺湪鐨勩€?A:瀵?B:閿?绛旀: 瀵?3銆侊紙聽聽聽聽锛夌殑鐗圭偣鏄畠鐨勭‘瀹氳寰嬫€с€傘€?A:绯荤粺璇樊B:浠櫒璇樊C:闅忔満璇樊D:绮楀ぇ璇樊绛旀: 绯荤粺璇樊4銆佸湪闄呮祴閲忚繃绋嬩腑锛屽娆℃祴閲忓悓涓€鐗╃悊閲忔椂锛岄€氬父锛埪?聽锛夋槸浠ヤ笉鍙鐭ョ殑鏂瑰紡鍙樺寲瀛樺湪鐨勯偅涓€閮ㄥ垎璇樊銆?A:绯荤粺璇樊B:浠櫒璇樊C:闅忔満璇樊D:绮楀ぇ璇樊绛旀: 闅忔満璇樊5銆佷笉纭畾搴﹁秺灏忥紝鏍囧織鐫€璇樊鐨勫彲鑳藉€艰秺灏忥紝娴嬮噺鐨勫彲淇¤禆绋嬪害瓒婁綆銆?A:瀵?B:閿?绛旀: 閿?6銆佷笉纭畾搴︽槸鎸囩敱浜庢祴閲忚宸殑瀛樺湪鑰屽琚祴閲忓€间笉鑳借偗瀹氱殑绋嬪害锛屾槸琛ㄥ緛琚祴閲忕殑鐪熷€兼墍澶勭殑閲忓€艰寖鍥寸殑璇勫畾銆?A:瀵?B:閿?绛旀: 瀵?7銆佹€讳笉纭畾搴︾敱A绫诲垎閲忓拰B绫诲垎閲忔瀯鎴愶紝瀹冧滑鐨勫叧绯绘槸鏂瑰拰鏍圭殑褰㈠紡銆?A:瀵?B:閿?绛旀: 瀵?8銆佺敱浜庢祴閲忔柟娉曚笉瀹屽杽鎵€寮曡捣鐨勮宸彨鍋氭柟娉曡宸€傝繖鍙ヨ瘽鏄惁姝g‘锛?A:姝g‘B:涓嶆纭?C:涓嶄竴瀹?绛旀: 姝g‘9銆佸湪浣滃浘鏃讹紝寤虹珛鍧愭爣杞翠笉闇€瑕佽〃鏄庣殑鏄紙聽聽锛夈€?A:瀹ゆ俯B:鍧愭爣杞存墍浠h〃鐨勭墿鐞嗛噺C:鐗╃悊閲忕殑鍗曚綅D:鍧愭爣鏍囧害鍊?绛旀: 瀹ゆ俯10銆佸埄鐢ㄥ浘瑙f硶璁$畻绾挎€х數闃荤殑闃诲€硷紝浠-U鍏崇郴涓轰緥锛屾墍浣滅洿绾跨殑鏂滅巼浠h〃锛埪?聽锛夈€?A:鐢甸樆鐨勫€掓暟B:鐢甸樆C:鐢靛帇D:鐢垫祦绛旀: 鐢甸樆鐨勫€掓暟绗竴绔?1銆佺豢鍗佸瓧涓嶆竻妤氾紝棣栧厛璋冭妭鐩暅锛岀劧鍚庢澗寮€閿佺揣铻洪拤锛岃皟鑺傞樋璐濈洰闀滅殑浣嶇疆銆傦紙聽聽锛?A:瀵?B:閿?绛旀: 瀵?2銆佽姹傚叆灏勫厜绾跨殑绾垮涓猴紙聽聽锛夈€?A:1mm聽聽B:2mmC:3mmD:4mm绛旀: 1mm聽聽3銆佽皟骞宠浇鐗╁彴鏃讹紝鎶婂钩闈㈤暅鏀剧疆鍦ㄤ笂闈紝绗竴娆℃斁缃钩闈㈤暅鐨勬柟浣嶏紙聽聽锛夈€?A:1鍜?杩炵嚎鐨勪腑鍨傜嚎B:1鍜?杩炵嚎鐨勪腑鍨傜嚎C:2鍜?杩炵嚎鐨勪腑鍨傜嚎D:1鍜?杩炵嚎骞宠绾?绛旀: 1鍜?杩炵嚎鐨勪腑鍨傜嚎4銆佹祴閲忎簩鍏夊闈㈢殑娉曠嚎鐨勫す瑙掞紝姝ゅす瑙掑ぇ姒備负锛埪?聽锛夈€?A:150掳B:120掳C:60掳D:90掳绛旀: 120掳5銆佹祴瀹氫笁妫遍暅椤惰锛屾垜浠噰鐢紙聽聽锛夋柟娉曘€?A:鑷噯鐩存硶B:鍙嶅皠娉?绛旀: 鑷噯鐩存硶6銆佸垎鍏夎鐨勮鏁版柟娉曚笌锛埪? 聽锛夎鏁版柟娉曠浉鍚屻€?A:铻烘棆娴嬪井鍣?B:娓告爣鍗″昂C:鐩村昂D:璇绘暟鏄惧井闀?绛旀: 娓告爣鍗″昂7銆佸钩琛屽厜绠$殑浣滅敤鏄紙聽聽锛夈€?A:瑙傚療瀹為獙鐜拌薄B:浜х敓骞宠鍏?C:鏀剧疆琚祴鐗?D:璇诲彇鏁版嵁绛旀: 浜х敓骞宠鍏?8銆佸湪鍒嗗厜璁$殑璋冭妭鍜屼娇鐢ㄥ疄楠屼腑锛岃浇鐗╁彴鐨勪綔鐢ㄦ槸锛埪? 聽锛夈€?A:瑙傚療瀹為獙鐜拌薄B:浜х敓骞宠鍏?C:鏀剧疆琚祴鐗?D:璇诲彇鏁版嵁绛旀: 鏀剧疆琚祴鐗?9銆佸湪瀹為獙褰撲腑锛屾湜杩滈暅鐨勪富瑕佷綔鐢ㄦ槸锛埪?聽锛夈€?A:瑙傚療瀹為獙鐜拌薄B:浜х敓骞宠鍏?C:鏀剧疆琚祴鐗?绛旀: 瑙傚療瀹為獙鐜拌薄10銆佸垎鍏夎鏄竴绉嶈兘绮惧噯娴嬪畾锛埪?聽锛夌殑浠櫒銆?A:闀垮害B:鍏夌嚎鍋忚浆瑙掑害C:閲嶉噺D:娉㈤暱绛旀: 鍏夌嚎鍋忚浆瑙掑害绗簩绔?1銆佸钩闈㈤暅鍜屼笁妫遍暅鐨勫厜瀛﹂暅闈弗绂佺敤鎵嬭Е纰般€?A:瀵?B:閿?绛旀: 瀵?2銆佸嚭灏勫厜绾跨敱绱€佺豢銆侀粍鍏夋瀯鎴愶紝鍏朵腑锛埪?聽锛夐鑹茬殑鍏夌嚎鎶樺皠瑙掓渶灏忋€?A:绱厜B:缁垮厜C:榛勫厜D:绾㈠厜绛旀: 榛勫厜3銆佹按閾剁伅鍏夊叆灏勬1闀滃悗锛屽嚭灏勫厜涓病鏈夛紙聽聽锛夐鑹茬殑璋辩嚎銆?A:绱?B:缁?C:榛?D:绾?绛旀: 绾?4銆侀《瑙掍负60掳锛岀传鍏夌殑鏈€灏忓亸鍚戣涓?3掳閭d箞瀹冪殑鎶樺皠鐜噉澶ф鏄紙聽聽锛夈€?A:1.4B:1.5C:1.6D:1.7绛旀: 1.75銆佸亸鍚戣鏄叆灏勫厜绾垮拰鍑哄皠鍏夌嚎鐨勫す瑙掋€?A:瀵?B:閿?绛旀: 瀵?6銆佹祴閲忔椂锛岀敤鍒嗗垝鏉夸笂鐨勶紙聽聽锛夋潯绾裤€?A:绔栧弶涓?B:涓婂垝绾柯犅?C:涓嬪垝绾?绛旀: 绔栧弶涓?7銆佹垜浠噰鐢紙聽聽锛夋柟娉曟祴閲忎笁妫遍暅椤惰銆?A:鑷噯鐩存硶B:鍙嶅皠娉?绛旀: 鑷噯鐩存硶8銆佹祴閲忎笁妫遍暅鐨勯《瑙掓椂锛屼袱涓厜瀛﹂潰鐨勬硶绾跨殑澶硅澶ф鏄紙聽聽锛夊害銆?A:150B:120C:60D:90绛旀: 1209銆佹祴閲忎笁妫遍暅椤惰鐨勫疄楠屼腑锛屼袱涓厜瀛﹂潰鐨勬硶绾跨殑澶硅涓庡叾椤惰鐨勫叧绯伙紙聽聽锛夈€?A:鍨傜洿B:浜掕ˉC:浜掍綑D:鐩哥瓑绛旀: 浜掕ˉ10銆佹祴閲忓叆灏勫厜鐨勬柟浣嶆椂锛岄渶瑕佹妸锛埪?聽锛変粠杞界墿鍙颁笂鍘绘帀銆?A:骞抽潰闀?B:涓夋1闀?C:鍏夋爡绛旀: 涓夋1闀?绗笁绔?1銆佹睘鐏厜婧愶紝鍏夋爡褰╄壊绾垮厜璋辨瘡涓骇娆″寘鎷传銆佺豢銆侀粍锛屽叾涓悓涓€绾ф锛埪? 聽锛夐鑹茬殑鍏夌嚎琛嶅皠瑙掓渶灏忋€?A:绱厜B:缁垮厜C:榛勫厜绛旀:2銆佸钩闈㈤暅鍜屽厜鏍呯殑鍏夊闀滈潰涓ョ鐢ㄦ墜瑙︾銆? A:瀵?B:閿?绛旀:3銆佸钩闈㈤暅鍜屽厜鏍呯殑鍏夊闀滈潰涓ョ鐢ㄦ墜瑙︾銆? A:瀵?B:閿?绛旀:4銆佹瘡涓骇娆$殑鍏夎氨涓嶅寘鎷豢棰滆壊鐨勫厜绾裤€? A:瀵?B:閿?绛旀:5銆佺骇娆¤秺楂樿灏勮瓒婂ぇ銆?A:瀵?B:閿?绛旀:6銆佸厜鏍呮斁缃湪杞界墿鍙帮紙聽聽聽聽锛夋柟浣嶃€?A:1鍜?杩炵嚎鐨勪腑鍨傜嚎B:1鍜?杩炵嚎鐨勪腑鍨傜嚎C:2鍜?杩炵嚎鐨勪腑鍨傜嚎D:1鍜?骞宠绾?绛旀:7銆佹垜浠湪瀹為獙褰撲腑浣跨敤鐨勫厜鏍咃紝瀹冪殑鍏夋爡甯告暟鏄?/300銆?A:瀵?B:閿?绛旀:8銆佸厜鏍呮柟绋嬩腑鐨刣鏄厜鏍呭父鏁?銆?A:瀵?B:閿?绛旀:9銆佸厜鏍呯壒鎬у疄楠屼腑娌$敤鍒扮殑璁惧鏄笁妫遍暅銆?A:瀵?B:閿?绛旀:10銆佹煇璐ㄧ偣浣滅洿绾胯繍鍔ㄧ殑杩愬姩瀛︽柟绋媔mage.png(SI)锛屽垯璇ヨ川鐐逛綔A:鍖€鍔犻€熺洿绾胯繍鍔紝鍔犻€熷害娌縳杞存鏂瑰悜B:鍖€鍔犻€熺洿绾胯繍鍔紝鍔犻€熷害娌縳杞磋礋鏂瑰悜C:鍙樺姞閫熺洿绾胯繍鍔紝鍔犻€熷害娌縳杞存鏂瑰悜D:鍙樺姞閫熺洿绾胯繍鍔紝鍔犻€熷害娌縳杞磋礋鏂瑰悜绛旀:绗洓绔?1銆佹恫浣撶殑绮樻粸鍔涳紝瀹冪殑鏂瑰悜骞宠浜庢帴瑙﹂潰锛屽叾澶у皬涓庨€熷害姊害鍙婃帴瑙﹂潰绉垚姝f瘮锛屽叾姣斾緥绯绘暟n绉颁负榛忓害銆?A:瀵?B:閿?绛旀:2銆佸鏋滀竴灏忕悆鍦ㄧ矘婊炴恫浣撲腑閾呯洿涓嬭惤锛岀敱浜庨檮鐫€浜庣悆闈㈢殑娑插眰涓庡懆鍥村叾浠栨恫灞備箣闂村瓨鍦ㄧ潃鐩稿杩愬姩锛屽洜姝ゅ皬鐞冨彈鍒扮矘婊為樆鍔涳紝瀹冪殑澶у皬涓庡皬鐞冧笅钀界殑閫熷害鏈夊叧锛岃繖鍙ヨ瘽鏄惁姝g‘锛?A:瀵?B:閿?绛旀:3銆侀噾灞炲皬鐞冨湪娑蹭綋涓笅钀芥椂锛屽畠鍙楀埌锛埪?聽聽聽聽聽锛変釜绔栫洿鏂瑰悜鐨勫姏銆?A:1B:2C:3D:4绛旀:4銆佺敤婵€鍏夊厜鐢佃鏃朵华娴嬮噺灏忕悆涓嬭惤鏃堕棿姣旂琛ㄦ祴閲忔洿鍑嗙‘锛?A:瀵?B:閿?绛旀:5銆佽皟鏁村畬搴曠洏姘村钩鍚庯紝杩樺彲浠ョЩ鍔ㄥ疄楠屼华鍣ㄣ€?A:瀵?B:閿?绛旀:6銆佸皬鐞冨紑濮嬩笅钀芥椂锛岀敱浜庨€熷害灏氬皬锛屾墍浠ラ樆鍔涗篃涓嶅ぇ锛涗絾闅忕潃涓嬭惤閫熷害鐨勫澶э紝闃诲姏涔熼殢涔嬶紙聽聽聽聽聽聽锛夈€?A:澧炲ぇB:鍑忓皬C:涓嶅彉绛旀:7銆佸疄楠屾椂锛屽緟娴嬫恫浣撳繀椤荤洓浜庡鍣ㄤ腑锛屾晠涓嶈兘婊¤冻鏃犻檺娣卞箍鐨勬潯浠讹紝蹇呴』瀵瑰叕寮忚繘琛屼慨姝c€?A:瀵?B:閿?绛旀:8銆佹恫浣撶殑绮樻粸绯绘暟闅忔俯搴︾殑澧炲ぇ鑰屽噺灏忋€?A:瀵?B:閿?绛旀:9銆佽惤鐞冩硶娴嬫恫浣撶矘婊炵郴鏁扮殑瀹為獙涓紝灏忕悆浠庨噺绛掔殑涓酱绾夸綅缃笅钀姐€?A:瀵?B:閿?绛旀:10銆佹湰瀹為獙涓敤锛埪?聽聽聽锛夋潵娴嬮噺灏忕悆鐨勭洿寰勩€?A:娓告爣鍗″昂B:鍗冨垎灏?C:鍗峰昂绛旀:绗簲绔?1銆佽緝涓虹簿纭殑娴嬪嚭鏅湕鍏嬪父鏁扮殑瀹為獙鏄紙聽聽聽聽聽聽锛夈€?A:瀵嗙珛鏍规补婊村疄楠?B:鎵橀┈鏂潹鍏夊共娑?C:鍗㈢憻绂忔暎灏?D:浼藉埄鐣ュ姞閫熷害瀹為獙绛旀:2銆佸厜鐢垫晥搴斿疄楠屼腑锛屼笅鍒楄娉曚笉姝g‘鐨勬槸锛埪?聽聽聽聽聽锛夈€?A:娴嬮噺浠笌姹炵伅棰勭儹鏃堕棿蹇呴』闀夸簬20鍒嗛挓B:娴嬮噺浠瘡鏀瑰彉涓€娆¢噺绋嬮兘瑕佽皟闆?C:姹炵伅鑻ヤ腑閫旂唲鐏紝蹇呴』绔嬪嵆鍚姩D:鏇存崲婊よ壊鐗囨椂锛屾敞鎰忔尅浣忔睘鐏厜婧?绛旀:3銆佹祴閲忔埅姝㈢數鍘嬫椂锛岀數鍘嬬殑璋冭妭鑼冨洿鏄紙聽聽聽聽锛夈€?A:-2V锝?2VB:-2V锝?30V绛旀:4銆佹祴鍏夌數绠$殑浼忓畨鐗规€ф洸绾挎椂锛岀數鍘嬬殑璋冭妭鑼冨洿鏄紙聽聽聽聽聽聽锛夈€?A:-2V锝?2VB:-2V锝?30V绛旀:5銆佹湰瀹為獙鏄敤锛埪?聽聽聽聽聽锛夊鐞嗘暟鎹紝鏉ユ眰鍑烘櫘鏈楀厠甯告暟鐨勩€?A: 浣滃浘娉?B: 鍥捐В娉?C: 閫愬樊娉?D: 骞冲潎娉?绛旀:6銆佹祴瀹氫华鍦ㄥ紑鏈烘垨鏀瑰彉鐢垫祦閲忕▼鍚庯紝闇€瑕佽繘琛岃皟闆讹紵A:瀵?B:閿?绛旀:7銆佸疄楠屾椂鍙互浠嶶a-v鍥剧殑锛埪?聽聽聽聽聽锛夋眰鐨勯槾鏋佺殑绾㈤檺鍜岄€稿嚭鍔熴€?A:鏂滅巼B:鎴窛绛旀:8銆侀€氳繃瀹為獙鍙互楠岃瘉鍏夌數绠$殑楗卞拰鐢垫祦涓庡叆灏勫厜寮烘垚锛埪?聽聽聽聽聽锛夈€?A:姝f瘮B:鍙嶆瘮绛旀:9銆佹埅姝㈢數鍘嬩笌鍏夌収寮哄害鏃犲叧锛屽彧涓庡叆灏勫厜鐨勯鐜囨湁鍏炽€傝繖鍙ヨ瘽鏄惁姝g‘锛?A:瀵?B:閿?绛旀:10銆佸厜鐢垫晥搴斿疄楠屼腑锛屽叧浜庢祴閲忎华浣跨敤鏃剁殑璋冮浂鏂规硶姝g‘鐨勮娉曟槸锛埪?聽聽聽聽聽锛夈€?A:鍙浣跨敤鍓嶈皟闆跺嵆鍙?B:姣忔敼鍙樹竴娆¢噺绋嬮兘瑕佽皟闆?C:姣忔敼鍙樹竴娆$數鍘嬮兘瑕佽皟闆?D:姣忔鏇存崲婊ゅ厜鐗囬兘瑕佽皟闆?绛旀:绗叚绔?1銆佹墦寮€鐢垫簮锛屽苟鎸夊疄楠岃姹傝皟鑺傝緭鍑虹數鍘嬶紙鏄剧ず鍣ㄦ樉绀虹數鍘嬶級銆傝皟鑺傛椂瑕佺紦鎱㈠鍔犵數鍘嬶紝骞跺悓鏃舵敞鎰忕數琛ㄦ槸鍚︽湁寮傚父锛屽鐢佃〃鍑虹幇寮傚父鐜拌薄搴旂珛鍗冲叧闂數婧愶紝闃叉鎹熷潖鐢佃〃绛夎澶囷紝骞舵鏌ョ數璺€?A:瀵?B:閿?绛旀:2銆佺數琛ㄨ鏁版椂搴斾娇鎸囬拡涓庤〃鐩樺姬褰㈤暅闈腑鍙嶅皠鐨勫儚锛埪?聽锛夛紝浠ヤ繚璇佽鏁扮殑鍑嗙‘鎬с€?A: 閲嶅悎B: 鎴?0搴﹁C: 鎴?0搴?D:瑙掑害涓嶉檺绛旀:3銆佹湰娆″疄楠屾垜浠笉鐩存帴娴嬮潤鐢靛満锛岃€屾槸閲囩敤鏁板妯℃嫙娉曟潵鎻忕粯闈欑數鍦恒€?A:瀵?B:閿?绛旀:4銆佺數婧愮殑璋冭妭鏃嬮挳锛埪?聽锛夋棆杞紝鍙互澧炲ぇ杈撳嚭鐢靛帇銆?A: 椤烘椂閽?B: 閫嗘椂閽?绛旀:5銆佹祴閲忚繃绋嬩腑锛屼笅鎺㈤拡涓嶉渶瑕佸拰瀵肩數绾稿缁堜繚鎸佹帴瑙︺€?A:瀵?B:閿?绛旀:6銆丆65鍨嬩华琛ㄥ簲灏藉彲鑳借繙绂诲ぇ鐢垫祦瀵肩嚎鍙婂己纾佹€х墿璐ㄣ€?A:瀵?B:閿?绛旀:7銆丆65鍨嬩华琛ㄥ湪浣跨敤鏃跺簲锛埪?聽锛夋斁缃€?A: 姘村钩B: 绔栫洿C: 闅忔剰绛旀:8銆佸疄楠屼腑鎴戜滑浣跨敤鐨勬槸C65鍨嬩紡鐗硅〃銆佹瀹夎〃銆傝鍨嬬數琛ㄦ槸鍐呯缁撴瀯,寮犱笣鏀壙,锛埪?聽聽聽锛夋寚绀虹殑纾佺數绯讳华琛ㄣ€?A: 鎸囬拡B: 鏁版樉绛旀:9銆佺洿鎺ユ祴閲忛潤鐢靛満涔熶細閬囧埌寰堝ぇ鍥伴毦锛岃繖涓嶄粎鍥犱负璁惧澶嶆潅锛岃繕鍥犱负鎶婃帰閽堝紩鍏ラ潤鐢靛満鏃讹紝鎺㈤拡涓婁細浜х敓鎰熷簲鐢佃嵎锛岃繖浜涚數鑽峰張浜х敓鐢靛満锛屼笌鍘熺數鍦哄彔鍔犺捣鏉ワ紝浣块潤鐢靛満浜х敓鏄捐憲鐣稿彉銆?A:瀵?B:閿?绛旀:10銆佹弿缁樼數鍦烘椂锛屽満寮烘暟鍊间笂绛変簬鐢典綅姊害锛屾柟鍚戞寚鍚戠數浣嶏紙聽聽聽聽聽聽锛夌殑鏂瑰悜銆?A:闄嶈惤B:鍗囬珮C:涓嶅彉D:浠绘剰绛旀:绗竷绔?1銆佺粷澶у鏁扮墿璐ㄩ兘鍏锋湁鈥滅儹鑳€鍐风缉鈥濈殑鐗规€э紝杩欐槸鐢变簬鐗╀綋鍐呴儴鍒嗗瓙鐑繍鍔ㄥ姞鍓ф垨鍑忓急閫犳垚鐨勩€傝繖鍙ヨ瘽鏄惁姝g‘锛?A:瀵?B:閿?绛旀:2銆佺嚎鑳€绯绘暟鏄€夌敤鏉愭枡鐨勪竴椤归噸瑕佹寚鏍囷紝鍦ㄥ伐绋嬬粨鏋勭殑璁捐涓紝鍦ㄦ満姊拌澶囧強浠櫒鐨勫埗閫犱腑锛屽湪鏉愭枡鐨勫姞宸ヤ腑锛岄兘搴斾簣浠ヨ€冭檻銆?A:瀵?B:閿?绛旀:3銆佸浐浣撴潗鏂欐俯搴︽瘡鍗囬珮1鎽勬皬搴︼紝寮曡捣鐨勯暱搴︿几闀块噺涓庡叾鍦紙锛夋憚姘忓害鏃堕暱搴︿箣姣斿彨鍋氱嚎鑶ㄨ儉绯绘暟銆?A:0B:100C:浠绘剰D:-273绛旀:4銆佸疄楠屼腑鎴戜滑閲囩敤锛埪?聽锛夋硶瀵瑰井灏忓彉鍖栬繘琛屾祴閲忋€?A: 鍏夋潬鏉?B: 鍗冨垎琛?C: 鍗冨垎灏?D: 娓告爣鍗″昂E: 铻烘棆娴嬪井璁?F: 绫冲昂绛旀:5銆佽皟鏁存湜杩滈暅涓庡厜鏉犳潌璺濈鏃讹紝鎴戜滑寤鸿璺濈涓猴紙聽聽锛塩m 宸﹀彸銆?A:120B: 10D: 5绛旀:6銆佽皟鑺傝繃绋嬩腑锛屾湜杩滈暅鏃佺殑鏍囧昂搴旇鏄鐨勶紝鎵嶈兘淇濊瘉浠庢湜杩滈暅涓瀵熷埌鐨勫儚鏄鐨勩€?A:瀵?B:閿?绛旀:7銆佽皟鑺傛湜杩滈暅闀滅瓛鍛堟按骞充笖涓庡钩闈㈤暅绛夐珮锛屼娇鏈涜繙闀滅殑鍏夎酱涓庡钩闈㈤暅锛埪?聽聽聽锛夈€?A:姘村钩B:浠绘剰C:鍨傜洿D:骞宠绛旀:8銆佹湰瀹為獙鏄敤锛埪? 聽聽聽聽聽锛夊鐞嗘暟鎹紝鏉ユ眰鍑哄緟娴嬬嚎鑳€绯绘暟鐨勩€?A:閫愬樊娉?B:鍥捐В娉?C:骞冲潎娉?D:鏃犻渶澶勭悊绛旀:9銆佸昂璇绘湜杩滈暅鍜屽厜鏉犳潌涓€鏃﹁皟鏁村ソ鍚庯紝浠ュ悗鐨勬搷浣滆繃绋嬩腑涓嶈兘鎸ゅ帇瀹為獙鍙般€?B:閿?绛旀:10銆佸疄楠屼腑锛屾湜杩滈暅涓瀵熷埌鐨勬槸锛埪?聽聽聽锛夈€?A:鏍囧昂鐨勫儚B:娓╁害绀烘暟绛旀:绗叓绔?1銆佺敤鐢典綅宸娴嬬數姹犵數鍔ㄥ娍鏃?鍏惰鏁扮殑鏈夋晥鏁板瓧鏈€灏戝簲鏄?聽聽聽聽聽聽)浣嶃€?A:4B:5C:6D:7绛旀:2銆佹祴閲忔椂,姝ラ杞崲寮€鍏冲簲璋冨埌(聽聽聽聽聽聽)銆?A:鏈煡涓€鎸?B:鏍囧噯鎸?C:浠婚€変竴妗?D:鏃犻渶杩炴帴绛旀:3銆佽皟鏁村伐浣滅數娴佹椂,姝ラ杞崲寮€鍏冲簲璋冨埌(聽聽聽聽)銆?A:鏍囧噯鎸?B:鏈煡涓€鎸?C:浠绘剰涓€妗?D:鏃犻渶杩炴帴绛旀:4銆佽嫢涓嶇煡鍒板緟娴嬬數姹犵數鍔ㄥ娍鐨勮寖鍥达紝涔熷彲浠ョ敤鐢典綅宸娴嬪叾鐢靛姩鍔裤€?A:瀵?B:閿?绛旀:5銆佺敤鐢典綅宸鑳芥祴鐢垫睜鍐呴樆.A:瀵?B:閿?绛旀:6銆丒N鐨勪慨姝e€糆t璁$畻缁撴灉搴斾繚鐣?聽聽聽聽聽聽)浣嶆湁鏁堟暟瀛椼€?A:4B:5C:6D:7绛旀:7銆佺敤鐢典綅宸娴嬮噺鍓嶏紝妫€娴佽涓嶉渶瑕佹牎瀵广€?A:瀵?B:閿?绛旀:8銆佺數浣嶅樊璁$殑鏍囧噯鐢垫睜EN鍦?聽聽聽聽 )鐨勮緭鍑哄€?.01860V銆?A:0鎽勬皬搴?B:20鎽勬皬搴?C:30鎽勬皬搴?D:浠绘剰娓╁害绛旀:9銆佺數浣嶅樊璁″彧鑳芥祴閲忕數姹犵殑鐢靛姩鍔裤€?A:瀵?B:閿?绛旀:10銆佺數浣嶅樊璁℃槸鍒╃敤(聽聽 )灏嗘湭鐭ョ數鍔ㄥ娍涓庡凡鐭ョ數鍔ㄥ娍姣旇緝鏉ユ祴閲忕數鍔ㄥ娍鐨勪华鍣ㄣ€?A:琛ュ伩鍘熺悊B:姣旇緝娉?绛旀:绗節绔?1銆佽浆鍔ㄦ儻閲忔槸鍒氫綋杞姩鏃?聽聽聽聽)澶у皬鐨勯噺搴?A:鑳介噺B:鍔ㄩ噺C:鎯€?绛旀:2銆佽浆鍔ㄦ儻閲忛櫎浜嗕笌鍒氫綋鐨勮川閲忔湁鍏冲,杩樹笌(聽聽聽聽聽聽)鏈夊叧.A:杞酱鐨勪綅缃?B:杩愬姩鏃堕棿C:杩愬姩鍛ㄦ湡D:婊戝潡鐨勪綅缃?绛旀:3銆佹壄鎽嗙殑寮圭哀鏄敤鏉ヤ骇鐢熸仮澶嶅姏鐭╃殑銆?A:瀵?B:閿?绛旀:4銆佸脊绨х殑鎵浆甯告暟K鏄敤宸茬煡杞姩鎯噺鐨勭墿浣撴爣瀹氬嚭鏉ョ殑銆? A:瀵?B:閿?绛旀:5銆佸湪娴嬪畾鎽嗗姩鍛ㄦ湡鏃跺厜鐢垫帰澶村簲鏀惧湪鎸″厜鏉嗗钩琛′綅缃銆? A:瀵?B:閿?绛旀:6銆佹祴瀹氭憜鍔ㄥ懆鏈熸椂,鎵憜涓嶉渶瑕佽皟鑺傛按骞炽€?A:瀵?B:閿?绛旀:7銆佹祴瀹氭憜鍔ㄥ懆鏈熸椂,鎵憜鐨勮捣鍔ㄨ搴﹀彲浠ユ槸浠绘剰鐨勩€?A:瀵?B:閿?绛旀:8銆佸脊绨х殑鎵浆甯告暟K鍊艰櫧鐒舵槸瀹氬€间絾鏈夊井灏忓嚭鍏?杩欎笌鎽嗚鏈夊叧,涓轰簡涓嶅甫鏉ョ郴缁熻宸?鎽嗚搴斿敖鍙兘淇濇寔鍦?0搴﹀乏鍙?A:瀵?B:閿?绛旀:9銆佸湪娴嬮噺缁嗘潌鐨勮浆鍔ㄦ儻閲忔椂,缁嗘潌鐨勮川閲忎腑鍖呭惈澶瑰叿鐨勮川閲忋€?A:瀵?B:閿?绛旀:10銆佹壄鎽嗚皟鑺傝嚦姘村钩鐨勮〃寰佹槸姘村钩浠腑姘旀场灞呬腑銆?A:瀵?B:閿?绛旀:绗崄绔?1銆?.pngA:瀵?B:閿?绛旀:2銆佸疄楠屼腑鍦ㄦ墦寮€鏀炬皵闃€C2鏀炬皵鏃讹紝褰撳惉鍒版斁姘斿0缁撴潫搴旇繀閫熷叧闂榾闂紝鎻愭棭鎴栨帹杩熷叧闂瑿2锛岄兘灏嗗奖鍝嶅疄楠岃姹傦紝寮曞叆璇樊銆?A:瀵?B:閿?绛旀:3銆佸疄楠屼腑鍦ㄦ墦寮€鏀炬皵闃€C2鏀炬皵鏃讹紝闈犲惉鏀炬皵澹扮粨鏉熷叧闂榾闂紝寮曞叆璇樊杈冨ぇ锛屽簲瑙傚療鏁板瓧鐢靛帇琛ㄦ樉绀洪浂鍊兼椂鍏抽棴C2銆傦紙锛?A:瀵?B:閿?绛旀:4銆?.pngA:瀵?B:閿?绛旀:5銆?.pngA:瀵?B:閿?绛旀:6銆?.pngA:瀵?B:閿?绛旀:7銆?.pngA:瀵?B:閿?绛旀:8銆?.pngA:瀵?B:閿?绛旀:9銆?.pngA:瀵?B:閿?绛旀:10銆?0.pngA:瀵?B:閿?绛旀:绗崄涓€绔?1銆佹湰娆″疄楠屼腑杞界墿鍙颁笅闈㈠弽鍏夐暅鐨勫弽灏勯潰搴旀湞鍚庤儗鍏夋斁缃€?A:瀵?B:閿?绛旀:2銆佺墰椤跨幆鐩搁偦涓ょ幆鐨勯棿璺濋殢鐜洿寰勭殑澧炲ぇ鑰屽澶с€?A:瀵?B:閿?绛旀:3銆佸湪娴嬮噺杩囩▼涓紝涓轰簡閬垮厤鍥炵▼璇樊锛屽彧鑳芥部鍚屼竴鏂瑰悜杞姩榧撹疆锛屼笉鍙繘杩涢€€閫€銆?A:瀵?B:閿?绛旀:4銆佹寜鏁版嵁琛ㄦ牸涓粠宸﹀埌鍙充粠涓婂埌涓嬬殑椤哄簭娴嬮噺锛屽嵆鍏堟祴绗?2鑷?7绾ф殫鐜乏渚э紝鐒跺悗娴嬬22鑷?7绾ф殫鐜彸渚э紝鍐嶆祴绗?6鑷?1绾ф殫鐜乏渚э紝鏈€鍚庢祴绗?6鑷?1绾ф殫鐜彸渚с€傦紙锛?A:瀵?B:閿?绛旀:5銆佷负浜嗛伩鍏嶅洖绋嬭宸紝鍙互鍏堟祴绗?2鑷?7绾ф殫鐜乏渚э紝鎺ョ潃娴嬬16鑷?1绾ф殫鐜乏渚э紝璺ㄨ繃鍦嗗績鍐嶆祴绗?1鑷?6绾ф殫鐜彸渚э紝鎺ョ潃娴嬬17鑷?2绾ф殫鐜彸渚с€傦紙锛?A:瀵?B:閿?绛旀:6銆侀挔鍏夌伅鐢垫簮鍚姩鍚庯紝涓嶈鍙嶅鎷ㄥ紕寮€鍏炽€?A:瀵?B:閿?绛旀:。

大学物理学(下册)习题答案详解

大学物理学(下册)习题答案详解

第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。

大学《大学物理(上)》各章节测试题与答案

大学《大学物理(上)》各章节测试题与答案

《大学物理(上)》的答案第1章问题:以下是近代物理学的理论基础的是()。

答案:量子力学问题:谁建立了电磁场理论,将电学、磁学、光学统一起来?()答案:麦克斯韦问题:谁在伽利略、开普勒等人工作的基础上,建立了完整的经典力学理论?()答案:牛顿问题:物理学是探讨物质结构,运动基本规律和相互作用的科学。

()答案:正确问题:20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学也适用于微观粒子和高速运动物体。

()答案:错误第2章问题:爱因斯坦因提出什么理论而获得诺贝尔物理奖?()答案:光量子假说问题:玻尔因做出什么重大贡献而获得诺贝尔物理学奖?()答案:研究原子的结构和原子的辐射问题:运动学中涉及的主要运动学量包括位移、速度和加速度。

()答案:正确第3章问题:在平面极坐标系中,任意位矢可表示为()。

答案:问题:在直角坐标系中,任意位矢的方向余弦的关系为()。

答案:问题:在直角坐标系中,任意位矢可表示为()。

答案:问题:同一个位置矢量可以在不同的坐标系中表示。

()答案:正确问题:位置矢量在直角坐标系和平面极坐标系中的表示方式是一样的。

()答案:错误第4章问题:设质点在均匀转动(角速度为)的水平转盘上从t=0时刻开始自中心出发,以恒定的速率沿一半径运动,则质点的运动方程为()。

答案:问题:设质点在均匀转动(角速度为)的水平转盘上从t=0时刻开始自中心出发,以恒定的速率沿一半径运动,则质点的轨迹方程为()。

答案:问题:质点的位置关于时间的函数称为运动方程。

()答案:正确第5章问题:一个人从O点出发,向正东走了2m,又向正北走了2m,则合位移的大小和方向为()。

答案:东北方向问题:某质点沿半径为R的圆周运动一周,它的位移和路程分别为多少()。

答案:问题:位移和路程都与坐标原点的选取有关。

()答案:错误第6章问题:有一质点沿x方向作直线运动,它的位置由方程决定,其中x的单位是米,t的单位是秒。

则它的速度公式为()。

大学物理(上)智慧树知到课后章节答案2023年下天津大学

大学物理(上)智慧树知到课后章节答案2023年下天津大学

大学物理(上)智慧树知到课后章节答案2023年下天津大学天津大学第一章测试1.地球绕太阳作椭圆轨道运动. 若忽略其他星球的作用, 在地球的运行过程中()A:地球的动量守恒, 但动能不守恒B:地球的动量守恒, 动能守恒 C:地球的动能不守恒, 但地球对太阳的角动量守恒 D:地球的动能守恒, 但动量不守恒答案:地球的动能不守恒, 但地球对太阳的角动量守恒2.人造地球卫星绕地球作椭圆轨道运动. 卫星轨道近地点和远地点分别为A和B,用L和E k分别表示卫星对地心的角动量及其动能的瞬时值, 则应有A: B: C:D:答案:3.A:B:C:D:答案:4.A:系统的动量不守恒,机械能守恒.B:系统的动量与机械能都不守恒.C:系统的动量守恒,机械能不守恒.D:系统的动量守恒,机械能守恒.答案:系统的动量守恒,机械能守恒.5.一块长方形板以其一个边为轴自由转动,最初板自由下垂.现有一小团粘土垂直于板面撞击板, 并粘在板上. 对粘土和板系统, 如果不计空气阻力, 在碰撞过程中守恒的量是A:机械能 B:绕长方形板转轴的角动量 C:动量 D:动能答案:绕长方形板转轴的角动量6.在系统不受外力作用的非弹性碰撞过程中A: 动能和动量都守恒 B:动能不守恒, 动量守恒 C:动能守恒, 动量不守恒 D:动能和动量都不守恒答案:动能不守恒, 动量守恒7.A: B: C: D:答案:8.A: B: C: D:答案:9.对于作匀速率圆周运动的物体,以下说法正确的是()A:法向加速度等于零 B:切向加速度等于零 C:加速度不变 D:速度不变答案:切向加速度等于零10.质点系的内力可以改变A:系统的总动能 B:系统的总质量 C:系统的总动量 D:系统的总角动量答案:系统的总动能11.一物体作匀速率曲线运动,则()A:其所受合外力一定总为零 B:其切向加速度一定总为零 C:其法向加速度一定总为零 D:其加速度一定总为零答案:其切向加速度一定总为零12.弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的()A:12倍 B:6倍 C:8倍 D:9倍答案:9倍13.对于一个物体系统来说,在下列条件中,哪种情况下系统的机械能守恒?A:合外力为0 B:外力和保守力都不做功 C:外力和非保守内力都不做功 D:合外力不做功答案:外力和非保守内力都不做功14.一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统()A:动量守恒,但机械能和角动量守恒与否不能断定 B: 动量、机械能以及对一轴的角动量守恒 C:动量和角动量守恒,但机械能是否守恒不能断定 D: 动量、机械能守恒,但角动量是否守恒不能断定答案:动量守恒,但机械能和角动量守恒与否不能断定15.人造地球卫星绕地球作椭圆轨道运动. 若忽略空气阻力和其他星球的作用, 在卫星的运行过程中()A:卫星的动量守恒, 但动能不守恒 B:卫星的动能守恒, 但动量不守恒 C:卫星的动量守恒, 动能守恒 D:卫星的动能不守恒, 但卫星对地心的角动量守恒答案:卫星的动能不守恒, 但卫星对地心的角动量守恒16.A: B: C:D:答案:17.A: B: C:D:答案:18.A: B: C:D:答案:19.银河系中一均匀球体天体, 其半径为R, 绕其对称轴自转的周期为T.由于引力凝聚作用, 其体积在不断收缩. 则一万年以后应有A:自转周期变大, 动能增大 B:自转周期变大, 动能减小C:自转周期变小, 动能也变小 D:自转周期变小, 动能增大答案:自转周期变大, 动能增大20.A: B:C: D:答案:21.A:B:C:D:答案:22.A: B: C: D:答案:23.A: B: C: D:答案:24.A: B: C: D:答案:25.A:0B:mv C:2mv D:-2mv答案:-2mv26.A:匀速直线运动变速直线运动C:一般曲线运动.D:抛物线运动答案:变速直线运动27.A:匀加速直线运动,加速度沿X轴负方向 B:变加速直线运动,加速度沿X 轴正方向 C:变加速直线运动,加速度沿X轴负方向 D:匀加速直线运动,加速度沿X轴正方向答案:变加速直线运动,加速度沿X轴负方向28.A: B: C: D:答案:29.A: B: C: D:答案:30.质点作半径为R的变速圆周运动时的加速度大小为(v表示任一时刻质点的速率)()A: B: C: D:答案:31.A:3 J B:4.5 J C:-1.5 J D:1.5 J答案:3 J32.一质点在平面上运动, 已知质点位置矢量的表示式为, 则该质点作()A:匀速直线运动 B:一般曲线运动 C:变速直线运动 D:抛物曲线运动答案:变速直线运动33.A: B:C:D:答案:34.对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?A:合外力为0. B:外力和保守内力都不作功. C:外力和非保守内力都不作功. D:合外力不作功.答案:外力和非保守内力都不作功.35.A: B: C: D:答案:第二章测试1.绳的一端系一质量为m的小球, 在光滑的水平桌面上作匀速圆周运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P b a O xd xy9-5 一无限长均匀带电细棒被弯成如习题9-5图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零。

解: 设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强。

在圆弧上取一弧元 d s =R d φ所带的电量为 d q = λd s 在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε=== 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为 d E x = -d E cos φ 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=方向沿着x 轴正向。

再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==;方向沿着x 轴负向当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1;因此 θ/2 = π/4,所以 θ = π/29-6 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如习题9-6图所示。

试求 平板所在平面内,离薄板边缘距离为a 的P 点处的场强。

解: 建立坐标系。

在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x 根据直线带电线的场强公式02E rλπε=得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-其方向沿x 轴正向。

由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰/20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+ ①场强方向沿x 轴正向。

θRO θ RO x d φd Eφ θ O E`E``xR9-7 有一半径为r 的半球面,均匀地带有电荷,电荷面密度为σ,求球心处的电场强度。

解: 如图所示,在球面上任取一面元ϕθθd d s i n d 2r S =,其上带电量为ϕθθσσd d sin d d 2r S q =⋅=,电荷元q d 在球心处产生的场强的大小为22020d d sin 41d 41d r r r q E ϕθθσπεπε== 方向如图。

由对称性分析可知,球心处场强方向竖直向下,其大小为2024 d cos sin 4d cos d εσθθθπεσϕθππ====⎰⎰⎰E E E z9-10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 2 > R 1),带有等量异号电荷,单位长度的电量分别为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强。

解:由于电荷分布具有轴对称性,所以电场分布也具有轴对称性。

(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1)(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ;穿过高斯面的电通量为 ⎰⎰==⋅=ΦSSe rl E EdS S d E π2根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2) (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2) 9-12 一个均匀带电圆盘,半径为R ,电荷面密度为σ,求: (1) 轴线上任一点的电势(用x 表示该点至圆盘中心的距离); (2) 利用电场强度与电势的关系求轴线上的场强分布。

解:如图所示,将均匀带电圆盘视为一系列连续分布的同心带电细圆环所组成,距O 点r 处取一宽为dr 的细圆环,其带电量为r d dq 2S πσσ⋅==,dq 在P 点处产生的电势为22122212001d 12d d 4()4()q r rV r x r x σππεπε==++ 所以,整个带电圆盘在P 点产生的电势为2222120002d d ()4()2R r r V V R x x r x σπσπεε===+-+⎰⎰;轴线上的场强分布为)1(2d d 220xR x x V E x +-=-=εσ 9-20 电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势;(2)带电直线中垂线上离中点为r 处的电势;(3)由电势梯度算出上述两点的场强。

解:电荷的线密度为λ = q/2L(1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l 根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为 10d 4L L l U r l λπε-=-⎰0ln()4Ll Lr l λπε=--=-0ln 8q r LLr Lπε+=- (2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,在线的垂直平分线上的P 2点产生的电势为 2221/20d d 4()lU r l λπε=+, 积分得2221/201d 4()LLU l r l λπε-=+⎰220ln()4Ll Lr l l λπε=-=++22220ln8q r L L Lr L Lπε++=+-220ln4q r L L Lrπε++=(3)P 1点的场强大小为11U E r ∂=-∂011()8q L r L r L πε=--+22014q r L πε=-, ①方向沿着x 轴正向。

P 2点的场强为22U E r ∂=-∂222201[]4()q rL r r L r L L πε=-+++22014q r r Lπε=+ ②方向沿着y 轴正向。

9-21 如习题9-21图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强。

解:(1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势。

在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为d V = 4πr 2d r包含的电量为d q = ρd V = 4πρr 2d r 在球心处产生的电势为00d d d 4O q U r r rρπεε==球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰ 这就是A 点的电势U A 。

过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的。

球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得o xd l yLr-LP 1 l ol xd l-LL y r θ P 2 A O R 1B R 2 r A r B OR 1R 2 r d r22120()2B U R r ρε=- 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势。

球壳在球面内的体积为3314()3B V r R π=-;包含的电量为 Q = ρV这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==- B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.(2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂讨论: 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为 E = 0, (r ≦R 1)过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为3314()3V r R π=- 包含的电量为 q = ρV;根据高斯定理得方程 4πr 2E = q/ε0可得B 点的场强为3120()3R E r rρε=-, (R 1≦r ≦R 2)这两个结果与上面计算的结果相同。

在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为33214()3V R R π=- 包含的电量为 q = ρV根据高斯定理得可得球壳外的场强为33212200()43R R qE r r ρπεε-==,(R 2≦r ) A 点的电势为d d AAA r rU E r ∞∞=⋅=⎰⎰E l 12131200d ()d 3A R R r R R r r r r ρε=+-⎰⎰2332120()d 3R R R r r ρε∞-+⎰22210()2R R ρε=-. B 点的电势为d d BBB r rU E r ∞∞=⋅=⎰⎰E l 23120()d 3BR r R r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰322120(32)6B B R R r r ρε=--. A 和B 点的电势与前面计算的结果相同.10-1 点电荷q +处在导体球壳的中心,壳的内、外半径分别为1R 和2R 。

试求:(1)1R r <;(2)21R r R <<;(3)2R r >三个区域的电场强度和电势。

r 为观察点到q +的距离。

解:由高斯定理 ⎰∑=⋅SE εq S d得O R 1R 2 r BB(1)当1R r <时,2014r q E πε=1120012111,()44q qE V rr R R πεπε==-+ 当21R r R <<时,02=E 22020,4qE V R πε==当2R r >时,2034rq E πε=33200,44q q E V rrπεπε==(2)当1R r <时,)111(421032112211R R r qr d E r d E r d E V R R R R R r+-=⋅+⋅+⋅=⎰⎰⎰∞πε当21R r R <<时,⎰⎰∞=⋅+⋅=R R R rR q r d E r d E V 22203224πε当2R r >时,⎰∞=⋅=R rrq r d E V 0334πε10-5 如习题10-5图所示,三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求 (1)B 、C 板上的电荷为多少?(2)A 板电势为多少?解:(1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q 1 = σ1S 和q 2 = σ2S 在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S ①A 、B 间的场强为 E 1 = σ1/ε0;A 、C 间的场强为 E 2 = σ2/ε0 设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ②即 σ1d 1 = σ2d 2. ③解联立方程①和③得σ1 = qd 2/S (d 1 + d 2) 所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);q 2 = q - q 1 = 1×10-8(C) B 、C 板上的电荷分别为q B = -q 1 = -2×10-8(C);q C = -q 2 = -1×10-8(C)(2)两板电势差为ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2) 由于 k = 9×109 = 1/4πε0;所以 ε0 = 10-9/36π 因此 ΔU = 144π = 452.4(V)由于B 板和C 板的电势为零,所以U A = ΔU = 452.4(V)10-9 如习题10-9图所示,球形电容器的内、外半径分别为R 1和R 2,其间一半为真空,另一半充满相对介电常数为εr 的均匀电介质,求该电容器的电容。

相关文档
最新文档