根际微生物调控植物根系构型的研究进展_陈伟立
植物根系生物学的研究进展
植物根系生物学的研究进展植物根系是植物的重要器官之一,对于植物的生长、营养吸收和环境适应起着至关重要的作用。
近年来,随着科学技术的不断发展和研究方法的不断创新,植物根系生物学的研究取得了一系列重要进展。
本文将从根系形态、生理功能以及基因调控等方面介绍植物根系生物学的最新研究成果。
一、根系形态的研究进展根系形态对植物的生长、稳定和营养吸收能力具有重要影响。
传统的研究方法主要依赖于手工测量和观察,但这种方法耗时费力且无法获取全面准确的数据。
近年来,随着三维成像技术的发展,研究者们可以更加准确地描述和分析根系的形态特征。
例如,基于X射线断层扫描技术(X-ray computed tomography,CT)和核磁共振成像技术(magnetic resonance imaging,MRI),研究者们可以获得根系的三维结构,进而分析根系的形态参数如长度、体积、分枝角度等。
此外,还有一些自动化的图像处理工具和算法应用于根系形态的分析,大大提高了测量效率和准确度。
二、根系生理功能的研究进展根系不仅是植物吸收水分和养分的器官,还参与了植物对环境的感知和适应。
近年来,研究者们通过测定根系的生理指标和代谢产物来揭示根系的功能。
例如,根系的渗透调节机制对于植物在不同土壤水分条件下的水分平衡至关重要。
研究者发现,植物根系中的渗透调节物质(如脯氨酸和可溶性糖)在根系水分调节中起着关键作用。
此外,根系还参与植物的营养吸收和物质转运等过程。
通过研究植物根系与土壤微生物共生关系,研究者们发现根系分泌的有机物质可以促进土壤微生物的生长和活动,从而提高植物对养分的吸收效率。
三、根系生长调控的研究进展根系的生长调控是植物长期适应环境的结果,也是植物发育和形态变化的基础。
近年来,研究者们通过逆向遗传学、表观遗传学以及转录组学等研究方法,揭示了许多控制根系生长的关键因子和信号通路。
例如,植物激素(如生长素、赤霉素、脱落酸等)在根系发育中发挥着重要作用。
植物根际微生物组的研究进展
植物根际微生物组的研究进展邵秋雨,董醇波,韩燕峰*,梁宗琦(贵州大学生命科学学院生态系真菌资源研究所,贵州贵阳 550025)摘要: 根际微生物组 (rhizosphere microbiome),是植物从其种子库土壤微生物组中有选择性地招募在根际聚集的动态微生物集群。
随着近年来高通量测序技术、宏基因组学等的飞速发展,根际微生物组与植物宿主及土壤微生物组间的紧密联系引起了全球关注和研究热潮。
根际微生物组被视作植物第二基因组,其与植物间的互作极为复杂,有正相也有负相。
植物通过从土壤微生物组中招募到根际的某些组分获得积极反馈。
正确管理植物根际微生物组不仅能促进宿主营养吸收、抵抗病虫害及适应环境胁迫,还可能促进健康土壤的形成,增强土壤生态系统的服务功能。
对根际微生物组的定义、驱动因素、研究方法及其与农业生产的关系4个方面进行综述,并重点关注了根际微生物组与植物宿主间的互作过程,以期为更好的开发利用这类生物资源提供新思路。
关键词: 根际微生物组;根系分泌物;农业生产;模式微生物群落Research progress in the rhizosphere microbiome of plantsSHAO Qiu-yu, DONG Chun-bo, HAN Yan-feng*, LIANG Zong-qi( Institute of Fungus Resources, Department of Ecology, College of Life Sciences,Guizhou University, Guiyang 550025, China )Abstract: Rhizosphere microbiome refers in particular to the dynamic microbial consortium that are selectively recruited by plants from the soil microbiome of their seed banks and gathered in the rhizosphere. With the rapid development of high-throughput sequencing technology and metagenomics in recent years, the natural close relationship among rhizosphere microbiome, plant host and soil microbiome have attracted global attention and become research upsurge. The rhizosphere microbiome, regarded as the second genome of plants, has very complex interactions with plants in positive and negative. Many studies have shown that plants can obtain positive feedback by recruiting certain members of the rhizosphere from the soil microbiome. The correct regulation of the rhizosphere microbiome can not only promote the nutrition absorption, resist plant diseases and insect and help the host to adapt environmental stress, but also promote the formation of healthy soils and enhance the service function of soil ecosystem. This paper reviewed the definition, driving factors, research methods of rhizosphere microbiome and the advances in relationship between rhizosphere microbiome and agricultural production. And the interaction between rhizosphere microbiome and plant host was focused. The purpose of the review is to provide new ideas for better exploitation and utilization of these biological resources.Key words: rhizosphere microbiome; root exudates; agricultural production; standard microbial model早在1904年,德国学者Hiltner就提出了“根际”一词,将其用以描述受植物根系影响的狭窄土壤带[1]。
药用植物根际微生物研究进展
药用植物根际微生物研究进展一、本文概述药用植物作为中医药学的重要组成部分,其独特的药用价值和生态适应性一直受到广泛关注。
近年来,随着生物技术的快速发展,药用植物根际微生物的研究逐渐成为新的研究热点。
根际微生物,包括细菌、真菌、放线菌等,与药用植物的生长、发育及次生代谢产物的合成密切相关。
本文旨在综述药用植物根际微生物的研究进展,包括根际微生物的多样性、功能及其与药用植物互作的机制,以期为药用植物资源的合理开发与利用,以及提高药用植物品质和产量提供理论支撑和实践指导。
通过综述国内外相关文献,本文梳理了药用植物根际微生物的研究现状,重点分析了根际微生物对药用植物生长、次生代谢及抗逆性的影响。
本文还探讨了根际微生物在药用植物生态系统中的作用,以及其在药用植物种植、病虫害防治等方面的应用前景。
通过深入研究和探索,我们期望能够更好地理解药用植物与根际微生物之间的相互作用关系,为药用植物的可持续发展提供科学依据。
二、药用植物根际微生物的种类与功能药用植物根际微生物是一个复杂而多样的微生物群落,主要包括细菌、真菌、放线菌等。
这些微生物与药用植物之间形成了密切的共生关系,对药用植物的生长发育和次生代谢产物的合成具有重要影响。
细菌类微生物:在药用植物根际中,细菌是最主要的微生物群体之一。
它们可以通过固氮、解磷、解钾等方式改善土壤环境,促进药用植物的生长。
一些细菌还具有产生抗生素、植物生长激素等有益物质的能力,对药用植物的病害防治和生长调控具有重要作用。
真菌类微生物:药用植物根际中的真菌主要包括菌根真菌、内生真菌和外生真菌等。
菌根真菌能够与药用植物形成共生体,增强植物对水分和养分的吸收能力;内生真菌则能够定殖在药用植物体内,促进植物的生长和次生代谢产物的合成;外生真菌则主要存在于药用植物根际土壤中,通过分解有机物质为药用植物提供养分。
放线菌类微生物:放线菌在药用植物根际中也扮演着重要角色。
它们能够产生多种抗生素和次生代谢产物,对药用植物的病害防治和次生代谢产物的合成具有重要影响。
植物的根际生态学与微生物互作
植物的根际生态学与微生物互作植物的根际生态学是研究植物根际微环境中微生物与植物之间相互作用的学科,它对于我们理解植物生长与发育、土壤生态系统功能以及农业和生态环境保护都具有重要意义。
在植物生长的过程中,根际微生物能够通过与植物的互作,影响植物的生长与发育,调控植物的营养吸收与利用,提高植物的抗逆能力,并参与土壤养分循环和有机物降解等过程。
本文将介绍植物的根际生态学与微生物互作的基本概念、影响因素以及研究方法。
一、植物的根际生态学概述植物的根际生态学研究的是植物根系与周围环境之间的相互作用关系。
根际生态系统是由植物根系、土壤环境以及与植物共生的微生物等组成的,它们之间形成了一种复杂的生态系统。
微生物在根际生态系统中扮演着极其重要的角色,它们与植物根系之间存在着丰富的相互作用。
二、植物与根际微生物的互作关系1. 菌根共生菌根是指植物根系与真菌根际生物体(比如丛枝菌根和松露菌等)之间的共生现象。
植物通过与菌根共生,可以获得更多的营养和水分,提高植物的抗逆能力。
菌根真菌能够通过与植物根系形成菌根结构,与植物形成共生关系,提供植物所需的养分,并通过分泌激素调控植物的生长与发育。
2. 植物病原微生物互作植物病原微生物是指能引起植物疾病的微生物,如真菌、细菌和病毒等。
植物与病原微生物之间的相互作用主要体现在植物病害的发生和发展过程中。
植物病原微生物通过感染植物,侵害植物的生长与发育,引起植物的病害。
而植物通过识别和防御机制来对抗病原微生物的侵袭,以保证自身的健康。
3. 植物与固氮菌互作固氮菌是一类能够将大气中的氮气转化为植物可利用形态的微生物。
植物与固氮菌之间的共生关系称为固氮共生。
固氮菌能够进入植物根系,通过菌根结构与植物形成共生关系。
固氮菌能够将空气中的氮气转化为植物可吸收的氨态氮,从而为植物提供养分。
三、影响植物根际微生物互作的因素1. 植物物种差异不同的植物物种对根际微生物的选择性也不尽相同。
有些植物与特定的微生物共生关系更为紧密,对于某些微生物具有选择性。
根际微生物强化植物抗逆性的研究
根际微生物强化植物抗逆性的研究自然界中,每一个生物都离不开微生物。
在植物的生长发育和逆境应对中,微生物也扮演着不可忽视的角色。
根际微生物是指在植物根系统内外、土壤和根际区域中与植物根部联系最为紧密的微生物。
这些微生物能够通过与植物共生,调节植物生长发育,促进植物吸收养分,增强植物对逆境的抵抗力,并且对提高植物产量、改善作物品质等方面具有潜在的应用价值。
近年来,随着生物学和分子生态学研究的不断深入,根际微生物与植物的关系愈加清晰,根际微生物强化植物抗逆性的研究也愈加重要。
一、根际微生物对植物的促生作用植物根系是一个广阔的生态系统,其中养分循环、土壤结构形成等过程需要与微生物共同完成。
根际微生物一方面可以通过与植物根系形成共生关系,为植物提供氮、磷等养分,加速植物生长发育;另一方面,根际微生物还可以与植物根系生长分泌的物质产生互利共生,促进植物吸收养分和土壤结构改善。
例如,一些固氮菌可以将空气中的氮转化为固态氮,供给植物使用,一些解磷菌可以使植物根部的磷更易于吸收,一些枯草芽孢杆菌和拟杆菌等则可以辅助植物吸收钾等其他元素。
二、根际微生物对植物的抗逆作用植物在生长过程中面临着许多逆境,如高温、低温、干旱、盐碱等。
这些逆境对植物生长发育产生不利影响,并严重限制了作物产量和品质的提高。
然而,根际微生物可以通过多种途径提高植物对逆境的抵抗力。
例如,在干旱胁迫下,一些根际微生物可以产生植物生长素和赤霉素等植物激素,从而促进植物根部发育,增加植物根表面积,减少水分蒸发,提高植物对干旱的抵抗能力。
在高温胁迫下,一些根际微生物可以产生SPS蛋白和热休克蛋白等物质,从而提高植物对高温的耐受能力。
因此,根际微生物的应用可以有效地提高植物的抗逆性,减轻逆境对植物的损害。
三、根际微生物的应用前景与展望根际微生物的应用不仅可以在提高作物产量和品质方面发挥重要作用,还可以在环境修复、土壤保持和农业可持续发展等方面产生广泛的应用和推广效益。
关于植物根系形态分布研究进展与新方法探讨
Absr c t a t: Ro tsse o ytm, a n ids e sbe p r i lnsgo n sa n ip n a l at n pa t rwig, pa sa sg ic n oe n te ritre n fs alw so e An o t ly inf a trl i h enoc me to h lo lp . i d ros
Lss m ter,adte u eia y i le eif ec fh o bn de et fh oe n o ntes blyo o6 yii l nssf —yt oy n hnn m r l mua dt l n e ecm ie f c o em d l dsio t it f l i nt e met o - e h cls t h nu ot f t a l h a i s p b f e e t
tea piai f a tl h oyi ro ee rh b t o ea da ra ,tep p r rp sd teie f uligtemo e o l ̄ ro op o g i h p l t n o f e er o t rsac oh h m n bo d h a e o o e h d ao i n d l f a t o t rh l yw t c o at n s p b d h p m o h
第2 7卷 第 4期
21 0 1年 7月
森
林
工
程
Vo . 7 No 1 2 .4
F0RES ENGI T NEERI NG
J l,2 1 uy 0 1
关 于 植 物 根 系形 态 分 布 研 究 进 展 与 新 方 法 探 讨
根际微生物调控植物根系构型的研究进展_陈伟立
第36卷第17期2016年9月生态学报ACTAECOLOGICASINICAVol.36,No.17Sep.,2016基金项目:国家自然科学基金(31270448);广东省高等学校人才引进专项(粤财教[2013]246号)收稿日期:2015⁃02⁃26;㊀㊀网络出版日期:2015⁃00⁃00∗通讯作者Correspondingauthor.E⁃mail:yaoqscau@scau.edu.cnDOI:10.5846/stxb201502260390陈伟立,李娟,朱红惠,陈杰忠,姚青.根际微生物调控植物根系构型的研究进展.生态学报,2016,36(17):㊀⁃㊀.ChenWL,LiJ,ZhuHH,ChenJZ,YaoQ.Areviewoftheregulationofplantrootsystemarchitecturebyrhizospheremicroorganisms.ActaEcologicaSinica,2016,36(17):㊀⁃㊀.根际微生物调控植物根系构型的研究进展陈伟立1,李㊀娟2,朱红惠3,陈杰忠1,姚青1,2,∗1华南农业大学园艺学院,广州㊀5106422仲恺农业工程学院,广州㊀5102253广东省微生物研究所,广州㊀510070摘要:根系构型是最重要的植物形态特征之一,具有可塑性,既由遗传因素控制,又受到许多环境因子的调控㊂近年的大量研究表明,根际微生物能够调控植物的根系构型,进而影响植物的一系列生理与生态过程㊂综述丛枝菌根真菌(AMF)㊁根瘤菌㊁植物根际促生菌(PGPR)等重要根际微生物类群对植物根系构型的调控模式以及相应的调控机理,并对进一步的研究进行了展望,旨在为今后的相关研究和实际应用提供参考㊂关键词:根系构型;根际微生物;调控Areviewoftheregulationofplantrootsystemarchitecturebyrhizospheremicroorganisms㊀CHENWeili1,LIJuan2,ZHUHonghui3,CHENJiezhong1,YAOQing1,2,∗1CollegeofHorticulture,SouthChinaAgriculturalUniversity,Guangzhou510642,China2ZhongkaiUniversityofAgricultureandEngineering,Guangzhou510225,China3GuangdongInstituteofMicrobiology,Guangzhou510070,ChinaAbstract:Plantrootsystemarchitecture(RSA)isoneofthemostimportantcharacteristicsofplantmorphology.RSAexhibitsaplasticitythatisnotonlycontrolledbygeneticfactorsbutisalsoregulatedbydiverseenvironmentalfactors.Recently,alargenumberstudieshaveindicatedthatrhizospheremicroorganismscanregulatetheplantRSA,andfurtherinfluenceanarrayofplantphysiologicalandecologicalprocesses.ThispapermainlyreviewstheregulationpatternsandcorrespondingmechanismsofplantRSAmediatedbytheimportantrhizospheremicroorganisms,suchasarbuscularmycorrhizalfungi,rhizobia,andplantgrowth-promotingrhizobacteria.Futureresearchisproposedtoprovidereferenceforrelatedresearchandpracticalapplications.KeyWords:rootsystemarchitecture;rhizospheremicroorganism;regulation众所周知,根系在植物生长发育中起着重要的作用,既是植株吸收水分和营养的主要器官,又是支撑植株地上部的重要力量[1]㊂因此,根系作为植株的地下部分,其活力与植物吸收能力的强弱有直接关系,这些都直接影响着地上部分的生长与发育㊂由于土壤的物质和能量被植物获取和利用均是通过根系得以实现的,因此,根系的分布特征反映了土壤的物质和能量被植物利用的可能性以及生产力,而根系在土壤中的分布特征网络出版时间:2015-12-14 14:03:26网络出版地址:/kcms/detail/11.2031.Q.20151214.1403.034.html2㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀主要表现为根系构型(Rootsystemarchitecture,RSA)[2]㊂根系构型既受到遗传控制,又受到许多环境因子(尤其是根际微生物)的调控㊂本文在此主要综述了根际微生物对根系构型的调控作用及其相应机制,旨在为后来研究者提供一定的理论参考,进一步阐明根际微生物与根系构型之间的复杂关系,最终更好地被应用于生产实践㊂1㊀植物根系构型1.1㊀根系构型研究的意义根系构型是一个重要的农学和生态学指标,指同一根系中不同级别的根在生长介质中的相互连接情况和空间分布[2],具体包括根系形态㊁根系拓扑结构㊁总根长㊁根系分布㊁根长密度和根系的延长速率㊁各级根的发生及在空间的三维分布㊁根系的生长角度和根系的扭转程度等㊂根系构型特点直接反映了根系的生长状况㊂良好的根系构型不仅可以提高根系对土壤养分和水分利用的效率,而且也是构建稳定生态群落的基础,此外,根系构型在土壤维持[3⁃4]和抗病性[5⁃6]方面也起着不可或缺的作用,所以,植物根系构型的研究对植物的生长发育及其生态稳定性具有重要意义㊂近年来,根系构型的研究已经成为诸多学科研究的热点问题,主要包括植物根系生长及对养分吸收利用等营养功能的研究[7⁃8],不同根系构型对各种土壤环境的适应性变化的定量研究[9⁃10],植物根系生长的三维可视化模拟研究[11⁃13],以及根际微生物对植物根系构型的影响[14⁃15]㊂1.2㊀根系构型调控的必要性在全世界大部分地区,水分和矿质养分的有效性是作物生产力的主要限制因素,而且肥沃并具有良好生态环境的耕地极其有限[11],这对主要经济作物如水稻[16⁃17]㊁小麦[18]㊁玉米[19⁃20]及其它植物如橡胶[21]㊁大豆[22]㊁荔枝[23]㊁苜蓿[24]等的生长状况及产量影响巨大,而植物生长状况的良好与否很大程度上依赖于根系对土壤水分及养分吸收能力的强弱㊂在同样的环境条件下,良好的根系构型可以提高植株对有限资源的利用,进而提高产量和品质[25]㊂而根系构型具有极强可塑性的报道屡见不鲜[26],说明作物生产中对根系构型的调控是绝对可行的㊂在育种界,根系构型特点已经慢慢成为育种者考虑的重要因素之一[27⁃28],而且很多研究也表明植株根系构型的改善会促进植株生长和发育㊂因此,根系构型的调控对植株的生长发育及最终产量都具有重大的现实意义,是满足当代社会对作物产量需求的一个有效解决途径㊂1.3㊀根系构型调控的途径根系主要的功能就是从土壤或基质中吸收水分和养分,因此通过控制水分[17,20]和养分[29]的多少将会直接影响根系的生长发育状况及生理特性㊂例如,低磷可以诱导水稻[30]和拟南芥[31]侧根的发生,不过在玉米中则发现相反的结果[32],这说明磷对根系的改善作用因物种不同而不同㊂另外,土壤或基质的温度或外界环境的温度,以及土壤的质地和机械阻力也会对根系的生长产生影响,在一定的温度范围内,植物根系的长度随温度的升高而增长,当温度过高或过低时都会抑制根系的生长[33]㊂在紧实土壤中生长的根系,其伸长速度减慢,根长缩短且变粗等㊂另外一些微量元素如硼㊁钼等对根系的生长也是不可缺少的㊂虽然有毒元素如铜过多则会抑制主根生长,但会促进比较短的侧根的密度[34]㊂近年来,土壤生物因子对根系构型的调控作用日益引起关注,其中根际微生物对根系构型的调控得到广泛报道㊂根际微生物是土壤生态系统中最为活跃的构成因子,参与了土壤中各种生物学过程(如共生)和生物化学过程(如土壤酶),对植物的生长发育和环境适应性产生重要影响㊂植物根际是植物㊁微生物和土壤相互影响最强烈的区域,根系构型与根际微生物间相互影响,相互作用,根系构型的改变势必会影响微生物群落的构成与分布,而根际微生物的存在对植株根系的发育及生长也有重要的影响㊂目前关于此领域的研究主要集中于丛枝菌根真菌(ArbuscularMycorrhizalFungi,AMF)㊁根瘤菌及植物根际促生菌(PlantGrowthPromotingRhinoacteria,PGPR)等根际微生物如何有效地调控植物根系构型[35⁃39]㊂2㊀根际微生物对根系构型的调控2.1㊀AMF㊀㊀AMF是与植物内共生的土壤真菌,其宿主范围十分广泛,可与陆地上80%以上的维管束植物形成共生关系[40]㊂建立共生体后,AMF可以提高植物根系对土壤水分及养分的吸收,植物的抗旱性㊁耐涝性㊁耐盐性和抗病性,加强植物抵抗高温和重金属毒害的能力,此外AMF还可以分解有毒有机物,修复污染与退化土壤等[41⁃42]㊂虽然对AMF的认识已经非常深刻,但是其依然是植物微生物群落中一个关键却神秘的组分㊂AMF侵染植物根系而形成丛枝结构,因此认为AMF对植物生理生态过程的影响与根系构型的变化密不可分,国内外有关AMF影响植物根系构型的研究已经有20多年的历史,发现AMF对植物根系构型的调控是全方位的,包括根系生物量㊁长度㊁根直径㊁根总表面积㊁根总体积㊁分枝数㊁根生长角度以及侧根发育和不定根形成等各根系指标㊂在根系生物量㊁长度及面积等方面,柱花草(Stylosanthesgracilis)接种Glomusversiforme显著增加了根系长度,而且还观察到其基根角度有增大的趋势[43]㊂接种AMF时,角豆树白根㊁黄根生物量及玉米根系总长度㊁根条数(根分枝数)和根系吸收面积都显著[44⁃45]增加,而在柑橘根系长度增加的同时,根系的平均直径却降低了[46],这与Yuan等人[47]所观察到根平均直径增加的结果不同,而且还发现不同AMF种类对植株生长效应不同,促进或抑制地上部和地下部生物量的情况时有报道[48⁃49]㊂不管是接种Glomusmosseae还是Acaulosporadelicata都增加了翅果油树的根系体积㊁表面积和根系吸收能力,提高了根系酶体系,有利于植物抵抗各种胁迫,对扩大翅果油树植物的分布区具有重要意义[50]㊂除此之外,Yao等人[35]第一次报道了丛枝菌根对不同直径级别根系的分布情况的影响,发现接种G.versiforme显著增加柑橘直径<0.4mm根系比例,减少直径0.4 1.2mm的根系比例㊂之后Wu等人[51]也发现接种AMF后在显著增加Citrustangerine根系总长度㊁总投影面积㊁总表面积和总体积的同时,0 1cm根总长及其在中的比例也得到增加,但根平均直径和1 2cm分级根总长在总根长中所占比例显著减少㊂在侧根及分枝方面,AMF起着巨大作用[47,52⁃53]㊂Schellenbaum等人[54]发现,接种Glomusfasciculatum使得葡萄(Vitisvinifera)根系的一级㊁二级和三级根的分枝分别增加了140%㊁200%和266%㊂在其它植物种类中也发现了类似现象,接种AMF使成年番荔枝根系总数目㊁一级侧根数目和二级侧根数目分别增加了3㊁2和4倍,而且总根㊁不定根㊁一级侧根和二级侧根的长度都有不同程度的增加[55];接种Glomusintraradices虽然没有增加水稻冠根的数量,但是由冠根发育出来的大侧根和细侧根数量都比对照高出三分之一,而且还发现细侧根数量的增加是由于大侧根数量增加引起的,不受接菌影响[36]㊂而且在干旱和水涝条件下,接种AMF分别促进水稻分枝指数增加2.4 4.1和1.7 2.6倍[56]㊂AMF同样促进荔枝[57]㊁柑橘[58]和欧洲桤木[59]等木本植物的根系分枝,但显著减少后者根毛数量㊂此外,在低温[60]㊁水分胁迫[39,61⁃63]㊁盐胁迫[41,64]㊁原油污染[65]的土壤中,AMF对根系构型的改善愈发明显,这促进了植物在逆境条件下的正常生长发育㊂而且研究发现感染立枯病的番茄在接种G.mosseae后,根系总长度和根尖数量增加,这在一定程度上使植株更加抗病[66]㊂另外在组培㊁扦插和嫁接试验中,AMF对植物根系的生长发育起着促进作用,在Williams香蕉(MusaAAA)上,G.versiforme虽然显著地增加组培苗的须根数量,但是须根的平均长度降低,导致整个根系中须根的总长没有变化[67]㊂AMF可以改善一品红扦插时的生根表现,显著促进了不定根的生成[68],也会增加西瓜嫁接苗的根系生物量[69]㊂另外还发现,复合菌种处理的番茄根系总根长和根鲜重均显著高于单一菌株处理[70]㊂干旱下接种内生菌根真菌㊁外生菌根真菌㊁混合接种对滇柏和楸树根系影响不一致,滇柏以外生菌和混合菌接种对根系生物量的效果更显著,而楸树以内生菌的效果最为显著,而且滇柏根系平均直径㊁总长度及表面积呈增加趋势[71]㊂虽然上述研究中报道的都是AMF对根系构型特点改善作用更大,但是其不影响或减少根系长度或侧根数量的报道也有许多,例如接种时湿地植物Bidensfrondosa根系长度和表面积要低于不接种处理,而接种对3㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀4㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀Ecliptaprostrata根系构型影响不大[72]㊂而在多年生黑麦草中,AMF虽然没改变根系生物量,但显著减少根长度,根直径和根数量[73]㊂另外有研究指出当植株所接AMF种类不是其优势菌株时,不会增加根系长度和促进侧根的发生,甚至会比不接菌时的根系长度和侧根数量都要低[74⁃75],其中很大的原因可能是其与植株根系竞争碳素㊂由此可见,AMF对根系构型的影响错综复杂,而这可能是由于不同植物种类㊁不同菌剂种类㊁不同试验条件等造成的,反过来,不同种类植株根系构型不同也会影响对AMF的依赖性㊂2.2㊀根瘤菌根瘤菌是一类广泛分布于土壤中的革兰氏阴性细菌,是与豆科植物共生的重要微生物,它能侵染豆科植物根部或茎部而形成根瘤或茎瘤,然后在根瘤或茎瘤中分化成类菌体,将空气中的氮素固定为植物可吸收利用的氨㊂Hafeez等[76]发现根瘤菌Rhizobiumleguminosarum使得棉花根干重㊁根生物量和根表面积分别增加了248%㊁332%和283%,而且会促进蒺藜状苜蓿的根毛卷曲及增加分枝的程度,进而侧根数量增多[77⁃78],还发现百脉根根瘤菌会促进拟南芥侧根发生和伸长[79],但是也有研究者发现接种根瘤菌对大豆根系长度没有影响,但会增加根表面积和体积[80]㊂不过,目前关于根瘤与根系构型的直接研究并不多见,诸如根瘤在根系上如何分布的以及根瘤的形成对根系构型又会有怎样的促进或抑制作用等问题尚未得到深入探讨㊂2.3㊀PGPRPGPR是栖居于植物根围中的一类土壤细菌,通过诸多方式来促进植株生长,如产生植物激素(生长素和赤霉素等)㊁氮固定㊁溶磷㊁抵抗重金属污染和改善根系构型等,而且可以减少肥料的施用[81⁃82],常见的如假单孢菌属和芽孢杆菌属等㊂通常情况下,PGPR作为生物肥料㊁植物促进和生物防除方面的接种剂,在农业生产起着重要的作用[83]㊂但是关于PGPR对植物根系构型影响的研究并不是很多,但是,在已报道的研究中发现其在改变根系构型方面所起作用也是很重要的㊂大部分的PGPR都增加植株根毛密度和根长度及根生物量,促进根毛从近根尖部位开始形成[84⁃86]㊂Serratiaproteamaculans会增加鹰嘴豆(Cicerarietinum)根长㊁侧根数量和长度以及根生物量[87],接种Azospirillumlipoferum会增加玉米幼苗根表面积㊁根生物量㊁根长和根尖数量,促进根系分枝,但没有改变根平均直径[88],而之前的研究发现,接种Azospirillumbrasilense在增加菜豆根长和根鲜重的同时会减少根直径,而且在菜豆苗生长的初始阶段,细根在长根中所占比例大[89],但是Nosheen等人[81]发现接种PGPR(特别是A.brasilense和Pseudomonasstutzeri)同时显著地增加红花(Carthamustinctorius)根长㊁根面积和根直径㊂GutiERrez-Luna等人[90]在柠檬根际土壤中成功分离出三种促进主根生长和侧根发育的菌株,经鉴定分别为蜡样芽胞杆菌(Bacilluscereus),简单芽孢杆菌(Bacillussimplex)和芽孢杆菌(Bacillussp),均属于PGPR,它们是通过释放挥发性有机化合物来改变根系构型的㊂此外在有AMF或施用化肥时,接种PGPR的效果会更加显著[91]㊂与AMF类似,PGPR也有不影响甚至抑制根系生长的效应,例如,接种Pseudomonastrivialis会使得杂草双雄雀麦(Bromusdiandrus)根系生物量㊁根表面积㊁根体积和根尖数量减少,从而保证硬质小麦(Triticumdurum)的正常生长[92]㊂两种根际促生菌假单胞细菌(Pseudomonasputida)和肠杆菌(Enterobactercloacae)对黄瓜根系生长的影响不明显,这可能与植物种类有关,或者是由于植物对根际促生菌的选择差异性㊂2.4㊀其他根际微生物除了AMF㊁根瘤菌和PGPR外,其它根际微生物如外生菌根真菌等对植物根系构型也有一定的影响㊂不同于AMF,外生菌根共生体只存在于5%以下陆生植物种类中,但是许多生长于温带森林的松科和山毛榉科以及热带亚热带地区的桃金娘科和龙脑香科都以外生菌根为主[93],主要功能是扩大根系对水分和养分的吸收面积,分泌多种生物酶,提高植物根系对氮㊁磷和钾等养分的吸收,产生生物素㊁生长素等促进植物生长,提高植物的抗逆性和抗病性,以及活化土壤[94⁃95]㊂分别接种黄色须腹菌(Rhizopogenluteous)㊁彩色豆马勃(Pisolithustinctorius)和美味牛肝菌(Boletusedulis)3种外生菌根真菌后,黑松(Pinusthunbergii)幼苗许多根系参数均比对照有不同程度的增加,侧根与主根之间夹角从大到小依次为R.luteous㊁B.㊁P.tinctorius㊁对照,R.luteous有效扩大了根系吸收的空间范围[96]㊂另外,P.tinctorius和Burkholderiaglathei对滇柏[71]和松树[97]的根系效应也与上述相似㊂此外对分别来自正常森林和火烧森林的假山毛榉(Nothofagusalpina)幼苗根系比较发现,外生菌根真菌(Descoleaantarctica)促使其根系系统更加深入土壤,且侧根及细根主要分布在下层土壤,以避免上层较低的相对湿度[98]㊂另外干旱胁迫下,外生菌根真菌虽然没有增加幼年欧洲山毛榉(Fagussylvatica)植株生物量,但显著增加了根尖数量和细根形成,特别是0.2 0.8mm级别根[99]㊂除了外生菌根真菌外,弗兰克氏菌是一类能与多种非豆科木本双子叶植物共生固氮的放线菌,它也显著促进欧洲桤木(Alnusglutinosa)幼苗根系分枝,但会显著减少根毛数量[59]㊂而且有意思的是,Kawaguchi等人[100]用从绿色木霉菌(Trichodermaviride)分离出来的木聚糖酶处理烟草根系发现主根细胞分裂和细胞伸长受到抑制,但是根系维管束和根毛的形成并不受任何影响,而且若移除该木聚糖酶,根系构型会重新改变,说3㊀;(2)改㊂3.1㊀众所周知㊁不定根构成的直根系;[101],另外,木本植物与草本植物的根系也明显不同㊂除去物种之间的差异性,侧根是影响植物根系构型最主要的内在因子,其在根系响应土壤环境条件方面起着至关重要的作用,因此,环境因子往往是通过影响侧根的发生来影响根系构型[15,102⁃103]㊂高等植物侧根的形成主要包括四个关键阶段[101]:(1)中柱鞘建成细胞受到刺激发生分化;(2)中柱鞘细胞的极性不对称分裂产生侧根原基;(3)侧根原基细胞膨大突破主根最处层;(4)侧根分生组织的活化与侧根生长㊂早在上世纪90年代,Taylor和Scheuring[104]就发现番茄根系的RSI⁃1基因在侧根原基发生的早期就被启动,一直持续到侧根刚刚突出主根,认为RSI⁃1可以作为侧根发生过程中的分子标记;另外在拟南芥的根系还发现LRP1基因在侧根和不定根的原基发生的早期启动,而在侧根突出主根之前关闭,也可作为侧根发生的分子标记[105]㊂不过到目前为止还没确定哪个标记基因可以用于研究侧根发生的关键阶段㊂根系活力也是影响根系构型的另一重要因素㊂在Kawaguchi等人[100]用从T.viride分离出来的木聚糖酶处理烟草根系的研究中发现主根细胞分裂和细胞伸长受到抑制可能是根系中编码细胞周期素依赖性激酶5㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀6㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀(cyclin-dependentkinases,CDK)的基因表达受阻导致根分生组织活力的降低㊂在辣椒中接种三种AMF菌剂(Glomusetunicatum,G.mosseae和G.versiforme)都显著增加了根系活力以及根系抗氧化酶活性,一级侧根数㊁根表面积㊁根体积和根质量都比对照高出许多,其中G.mosseae的效果最佳[106]㊂根生长角度对根系构型的影响同样不可忽略,Uga等人[107]在水稻上发现DRO1是控制深根比率的一个主要数量性状位点,而且干旱条件下DRO1会增大根生长角度,从而促进深根系统的形成,提高水稻产量㊂3.2㊀激素调控植物激素是调控根发育和构型的主要因素㊂研究发现生长素运输途径对根系结构的调控主要表现在以下方面:(1)参与主根的生长;(2)参与侧根的形成与伸长,具体为参与侧根原基组织的生长,使侧根从母根上突出;(3)调控盐胁迫条件下根系的发育过程,从而使根系的生长发育适应盐胁迫㊂其中,最重要的,植物生长素是侧根发生和发育的重要信号[15]㊂添加外源生长素能够增加侧根的数目,抑制生长素的运输则减少侧根的数目[108],而且还发现生长素的峰值出现在侧根的发生位置以及侧根突出和伸长阶段[101]㊂AMF会促使根系合成生长素增加,并且生长素信号是早期丛枝菌根形成所必需的[109],因此接种AMF改变玉米根系构型可能是由于其增加了IBA所导致[110],且在番茄中也发现了类似的现象[111]㊂一些PGPR可以释放IAA改变植株生长素含量,进而促进植株形成一个细长且高度分枝的根系系统[112]㊂同样,在Jiang等人[113]的研究中发现,以细菌为生的线虫类会促进土壤中产生IAA的细菌生长和增加土壤中氮营养和IAA,进而促使拟南芥形成高度分枝根系系统,而且根系更长更细㊂另一方面,P.trivialis会通过产生高浓度的IAA来抑制杂草根系的生长,从而真正意义上实现生物防控[92]㊂分子水平上,侧根发生最重要的一种生长素蛋白是SLR1/IAA14,slr1突变体会钝化IAA14而不能形成侧根[114]㊂KRP1和KRP2是编码细胞周期蛋白激酶(CDK)的基因,Himanen等人[115]研究发现,KRP1和KRP2的表达可以抑制细胞周期从G1期向S期转变;KRP2的超表达明显减少侧根的数目;生长素NAA则抑制KRP1和KRP2的表达,由此可见,生长素通过调控细胞分裂周期来影响侧根的发生㊂LAX(likeAUX1)是介导生长素从胞外向胞内转移的载体蛋白,而载体突变体lax3的侧根数目减少,表明生长素的胞内胞外转移也决定着侧根的发育[116]㊂此外,细胞分裂素是另一个重要的影响侧根发育的植物激素㊂由于在许多生理过程中拮抗生长素的作用,细胞分裂素能够抑制许多植物的侧根发育[7,117],报道指出,细胞分裂素含量降低的拟南芥突变体的侧根数目增加[118],添加外源细胞分裂素则减少侧根的数目[119]㊂其他对侧根发育产生影响激素包括乙烯[120]㊁赤霉素[121]㊁油菜素内酯[122]㊁脱落酸[123⁃124]㊁水杨酸[125]㊁多胺[51]以及越来越引起大家关注的独脚金内脂[126]等,而且细胞分裂素和脱落酸反向调节侧根发生,而生长素和油菜素内酯对侧根发生起着促进作用[127]㊂AMF侵染植物根系形成菌根共生体过程中能诱导植物合成多种信号物质,如水杨酸㊁茉莉酸㊁类黄酮㊁一氧化氮和过氧化氢等[128],从而一定程度上调控根系的发育;拥有ACC脱氨酶的根际细菌会通过减少乙烯的含量促进根系生长来调控根系构型[87],此外,PGPR也可通过产生生长素或细胞分裂素来调控根系构型和促进茎生长[129]㊂3.3㊀矿质养分调控研究表明,不论是AMF,还是根瘤菌或PGPR都可以改善植物对养分的吸收[130],从而改变植物根系构型,例如B.glathei促进松树根系改善主要是通过加强矿物风化来改善植株营养状况实现的[97];还有,与对照处理相比,滇柏的接种处理和楸树的内生菌根真菌和混合菌根真菌处理对N和P的吸收都显著增加,进而增加根系生物量[71]㊂AMF与根系共生后,能显著促进根系对土壤矿质营养元素特别是P的吸收,甚至在土壤温度降低植物生长和P吸收受抑的情况下,AMF仍能增加植物体内P含量[131],但是如果土壤中含P丰富,丛枝菌根对植株的贡献会大大折扣,而且也相应地发现AMF改变根系构型通常是在低磷条件下[132],因此低磷促进侧根的形成,尤其是浅层根系的生长[133]㊂进一步研究发现,接种AMF玉米根中磷酸盐转运体基因ZEAma:Pht1;6(丛枝菌根诱导)表达水平为不接菌的26 135倍,提高了茎中磷含量,进而促进了植株生长;在增施少量磷肥时,会显著增加该基因的表达,但是不影响ZEAma:Pht1;3(磷饥饿诱导)的表达[134]㊂植株高氮水平抑制侧根的形成和生长,PGPR菌株Phyllobacteriumsp会改善高外源硝酸根离子对拟南芥侧根生长的抑制作用[135]㊂不过局部高氮会促进侧根的形成和生长[136],在低营养条件下,AMF促进了角豆树根系对无机氮的吸收,且使该根系具有高浓度的氮素[44]㊂Boukcim等[137]发现AMF在氮利用率高的田间挪威云杉中会显著增加根系侧根数量,减少所有侧根的长度,而在氮利用率低时会显著减少侧根数量,只增加三级侧根数量㊂中度干旱胁迫和光照下,外生菌根真菌会促进幼年F.sylvatica根系对氮素的吸收,从而促进根系生长[99]㊂不过有意思的是,在营养丰富的土壤中,温带森林菌根树更倾向于通过增殖根系来汲取更多养分[138],说明AMF在该环境条件下对根系构型的影响可能远小于在土壤营养贫瘠时㊂3.4㊀碳素调控根系的生长和发育依赖植物形成的光合碳水化合物,碳水化合物可直接作为代谢底物或生长调节物质影响细胞的分裂,导致根系构型发生变化[139]㊂植物地上部分与地下部在利用碳水化合物方面存在着竞争关系,而在共生微生物的存在下,地上部分的蔗糖经长距离运输向根系的分配比率提高,例如 菌根碳库 的存在会促使糖向菌根化细胞中转移[104,140],因此,根际微生物可能通过调控植株碳素营养的运输来改变根系构型㊂接种AMF会显著增加枳壳幼苗叶片葡萄糖和蔗糖含量,但减少根葡萄糖和蔗糖含量[48],不过在白三叶草中,却是增加了根系的蔗糖含量[141],可能是因为不同菌剂种类对木本植株和草本植株的作用模式不同所致,但两个研究都表明接菌增加了植株根系总长度㊁根表面积以及总体积㊂另一方面,在春夏季,许多植物叶片增多且光合作用活跃,这使得大量的碳水化合物被运输至地下部,促进细根的形成以维持AMF的生存[142]㊂另外,接种AMF时,一品红插条的叶片糖含量增加,且碳水化合物动力学开始变化,从而根系生长得到促进[68]㊂本文之前所描述的AMF减少根系长度及侧根数量的原因可能是其与宿主植株竞争碳水化合物所致㊂除了AMF,PGPR和根瘤菌通常都能增加根系生物量[143⁃145],说明它们也参与到碳水化合物的运输过程中,最终导致根系构型发生改变,不过目前关于根际微生物调控碳水化合物组分及分配及其对根系构型影响的研究鲜见报道,特别是后两种微生物㊂4㊀展望虽然土壤根际微生物影响不同植物根系构型的研究日益增多,相应地也提出了一些调控机制,但是,不同微生物改变根系构型的差异性及最主要的调控途径还需要更深层次的理解㊂由于根系是生长于土壤中,不能直接观察,因此选择合适的试验方案至关重要,需要不断地优化,以便更直观地了解根际微生物对植株根系构型的调控作用㊂对根系构型的研究,主要是为了仿真出根系在不同的生长条件下的分布情况,从而得出更加有利于生产和实验的品种或者根系结构,可以更好的利用土壤的营养,提高产量和品质㊂就目前研究方向而言,以下几方面可能值得重视和深入探讨:(1)AMF与其它根际微生物相互作用(协同或竞争)对植株根系构型有哪些影响?这些影响的作用机制是什么?这些问题尚不明确,需要深入研究㊂(2)根际微生物的侵染或定殖需要消耗根系的碳素(光合产物),而碳素也是根系构建的物质基础,那么,根际微生物对碳素的竞争是如何调控根系构型的?在这一调控途径过程中,何种碳素(葡萄糖㊁果糖或蔗糖)起着关键作用?(3)根系构型与作物(如菜豆)的生产力密切相关,在农业生产中如何有效利用根际微生物来改善根系构型,使植株更加适应周围环境变化,从而实现高产优质㊂总之,根际微生物对植物根系构型的调控意义深远,值得进行更多的深入研究㊂参考文献(References):[1]㊀BaileyPHJ,CurreyJD,FitterAH.TheroleofrootsystemarchitectureandroothairsinpromotinganchorageagainstuprootingforcesinAlliumcepaandrootmutantsofArabidopsisthaliana.JournalofExperimentalBotany,2002,53(367):333⁃340.[2]㊀LynchJ.Rootarchitectureandplantproductivity.PlantPhysiology,1995,109(1):7⁃13.[3]㊀屈志强,刘连友,吕艳丽.沙生植物构型及其与抗风蚀能力关系研究综述.生态学杂志,2011,30(2):357⁃362.7㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀。
植物根际微生物研究进展
植物根际微生物研究进展作者:高鹤来源:《农业科技与装备》2021年第01期摘要:根际微生物是植物根系环境中特有的微生物群。
分析植物类型、土壤类型、栽培管理制度等因素对根际微生物群落多样性和群落结构的影响,阐述根际微生物对植物生长发育的积极作用,以期为进一步研究与利用根际微生物来促进作物优质高产提供参考。
关键词:植物;根际微生物;影响因素中图分类号:S154.3 文献标识码:A 文章编号:1674-1161(2021)01-0024-03根际微生物是指在植物根系生长发育过程中,根际逐渐形成的其特有的微生物群落。
根际微生物的活动及代谢产物均能直接或间接影响根系对营养物质的吸收、传递以及生长发育,同时在根际土壤物质转化中发挥重要作用。
因此,根际土壤在物理、化学及生物学特性上均不同于原土体,它是植物、土壤、微生物及环境条件相互作用的场所和特殊的微生态系统,是物质进入根系参与物质循环的重要门户,是植物产生化感物质的媒介,更是功能性微生物的主要活动场所。
在根际,微生物与植物根系相互影响、相互制约,形成了复杂的三边关系。
植物类型、土壤类型、有机物料的施入及化学药剂的使用等因素都会对根际微生物群落结构产生影响,但对根际微生物起决定性影响的因素与土壤自身理化性质和植物生长有直接关系。
1 植物对根际微生物的影响植物特别是其根系是根际微生物生长与繁殖的主要营养来源,对根际微生物群落多样性及群落结构具有重要影响。
研究根际土壤微生物群落的核心问题就是研究植物与土壤微生物之间的关系。
根际微生物群落结构的变化不仅表现为根际土壤微生物数量明显高于非根际土壤,在结构和功能上也与非根际土壤有较大差异。
根系脱落物、分泌物等物质的存在是维持根际微生物数量和活性的主要因素。
随着植物生长年份的增加,大量不同的根际沉积物累积,为以此类物质为能源物质的根际微生物提供了充足的养分。
植物类型的差异决定着根际微生物群落结构的差异。
朱斌等人对初夏季节宝华山自然保护区中处于不同演替阶段的次生裸地、纯盐肤木林及青冈—栓皮栎混交林下的土壤微生物进行调查发现,纯盐肤木林内细菌最多,混交林次之,次生裸地最少。
植物根际微生物学研究进展
植物根际微生物学研究进展植物根际微生物学是生态学和微生物学的交叉领域,涉及植物根际内微生物的组成、多样性、协作和交互关系等问题。
随着生物技术的发展,对植物根际微生物的研究逐渐深入,相关领域的学术成果不断涌现,这里简单介绍一下相关的研究进展。
1. 植物根际微生物的种类及其功能在植物根际内,微生物的种类丰富多彩,可以大致分为细菌和真菌两类。
细菌是植物根际内最常见的微生物,包括固氮菌、假单胞菌、赤霉素生产细菌等;而真菌则以担子菌和丝孢菌为代表。
这些微生物可以通过多种途径与植物进行交互,包括产生激素、分泌代谢物质、固氮和磷酸化等作用。
在植物的生长和发展中,微生物具有不可忽视的作用。
例如,某些细菌可以通过合成赤霉素等物质来促进植物的生长,而一些真菌则可以在保持植物健康的同时,调控土壤中营养物质的循环和利用。
另外,固氮菌和磷酸化菌则可以帮助植物摄取氮和磷等营养元素,为植物的生长提供必要的营养物质。
2. 植物根际微生物多样性的研究由于植物根际内微生物的种类繁多,其多样性和分布特征则成为了研究热点之一。
通过高通量测序技术和各种分子生物学方法,已经可以快速、准确地分析植物根际微生物多样性,并对其结构和功能进行研究。
在多样性的研究中,有许多不同的参数可以被评估和比较。
例如,研究人员可以比较不同环境下的微生物多样性,分析植物和土壤的影响因素,以及各种微生物的作用与功能等。
除此之外,新的研究还在不断创造新的评估和比较多样性的方法和指标,以更好地理解植物根际微生物的多样性。
3. 基因组学和代谢组学的应用随着生物技术的发展,基因组学和代谢组学在研究植物根际微生物中的应用不断发展。
通过基因测序技术,可以描述不同菌株的基因组组成和功能,了解不同菌株之间的遗传关系和演化路径。
另外,代谢组学可以分析不同植物根际微生物代谢产物的变化规律,探寻植物根际微生物的生物学功能。
这些技术的不断发展,将有助于更深入地了解植物根际微生物的组成和功能,以及它们与植物之间的相互作用。
植物根际微生物生态系统的调控机制探讨
植物根际微生物生态系统的调控机制探讨植物根际微生物是一组与植物生长发育密切相关的生物群落,包括细菌、真菌、放线菌、病毒等多种微生物,它们与植物根系共同构成了植物根际微生物生态系统。
这一生态系统的构成和功能对植物生长发育具有至关重要的影响,因此,对植物根际微生物生态系统调控机制的研究,对于实现高效、绿色、可持续的农业生产,开发和利用植物资源具有重要意义。
一、根际微生物生态系统的结构与功能植物根际微生物生态系统受多种因素影响,其结构和功能也因而具有一定的差异。
总体而言,该生态系统具有以下几个特点:1. 多样性:植物根际微生物种类繁多、结构复杂,包括细菌、真菌、放线菌、病毒等多种微生物,且尚有未知微生物存在。
2. 关联性:植物根系和根际微生物构成了复杂的关联网络,植物可利用根际微生物代谢产物满足其营养需求,而根际微生物又通过利用植物产生的有机物和协同作用促进植物生长发育。
3. 功能性:植物根际微生物对植物生长发育起到了多种正面作用,包括增加植物养分吸收、促进植物生长发育、提高植物免疫力、减轻环境污染等。
二、植物根际微生物生态系统的调控机制植物根际微生物生态系统结构和功能的形成及变化,受多种因素调控,包括植物和根际微生物自身因素、生境因素和环境因素等。
1. 植物和根际微生物自身因素植物激素和根分泌物对植物根际微生物生态系统具有重要影响,比如,根分泌物中的卟啉类和黄酮类物质可促进根际微生物的生长,从而调节微生物的生态系统结构;而一些根分泌物中的物质,如氨基酸、激素、糖类等,则可影响部分微生物的代谢和生理功能,从而影响微生物与植物的互作。
2. 生境因素生境因素是指生物生长发育所处的环境条件,包括土壤性质、土壤pH值、水分、温度等。
这些生境因素对植物和根际微生物的生长发育、代谢活动和生态系统的稳定性都具有影响。
3. 环境因素环境因素是指外界环境的影响,包括气象环境、人为干扰等。
例如,气候干旱、钾镁素缺乏等逆境条件会影响根际微生物的生态系统结构和功能;而农业生产中的化肥、农药等人工干扰则可能引起植物和根际微生物的损失或生态系统紊乱。
基于微流控的植物根部-微生物相互作用研究进展
基于微流控的植物根部-微生物相互作用研究进展陈登博1,付玉明1,2∗,冯佳界1,2(1.北京航空航天大学生物与医学工程学院,北京100191;2.北京航空航天大学空天生物技术与医学工程国际联合研究中心,北京100191)摘要:基于微流控技术研究空间环境下植物的根-菌互作,有利于揭示植物-微生物稳态对空间环境效应的响应与适应机制㊂介绍了微流控技术中关于根-菌互作的成像技术,重点阐述了微流控技术针对不同栽培基质的成像以及对根际化学环境的操控/采样功能的优势,分析了芯片技术针对不同根系形态需求的研究,并对微流控技术在空间环境根-菌互作研究中的应用进行展望㊂关键词:微流控芯片;植物-微生物相互作用;根部生理学;空间生命保障中图分类号:Q948.12㊀文献标识码:A㊀文章编号:1674-5825(2022)06-0845-08收稿日期:2022-04-24;修回日期:2022-09-19基金项目:国家自然科学基金(31870852)第一作者:陈登博,男,硕士研究生,研究方向为空间生命保障技术与纳米生物技术㊂E-mail:chendengbo@∗通讯作者:付玉明,男,博士,副教授,研究方向为航天居室环境-微生物组-人体健康轴研究㊂E-mail:fuyuming@Research Progress of Microfluidics-based Plant-Microbe InteractionCHEN Dengbo 1,FU Yuming1,2∗,FENG Jiajie 1,2(1.School of Biological Science and Medical Engineering,Beihang University,Beijing 100191,China;2.International Joint Research Center of Aerospace Biotechnology &Medical Engineering,Beihang University,Beijing 100191,China)Abstract :The study of plant-microbe interactions in space environment based on microfluidic tech-nology is conducive to revealing the response and adaptation mechanism of plant-microbe homeostasis to the space environment.In this paper,the imaging technology of root-bacteria interaction in mi-crofluidic technology was introduced,the advantages of microfluidic technology for imaging different cultivation substrates and manipulating /sampling the rhizosphere chemical environment were dis-cussed,and the researches of microfluidic technology for different root morphological requirements were analyzed.In addition,the application of microfluidic technology in the study of root-bacteria interaction in space environment was prospected.Key words :microfluidic chip;plant-microbe interaction;root physiology;space life support1㊀引言㊀㊀植物栽培是地面和受控生态生命保障系统的重要组成部分㊂植物的根系有固定植株㊁吸收水分和养分等重要功能,根际微生物在植物根表或近根部位生长繁殖,是植物微生物组的重要组成部分㊂植物脱落物或分泌物可到达根际微区,在根系周围形成丰富而复杂的化学环境[1],是植物在长期进化过程中形成的一种适应外界环境变化的重要机制[2]㊂这些植物脱落物或分泌物为微生物提供营养,以此构建和调节根际微生物菌群[3];另一方面,根际微生物也会深度参与调解植物生理活动[4-5]㊂因此,植物与微生物的根际相互作用(简称根-菌互作)是植物学和微生物学第28卷㊀第6期2022年㊀12月㊀㊀㊀㊀㊀㊀㊀㊀㊀载㊀人㊀航㊀天Manned Spaceflight㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.28㊀No.6Dec.2022研究的热点问题㊂传统的根-菌互作研究所用的栽培方式难以实时营造对根际研究所需化学环境,且由于需要将植物根部取出进行采样和成像观察,使得采样和成像不具有实时性(时间分辨率较低),难以复现动态的互作过程㊂并且根毛可增加根表面积,为根部探索更大空间,在根生理学研究中具有重要地位,但却因为尺度过小而难以采样和成像等㊂因此,根-菌相互作用的实时化㊁可视化和操控性研究是一项新的挑战㊂近年来,控制小体积流体的微流控芯片技术(或称为芯片实验室)为生物学研究的实时化和可视化提供了新方法,在根-菌互作研究中展现出巨大潜力㊂微流控技术在根-菌互作研究中具有三大优势:①透明的芯片可实现根-菌互作的实时成像;②可实现对根际环境的多次采样;③可对根际化学环境实现准确操控,以研究化学环境对互作的影响㊂目前最广泛采用的芯片构建流程及材料为:按照所需的芯片设计图纸,以光刻机制作与其互补的光刻胶材质或3D打印制作塑料材质的模板(Template/mold),以聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)浇注到模板上成型后剥离,再以等离子体氧化PDMS的需封装面(即有芯片通道的面)以活化其表面基团,最后放置玻璃片至封装面上键合以完成封装[6]㊂相对于二氧化硅㊁热固性塑料㊁热塑性塑料等其他可选的芯片材质,PDMS的价格低廉㊁偏软质㊁制作模板后可快速批量浇注制取等优势,使其成为主流芯片制作流程中常用材料[6]㊂等离子体氧化封装方式是不可逆的,即封装后很难将PDMS从玻璃片上拆卸;若实验有拆卸需求,可考虑可逆的封装方式,直接在室温下依赖PDMS和玻璃片间的范德华力封装,但这样封装不严密,在外力和内压下容易因意外拆卸开[7]㊂高等植物可以再生氧气㊁食物和水,是生物再生生命保障系统(Bioregenerative Life Support Sys-tem,BLSS)的功能核心[8]㊂而空间特殊环境(微重力㊁辐射㊁磁场㊁密闭㊁微生物多样性受限等)对根-菌互作的影响尚不明晰,前期搭载实验表明植物对微生物病害的敏感性可能增加[9]㊂而微流控技术体积小㊁性价比高,对于空间研究也独具优势㊂本文综述了基于微流控的植物根部发育和根-菌互作的研究,阐述微流控芯片针对不同栽培基质的成像及对根际化学环境的操控/采样功能的优势,分析了芯片针对不同根系形态需求的研究,并对微流控技术在空间环境根-菌互作研究中的重要作用进行展望㊂2㊀根-菌互作芯片的成像技术㊀㊀主流微流控芯片的材质(PDMS㊁玻璃片等)透光性好,对根-菌互作的成像观察独具优势㊂若能结合荧光等生物发光技术和一些高级成像技术,将可以更全面地还原根-菌互作过程㊂图1㊀针对根-菌互作的芯片Fig.1㊀Chip for root bacteria interaction Massalha等[10-11]构建的微流控系统TRIS (Tracking Root Interactions System)是一个研究根-菌互作的典型装置,如图1(a)所示,体现了生物荧光技术在芯片根-菌互作成像中的出色效果㊂TRIS系统采用PDMS-玻璃片材质,在灌有固体植物培养基的移液器吸头中令拟南芥发苗,在根长出吸头前移栽至芯片通道入口令其向芯片中生长,并使用注射泵将液体培养基和所感兴趣的根际菌(枯草芽孢杆菌作为植物有益菌,大肠杆菌作为有害菌)注射进芯片通道内,这些方法在根-菌互作的芯片研究中被普遍使用㊂为了实时显微观察,该装置直接安装在显微镜上㊂在无菌芯片中接种了表达红色荧光蛋白的枯草芽孢杆菌和表达绿色荧光蛋白的大肠杆菌,使用激光扫描共焦显微镜分别荧光成像并叠加图像,发现在接种后12h当中,枯草芽孢杆菌向根伸长区聚集并定殖,大肠杆菌却被排除在根表面之外,通过图像观察菌群行为动态,可推测出有益菌对植物针对病648载人航天第28卷原体的保护机制㊂除使用荧光标记的细菌之外,该研究还使用了仅在6个特定根区(皮层㊁脉管系统㊁根毛等)表达绿色荧光蛋白的6种荧光拟南芥株系,并与红色荧光蛋白的枯草芽孢杆菌图像叠加,观察到了杆菌接种后6h内向根伸长区的明显趋化行为,实现荧光标记的植物和细菌共同成像㊂在可见光(包括荧光)手段之外,电子显微镜和原子力显微镜等先进成像技术的分辨率更高,可在根-菌互作研究中作为更高级的㊁细胞器水平的成像手段㊂比如根毛就是一种微米级的根部结构,可以应用这两种高级成像手段㊂与光学显微镜不同,这两者都要求观察面暴露在外,而根却被封装在芯片中㊂由于等离子体氧化法的封装是不可逆的,很难打开封装以将根和根际区暴露在外㊂针对这一需求,Aufrecht等[12]设计了一种可拆卸的㊁针对根毛研究的芯片,PDMS并未化学键合到玻璃片上,而只是在高压灭菌时形成了较弱的物理键,且用琼脂固化围住PDMS以进一步固定及保湿,如图1(b)所示㊂其可在光学成像完成后拆卸开以供电镜等成像㊂针对根毛研究的目的,芯片被设计成了两层(Two-layer)式的阶梯状腔室,较高的腔室(200μm)容纳主根㊁两侧较低的腔室(20μm)容纳根毛,实测证明根毛生长时可自然粘附在PDMS面上,在拆卸过程中可保持在原位,利于后续的电子显微镜/原子力显微镜对根毛的成像研究㊂研究人员进一步使用该芯片跟踪了2种植物益生菌在拟南芥发育早期根部定殖情况[13],结果发现,无论细菌种类和接种浓度如何, 4天后细菌细胞在根表面的覆盖面积均为1%~ 2%,且根的发育情况很大程度上取决于细菌接种的种类和浓度㊂3㊀芯片技术对不透明栽培基质的成像优势㊀㊀芯片通道中装载液体基质时,其在光学上透明的性质有助于成像,但液体并不是自然界或人工栽培的主流基质,自然环境中的根-菌互作大多发生在土壤等固体基质中㊂若将土壤引入芯片,以解决土壤颗粒不透明导致的可见光成像困难等问题,生物荧光和某些显微光谱成像技术或可成为其研究手段㊂Mafla-Endara等[14]设计了土壤芯片,将土壤置于芯片通道入口处,以可见光观察土壤及微生物扩散进入通道的过程,以揭示土壤生态系统的形成过程㊂研究发现,土壤液体和真菌菌丝是土壤物质扩散的主要驱动力,土壤颗粒和微生物在充满液体的通道中扩散比在空气中快得多,且真菌菌丝可携带细菌穿过气体障碍而扩散定殖㊂芯片成像还可用于量化土壤颗粒的运动模式,对所得显微视频中2~6μm土壤颗粒使用自动追踪算法制作速度-位置热图,发现土壤颗粒被芯片内部的流水拖拽形成蜿蜒的运动模式,也使细菌很快地移动㊂虽未引入植物,该研究使用的土壤芯片已展现了对根-菌互作的可见光成像研究潜力㊂图2㊀EcoFAbs的应用[15]Fig.2㊀The applications of EcoFABs[15]也有研究尝试让植物根进入装载有固体基质的芯片,以研究基质中的根-菌互作㊂Gao等[15]描述了EcoFAB(Ecosystem Fabrication)芯片制作方法,可向通道内装载沙子或土壤作为基质,以期在更接近自然条件的微环境中研究根-菌互作,如图2所示㊂观察发现,虽然在亮场(可见光)下,沙子和土壤的不透明性质让埋在其中的根系和微生物不可见,但在荧光显微镜下,荧光标记的根际益生菌Pseudomonas simea在土中清晰可见,展现了荧748第6期㊀㊀㊀㊀陈登博,等.基于微流控的植物根部-微生物相互作用研究进展光技术克服土壤不透明性成像的潜力㊂这种益生菌在沙子中集中于植物根尖,而在土壤中集中于芯片开口处㊂研究表明沙子的贫营养迫使益生菌定殖于根尖以摄取分泌物,而土壤的富营养使芯片开口处的氧气成为益生菌的首要需求㊂值得注意的是,EcoFAB的实验流程认为可使用镊子将裸露的植物幼苗直接从发苗的固体培养基上移栽至芯片的孔道内[15];而几乎所有其他芯片-植物的结合研究都选择使用内有固体培养基的移液器吸头作为发苗载体,并模块化地整体移栽至芯片孔道内[10,13,16],以防止移栽过程对根的伤害㊂使用移液器的成活率明显高于使用镊子的移栽,虽然使用镊子的做法更接近自然条件,但对实验操作要求较高,很难不伤害根系㊂至于直接在灌注培养基的芯片中发苗的方法[17],由于植物的发芽率并非100%等原因,失败率相对更高㊂针对土壤颗粒对可见光的不透明性,Puce-taite等[18]推荐对土壤芯片使用可见光光谱之外的㊁先进的显微光谱成像技术,以克服土壤的不透明性,利于在微观尺度监测土壤微生物和相关的生物地球化学过程㊂这些非可见光的显微光谱成像技术包括红外吸收㊁拉曼散射和基于同步辐射的X射线显微光谱技术等,有时需要在土壤中加入稳定同位素或纳米贵金属粒子等辅助成像定位,在微生物鉴定㊁代谢物/污染物的定量/定位等方面各有优势,也可运用于基于固体基质芯片的根-菌互作研究中㊂4㊀芯片技术对根际化学环境的操控/采样功能优势㊀㊀利用微流控亦可在时空上快速操控/监测根周围的化学环境,研究根部对生物或非生物因素的动态响应,例如一系列以RootChip命名的芯片设计[19],如图3所示㊂最初Grossmann等[19]开发的RootChip被用于根对化学环境的响应研究,并以根内的葡萄糖荧光传感器开展荧光成像,成功发现细胞内糖水平的改变主要发生在灌注了葡萄糖的根尖㊂对于使用拟南芥的研究,RootChip可在几厘米内(<10cm)部署多个平行通道,以一次性开展多个植株的重复性实验㊂Fendrych等[20]采用竖直放置的vRootChip(v意为vertical,竖直以不影响根向地性)研究根部生长的基因通路,观察拟南芥根生长情况数天,发现无生长素存在时拟南芥的根生长速度会在30s内迅速下降;补充少量生长素后,根生长速度又会在2min内恢复;并通过向芯片中根际环境注入cvxIAA㊁ccvTIR1等人工配体,最终确认了以TIR1/AF-BAux/IAA共受体复合物为基础的一个调节根生长的非转录分支[20]㊂Guichard等[21]开发了根生长通道更长的RootChip-8S微流控装置,Denninger 等[22]用其跟踪观察了与根毛形成相关的细胞极化过程机理,发现基因GEF3在细胞极化过程中有作为细胞膜标志物的作用㊂图3㊀安装8个植物的RootChip[19]Fig.3㊀Image of a RootChip with eight mounted live plants[19]一些芯片设计甚至可令同一植株的根部的不同部位分别处于不同化学环境中,以在完全排除个体差异因素的前提下,直观对比不同化学环境对根双侧的影响或对特定根段的影响㊂面向根生理学或环境异质性研究,研究人员通常使用双流或多流汇总的方式,即多种液体从多个入口汇总到同一条芯片通道中,来营造分界式共存的液体化学环境㊂对于分根段施加不同的化学环境,Meier 等[23]在2010年开发了可对拟南芥施加多层流化学刺激的芯片,实际使用生长素类似物2,4-D和生长素抑制剂NPA,层流的方向与根垂直,以验证生长素和抑制剂对指定根段的影响㊂研究设置了3个进液口以达成3层的层流,以控制流量的手段成功制造了厚度10μm(约1个根细胞长度)的2,4-D层,这一厚度是被掺杂在2,4-D中的荧光微球所显示㊂因为使用了生长素调节剂偶联荧光蛋白的拟南芥株系,采用荧光显微镜观察到了2,4-D在短短几分钟后令10μm长的根段长出了848载人航天第28卷根毛,表明了生长素影响可在单个根细胞尺度上发生,也证明了微流控研究在很小尺度(~10μm)上的化学刺激对根影响的能力㊂值得一提的是,由于层流的方向与根垂直,验证了大/小的流量中根的生长没有显著区别,从而排除了剪切力(~10dyne/cm2)可能造成的额外影响㊂对于双侧施加不同的化学环境,Stanley等[16]设计了双流RootChip(Dual-flow-RootChip),令2种液体平行于根轴同时进入通道,形成不对称的化学环境,也描述了详细的芯片实验步骤[24]㊂研究分别采用NaCl㊁磷酸盐和聚乙二醇在双流Ro-otChip中模拟干旱等胁迫形式,在根双侧不对称处理,研究根毛生长情况,证明根在生理和转录水平上具有局部适应环境中异质条件的能力,也证明双流芯片方法有助于还原根与环境相互作用的决策过程[16]㊂研究表明,每个根毛细胞可以自主地对环境做出响应[16,23]㊂微流控芯片的采样功能有较大潜力㊂芯片的流出液是其内部环境的重要样品,通过收集芯片的流出液,即可完成植物根际微生物和根系分泌物的采集,从而进行根际微生物组与代谢组分析㊂但实际开展了采样并使用组学手段分析的研究并不多㊂其原因是关注复杂微生物群落研究较少,而对有限个菌株的行为,使用荧光标记等技术即可揭示,如Massalha等[10]和Aufrecht等[13]的研究;另外对于根际研究,很多根际菌定殖在根部表面甚至内部,难以随流出液流出㊂5㊀芯片技术对根系形态等特殊需求的优势㊀㊀植物根系具有多种形状和尺寸,可为之相应设计适合的微流控通道和腔体,以让植株正常生长或方便成像㊂为研究根系较粗的植物,Khan 等[25]使用3D打印的模具制备了腔体高度10mm 的PDMS材质芯片,如图4(a)所示,用于研究二穗短柄草(Brachypodium distachyon,根系直径1~ 3mm)的根细胞和分析渗透胁迫下的基因表达,发现了基因BdDi19在幼苗短期渗透胁迫期间有表达㊂此外,针对须根系统研究,相对于传统的单条直道的芯片设计,Chai等[26]采用多室设计的微流控芯片,如图4(b)所示,令水稻的分枝根生长到一组径向的花瓣形室中,用以研究渗透胁迫图4㊀应用于不同植物的芯片Fig.4㊀Chips for different plants (模拟干旱环境)对根系发育的影响,发现随着聚乙二醇(PEG6000,用于营造渗透胁迫)浓度的增加,根的生长变慢,根毛的数量和长度增加,根尖边缘细胞的发育和聚集增多㊂为了方便显微观察,微流控芯片的尺寸普遍设计得较小,并且使用拟南芥等小型草本物种,这让根-菌互作的长期化观察以及对个体较大的木本植物的研究成为挑战㊂Noirot-Gros等[27]设计的根系-微生物相互作用芯片(RMI-chip),如图4(c)所示,通道长达36mm,可以培养山杨(木本植物)幼苗的根超过1个月,并且可以连续使用显微镜观察根-菌互作㊂研究发现细菌需要在山杨根部表面形成生物膜才能持久定殖㊂RMI芯片加以修改或优化,可以用于长期观察生长缓慢的植物,或者短期研究生长较快的植物㊂此外,设计功能导向性很强的特殊结构芯片,如Massalha等[10]的TRIS系统还有一个双根通道版本,在同一腔室里生长2株拟南芥的根,并设计了分隔结构避免双根的物理接触,却允许微生物948第6期㊀㊀㊀㊀陈登博,等.基于微流控的植物根部-微生物相互作用研究进展细胞和信号分子的自由流动,以直观地显示细菌对不同基因型株系根部的定殖偏好㊂根据具体需求而设计开发出来的微流控芯片更能满足各种植物生长的特殊需求,也是微流控芯片的优势之一㊂图5㊀空间环境下微流控技术在根-菌互作研究中的运用Fig.5㊀Application of microfluidic technique in the study of root-bacteria interaction in spatial environment6㊀根-菌互作空间研究现状及展望㊀㊀高等植物是BLSS 的功能核心,但空间环境因素导致植物生长处于逆境,对植物的生长发育具有显著影响㊂在太空飞行等空间环境下发现在微重力下生长的植物表现出对植物病菌的敏感性增加[28],地面3D 回转模拟微重力效应下的实验也证明了在模拟微重力效应下病菌更易侵染植物[29-31]㊂一方面可能是因为微重力对细胞壁的重生和木质素的合成起到了抑制作用[32],从而利于病原真菌的侵染;另一方面推测是微重力影响了植物宿主与自身微生物的相互作用㊂虽然植物遗传适应相对较慢,但植物共生的微生物却能够很快地适应环境变化[33]㊂而植物根际微生物组是植物的第2套基因组的组成部分,在植物生长发育过程当中起着至关重要的作用㊂植物益生菌对植物具有保护机制,可以形成生物膜以及生产植物激素从而提高植物个体抵御非外来的微生物环境胁迫的免疫能力㊁诱导免疫抗性等多种手段,从而来增强其对宿主的免疫抗逆㊁抗病能力[34],且微生物是BLSS 中必然存在的一个链环,因此有必要研究空间环境下植物的根-菌互作㊂但是受控条件下植物根际微生物的结构变化以及潜在威胁微生物研究甚少㊂由于空间实验的空间有限,即使对于探空火箭等所拥有的超过10cm ˑ10cm ˑ10cm 体积的实验空间[35-36],对于使用传统栽培方式的根-菌互作研究也明显不够㊂而且,由于空间搭载机会的稀缺和昂贵,很多实验必须先期在地面开展,在回转仪等模拟的微重力环境下进行[37-38]㊂与真正的空间实验相似,回转仪可供实验的区域非常狭小,同样难以容纳传统栽培方式的植株㊂微流控技术可以成为空间生物学研究中很有前途的工具,已经运用在国际空间站或卫星搭载的太空实验上㊂如应用于国际空间站的一种新的不依赖培养物的微生物监测系统(the Lab-On-a-Chip Application Development Portable Test Sys-tem,LOCAD-PTS)[39],在15min 内定量分析了舱室表面的内毒素(革兰氏阴性细菌和真菌的标志)㊂在目前第一个长时间的活体生物立方体卫星实验中,Nicholson 等[40]开展生命有机体轨道空间环境生存性(Space Environment Survivability ofLiving Organisms,SESLO)实验6个月,测定了枯草芽孢杆菌孢子在空间环境中长期静止(14㊁91和181天)后的萌发㊁生长和代谢情况㊂但目前空间生物学研究中,未将微流控技术应用在植物根-菌互作研究上㊂而微流控芯片体积小,且目前已有一些微流控根-菌互作研究没有采用注射泵,同样可实现根际营养液的更新[15]㊂微流控芯片作为载体更能满足研究需求㊂因此,如图5所示,对于长期进化适应1G 重力的地球环境的植物而言,空间微重力环境属于典型的逆境环境,可能导58载人航天第28卷致植物菌群失调,但目前对其机理并不清楚㊂基于微流控技术能更直观地研究植物-微生物在空间极端环境下相互作用机理,并可以通过其机理精准调控植物根部菌群,使植物拥有更大的固碳能力和更强的抗逆特性㊂微流控技术在根-菌互作研究中的显著优势能进一步帮助研究者理解植物学和微生物学研究的热点问题㊂但在空间环境下基于微流控技术开展植物根-菌互作研究依然存在着许多问题:①空间环境下,植物根生长会改变方向,对基于微流控技术的根菌互作观察有一定影响;②在芯片设计的过程中还需要考虑表面张力会成为界面的主要力;③目前的微流控技术主要针对在透明基底上成像,这将偏离自然土壤系统中根际的群落结构㊂这些问题需要利用更有效的方法来解决㊂7㊀结语㊀㊀目前,已有研究将微流控技术运用于根-菌互作中,显著提高了实验效率与根菌研究结果的分辨率㊂然而迄今为止,国际上在空间环境下应用微流控技术研究植物-微生物相互作用仍是空白㊂微流控技术具有便于对根菌互作实时成像以及对根际化学环境的操控/采样等优势,能够精细刻画反映出空间环境下植物-微生物互作规律,有益于揭示植物-微生物稳态对空间环境效应的响应与适应机制,从而助力空间环境下植物健康稳定生产,为BLSS空间实际构建应用奠定基础㊂参考文献(References)[1]㊀Sasse J,Martinoia E,Northen T.Feed your friends:Do plantexudates shape the root microbiome?[J].Trends in PlantScience,2018,23(1):25-41.[2]㊀李月明,杨帆,韩沛霖,等.植物根系分泌物响应非生物胁迫机理研究进展[J].应用与环境生物学报,2022,28(4):1-10.Li Y M,Yang F,Han P L,et al.Research progress on themechanism of root exudates in response to abiotic stresses[J].Chinese Journal of Applied&Environmental Biology,2022,28(4):1-10.(in Chinese)[3]㊀Ahmad R A,Michael D J,Segun G.Synergistic plant-mi-crobes interactions in the rhizosphere:A potential headway forthe remediation of hydrocarbon polluted soils[J].Internation-al Journal of Phytoremediation,2019,21(1/7):71-83.[4]㊀Berendsen R L,Vismans G,Yu K,et al.Disease-inducedassemblage of a plant-beneficial bacterial consortium[J].Isme Journal,2018,12(6):1496-1507.[5]㊀Jacoby R,Peukert M,Succurro A,et al.The role of soil mi-croorganisms in plant mineral nutrition-current knowledge andfuture directions[J].Frontiers in Plant Science,2017,(9):1-8.[6]㊀Ren K,Zhou J,Wu H.Materials for microfluidic chip fabri-cation[J].Accounts of Chemical Research,2013,46(11):2396-2406.[7]㊀Mcdonald J C,Duffy D C,Anderson J R,et al.Fabricationof microfluidic systems in poly(dimethylsiloxane)[J].Elec-trophoresis:An International Journal,2000,21(1):27-40.[8]㊀Fu Y,Liu H,Shao L,et al.A high-performance ground-based prototype of horn-type sequential vegetable productionfacility for life support system in space[J].Advances inSpace Research,2013,52(1):97-104.[9]㊀Foster J S,Wheeler R M,Pamphile R.Host-microbe interac-tions in microgravity:Assessment and implications[J].Life,2014,4(2):250-266.[10]㊀Massalha H,Korenblum E,Malitsky S,et al.Live imagingof root-bacteria interactions in a microfluidics setup[J].Pro-ceedings of the National Academy of Sciences of the UnitedStates of America,2017,114(17):4549-4554. [11]㊀Massalha H,Korenblum E,Shapiro O H,et al.TrackingRoot Interactions System(TRIS)experiment and quality con-trol[J].Bio-protocol,2019,9(8):e3211. [12]㊀Aufrecht J A,Ryan J M,Hasim S,et al.Imaging the roothair morphology of arabidopsis seedlings in a two-layer mi-crofluidic platform[J].Jove-Journal of Visualized Experi-ments,2017,(8):1-6.[13]㊀Aufrecht J A,Timm C M,Bible A,et al.Quantifying thespatiotemporal dynamics of plant root colonization by benefi-cial bacteria in a microfluidic habitat[J].Advanced Biosys-tems,2018,2(6):1-6.[14]㊀Mafla-Endara P M,Arellano-Caicedo C,Aleklett K,et al.Microfluidic chips provide visual access to in situ soilecology[J].Communications Biology,2021,4(1):1-12.[15]㊀Gao J,Sasse J,Lewald K M,et al.Ecosystem fabrication(EcoFAB)protocols for the construction of laboratory ecosys-tems designed to study plant-microbe interactions[J].Jove-Journal of Visualized Experiments,2018,134(4):1-26.[16]㊀Stanley C E,Shrivastava J,Brugman R,et al.Dual-flow-ro-otchip reveals local adaptations of roots towards environmentalasymmetry at the physiological and genetic levels[J].NewPhytologist,2018,217(3):1357-1369.[17]㊀Sun L,Liu L,Lin X,et al.Microfluidic devices for monito-ring the root morphology of Arabidopsis thaliana in situ[J].Analytical Sciences,2021,37(4):605-611. [18]㊀Pucetaite M,Ohlsson P,Persson P,et al.Shining new lightinto soil systems:Spectroscopy in microfluidic soil chips re-veals microbial biogeochemistry[J].Soil Biology and Bio-chemistry,2021,153(2):1-9.[19]㊀Grossmann G,Guo W J,Ehrhardt D W,et al.The RootCh-ip:An integrated microfluidic chip for plant science[J].Plant Cell,2011,23(12):4234-4240.[20]㊀Fendrych M,Akhmanova M,Merrin J,et al.Rapid and re-versible root growth inhibition by TIR1auxin signalling[J].Nature Plants,2018,4(7):453-459.[21]㊀Guichard M,Olalla E,Stanley C E,et al.Microfluidic sys-tems for plant root imaging[J].Methods in Cell Biology,2020,160(1):381-404.[22]㊀Denninger P,Reichelt A,Schmidt V A F,et al.DistinctRopGEFs successively drive polarization and outgrowth of roothairs[J].Current Biology,2019,29(11):1854-1865.[23]㊀Meier M,Lucchetta E M,Ismagilov R F.Chemical stimula-158第6期㊀㊀㊀㊀陈登博,等.基于微流控的植物根部-微生物相互作用研究进展。
植物根系结构与功能研究的新进展
植物根系结构与功能研究的新进展植物的根系是其重要的生命组成部分之一,承担着吸收水分和养分、固定植物体以及与土壤环境相互作用等重要任务。
对植物根系结构与功能的研究,有助于我们更好地理解植物的生长发育、适应环境的机制以及提升植物的产量和抗逆能力。
近年来,关于植物根系的研究取得了新的进展,本文将着重介绍一些新的研究成果和新的研究方法,以期为植物科学研究提供新的思路和方法。
一、植物根系结构的新进展植物根系的结构对植物的生长发育以及对土壤环境的适应有着重要影响。
近年来,针对植物根系结构的研究逐渐深入,取得了一些新的进展。
1. 植物根系的分形结构探索分形是一种自相似的结构形态,在植物根系的研究中,也引起了广泛的兴趣。
研究表明,植物根系的分枝模式和树冠结构之间存在着一定的相似性,这种相似性可能对植物的生长和适应起到重要的作用。
利用分形理论和数学模型,科学家们研究了植物根系的分形特征和分支模式,从而进一步探索了植物根系的生长规律和适应机制。
2. 植物根系的空间排列与地下竞争植物根系的空间排列对于生态系统的稳定性和植物个体生存竞争力具有重要影响。
传统上,人们对植物根系的空间排列主要是从二维平面的视角进行研究,但是近年来,随着三维技术的进步,科学家们开始尝试使用三维重建技术来研究植物根系的空间分布。
通过分析植物根系的空间排列,可以探讨植物的竞争与合作策略,为建立生态系统合理管理和植物优化种植模式提供理论依据。
二、植物根系功能的新进展植物根系的功能包括吸收水分和养分、固定植物体以及抗逆等多个方面。
近年来,针对植物根系功能的研究也取得了一些新的进展。
1. 植物根系对水分和养分的吸收机制植物根系对水分和养分的吸收是植物生长发育的重要环节。
研究表明,植物根系的吸收能力与其表面积、根毛密度以及根系分泌物等因素密切相关。
近年来,科学家们运用生物化学、分子生物学等多种技术手段,对植物根系吸收机制进行了深入研究,揭示了一些新的吸收机制和调控途径。
微生物与植物根际互作用研究
微生物与植物根际互作用研究植物根际是植物与周围环境的接触界面,由于其独特的微环境,吸引了大量微生物聚集于此。
这些微生物与植物根系之间的互作用被广泛研究,揭示了它们在植物营养吸收、病害抵抗、生长发育等方面发挥的重要作用。
本文将从不同角度探讨微生物与植物根际互作用的研究进展。
一、植物根际菌群的多样性植物根际的微生物菌群种类繁多,包括细菌、真菌、放线菌等。
通过高通量测序技术的发展,我们可以更好地了解植物根际菌群的多样性及其功能。
研究发现,根际微生物在不同植物种类、生长时期、种植环境等方面存在较大的差异,不同微生物对植物的影响也各不相同。
二、根际微生物对营养吸收的调控根际微生物与植物的根系形成共生关系,通过产生植物生长激素、固氮、溶磷等方式调节植物的营养吸收。
比如,根际细菌中的一些菌株能够产生高效的磷溶解酶,将固定在土壤中的磷转化为可供植物吸收的无机磷。
这些微生物对植物的营养吸收起到了重要的促进作用。
三、根际微生物对植物病害的防控与病原微生物不同,一些益生菌可以与植物根系形成互利共生关系,能够产生抗生物质、竞争性排除病原微生物等,从而起到植物病害防控的作用。
例如,一些拮抗菌可以产生一种能有效抑制多种真菌病原菌生长的抗生物质,在农业生产中可以用于生物防治,减少对化学农药的依赖。
四、根际微生物对植物生长发育的影响根际微生物还可以通过改变植物根系形态、促进植物营养吸收等方式影响植物的生长发育。
研究表明,一些细菌菌株能够产生植物生长激素,如赤霉素,促进植物的生长,提高植物的产量。
此外,微生物还可以通过改变植物的根系结构,增加根系的表面积,提高植物的养分吸收能力。
五、根际微生物的应用前景对微生物与植物根际互作用的研究不仅可以增加对根际微生物多样性的认识,还有助于开发利用微生物资源,推动绿色农业和生态农业的发展。
例如,通过研究植物根际中的共生菌株,并应用于农业生产中,可以提高植物的耐逆性、抗病能力,减少化学农药的使用量,实现农业生产的可持续发展。
根际微生物群落的功能和调控机制研究
根际微生物群落的功能和调控机制研究在过去的几十年里,随着对于土壤和植物健康的研究的逐步深入,科学家不断发现了一些微生物群落的重要性。
而根际微生物群落就是其中一个十分重要的微生物群落,其功能和调控机制的研究也越来越引起科学家们的关注。
一、什么是根际微生物群落?根际微生物群落是指一种包含了细菌、真菌、放线菌等多种微生物群落生态系统,而这些微生物主要是集中在植物根系附近的土壤里。
随着对于根际微生物群落的研究的深入,科学家们已经发现了其在植物生理、生态学、进化等方面的重要性,比如一些病原微生物可以通过破坏根际微生物群落来攻击植物,而其他特定功能的微生物可以利用根际微生物群落来更好地为植物提供营养。
二、根际微生物群落的功能根际微生物群落可以对植物的生长和生理产生深远的影响,特别是对于营养素的吸收和转化等。
以下是根际微生物群落的功能:1. 将固氮细菌转化为植物能够吸收的氮在根际中存在着一些固氮细菌,它们可以将大气中的氮转变成植物所需的氮,从而使植物可以更好地生长。
2. 促进司霉素的合成司霉素是一种主要的植物生长物质,其可以促进植物的生长,根际微生物群落中的某些微生物可以通过向土壤中释放水溶性化合物来激活司霉素的生长。
3. 分解土壤中的有机物和矿物质根际微生物群落中存在着一些能够分解土壤中有机物和矿物质的微生物,它们可以将分解后的物质提供给植物,从而促进植物的生长和诸如光合作用、呼吸作用和细胞分裂等生理活动。
三、根际微生物群落调控机制的研究根际微生物群落的调控机制也是科学家不断研究的话题之一。
通常,控制根际微生物群落的机制包括两个方面:植物激素和共生菌根。
植物激素对根际微生物群落的影响是通过作用于植物根系,从而改变植物对于微生物在根际土壤中的响应。
而共生菌根则是指植物根系中的显微型真菌和细菌与植物根系形成的共生关系。
通过共生菌根,植物和根际微生物群落之间的关系会变得更为密切。
总之,随着对根际微生物群落功能和调控机制的研究的不断深入,我们将进一步了解这个微生物群落对于植物健康和生长发育的重要性。
植物根际微生物群落的研究
植物根际微生物群落的研究植物的健康与否与其所处环境密不可分,而植物根际微生物群落则是其中重要的一个方面。
每一种植物的根际微生物群落都是独一无二的,而它们与植物的共生关系也十分复杂。
随着科学技术的不断进步,植物根际微生物群落的研究越来越深入。
本篇文章将从以下几个方面探讨植物根际微生物群落的研究现状和进展:简介植物根际微生物群落;研究方法;共生关系;应用前景。
一、简介植物根际微生物群落植物根际微生物群落指的是分布于植物根区域内的微生物群体,包括细菌、真菌、放线菌、古菌、原生动物和病毒等多种微生物。
在整个生态系统中,植物的根系构成了一个小型的生态系统,通过与微生物的相互作用,植物根系可以吸收营养、保持抗病性和适应环境等多种功能。
因此,植物根际微生物群落是植物生长发育的重要因素之一。
目前,研究表明,植物根际微生物群落对植物生长发育、光合作用、抗病性和营养素循环等方面都有重要影响。
不同植物的根际微生物群落类型也各有特点,如草本植物的根际微生物群落种类普遍较为丰富,而木本植物的根际微生物群落相对单一。
二、研究方法随着技术的不断进步,越来越多的科学家开始利用二代测序技术和大数据分析方法,研究植物根际微生物群落的种类和功能。
具体来说,研究方法主要包含以下几种:(1)传统的分离培养法:传统的方法利用培养基来判断土壤和根际中的细菌和真菌等微生物种类,研究不同微生物之间的关系。
(2)PCR扩增技术:PCR扩增技术可以用于快速检测微生物DNA序列,帮助科学家确定不同微生物的种类和数量。
(3)16S/18S rRNA基因测序:16S/18S rRNA基因是编码细菌和真菌的核糖体RNA的基因,在研究微生物分类、多样性和进化时有重要作用。
(4)基于大数据分析的方法:大数据分析技术可以快速、准确地分析大规模的数据集,预测微生物的功能和相互作用等信息。
三、共生关系植物根际微生物群落中的微生物与植物之间的互动关系种类繁多,包括共生、互利共存、拮抗和寄生等。
植物根际微生物共生调控机制与应用研究
植物根际微生物共生调控机制与应用研究植物和根际微生物之间的相互作用一直是生态学和农业生产领域的研究热点之一。
对于植物来说,根际微生物是一种重要的生物资源,它们能够通过固氮、解磷、提高植物抗性等方式,促进植物生长和发育。
对于微生物来说,与植物共生也是一种重要的途径,可以提高微生物在根际生态系统的生存率和竞争力。
因此,深入了解植物根际微生物共生的调控机制和应用研究是十分必要的。
一、植物根际微生物共生的调控机制在植物和根际微生物共生的过程中,植物的信号分泌和根际微生物的感知是必不可少的。
植物通过根系分泌的挥发性有机物和产生的信号分子,向周围介质发出化学信号,以与根际微生物发生相互作用。
而根际微生物则可以通过感知植物排出的化学物质来感知到植物的存在,并在其附近定居和繁殖。
除此之外,植物也会通过改变根际环境来调控微生物的生存情况。
例如,植物的根系能够调节根际微生物的pH值、氧气含量和营养物质的供给,以创造更适合微生物生长的环境。
植物根际微生物共生的调控还包括了信号转导、基因调控和代谢物合成等方面。
在克服微生物和植物之间的信号翻译障碍的同时,一些植物信号分子也能够调控微生物的生长和代谢活动,甚至在一定程度上影响微生物的分布和种群结构。
二、植物根际微生物共生研究的应用现状由于植物根际微生物共生对提高植物生产力和保障农业生产的重要性,研究人员已经开始将它应用于实际生产中。
例如,研究发现大豆的根际微生物可以显著增加植物的根系生长,从而提高大豆的产量。
另外,一些植物生长促进菌也可以通过提高植物对干旱和盐碱胁迫的抵抗能力,帮助植物在恶劣环境下生存和生长。
除合理利用植物根际微生物共生来提高农业生产力外,植物根际微生物共生对一些生态环境问题的解决也有潜在作用。
近几年来,随着生物修复技术的发展,植物和根际微生物共生也被广泛应用于土地污染、工业废弃物处理等方面。
例如,研究发现植物能够通过形成根际共生菌固氮来将土壤中的氮素资源转化为可以被植物吸收利用的形式,在生态修复中发挥着重要作用。
植物与根际微生物互作的分子机制研究
植物与根际微生物互作的分子机制研究植物与根际微生物之间的互作关系一直是植物学和微生物学领域中备受关注的研究课题。
植物和根际微生物之间的相互作用对于植物的生长发育、养分吸收以及环境适应具有重要意义。
本文将探讨植物与根际微生物互作的分子机制以及相关研究进展。
1. 植物根系和根际微生物的相互作用在植物根系周围,存在着丰富的微生物群落,包括细菌、真菌和古菌等。
这些根际微生物可以与植物根系发生不同形式的相互作用,包括共生和拮抗作用。
共生作用可以促进植物的生长发育,提高养分吸收效率,增强植物对环境胁迫的适应能力。
而拮抗作用则可以抑制病原微生物的生长,保护植物免受病害侵害。
2. 植物对根际微生物的感知与识别植物对根际微生物的感知和识别是植物与根际微生物互作的重要起始步骤。
植物通过感知微生物释放的化感物质来判断微生物的存在和身份。
这些化感物质可以是微生物释放的挥发性有机物、分泌的酶类物质以及细菌或真菌细胞壁的成分等。
植物通过感知这些化学信号来识别根际微生物,并对其作出相应的反应。
3. 植物根系对根际微生物的选择性吸引植物根系通过释放根系分泌物来对根际微生物进行选择性吸引。
根系分泌物中包含了各种物质,如根系分泌的有机酸、植物根黏和根尖分泌物等。
这些物质能够吸引特定种类的微生物与之发生互作,并建立共生关系。
比如,草履虫、假单胞菌等可以通过感知植物根系分泌的化学物质来定位并附着在植物根系表面,与植物建立共生关系。
4. 根际微生物对植物的促生机制根际微生物通过激活植物内源性激素以及释放生长调节物质来促进植物的生长发育。
比如,一些根际细菌可以释放一氧化氮(NO)来促使植物根系的伸长和分枝。
此外,一些根际真菌可以释放植物激素如赤霉素、脱落酸等,进一步促进植物的生长和发育。
5. 植物对根际微生物的代谢调控植物与根际微生物互作的分子机制还包括植物对根际微生物代谢的调控。
植物根系可以分泌一系列化学物质来调控根际微生物的代谢活性。
根际微生物群落的功能与调控
根际微生物群落的功能与调控随着人类对土地资源利用和环境保护的重视,根际微生物群落的研究也逐渐受到了广泛关注。
根际微生物群落是指生物体根系周围的微生物群落,包括细菌、真菌和原生生物。
这些微生物对于农业生产、土壤保护和生物地球化学循环等起着至关重要的作用。
本文将从功能和调控两个方面探讨根际微生物群落的重要性。
功能根际微生物群落对土壤有着多方面的影响。
其中,一部分微生物可以与植物根系建立共生关系,促进植物的生长发育。
例如,植物根系附近的一些细菌可以固氮,将大气中的氮转化为植物能够吸收的氨基酸,从而提高植物的氮素利用效率。
同时,这些细菌还会分泌出生长激素和其他植物生长物质,刺激植物的生长。
这种共生关系被称为植物与固氮细菌互惠共生。
除了与植物建立共生关系外,根际微生物群落还可以分解有机质,促进土壤养分的转化和循环。
有些细菌或真菌可以利用木质素、纤维素等难以降解的有机物质,将它们转化为植物可利用的物质。
这一过程促进了土壤养分的循环,提高了土壤的肥力。
此外,根际微生物群落还可以降解污染物,改善土壤环境。
例如,白腐菌可以分解含污染物的木材、纸张等物质,从而降低有毒有害物质的浓度,改善土壤质量。
总之,根际微生物群落作为土壤的重要组成部分,对于土壤的生产力、肥力和环境质量都有着不可替代的作用。
调控根际微生物群落的调控是指通过人为或自然因素来影响根际微生物群落的结构和功能。
这种调控有助于最大程度地发挥根际微生物群落的作用,提高土壤的肥力和生产力。
以下是一些常见的根际微生物群落调控措施:一、施用微生物肥料。
微生物肥料是指含有大量有益微生物的肥料,可以促进根际微生物群落的形成和发展。
二、选择适合的植物品种。
不同的植物品种对于根际微生物群落的吸引和利用程度不同。
选择适合的植物品种可以促进根际微生物群落的发展,提高土壤肥力。
三、合理施肥。
土壤中的养分可以作为微生物生长繁殖的营养来源。
合理施肥可以提供足够的养分,促进根际微生物群落的发展。
植物根际微生物研究进展
植物根际微生物研究进展引言1904 年,德国微生物学家Lorenz Hiltner 提出了根际概念,他将根际定义为根系周围、受根系生长影响的土体。
100 多年来,根际研究方兴未艾,根际概念也不断得以丰富和完善。
为纪念根际概念诞生100 周年,亦为交流根际研究的最新进展,2004年9 月在Hiltner 的故乡、也是他曾工作多年的城市一慕尼黑召开了第一届国际根际大会。
450 多位国际根际研究专家参加了会议,会议分成16 个分会,共有113 个会议报告和308 个墙报展示。
微生物是整个会议交流的重点,共有9 个分会、69 篇会议报告和192 篇墙报报告微生物的研究进展,分别占总数的56% 、61% 和62%。
现根据会议交流情况结合近年来国际上根际微生物的研究动向,对根际微生物研究的最新进展和面临的挑战作。
1根际微生物研究方法进展环境微生物的生物多样性过去通常是用分离和培养技术加以研究的。
近20 年来,分子生态技术迅速发展,通过对环境16S rRNA 基因进行的大量研究表明,微生物生物多样性远比用传统方法估计的要高。
微生物工作者惊奇发现环境中绝大部分微生物实际上从没有得到过培养,这些未培养的微生物与已培养的种群在系统发育上存在很大差距。
根际与其他生境一样,用分子生态方法证明根际微生物不仅具有丰富的多样性,而且含有大量未培养的微生物种群。
但是尽管在包括根际在内的不同生境中发现了大最未培养微生物,对这些微生物在环境中的功能目前仍了解很少。
大部分根际过程的微生物学机理尚不清楚。
深入理解根际微生物生化过程和植物-微生物相互作用的机理仍然是根际微生物工作所面临的重大挑战。
近年来分子生态方法已取得了-系列新的突破性进展,这些新方法使探索根际微生物不同个体的生态功能成为可能。
Hurek 等提出测定环境微生物新陈代谢中的关键基因能提供微生物群体的功能信息。
例如固氮基因特别适合于进行固氮微生物的系统发育分析。
建立功能基因文库可揭示根际微生物的功能多样性0 mRNA 实时定堂分析则可预测功能基因的表达水平。
Science综述:利用根际微生物组提高作物抗旱和产量
Science综述:利用根际微生物组提高作物抗旱和产量利用根际微生物组生产抗旱作物Harnessing rhizosphere microbiomes for drought-resilient crop productionScience 【Impact Factor 41.037】DOI:/10.1126/science.aaz5192发表日期:2020-04-17第一作者:Franciska T. de Vries1,2,*通讯作者:FranciskaT.deVries(******************)1,2,*合作作者:Rob I. Griffiths,Christopher G. Knight,Oceane Nicolitch,Alex Williams主要单位:1曼彻斯特大学地球与环境科学系(Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK)2荷兰阿姆斯特丹大学生物多样性与生态系统动力学研究所(Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, Netherlands)写在前面分享标题:Science综述:利用根际微生物组生产抗旱作物关键字:根际微生物组,植物信号,水分胁迫,耐旱机制,ABA,PGPR点评:尽管人们对植物选择根际微生物群落的机制有了更多的了解,也对微生物群落对植物生长和适应性的反馈有了更多的了解,但我们对于田间农作物在干旱条件下这些机制的了解仍然有限,本文从干旱响应特征、植物信号、微生物机制、益生菌、初级和次级植物代谢物等方方面面讨论可能的抗旱机制,不管是将为利用根际微生物组增加作物生产对干旱的适应性铺平道路还是为使作物生产系统具有更强的抗旱能力提供了巨大潜力亦或将为提高植物对水分胁迫的适应能力开辟许多新的研究途径,总之都是为了抵御胁迫,增强农作物对自然气候的适应能力,最大限度地提高农作物的产量,服务人类社会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第36卷第17期2016年9月生态学报ACTAECOLOGICASINICAVol.36,No.17Sep.,2016基金项目:国家自然科学基金(31270448);广东省高等学校人才引进专项(粤财教[2013]246号)收稿日期:2015⁃02⁃26;㊀㊀网络出版日期:2015⁃00⁃00∗通讯作者Correspondingauthor.E⁃mail:yaoqscau@scau.edu.cnDOI:10.5846/stxb201502260390陈伟立,李娟,朱红惠,陈杰忠,姚青.根际微生物调控植物根系构型的研究进展.生态学报,2016,36(17):㊀⁃㊀.ChenWL,LiJ,ZhuHH,ChenJZ,YaoQ.Areviewoftheregulationofplantrootsystemarchitecturebyrhizospheremicroorganisms.ActaEcologicaSinica,2016,36(17):㊀⁃㊀.根际微生物调控植物根系构型的研究进展陈伟立1,李㊀娟2,朱红惠3,陈杰忠1,姚青1,2,∗1华南农业大学园艺学院,广州㊀5106422仲恺农业工程学院,广州㊀5102253广东省微生物研究所,广州㊀510070摘要:根系构型是最重要的植物形态特征之一,具有可塑性,既由遗传因素控制,又受到许多环境因子的调控㊂近年的大量研究表明,根际微生物能够调控植物的根系构型,进而影响植物的一系列生理与生态过程㊂综述丛枝菌根真菌(AMF)㊁根瘤菌㊁植物根际促生菌(PGPR)等重要根际微生物类群对植物根系构型的调控模式以及相应的调控机理,并对进一步的研究进行了展望,旨在为今后的相关研究和实际应用提供参考㊂关键词:根系构型;根际微生物;调控Areviewoftheregulationofplantrootsystemarchitecturebyrhizospheremicroorganisms㊀CHENWeili1,LIJuan2,ZHUHonghui3,CHENJiezhong1,YAOQing1,2,∗1CollegeofHorticulture,SouthChinaAgriculturalUniversity,Guangzhou510642,China2ZhongkaiUniversityofAgricultureandEngineering,Guangzhou510225,China3GuangdongInstituteofMicrobiology,Guangzhou510070,ChinaAbstract:Plantrootsystemarchitecture(RSA)isoneofthemostimportantcharacteristicsofplantmorphology.RSAexhibitsaplasticitythatisnotonlycontrolledbygeneticfactorsbutisalsoregulatedbydiverseenvironmentalfactors.Recently,alargenumberstudieshaveindicatedthatrhizospheremicroorganismscanregulatetheplantRSA,andfurtherinfluenceanarrayofplantphysiologicalandecologicalprocesses.ThispapermainlyreviewstheregulationpatternsandcorrespondingmechanismsofplantRSAmediatedbytheimportantrhizospheremicroorganisms,suchasarbuscularmycorrhizalfungi,rhizobia,andplantgrowth-promotingrhizobacteria.Futureresearchisproposedtoprovidereferenceforrelatedresearchandpracticalapplications.KeyWords:rootsystemarchitecture;rhizospheremicroorganism;regulation众所周知,根系在植物生长发育中起着重要的作用,既是植株吸收水分和营养的主要器官,又是支撑植株地上部的重要力量[1]㊂因此,根系作为植株的地下部分,其活力与植物吸收能力的强弱有直接关系,这些都直接影响着地上部分的生长与发育㊂由于土壤的物质和能量被植物获取和利用均是通过根系得以实现的,因此,根系的分布特征反映了土壤的物质和能量被植物利用的可能性以及生产力,而根系在土壤中的分布特征网络出版时间:2015-12-14 14:03:26网络出版地址:/kcms/detail/11.2031.Q.20151214.1403.034.html2㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀主要表现为根系构型(Rootsystemarchitecture,RSA)[2]㊂根系构型既受到遗传控制,又受到许多环境因子(尤其是根际微生物)的调控㊂本文在此主要综述了根际微生物对根系构型的调控作用及其相应机制,旨在为后来研究者提供一定的理论参考,进一步阐明根际微生物与根系构型之间的复杂关系,最终更好地被应用于生产实践㊂1㊀植物根系构型1.1㊀根系构型研究的意义根系构型是一个重要的农学和生态学指标,指同一根系中不同级别的根在生长介质中的相互连接情况和空间分布[2],具体包括根系形态㊁根系拓扑结构㊁总根长㊁根系分布㊁根长密度和根系的延长速率㊁各级根的发生及在空间的三维分布㊁根系的生长角度和根系的扭转程度等㊂根系构型特点直接反映了根系的生长状况㊂良好的根系构型不仅可以提高根系对土壤养分和水分利用的效率,而且也是构建稳定生态群落的基础,此外,根系构型在土壤维持[3⁃4]和抗病性[5⁃6]方面也起着不可或缺的作用,所以,植物根系构型的研究对植物的生长发育及其生态稳定性具有重要意义㊂近年来,根系构型的研究已经成为诸多学科研究的热点问题,主要包括植物根系生长及对养分吸收利用等营养功能的研究[7⁃8],不同根系构型对各种土壤环境的适应性变化的定量研究[9⁃10],植物根系生长的三维可视化模拟研究[11⁃13],以及根际微生物对植物根系构型的影响[14⁃15]㊂1.2㊀根系构型调控的必要性在全世界大部分地区,水分和矿质养分的有效性是作物生产力的主要限制因素,而且肥沃并具有良好生态环境的耕地极其有限[11],这对主要经济作物如水稻[16⁃17]㊁小麦[18]㊁玉米[19⁃20]及其它植物如橡胶[21]㊁大豆[22]㊁荔枝[23]㊁苜蓿[24]等的生长状况及产量影响巨大,而植物生长状况的良好与否很大程度上依赖于根系对土壤水分及养分吸收能力的强弱㊂在同样的环境条件下,良好的根系构型可以提高植株对有限资源的利用,进而提高产量和品质[25]㊂而根系构型具有极强可塑性的报道屡见不鲜[26],说明作物生产中对根系构型的调控是绝对可行的㊂在育种界,根系构型特点已经慢慢成为育种者考虑的重要因素之一[27⁃28],而且很多研究也表明植株根系构型的改善会促进植株生长和发育㊂因此,根系构型的调控对植株的生长发育及最终产量都具有重大的现实意义,是满足当代社会对作物产量需求的一个有效解决途径㊂1.3㊀根系构型调控的途径根系主要的功能就是从土壤或基质中吸收水分和养分,因此通过控制水分[17,20]和养分[29]的多少将会直接影响根系的生长发育状况及生理特性㊂例如,低磷可以诱导水稻[30]和拟南芥[31]侧根的发生,不过在玉米中则发现相反的结果[32],这说明磷对根系的改善作用因物种不同而不同㊂另外,土壤或基质的温度或外界环境的温度,以及土壤的质地和机械阻力也会对根系的生长产生影响,在一定的温度范围内,植物根系的长度随温度的升高而增长,当温度过高或过低时都会抑制根系的生长[33]㊂在紧实土壤中生长的根系,其伸长速度减慢,根长缩短且变粗等㊂另外一些微量元素如硼㊁钼等对根系的生长也是不可缺少的㊂虽然有毒元素如铜过多则会抑制主根生长,但会促进比较短的侧根的密度[34]㊂近年来,土壤生物因子对根系构型的调控作用日益引起关注,其中根际微生物对根系构型的调控得到广泛报道㊂根际微生物是土壤生态系统中最为活跃的构成因子,参与了土壤中各种生物学过程(如共生)和生物化学过程(如土壤酶),对植物的生长发育和环境适应性产生重要影响㊂植物根际是植物㊁微生物和土壤相互影响最强烈的区域,根系构型与根际微生物间相互影响,相互作用,根系构型的改变势必会影响微生物群落的构成与分布,而根际微生物的存在对植株根系的发育及生长也有重要的影响㊂目前关于此领域的研究主要集中于丛枝菌根真菌(ArbuscularMycorrhizalFungi,AMF)㊁根瘤菌及植物根际促生菌(PlantGrowthPromotingRhinoacteria,PGPR)等根际微生物如何有效地调控植物根系构型[35⁃39]㊂2㊀根际微生物对根系构型的调控2.1㊀AMF㊀㊀AMF是与植物内共生的土壤真菌,其宿主范围十分广泛,可与陆地上80%以上的维管束植物形成共生关系[40]㊂建立共生体后,AMF可以提高植物根系对土壤水分及养分的吸收,植物的抗旱性㊁耐涝性㊁耐盐性和抗病性,加强植物抵抗高温和重金属毒害的能力,此外AMF还可以分解有毒有机物,修复污染与退化土壤等[41⁃42]㊂虽然对AMF的认识已经非常深刻,但是其依然是植物微生物群落中一个关键却神秘的组分㊂AMF侵染植物根系而形成丛枝结构,因此认为AMF对植物生理生态过程的影响与根系构型的变化密不可分,国内外有关AMF影响植物根系构型的研究已经有20多年的历史,发现AMF对植物根系构型的调控是全方位的,包括根系生物量㊁长度㊁根直径㊁根总表面积㊁根总体积㊁分枝数㊁根生长角度以及侧根发育和不定根形成等各根系指标㊂在根系生物量㊁长度及面积等方面,柱花草(Stylosanthesgracilis)接种Glomusversiforme显著增加了根系长度,而且还观察到其基根角度有增大的趋势[43]㊂接种AMF时,角豆树白根㊁黄根生物量及玉米根系总长度㊁根条数(根分枝数)和根系吸收面积都显著[44⁃45]增加,而在柑橘根系长度增加的同时,根系的平均直径却降低了[46],这与Yuan等人[47]所观察到根平均直径增加的结果不同,而且还发现不同AMF种类对植株生长效应不同,促进或抑制地上部和地下部生物量的情况时有报道[48⁃49]㊂不管是接种Glomusmosseae还是Acaulosporadelicata都增加了翅果油树的根系体积㊁表面积和根系吸收能力,提高了根系酶体系,有利于植物抵抗各种胁迫,对扩大翅果油树植物的分布区具有重要意义[50]㊂除此之外,Yao等人[35]第一次报道了丛枝菌根对不同直径级别根系的分布情况的影响,发现接种G.versiforme显著增加柑橘直径<0.4mm根系比例,减少直径0.4 1.2mm的根系比例㊂之后Wu等人[51]也发现接种AMF后在显著增加Citrustangerine根系总长度㊁总投影面积㊁总表面积和总体积的同时,0 1cm根总长及其在中的比例也得到增加,但根平均直径和1 2cm分级根总长在总根长中所占比例显著减少㊂在侧根及分枝方面,AMF起着巨大作用[47,52⁃53]㊂Schellenbaum等人[54]发现,接种Glomusfasciculatum使得葡萄(Vitisvinifera)根系的一级㊁二级和三级根的分枝分别增加了140%㊁200%和266%㊂在其它植物种类中也发现了类似现象,接种AMF使成年番荔枝根系总数目㊁一级侧根数目和二级侧根数目分别增加了3㊁2和4倍,而且总根㊁不定根㊁一级侧根和二级侧根的长度都有不同程度的增加[55];接种Glomusintraradices虽然没有增加水稻冠根的数量,但是由冠根发育出来的大侧根和细侧根数量都比对照高出三分之一,而且还发现细侧根数量的增加是由于大侧根数量增加引起的,不受接菌影响[36]㊂而且在干旱和水涝条件下,接种AMF分别促进水稻分枝指数增加2.4 4.1和1.7 2.6倍[56]㊂AMF同样促进荔枝[57]㊁柑橘[58]和欧洲桤木[59]等木本植物的根系分枝,但显著减少后者根毛数量㊂此外,在低温[60]㊁水分胁迫[39,61⁃63]㊁盐胁迫[41,64]㊁原油污染[65]的土壤中,AMF对根系构型的改善愈发明显,这促进了植物在逆境条件下的正常生长发育㊂而且研究发现感染立枯病的番茄在接种G.mosseae后,根系总长度和根尖数量增加,这在一定程度上使植株更加抗病[66]㊂另外在组培㊁扦插和嫁接试验中,AMF对植物根系的生长发育起着促进作用,在Williams香蕉(MusaAAA)上,G.versiforme虽然显著地增加组培苗的须根数量,但是须根的平均长度降低,导致整个根系中须根的总长没有变化[67]㊂AMF可以改善一品红扦插时的生根表现,显著促进了不定根的生成[68],也会增加西瓜嫁接苗的根系生物量[69]㊂另外还发现,复合菌种处理的番茄根系总根长和根鲜重均显著高于单一菌株处理[70]㊂干旱下接种内生菌根真菌㊁外生菌根真菌㊁混合接种对滇柏和楸树根系影响不一致,滇柏以外生菌和混合菌接种对根系生物量的效果更显著,而楸树以内生菌的效果最为显著,而且滇柏根系平均直径㊁总长度及表面积呈增加趋势[71]㊂虽然上述研究中报道的都是AMF对根系构型特点改善作用更大,但是其不影响或减少根系长度或侧根数量的报道也有许多,例如接种时湿地植物Bidensfrondosa根系长度和表面积要低于不接种处理,而接种对3㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀4㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀Ecliptaprostrata根系构型影响不大[72]㊂而在多年生黑麦草中,AMF虽然没改变根系生物量,但显著减少根长度,根直径和根数量[73]㊂另外有研究指出当植株所接AMF种类不是其优势菌株时,不会增加根系长度和促进侧根的发生,甚至会比不接菌时的根系长度和侧根数量都要低[74⁃75],其中很大的原因可能是其与植株根系竞争碳素㊂由此可见,AMF对根系构型的影响错综复杂,而这可能是由于不同植物种类㊁不同菌剂种类㊁不同试验条件等造成的,反过来,不同种类植株根系构型不同也会影响对AMF的依赖性㊂2.2㊀根瘤菌根瘤菌是一类广泛分布于土壤中的革兰氏阴性细菌,是与豆科植物共生的重要微生物,它能侵染豆科植物根部或茎部而形成根瘤或茎瘤,然后在根瘤或茎瘤中分化成类菌体,将空气中的氮素固定为植物可吸收利用的氨㊂Hafeez等[76]发现根瘤菌Rhizobiumleguminosarum使得棉花根干重㊁根生物量和根表面积分别增加了248%㊁332%和283%,而且会促进蒺藜状苜蓿的根毛卷曲及增加分枝的程度,进而侧根数量增多[77⁃78],还发现百脉根根瘤菌会促进拟南芥侧根发生和伸长[79],但是也有研究者发现接种根瘤菌对大豆根系长度没有影响,但会增加根表面积和体积[80]㊂不过,目前关于根瘤与根系构型的直接研究并不多见,诸如根瘤在根系上如何分布的以及根瘤的形成对根系构型又会有怎样的促进或抑制作用等问题尚未得到深入探讨㊂2.3㊀PGPRPGPR是栖居于植物根围中的一类土壤细菌,通过诸多方式来促进植株生长,如产生植物激素(生长素和赤霉素等)㊁氮固定㊁溶磷㊁抵抗重金属污染和改善根系构型等,而且可以减少肥料的施用[81⁃82],常见的如假单孢菌属和芽孢杆菌属等㊂通常情况下,PGPR作为生物肥料㊁植物促进和生物防除方面的接种剂,在农业生产起着重要的作用[83]㊂但是关于PGPR对植物根系构型影响的研究并不是很多,但是,在已报道的研究中发现其在改变根系构型方面所起作用也是很重要的㊂大部分的PGPR都增加植株根毛密度和根长度及根生物量,促进根毛从近根尖部位开始形成[84⁃86]㊂Serratiaproteamaculans会增加鹰嘴豆(Cicerarietinum)根长㊁侧根数量和长度以及根生物量[87],接种Azospirillumlipoferum会增加玉米幼苗根表面积㊁根生物量㊁根长和根尖数量,促进根系分枝,但没有改变根平均直径[88],而之前的研究发现,接种Azospirillumbrasilense在增加菜豆根长和根鲜重的同时会减少根直径,而且在菜豆苗生长的初始阶段,细根在长根中所占比例大[89],但是Nosheen等人[81]发现接种PGPR(特别是A.brasilense和Pseudomonasstutzeri)同时显著地增加红花(Carthamustinctorius)根长㊁根面积和根直径㊂GutiERrez-Luna等人[90]在柠檬根际土壤中成功分离出三种促进主根生长和侧根发育的菌株,经鉴定分别为蜡样芽胞杆菌(Bacilluscereus),简单芽孢杆菌(Bacillussimplex)和芽孢杆菌(Bacillussp),均属于PGPR,它们是通过释放挥发性有机化合物来改变根系构型的㊂此外在有AMF或施用化肥时,接种PGPR的效果会更加显著[91]㊂与AMF类似,PGPR也有不影响甚至抑制根系生长的效应,例如,接种Pseudomonastrivialis会使得杂草双雄雀麦(Bromusdiandrus)根系生物量㊁根表面积㊁根体积和根尖数量减少,从而保证硬质小麦(Triticumdurum)的正常生长[92]㊂两种根际促生菌假单胞细菌(Pseudomonasputida)和肠杆菌(Enterobactercloacae)对黄瓜根系生长的影响不明显,这可能与植物种类有关,或者是由于植物对根际促生菌的选择差异性㊂2.4㊀其他根际微生物除了AMF㊁根瘤菌和PGPR外,其它根际微生物如外生菌根真菌等对植物根系构型也有一定的影响㊂不同于AMF,外生菌根共生体只存在于5%以下陆生植物种类中,但是许多生长于温带森林的松科和山毛榉科以及热带亚热带地区的桃金娘科和龙脑香科都以外生菌根为主[93],主要功能是扩大根系对水分和养分的吸收面积,分泌多种生物酶,提高植物根系对氮㊁磷和钾等养分的吸收,产生生物素㊁生长素等促进植物生长,提高植物的抗逆性和抗病性,以及活化土壤[94⁃95]㊂分别接种黄色须腹菌(Rhizopogenluteous)㊁彩色豆马勃(Pisolithustinctorius)和美味牛肝菌(Boletusedulis)3种外生菌根真菌后,黑松(Pinusthunbergii)幼苗许多根系参数均比对照有不同程度的增加,侧根与主根之间夹角从大到小依次为R.luteous㊁B.㊁P.tinctorius㊁对照,R.luteous有效扩大了根系吸收的空间范围[96]㊂另外,P.tinctorius和Burkholderiaglathei对滇柏[71]和松树[97]的根系效应也与上述相似㊂此外对分别来自正常森林和火烧森林的假山毛榉(Nothofagusalpina)幼苗根系比较发现,外生菌根真菌(Descoleaantarctica)促使其根系系统更加深入土壤,且侧根及细根主要分布在下层土壤,以避免上层较低的相对湿度[98]㊂另外干旱胁迫下,外生菌根真菌虽然没有增加幼年欧洲山毛榉(Fagussylvatica)植株生物量,但显著增加了根尖数量和细根形成,特别是0.2 0.8mm级别根[99]㊂除了外生菌根真菌外,弗兰克氏菌是一类能与多种非豆科木本双子叶植物共生固氮的放线菌,它也显著促进欧洲桤木(Alnusglutinosa)幼苗根系分枝,但会显著减少根毛数量[59]㊂而且有意思的是,Kawaguchi等人[100]用从绿色木霉菌(Trichodermaviride)分离出来的木聚糖酶处理烟草根系发现主根细胞分裂和细胞伸长受到抑制,但是根系维管束和根毛的形成并不受任何影响,而且若移除该木聚糖酶,根系构型会重新改变,说3㊀;(2)改㊂3.1㊀众所周知㊁不定根构成的直根系;[101],另外,木本植物与草本植物的根系也明显不同㊂除去物种之间的差异性,侧根是影响植物根系构型最主要的内在因子,其在根系响应土壤环境条件方面起着至关重要的作用,因此,环境因子往往是通过影响侧根的发生来影响根系构型[15,102⁃103]㊂高等植物侧根的形成主要包括四个关键阶段[101]:(1)中柱鞘建成细胞受到刺激发生分化;(2)中柱鞘细胞的极性不对称分裂产生侧根原基;(3)侧根原基细胞膨大突破主根最处层;(4)侧根分生组织的活化与侧根生长㊂早在上世纪90年代,Taylor和Scheuring[104]就发现番茄根系的RSI⁃1基因在侧根原基发生的早期就被启动,一直持续到侧根刚刚突出主根,认为RSI⁃1可以作为侧根发生过程中的分子标记;另外在拟南芥的根系还发现LRP1基因在侧根和不定根的原基发生的早期启动,而在侧根突出主根之前关闭,也可作为侧根发生的分子标记[105]㊂不过到目前为止还没确定哪个标记基因可以用于研究侧根发生的关键阶段㊂根系活力也是影响根系构型的另一重要因素㊂在Kawaguchi等人[100]用从T.viride分离出来的木聚糖酶处理烟草根系的研究中发现主根细胞分裂和细胞伸长受到抑制可能是根系中编码细胞周期素依赖性激酶5㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀6㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀(cyclin-dependentkinases,CDK)的基因表达受阻导致根分生组织活力的降低㊂在辣椒中接种三种AMF菌剂(Glomusetunicatum,G.mosseae和G.versiforme)都显著增加了根系活力以及根系抗氧化酶活性,一级侧根数㊁根表面积㊁根体积和根质量都比对照高出许多,其中G.mosseae的效果最佳[106]㊂根生长角度对根系构型的影响同样不可忽略,Uga等人[107]在水稻上发现DRO1是控制深根比率的一个主要数量性状位点,而且干旱条件下DRO1会增大根生长角度,从而促进深根系统的形成,提高水稻产量㊂3.2㊀激素调控植物激素是调控根发育和构型的主要因素㊂研究发现生长素运输途径对根系结构的调控主要表现在以下方面:(1)参与主根的生长;(2)参与侧根的形成与伸长,具体为参与侧根原基组织的生长,使侧根从母根上突出;(3)调控盐胁迫条件下根系的发育过程,从而使根系的生长发育适应盐胁迫㊂其中,最重要的,植物生长素是侧根发生和发育的重要信号[15]㊂添加外源生长素能够增加侧根的数目,抑制生长素的运输则减少侧根的数目[108],而且还发现生长素的峰值出现在侧根的发生位置以及侧根突出和伸长阶段[101]㊂AMF会促使根系合成生长素增加,并且生长素信号是早期丛枝菌根形成所必需的[109],因此接种AMF改变玉米根系构型可能是由于其增加了IBA所导致[110],且在番茄中也发现了类似的现象[111]㊂一些PGPR可以释放IAA改变植株生长素含量,进而促进植株形成一个细长且高度分枝的根系系统[112]㊂同样,在Jiang等人[113]的研究中发现,以细菌为生的线虫类会促进土壤中产生IAA的细菌生长和增加土壤中氮营养和IAA,进而促使拟南芥形成高度分枝根系系统,而且根系更长更细㊂另一方面,P.trivialis会通过产生高浓度的IAA来抑制杂草根系的生长,从而真正意义上实现生物防控[92]㊂分子水平上,侧根发生最重要的一种生长素蛋白是SLR1/IAA14,slr1突变体会钝化IAA14而不能形成侧根[114]㊂KRP1和KRP2是编码细胞周期蛋白激酶(CDK)的基因,Himanen等人[115]研究发现,KRP1和KRP2的表达可以抑制细胞周期从G1期向S期转变;KRP2的超表达明显减少侧根的数目;生长素NAA则抑制KRP1和KRP2的表达,由此可见,生长素通过调控细胞分裂周期来影响侧根的发生㊂LAX(likeAUX1)是介导生长素从胞外向胞内转移的载体蛋白,而载体突变体lax3的侧根数目减少,表明生长素的胞内胞外转移也决定着侧根的发育[116]㊂此外,细胞分裂素是另一个重要的影响侧根发育的植物激素㊂由于在许多生理过程中拮抗生长素的作用,细胞分裂素能够抑制许多植物的侧根发育[7,117],报道指出,细胞分裂素含量降低的拟南芥突变体的侧根数目增加[118],添加外源细胞分裂素则减少侧根的数目[119]㊂其他对侧根发育产生影响激素包括乙烯[120]㊁赤霉素[121]㊁油菜素内酯[122]㊁脱落酸[123⁃124]㊁水杨酸[125]㊁多胺[51]以及越来越引起大家关注的独脚金内脂[126]等,而且细胞分裂素和脱落酸反向调节侧根发生,而生长素和油菜素内酯对侧根发生起着促进作用[127]㊂AMF侵染植物根系形成菌根共生体过程中能诱导植物合成多种信号物质,如水杨酸㊁茉莉酸㊁类黄酮㊁一氧化氮和过氧化氢等[128],从而一定程度上调控根系的发育;拥有ACC脱氨酶的根际细菌会通过减少乙烯的含量促进根系生长来调控根系构型[87],此外,PGPR也可通过产生生长素或细胞分裂素来调控根系构型和促进茎生长[129]㊂3.3㊀矿质养分调控研究表明,不论是AMF,还是根瘤菌或PGPR都可以改善植物对养分的吸收[130],从而改变植物根系构型,例如B.glathei促进松树根系改善主要是通过加强矿物风化来改善植株营养状况实现的[97];还有,与对照处理相比,滇柏的接种处理和楸树的内生菌根真菌和混合菌根真菌处理对N和P的吸收都显著增加,进而增加根系生物量[71]㊂AMF与根系共生后,能显著促进根系对土壤矿质营养元素特别是P的吸收,甚至在土壤温度降低植物生长和P吸收受抑的情况下,AMF仍能增加植物体内P含量[131],但是如果土壤中含P丰富,丛枝菌根对植株的贡献会大大折扣,而且也相应地发现AMF改变根系构型通常是在低磷条件下[132],因此低磷促进侧根的形成,尤其是浅层根系的生长[133]㊂进一步研究发现,接种AMF玉米根中磷酸盐转运体基因ZEAma:Pht1;6(丛枝菌根诱导)表达水平为不接菌的26 135倍,提高了茎中磷含量,进而促进了植株生长;在增施少量磷肥时,会显著增加该基因的表达,但是不影响ZEAma:Pht1;3(磷饥饿诱导)的表达[134]㊂植株高氮水平抑制侧根的形成和生长,PGPR菌株Phyllobacteriumsp会改善高外源硝酸根离子对拟南芥侧根生长的抑制作用[135]㊂不过局部高氮会促进侧根的形成和生长[136],在低营养条件下,AMF促进了角豆树根系对无机氮的吸收,且使该根系具有高浓度的氮素[44]㊂Boukcim等[137]发现AMF在氮利用率高的田间挪威云杉中会显著增加根系侧根数量,减少所有侧根的长度,而在氮利用率低时会显著减少侧根数量,只增加三级侧根数量㊂中度干旱胁迫和光照下,外生菌根真菌会促进幼年F.sylvatica根系对氮素的吸收,从而促进根系生长[99]㊂不过有意思的是,在营养丰富的土壤中,温带森林菌根树更倾向于通过增殖根系来汲取更多养分[138],说明AMF在该环境条件下对根系构型的影响可能远小于在土壤营养贫瘠时㊂3.4㊀碳素调控根系的生长和发育依赖植物形成的光合碳水化合物,碳水化合物可直接作为代谢底物或生长调节物质影响细胞的分裂,导致根系构型发生变化[139]㊂植物地上部分与地下部在利用碳水化合物方面存在着竞争关系,而在共生微生物的存在下,地上部分的蔗糖经长距离运输向根系的分配比率提高,例如 菌根碳库 的存在会促使糖向菌根化细胞中转移[104,140],因此,根际微生物可能通过调控植株碳素营养的运输来改变根系构型㊂接种AMF会显著增加枳壳幼苗叶片葡萄糖和蔗糖含量,但减少根葡萄糖和蔗糖含量[48],不过在白三叶草中,却是增加了根系的蔗糖含量[141],可能是因为不同菌剂种类对木本植株和草本植株的作用模式不同所致,但两个研究都表明接菌增加了植株根系总长度㊁根表面积以及总体积㊂另一方面,在春夏季,许多植物叶片增多且光合作用活跃,这使得大量的碳水化合物被运输至地下部,促进细根的形成以维持AMF的生存[142]㊂另外,接种AMF时,一品红插条的叶片糖含量增加,且碳水化合物动力学开始变化,从而根系生长得到促进[68]㊂本文之前所描述的AMF减少根系长度及侧根数量的原因可能是其与宿主植株竞争碳水化合物所致㊂除了AMF,PGPR和根瘤菌通常都能增加根系生物量[143⁃145],说明它们也参与到碳水化合物的运输过程中,最终导致根系构型发生改变,不过目前关于根际微生物调控碳水化合物组分及分配及其对根系构型影响的研究鲜见报道,特别是后两种微生物㊂4㊀展望虽然土壤根际微生物影响不同植物根系构型的研究日益增多,相应地也提出了一些调控机制,但是,不同微生物改变根系构型的差异性及最主要的调控途径还需要更深层次的理解㊂由于根系是生长于土壤中,不能直接观察,因此选择合适的试验方案至关重要,需要不断地优化,以便更直观地了解根际微生物对植株根系构型的调控作用㊂对根系构型的研究,主要是为了仿真出根系在不同的生长条件下的分布情况,从而得出更加有利于生产和实验的品种或者根系结构,可以更好的利用土壤的营养,提高产量和品质㊂就目前研究方向而言,以下几方面可能值得重视和深入探讨:(1)AMF与其它根际微生物相互作用(协同或竞争)对植株根系构型有哪些影响?这些影响的作用机制是什么?这些问题尚不明确,需要深入研究㊂(2)根际微生物的侵染或定殖需要消耗根系的碳素(光合产物),而碳素也是根系构建的物质基础,那么,根际微生物对碳素的竞争是如何调控根系构型的?在这一调控途径过程中,何种碳素(葡萄糖㊁果糖或蔗糖)起着关键作用?(3)根系构型与作物(如菜豆)的生产力密切相关,在农业生产中如何有效利用根际微生物来改善根系构型,使植株更加适应周围环境变化,从而实现高产优质㊂总之,根际微生物对植物根系构型的调控意义深远,值得进行更多的深入研究㊂参考文献(References):[1]㊀BaileyPHJ,CurreyJD,FitterAH.TheroleofrootsystemarchitectureandroothairsinpromotinganchorageagainstuprootingforcesinAlliumcepaandrootmutantsofArabidopsisthaliana.JournalofExperimentalBotany,2002,53(367):333⁃340.[2]㊀LynchJ.Rootarchitectureandplantproductivity.PlantPhysiology,1995,109(1):7⁃13.[3]㊀屈志强,刘连友,吕艳丽.沙生植物构型及其与抗风蚀能力关系研究综述.生态学杂志,2011,30(2):357⁃362.7㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀。