平行四边形小卷2

合集下载

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

(北师大版)北京市八年级数学下册第六单元《平行四边形》测试卷(含答案解析)

(北师大版)北京市八年级数学下册第六单元《平行四边形》测试卷(含答案解析)

一、选择题1.下列命题是假命题的是( )A .三角形的外角和是360°B .线段垂直平分线上的点到线段两个端点的距离相等C .有一个角是60°的等腰三角形是等边三角形D .有两边和一个角对应相等的两个三角形全等2.一个多边形的内角和等于它的外角和的3倍,则它是( )边形.A .六B .七C .八D .九3.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 边于点E ,已知BE =4cm ,AB =6cm ,则AD 的长度是( )A .4cmB .6cmC .8cmD .10cm 4.如图,在平行四边形ABCD 中,点O 是对角线BD 的中点,过点O 作线段EF ,使点E ,点F 分别在边AD ,BC 上(不与四边形ABCD 顶点重合),连结EB ,EC .设ED kAE =,下列结论:①若1k =,则BE CE =;②若2k =,则EFC 与OBE △面积相等;③若ABE FEC ≌,则EF BD ⊥.其中正确的是( )A .①B .②C .③D .②③ 5.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x |=2,则x =2;④同旁内角的平分线互相垂直.其中真命题的个数为( )A .1个B .2个C .3个D .4个 6.如图,将四边形ABCD 去掉一个60°的角得到一个五边形BCDEF ,则∠1与∠2的和为( )A .60°B .108°C .120°D .240°7.如图,平行四边形ABCD 的周长为36cm ,若点E 是AB 的中点,则线段OE 与线段AE 的和为( )A .18cmB .12cmC .9cmD .6cm 8.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是BC 的中点,若AB =16,则OE的长为( )A .8B .6C .4D .39.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④ 10.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为( )A .6B .12C .24D .48 11.如图,P 为□ABCD 对角线BD 上一点,△ABP 的面积为S 1,△CBP 的面积为S 2,则S 1和S 2的关系为 ( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法判断 12.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为 ( )A .1B .2C 3D .13二、填空题13.如图,在四边形ABCD 中,AB 与CD 不平行,M ,N 分别是AD ,BC 的中点,4AB =,2DC =.对于MN 的长,给出了四种猜测:①4MN =;②3MN =;③2MN =;④1MN =.猜测错误的是(______) A .① B .② C .③ D .④14.如图,在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,ABCD 的周长为40,则S ABCD 四边形为______.15.如图,Rt △ABC 中,∠C =90°,∠A =30°,AB =20,点P 是AC 边上的一个动点,将线段BP 绕点B 顺时针旋转60°得到线段BQ ,连接CQ ,则在点P 运动过程中,线段CQ 的最小值为_____.16.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是__.18.如图,在△ABC 中,∠ACB =90°,AB =13 cm ,BC =12 cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =______cm .19.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若AB =12,AC =10,则BD 的长为_____.20.在四边形ABCD 中,AB =CD ,请添加一个条件_____,使得四边形ABCD 是平行四边形.三、解答题21.如图,△ABC 和△DEF 关于某点对称(1)在图中画出对称中心O ;(2)连结AF 、CD ,判断四边形ACDF 的形状,并说明理由.22.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,延长BC 到点E ,使CE BC =,连接DE .(1)求证:四边形ACED 是平行四边形;(2)已知5AB =,6AC =,若12CD BE =,求BDE 的周长. 23.在ABC 中,AB AC =,36BAC ∠=︒,将ABC 绕点A 顺时针旋转一个角度α得到ADE ,点B 、C 的对应点分别是D 、E .(1)如图1,若点E 恰好与点B 重合,DF AB ⊥,垂足为F ,求BDF ∠的大小; (2)如图2,若108α=︒,连接EC 交AB 于点G ,求证:四边形ADEG 是平行四边形.24.如图,四边形ABCD 中,//AD BC ,12cm AD =,15cm BC =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止;点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,直线PQ 分原四边形为两个新四边形;则当P ,Q 同时出发_____秒后其中一个新四边形为平行四边形.25.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点.(1)求证:四边形EFGH 是平行四边形;(2)若AC+BD=36,AB=10,求△OEF 的周长.26.如图,在四边形ABCD 中,AD ∥BC ,AC 与BD 交于点E ,点E 是BD 的中点,延长CD 到点F ,使DF =CD ,连接AF ,(1)求证:AE =CE ;(2)求证:四边形ABDF 是平行四边形;(3)若AB =2,AF =4,∠F =30°,则四边形ABCF 的面积为 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D根据三角形外角和的性质即可对A进行判断;根据垂直平分线的性质即可对B进行判断;根据等边三角形的判定即可对C进行判断;根据三角形全等的证明即可对D进行判断;【详解】A、三角形的外角和为360°,故A正确;B、垂直平分线上的点到线段两端的距离相等,故B正确;C、有一个角是60°的等腰三角形是等边三角形,故C正确;D、由两边和它们的夹角对应相等的两个三角形全等,故D错误;故选:D.【点睛】本题考查了命题与定理,命题的真假是就命题的内容而言,正确掌握定理是解题的关键.2.C解析:C【分析】根据多边形的内角和等于它的外角和的3倍可列方程求得边数.【详解】解:设多边形的边数为n,根据题意得:(n−2)×180°=360°×3.解得n=8.故选:C.【点睛】本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.3.D解析:D【分析】由已知平行四边形ABCD,DE平分∠ADC可推出△DCE为等腰三角形,所以得CE=CD=AB=6,那么AD=BC=BE+CE,从而求出AD.【详解】解:已知平行四边形ABCD,DE平分∠ADC,∴AD∥BC,CD=AB=6cm,∠EDC=∠ADE,AD=BC,∴∠DEC=∠ADE,∴∠DEC=∠CDE,∴CE=CD=6cm,∴BC=BE+CE=4+6=10cm,∴AD=BC=10cm,故选:D.此题考查的知识点是平行四边形的性质及角平分线的性质,关键是由平行四边形的性质及角平分线的性质得等腰三角形通过等量代换求出AD .4.B解析:B【分析】由1k =,则有E ,F 分别是AD ,BC 的中点,进而可判定①,当2k =时,则有EFC 的面积=12BEF S ,OBE △的面积=12BEF S ,然后可判定②;若EF ⊥BD 成立,则必须BE BF =,因为前提ABE △≌FEC ,BE CE =,进而可判定③.【详解】 解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴∠EDO=∠FBO ,∠DEO=∠BFO ,∵点O 是对角线BD 的中点,∴BO=DO ,∴△DEO ≌△BFO (AAS ),∴DE=BF ,∵1k =,∴E ,F 分别是AD ,BC 的中点,∴EC AF BE =≠,故①错;连接EC ,如图所示:∵2k =,∴EFC 的面积=12BEF S , ∵点O 是EF 的中点, ∴OBE △的面积=12BEF S ,所以EFC 与OBE △面积相等,故②对;若EF ⊥BD 成立,则必须BE BF =,因为前提ABE △≌FEC ,BE CE =,得不到CE BF =,故③错;故选B .【点睛】本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.5.B解析:B【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.6.D解析:D【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选D.【点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.7.C解析:C【分析】结合已知证明EO是△ABC的中位线,进而得出答案.【详解】解:∵平行四边形ABCD的周长为36cm,∴AB+BC=18cm,∵四边形ABCD是平行四边形,∴O是AC的中点,又∵点E是AB的中点,∴EO是△ABC的中位线,∴EO=12BC,AE=12AB,∴AE+EO=12×18=9(cm).故选:C.【点睛】本题考查了平行四边形的性质和中位线定理,熟知“平行四边形的对角线互相平分”和“三角形的中位线平行于第三边,且等于第三边的一半”是解题关键.8.A解析:A【分析】直接利用平行四边形的性质结合三角形中位线定理得出EO的长.【详解】解:∵在□ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点,又∵点E是BC的中点,∴EO是△ABC的中位线,∴EO=12AB=8.故选:A.【点睛】此题主要考查了平行四边形的性质以及三角形中位线定理,正确得出EO是△ABC的中位线是解题关键.9.B解析:B【分析】利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【详解】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.④∵四边形ABCD 是平行四边形,∴∠B=∠D ,∵∠BAE=∠DCF ,∴∠AEB=∠CFD .∵AD ∥BC ,∴∠AEB=∠EAD .∴∠CFD=∠EAD .∴AE ∥CF .∵AF ∥CE ,∴四边形AECF 是平行四边形.综上所述,不能使四边形AECF 是平行四边形的条件有1个.故选:B .【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.10.C解析:C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为3264285210⨯=⨯=⨯=,,,2226810+=,∴此三角形为直角三角形,168242S ∴=⨯⨯=, 故选C .【点睛】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.11.B解析:B【解析】分析:根据平行四边形的性质可得点A、C到BD的距离相等,再根据等底等高的三角形的面积相等.详解:∵在□ABCD中,点A、C到BD的距离相等,设为h.∴S1= S△ABP=12BP h ,S2= S△CPB=12BP h.∴S 1=S2,故选B.点睛:本题主要考查的平行四边形的性质,关键在于理解等底等高的三角形的面积相等的性质.12.A解析:A【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:如图∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2又∵点D. E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=12AB=1故选:A【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.二、填空题13.ABD【分析】连接BD取BD中点G连接MGNG根据三角形中位线平行且等于第三边的一半可得:AB=2MGDC=2NG再根据三角形两边之和大于第三边两边之差小于第三边即可得出MN的取值范围继而即可求解【解析:ABD【分析】连接BD,取BD中点G,连接MG、NG,根据三角形中位线平行且等于第三边的一半可得:AB=2MG,DC=2NG,再根据三角形两边之和大于第三边,两边之差小于第三边即可得出MN 的取值范围,继而即可求解.【详解】解:如图,连接BD ,取BD 中点G ,连接MG 、NG ,∵点M 、N 分别是AD 、BC 的中点,∴MG 是△ABD 的中位线,NG 是△BCD 的中位线,∴AB =2MG ,DC =2NG ,∵4AB =,2DC =,∴MG =2,NG =1,由三角形三边关系:MG -NG <MN <MG +NG ,∴1<MN <3,∴③2MN =猜测正确,故答案为:ABD .【点睛】本题考查三角形中位线定理及三角形三边关系,熟练掌握三角形中位线平行且等于第三边的一半,三角形任意两边之和大于第三边,任意两边之差小于第三边,解题的关键是根据不等关系作辅助线构造以MN 为一边的三角形.14.48【分析】首先根据平行四边形的性质可得AB =CDAD =BC 可得AB +BC =20再利用其面积的求法S =BC×AE =CD×AF 可得4AE =6CD 列出方程组求出平行四边形的各边长再求其面积【详解】解:设解析:48【分析】首先根据平行四边形的性质可得AB =CD ,AD =BC ,可得AB +BC =20,再利用其面积的求法S =BC×AE =CD×AF ,可得4AE =6CD ,列出方程组,求出平行四边形的各边长,再求其面积.【详解】解:设BC =x ,CD =y ,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∵▱ABCD 的周长为40,∴x +y =20,∵AE =4,AF =6,S ABCD 四边形=BC×AE =CD×AF ,∴4x =6y ,得方程组:2046x y x y +⎧⎨⎩==, 解得:128x y =⎧⎨=⎩∴S 平行四边形ABCD =BC×AE =12×4=48.故答案为:48.【点睛】此题主要考查了平行四边形的性质与其面积公式,解题的关键是根据性质得到邻边的和,根据面积公式得到方程,再解方程组即可.15.5【分析】将Rt △ABC 绕B 点顺时针旋转60°得到Rt △EBD 首先证明Q 随着P 的运动在ED 上运动然后求解CQ 的最小值即为求C 到ED 的距离当CQ ⊥ED 时CQ 的长度即为最小结合题意求解即可【详解】如图所解析:5【分析】将Rt △ABC 绕B 点顺时针旋转60°得到Rt △EBD ,首先证明Q 随着P 的运动在ED 上运动,然后求解CQ 的最小值即为求C 到ED 的距离,当CQ ⊥ED 时,CQ 的长度即为最小,结合题意求解即可.【详解】如图所示,将Rt △ABC 绕B 点顺时针旋转60°得到Rt △EBD ,则此时E 、C 、B 三点在同一直线上,∵∠ABC=60°,∠PBQ=60°,∴∠ABP=∠EBQ ,随着P 的运动,总有AB=EB ,PB=QB ,∴总有△APB ≌△EQB (SAS ),即:E 、Q 、D 三点在同一直线上,∴Q 的运动轨迹为线段ED ,∴当CQ ⊥ED 时,CQ 的长度最小,∵Rt △ABC 中,∠C =90°,∠A =30°,AB =20,∴BC =BD =10,EC =10,即:C 为EB 的中点,∵CQ ⊥ED ,∠D=90°,∴CQ ∥BD ,CQ 为△EBD 的中位线, ∴152CQ BD ==, 故答案为:5.【点睛】本题考查了旋转的性质,三角形的中位线定理等,解题关键是能够熟练运用旋转的性质,确定点Q的轨迹在线段ED上.16.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=1×90°=45°,2∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.17.12【分析】多边形的外角和为360°而多边形的每一个外角都等于30°由此做除法得出多边形的边数【详解】∵360°÷30°=12∴这个多边形为十二边形故答案为:12【点睛】本题考查了多边形的内角与外角解析:12【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的内角与外角.关键是明确多边形的外角和为360°.18.4【分析】根据勾股定理求出AC得到BD的长根据等腰三角形的性质得到CE=DE根据三角形中位线定理解答即可【详解】在△ABC中∠ACB=90°∴AC===5∴AD=AC=5∴BD=AB−AD=13−5解析:4【分析】根据勾股定理求出AC,得到BD的长,根据等腰三角形的性质得到CE=DE,根据三角形中位线定理解答即可.【详解】在△ABC中,∠ACB=90°,∴AC5,∴AD=AC=5,∴BD=AB−AD=13−5=8,∵AC=AD,AE⊥CD,∴CE=DE,∵CE=DE,CF=BF,∴EF是△CBD的中位线,∴EF=1BD=4,2故答案为:4.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.19.【分析】利用平行四边形的性质可知AO=5在Rt△ABO中利用勾股定理可得BO=13即可得出BD=2BO=26【详解】解:∵四边形ABCD是平行四边形∴BD=2BOAO=OC=AC=5∵AB⊥AC∴∠解析:【分析】利用平行四边形的性质可知AO=5,在Rt△ABO中利用勾股定理可得BO=13,即可得出BD=2BO=26.【详解】解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=1AC=5,2∵AB⊥AC,∴∠BAC=90°,在Rt△ABO中,由勾股定理可得:BO13,∴BD=2BO=26,故答案为:26.【点睛】本题考查了平行四边形对角线互相平分性质和勾股定理运用,解题关键是熟悉相关性质.20.AB//CD等【分析】根据平行四边形的判定方法结合已知条件即可解答【详解】∵AB=CD∴当AD=BC(两组对边分别相等的四边形是平行四边形)或AB∥CD(一组对边平行且相等的四边形是平行四边形)时四解析:AB//CD等【分析】根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.【点睛】本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.三、解答题21.(1)见解析;(2)平行四边形,理由见解析【分析】(1)根据中心对称的性质,连接对应点AD、CF,交点即为旋转中心;(2)根据旋转的性质,对应点的连线段互相平分,再根据对角线互相平分的四边形是平行四边形证明.【详解】解:(1)对称中心O如图所示;(2)∵A与F,C与D是对应点,∴AO=DO,CO=FO,∴四边形ACDF是平行四边形.【点睛】本题考查了利用旋转变换作图,熟练掌握旋转的性质是解题的关键.22.(1)见解析;(2)24【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,结合CE=BC,得到AD=CE,可证明四边形ACED 是平行四边形;(2)根据四边形ACED 是平行四边形得到DE =AC =6,再证明∠BDE =90°,得到BE =2CD =2AB =10,利用勾股定理求出BD ,可得△BDE 的周长.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵CE =BC ,∴AD =CE =BC ,∵AD ∥BC ,∴AD ∥CE ,∴四边形ACED 是平行四边形;(2)∵四边形ACED 是平行四边形,∴DE =AC =6,∵CD =BC =CE =12BE , ∴∠CBD =∠CDB ,∠CDE =∠CED ,∴∠BDE =∠CDB +∠CDE =11802⨯︒=90°, ∴BE =2CD =2AB =10,∴BD,∴△BDE 的周长=BD +BE +DE =8+10+6=24.【点睛】本题考查了平行四边形的性质与判定、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理论证与计算是解决问题的关键.23.(1)18BDF ∠=︒;(2)见解析.【分析】(1)根据等腰三角形的性质求出∠ACB=72゜,再由旋转的性质得∠DBF=∠ACB=72゜,最后根据直角三角形两锐角互余可得结论;(2)分别证明∠DEC=108゜,∠DAG =108゜,可得EG//AD ,AG//DE ,从而可证四边形ADEG 是平行四边形.【详解】解:(1)∵AB AC =,36BAC ∠=︒∴72ABC ACB ∠=∠=︒∴72ADB ABD ∠∠==︒∵DF AB ⊥,∴90DFB ∠=︒∴∠DBF+∠BDF=90゜∴907218BDF ∠=︒-︒=︒(2)∵108α=︒,即108CAE ∠=︒又AE AC =∴36ACE AEC ∠=∠=︒∵∠AED=∠ADE=72゜∴∠DEC=72゜+36゜=108゜∴∠ADE+∠CED=180゜∴EG//AD∵∠DAE=∠BAC∴∠DAE+∠EAG=∠CAB+∠EAG=108゜∴∠DAG+∠ADE=180゜∴AG//DE∴四边形ADEG 是平行四边形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.24.4或5【分析】结合题意,根据平行四边形的性质,列一元一次方程并求解,即可得到答案.【详解】设点P 和点Q 运动时间为t∵12cm AD =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止∴点P 运动时间121AD t ≤=秒 ∵15cm BC =,点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止 ∴点Q 运动时间1522BC t ≤=秒 ∴点P 和点Q 运动时间152t ≤直线PQ 分原四边形为两个新四边形,其中一个新四边形为平行四边形,分两种情况分析:当四边形PDCQ 为平行四边形时PD QC =结合题意得:12PD AD AP t =-=-,2QC t =∴122t t -=∴4t =,且满足152t ≤ 当四边形APQB 为平行四边形时AP BQ =结合题意得:AP t =,152BQ BC QC t =-=-∴152t t =-∴5t =,且满足152t ≤ ∴当P ,Q 同时出发秒4或5后其中一个新四边形为平行四边形.【点睛】本题考查了平行四边形、一元一次方程、一元一次不等式的知识;解题的关键是熟练掌握平行四边形、一元一次方程、一元一次不等式的性质,从而完成求解.25.(1)详见解析;(2)14【分析】(1)由平行四边形的性质可得AO=CO ,BO=DO ,由中点的性质可得EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ,由对角线互相平分的四边形是平行四边形可得结论; (2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AO=CO ,BO=DO∵E 、F 、 G 、H 分别是AO 、BO 、CO 、DO 的中点∴EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ∴EO=GO ,FO=HO∴四边形EFGH 是平行四边形(2)∵E 、F 分别是AO 、BO 的中点∴EF=12AB ,且AB=10 ∴EF=5∵AC+BD=36∴AO+BO=18∴EO+FO=9∴△OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键. 26.(1)见解析;(2)见解析;(3)6【分析】(1)根据平行线的性质得出ADE CBE ∠=∠,根据全等三角形的判定得出ADE CBE ∆≅∆,根据全等三角形的性质得出即可;(2)根据平行四边形的判定推出即可;(3)求出高DQ 和CH ,再根据面积公式求出即可.【详解】解:(1)证明:∵点E 是BD 的中点,∴BE =DE ,∵AD ∥BC ,∴∠ADE =∠CBE ,在△ADE 和△CBE 中ADE CBE DE BEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CBE (ASA ),∴AE =CE ;(2)证明:∵AE =CE ,BE =DE ,∴四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵DF =CD ,∴DF =AB ,即DF =AB ,DF ∥AB ,∴四边形ABDF 是平行四边形;(3)解:过C 作CH ⊥BD 于H ,过D 作DQ ⊥AF 于Q ,∵四边形ABCD 和四边形ABDF 是平行四边形,AB =2,AF =4,∠F =30°,∴DF =AB =2,CD =AB =2,BD =AF =4,BD ∥AF ,∴∠BDC =∠F =30°,∴DQ =12DF =122⨯=1,CH =12DC =122⨯=1, ∴四边形ABCF 的面积S =S 平行四边形BDFA +S △BDC =AF×DQ+1BD CH 2⨯⨯=4×1+1412⨯⨯=6, 故答案为:6.【点睛】 本题考查了平行四边形的性质和判定,三角形的面积等知识点,能综合运用定理进行推理是解此题的关键.。

人教版八年级初二数学第二学期平行四边形单元测试题

人教版八年级初二数学第二学期平行四边形单元测试题

人教版八年级初二数学第二学期平行四边形单元测试题一、解答题1.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长. 2.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.3.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、, ①求证:四边形AFEP 是平行四边形; ②求PE 的长.4.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程: (2)如图4,过点C 作CG ON ⊥,垂足为点G 则90CGB ∠=90GCB CBG ∴∠+∠=又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中, (类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .5.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示). (2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线). 6.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ; (2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.7.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积; (2)若CG CB =,求证:2BG FH CE +=.8.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P . (1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).9.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形. ①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由. 实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹) 思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.10.如图,在平行四边形 ABCD 中,AD=30 ,CD=10,F 是BC 的中点,P 以每秒1 个单位长度的速度从 A 向 D 运动,到D 点后停止运动;Q 沿着A B C D →→→ 路径以每秒3个单位长度的速度运动,到D 点后停止运动.已知动点 P ,Q 同时出发,当其中一点停止后,另一点也停止运动. 设运动时间为 t 秒,问:(1)经过几秒,以 A ,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P 为顶点的四边形的面积是平行四边形 ABCD 面积的一半?【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)详见解析;(2)是,详见解析;(3)132【分析】(1)平行四边形的性质可得AD ∥BC ,AB ∥CD ,再根据平行线的性质证明∠CEF=∠CFE ,根据等角对等边可得CE=CF ,再有条件四边形ECFG 是平行四边形,可得四边形ECFG 为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG ,再判断出AB=BE ,进而得出BE=CD ,即可判断出△BEG ≌△DCG (SAS ),再判断出∠CGE=60°,进而得出△BDG 是等边三角形,即可得出结论;(3)首先证明四边形ECFG 为正方形,再证明△BME ≌△DMC 可得DM=BM ,∠DMC=∠BME ,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM 是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【详解】(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=12∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵BE CDBEM DCM EM CM=⎧⎪∠=∠⎨⎪=⎩,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴22221024AB AD++=26,∴21322DM BD==【点睛】本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质,正方形的判定与性质,等腰直角三角形的判定和性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.2.(1)详见解析;(2)145.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF 是平行四边形,可得当BE ⊥CF 时,四边形BCEF 是菱形,所以连接BE ,交CF 与点G ,由三角形DEF 的面积求出EG 的长,根据勾股定理求出FG 的长,则可求出答案. 【详解】(1)证明:∵AF =DC , ∴AC =DF ,在△ABC 和△DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DEF (SAS ), ∴BC =EF ,∠ACB =∠DFE , ∴BC ∥EF ,∴四边形BCEF 是平行四边形; (2)如图,连接BE ,交CF 于点G ,∵四边形BCEF 是平行四边形, ∴当BE ⊥CF 时,四边形BCEF 是菱形, ∵∠DEF =90°,DE =8,EF =6, ∴DF 222286DE EF +=+10,∴S △DEF 1122EG DF EF DE =⋅=⋅, ∴EG 6824105⨯==, ∴FG =CG 22222418655EF EG ⎛⎫=-=-=⎪⎝⎭,∴AF =CD =DF ﹣2FG =10﹣365=145. 故答案为:145. 【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.熟练掌握平行四边形的判定与性质是解题的关键.3.(1)见解析;(2)①见解析;②6PE = 【分析】(1)由四边形ABCD 是正方形知∠D=∠ECQ=90°,由E 是CD 的中点知DE=CE ,结合∠DEP=∠CEQ 即可得证;(2)①由PB=PQ 知∠PBQ=∠Q ,结合AD ∥BC 得∠APB=∠PBQ=∠Q=∠EPD ,由△PDE ≌△QCE 知PE=QE ,再由EF ∥BQ 知PF=BF ,根据Rt △PAB 中AF=PF=BF 知∠APF=∠PAF ,从而得∠PAF=∠EPD ,据此即可证得PE ∥AF ,从而得证;②设AP x =,则1PD x =-,1CQ x =-,2BQ x =-,利用三角形中位线定理得到()122EF x =-,由EF AP =,构造方程即可求得23x =,在Rt PDE ∆中,利用勾股定理即可求解. 【详解】(1)∵四边形ABCD 是正方形, ∴∠D=∠ECQ=90°, ∵E 是CD 的中点, ∴DE=CE , 又∵∠DEP=∠CEQ , ∴△PDE ≌△QCE (ASA ); (2)①∵PB=PQ , ∴∠PBQ=∠Q , ∵AD ∥BC ,∴∠APB=∠PBQ=∠Q=∠EPD , ∵△PDE ≌△QCE , ∴PE=QE , ∵PF=BF ,∴EF 是PBQ ∆的中位线, ∴EF ∥BQ ,∴在Rt △PAB 中,AF=PF=BF , ∴∠APF=∠PAF , ∴∠PAF=∠EPD , ∴PE ∥AF , ∵EF ∥BQ ∥AD ,∴四边形AFEP 是平行四边形; ②设AP x =,则1PD x =-, ∴1CQ x =-, ∴2BQ x =-,∵EF 是PBQ ∆的中位线,∴()122EF x =-, ∵EF AP =,∴()122x x -=, ∴23x =, 在Rt PDE ∆中,222PD DE PE +=,即22221(1)()32PE -+=, ∴13PE =. 【点睛】本题考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、平行四边形的判定和性质以及勾股定理等知识点.掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.4.(1)2;(2)证明见解析过程;(3)AE+EF-AF=2OA . 【分析】(1)通过测量可得;(2)过点C 作CG ⊥ON ,垂足为点G ,由AAS 可证△ABO ≌△BCG ,可得BG=AO ,BO=CG ,由SAS 可证△ABE ≌△CBE ,可得AE=CE ,由线段的和差关系可得结论; (3)过点C 作CG ⊥ON ,垂足为点G ,由AAS 可证△ABO ≌△BCG ,可得BG=AO ,BO=CG ,由SAS 可证△ABE ≌△CBE ,可得AE=CE ,可得结论. 【详解】解:(1)△AEF 的周长是OA 长的2倍, 故答案为:2;(2)如图4,过点C 作CG ⊥ON ,垂足为点G ,则∠CGB=90°, ∴∠GCB+∠CBG=90°, 又∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO ,在△BCG 与△ABO 中,GCB ABO GCB AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCG ≌△ABO (AAS ),∴BG=AO ,CG=BO ,∵∠AOB=90°=∠CGB=∠CFO ,∴四边形CGOF 是矩形,∴CF=GO ,CG=OF=OB ,在△ABE 和△CBE 中,BE BE ABE CBE AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE (SAS ),∴AE=CE ,∴△AEF 的周长=AE+EF+AF=CE+EF+AF=CF+AF=GO+AF=BG+BO+AF=2AO ;(3)如图5,过点C 作CG ⊥ON 于点G ,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO ,在△BCG 与△ABO 中GCB ABO GCB AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCG ≌△ABO (AAS ),∴BG=AO ,BO=CG ,∵∠AOB=90°=∠CGB=∠CFO ,∴四边形CGOF 是矩形,∴CF=GO ,CG=OF=OB ,在△ABE 和△CBE 中,BE BE ABE CBE AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE (SAS ),∴AE=CE ,∴AE+EF-AF=EF+CE-AF=NB+BO-(OF-AO )=OA+OB-(OB-OA )=2OA .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,矩形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.5.(1)214t ;(2)t =;(3)存在,如图2(见解析),当AHQ HBM ≅时,t =3(见解析),当ADE AHE ≅时,t =4(见解析),当EGQ HBF ≅时,t = 【分析】 (1)先根据线段中点的定义可得12AQ AP =,再根据矩形的性质、角平分线的定义可得45HAQ ∠=︒,从而可得AQH 是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得//HQ MP ,从而可得//HQ BP ,再根据三角形中位线定理可得HQ 是ABP △的中位线,从而可得122AH AB ==,然后与(1)所求的2AH =建立等式求解即可得; (3)分①当点H 是AB 的中点时,AHQ HBM ≅;②当点Q 与点E 重合时,ADE AHE ≅;③当EG HB =时,EGQ HBF ≅三种情况,分别求解即可得.【详解】(1)由题意得:2AP t =,点Q 为AP 的中点,12AQ AP t ∴==, 四边形ABCD 是矩形,90B D BAD ∴∠=∠=∠=︒,AE ∵是BAD ∠的角平分线, 1452HAQ DAE BAD ∴∠=∠=∠=︒, QH AB ⊥,AQH ∴是等腰直角三角形,22AH HQ AQ t ∴===, 则AQH 的面积为21124AH HQ t ⋅=; (2)如图1,四边形PQHM 是平行四边形,//HQ MP ∴,点M 在BC 边上,//HQ BP ∴,点Q 为AP 的中点,HQ ∴是ABP △的中位线,122AH BH AB ∴===, 由(1)知,22AH t =, 则22t =, 解得22t =;(3)由题意,有以下三种情况:①如图2,当点H 是AB 的中点时,则AHHB =,四边形PQHM 是平行四边形, //HM PQ ∴,HAQ BHM ∴∠=∠,在AHQ 和HBM △中,90HAQ BHM AH HB AHQ HBM ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()AHQ HBM ASA ∴≅,由(2)可知,此时22t=;②如图3,当点Q 与点E 重合时,在ADE 和AHE 中,9045D AHE DAE HAE AE AE ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,()ADE AHE AAS ∴≅,3AD AH ∴==,则232t =, 解得32t =;③如图4,当EG HB =时,四边形ABCD 是矩形,四边形PQHM 是平行四边形,//,//CD AB HM PQ ∴,,90GEQ HAQ BHF EGQ AHQ B ∴∠=∠=∠∠=∠=︒=∠,在EGQ 和HBF 中,GEQ BHF EG HB EGQ B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EGQ HBF ASA ∴≅, 2,4AH t AB ==,242HB AB AH t ∴=-=-, 在Rt ADE △中,45,3DAE AD ∠=︒=,Rt ADE ∴是等腰直角三角形,232AE AD ==,32EQ AQ AE t ∴=-=-,在Rt GEQ 中,45GEQ HAQ ∠=∠=︒,Rt GEQ ∴是等腰直角三角形,22622t EG EQ -==, 则由EG HB =得:2624t t -=-, 解得722t =;综上,如图2,当AHQ HBM ≅时,22t =;如图3,当ADE AHE ≅时,32t =4,当EGQ HBF ≅时,722t =【点睛】 本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.6.(1)见解析;(2)4.8;(3)1282x x- 【分析】(1)证明△ABP ≌△BCQ 即可得到结论;(2)证明Rt △ABN ≌△Rt △C 'BN 求出DQ ,设AN =NC '=a ,则DN =8﹣a ,利用勾股定理即可求出a ;(3)过Q 点作QG ⊥BM 于G ,设MQ =BM =y ,则MG =y ﹣x ,利用勾股定理求出MQ ,再根据面积相减得到答案.【详解】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中, ABP BCQ AB BCBAP QBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt △ABN ≌△Rt △C 'BN (HL ),∴AN =NC ',∵BP =13PC ,AB =8, ∴BP =2=CQ ,CP =DQ =6,设AN =NC '=a ,则DN =8﹣a ,∴在Rt △NDQ 中,(8﹣a )2+62=(a +2)2解得:a =4.8,即AN =4.8.(3)解:过Q 点作QG ⊥BM 于G ,由(1)知BP =CQ =BG =x ,BM =MQ .设MQ =BM =y ,则MG =y ﹣x ,∴在Rt △MQG 中,y 2=82+(y ﹣x )2, ∴322x y x =+. ∴S △BMC ′=S △BMQ ﹣S △BC 'Q =1122BM QG BC QC ''⋅-⋅, =1321()88222x x x +⨯-⨯, =1282x x-. 【点睛】此题考查正方形的性质,三角形全等的判定及性质,勾股定理,正确理解题意画出图形辅助做题是解题的关键.7.(1)100;(2)见解析.【分析】(1)先证明四边形ABCD 是正方形,再根据已知条件证明△BCF ≌△DCE ,即可得到四边形AECF 的面积=正方形ABCD 的面积;(2) 延长BG 交AD 于点M ,作AN ⊥MN ,连接FG ,先证明四边形BCEM 是平行四边形,得到BM=CE ,证明△BCF ≌△GCF ,得到BF=GF ,∠FGC=∠FBC=90︒,由AN ⊥MN ,得GM=2MN ,根据∠BAC=45︒,BC ∥AD 得到AM=BF ,再证△BFH ≌△AMN,得到GM=2FH , 由此得到结论.【详解】(1)∵9,0ABC AB BC ︒∠==,∴△ABC 是等腰直角三角形,∵ABC ADC ∆≅∆,∴AB=AD=BC=DC ,∴四边形ABCD 是菱形,∵90ABC ADC ︒∠=∠=,∴四边形ABCD 是正方形,∴∠BCD=90ABC ADC ︒∠=∠=,∴∠CDE=90ABC ADC ︒∠=∠=,∵BF=DE,BC=DC ,∴△BCF ≌△DCE ,∴四边形AECF 的面积=S 正方形ABCD =AB 2=102=100.(2)延长BG 交AD 于点M ,作AN ⊥MN ,连接FG,∵△BCF ≌△DCE ,∴∠BCF=∠DCE ,∴∠FCE=∠BCD=90︒,∵BG ⊥CF ,∴∠FHM=∠FCE=90︒,∴BM ∥CE,∵BC ∥AD,∴四边形BCEM 是平行四边形,∴BM=CE.∵CG CB =,BG ⊥CF ,∴∠BCH=∠GCH,∠CBM=∠CGB,∴△BCF ≌△GCF,∴BF=GF,∠FGC=∠FBC=90︒,∵∠BAC=45︒,∴∠AFG=∠BAC=45︒,∴FG=AG,∵BC ∥AD,∴∠CBM=∠AMB,∴∠AGM=∠CGB=∠CBM=∠AMB,∴AM=AG,∵AN ⊥MN ,∴GM=2MN,∵∠BAD=∠ANM=90︒,∴∠ABM+∠AMN=∠MAN+∠AMN=90︒,∴∠ABM=∠MAN,∵AM=AG=FG=BF,∠BHF=∠ANM=90︒,∴△BFH ≌△AMN,∴FH=MN,∴GM=2FH,∵BG+GM=CE,∴2BG FH CE +=.【点睛】此题是四边形的综合题,考查正方形的判定及性质,全等三角形的判定及性质,等腰三角形的性质,平行四边形的性质,解题中注意综合思想的方法积累.8.(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM. (2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中, CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒, ∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒, ∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形, ∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN , ∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒, ∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605,正n 边形时,∠CPN=360n , 故答案为:360n. 【点睛】 此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.9.(1)①D 、E ,②A ,理由见解析;(2)①作图见解析;②BE 与AF 可能相等,AE 的长度分别为43,367,2或18. 【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.(2)①以C 为圆心,CB 为半径画弧交AD 于F ,连接CF ,作∠BCF 的角平分线交AB 于E ,点E ,点F 即为所求.②分四种情形:如图①中,当BE AF =时;如图②中,当BE AF =时;如图③中,当BE BC AF ==时,此时点F 与D 重合;如图④中,当BE CB AF ==时,点F 与点D 重合,分别求解即可解决问题.【详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知:①点A 与点D 和E 关于BC 互为顶针点;②点D 与点A 关于BC 互为勾股顶针点,理由:如图2中,∵△BDC 是等边三角形,∴∠D =60°,∵AB =AC ,∠ABC =30°,∴∠ABC =∠ACB =30°,∴∠BAC =120°,∴∠A +∠D =180°,∴点D 与点A 关于BC 互为勾股顶针点,故答案为:D 和E ,A .(2)①如图,点E 、F 即为所求(本质就是点B 关于CE 的对称点为F ,相当于折叠).②BE 与AF 可能相等,情况如下:情况一:如图①,由上一问易知,,BE EP BC PC ==,当BE AF =时,设AE x =,连接EF ,∵,,90BE EP AF EF EF EAF FPE ===∠=∠=︒,∴()EAF FPE HL ∆∆≌,∴AE PF x ==,在Rt CDF ∆中,()1082DF AD AF x x =-=--=+,10CF PC PF x =-=-,∴2228(2)(10)x x ++=-, 解得43x =,即43AE =; 情况二:如图②当BE AF =时,设AE x =,同法可得PF AE x ==,则8BE AF x ==-,FP FG GP EG AG AE x =+=+==,则18DF x =-,10CF x =+,在Rt CDF ∆中,则有2228(18)(10)x x +-=+,解得:367x =; 情况三:如图③,当BE BC AF ==时,此时点D 与F 重合,可得1082AE BE AB =-=-=; 情况四:如图④,当BE CB AF ==时,此时点D 与F 重合,可得18AE AB BE AB BC =+=+=. 综上所述,BE 与AF 可能相等,AE 的长度分别为43,367,2或18. 【点睛】本题属于四边形综合题,考查了矩形的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.10.(1)254秒或252秒;(2)15秒 【分析】(1)Q 点必须在BC 上时,A ,Q ,F ,P 为顶点的四边形才能是平行四边形,分Q 点在BF 和Q 点在CF 上时分类讨论,利用平行四边形对边相等的性质即可求解;(2)分Q 点在AB 、BC 、CD 之间时逐个讨论即可求解.【详解】解:(1)∵以A 、Q 、F 、P 为顶点的四边形是平行四边形,且AP 在AD 上,∴Q 点必须在BC 上才能满足以A 、Q 、F 、P 为顶点的四边形是平行四边形∵四边形ABCD 是平行四边形,∴AD=BC=30,AB=CD=10,∵点F 是BC 的中点,∴BF=CF=12BC=15,AB+BF=25, 情况一:当Q 点在BF 上时,AP=FQ ,且AP=t ,FQ=35-3t ,故t=25-3t,解得254t=;情况二:当Q点在CF上时,AP=FQ,且AP=t,FQ=3t-35,故t=3t-25,解得t=25 2;故经过254或252秒,以A、Q、B、P为顶点的四边形是平行四边形;(2)情况一:当Q点在AB上时,0<t<103,此时P点还未运动到AD的中点位置,故四边形AQFP面积小于平行四边形ABCD面积的一半,情况二:当Q点在BC上且位于BF之间时,1025 33t,此时AP+FQ=t+35-3t=35-2t,∵102533t,∴35-2t <30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况三:当Q点在BC上且位于FC之间时,2540 33t此时AP+FQ=t+3t-35=4t-35∵254033t,∴4t-35<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况四:当Q点在CD上时,4050 33t<<当AP=BF=15时,t=15,1122 APF ABFP PFQ DCFP S S S S且∴1+2APF PFQ AFPQ ABCDS S S S,∴当t=15秒时,以A、Q、F、P为顶点的四边形面积是平行四边形ABCD面积的一半,故答案为:15秒.【点睛】本题考查了平行四边形的判定和性质,根据动点的位置不同需要分多种情况分类讨论,熟练掌握平行四边形的性质是解决本题的关键.。

八年级数学下平行四边形单元测试带答案

八年级数学下平行四边形单元测试带答案

平行四边形测试卷姓名分数一、选择题:1.下面几组条件中,能判定一个四边形是平行四边形的是().A.一组对边相等; B.两条对角线互相平分C.一组对边平行; D.两条对角线互相垂直2.下列命题中正确的是().A.对角线互相垂直的四边形是菱形; B.对角线相等的四边形是矩形 C.对角线相等且互相垂直的四边形是菱形;D.对角线相等的平行四边形是矩形3.如图所示,四边形ABCD和CEFG都是平行四边形,下面等式中错误的是().A.∠1+∠8=1800; B.∠2+∠8=180°;C.∠4+∠6=180°; D.∠1+∠5=180°4.在正方形ABCD所在的平面上,到正方形三边所在直线距离相等的点有().A.3个 B.4个 C.5个 D.6个5.菱形的两条对角线长分别为3和4,那么这个菱形的面积为(平方单位)().A.12 B.6 C.5 D.76.矩形两条对角线的夹角为60°,一条对角线与短边的和为15cm,则矩形较短边长为()A.4cm B.2cm C.3cm D.5cm7.下列结论中正确的有()①等边三角形既是中心对称图形,又是轴对称图形,且有三条对称轴;②矩形既是中心对称,又是轴对称图形,且有四条对称轴;③对角线相等的梯形是等腰梯形;④菱形的对角线互相垂直平分.A.①③;B.①②③; C.②③④; D.③④8.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少要买()m2的木地板A.12xy B.10xy C.8xy D.6xy二、填空题:1.用正三角形和正方形组合能够铺满地面,每个顶点周围有______•个正三角形和______个正方形.2.平行四边形的一组对角和为300°,则另一组对角的度数分别为______.3.已知P为□ABCD的边AB上一点,则S△PCD=____ABCDS Y.4.已知□ABCD中,∠A比∠B小20°,那么∠C的度数是________.5.在□ABCD中,若一条对角线平分一个内角,则四边形ABCD为_______形.6.一个正方形要绕它的中心至少旋转______,才能和原来的图形重合;若绕它的一个顶点至少旋转________,才能和原来的图形重合.7.如图所示,在等腰梯形ABCD中,共有_____对相等的线段.8.梯形的上底长为acm,下底长为bcm(a<b),•它的一条对角线把它分成的两部分的面积比为_______.三、解答题.1.在四边形ABCD中,AB∥CD,∠D=2∠B,AD与CD的长度分别为a和b.(1)求AB的长.(2)若AD⊥AB于点A,求梯形的面积.2.梯形ABCD中,DC∥AB,DC<AB,过D点作DE∥AB,交AB于点E,•若梯形周长为30cm,CD=4cm,则△ADE的周长比梯形的周长少多少厘米?3.如图所示,已知四边形ABCD为正方形,M为BC边中点,将正方形折起,使点M•与A重合,设折痕为EF,则ME=23AB,求△AEM的面积与正方形ABCD面积的比.4.如图所示,已知□ABCD中,AC的平行线MN分别交DA,DC的延长线于M,N,交AB,BC于P,Q,求证:QM=NP.5.已知AD是△ABC中∠A的平分线,DE∥AC交AB于E点,DF∥AB交AC于F点.求证:E,F关于直线AD对称.6.(1)证明:在直角三角形中,若一条直角边等于斜边的一半,那么这条直角边所对的角为30°.(2)利用这个结论解决下列问题:如图所示,在梯形ABCD中,AB∥CD,AD ⊥AC,AD=AC,DB=DC,AC,BD交于点E,•试问CE与CB相等吗,为什么?参考答案:一、1.B 2.D 3.A 4.C 5.B 6.D7.D 8.A二、1.3 2 2.30°3.1 24.80°5.菱6.90° 360°7. 48.解析:如答图所示,对角线AC 将梯形ABCD 分成△ACD 与△ABC , S △ACD = 2ah ,S △ABC = 2bh , ∴S △ACD :S △ABC =a :b .答案:a :b三、1.解析:如答图所示.(1)过C 点作CE ∥DA .∵AB ∥CD ,∴四边形AECD 是平行四边形(两组对边分别平行的四边形是平行四边形),∴∠AEC=∠D .∵∠D=2∠B , ∴∠AEC=2∠B=∠1+∠B , ∴∠1=∠B ,∴EC=EB .∵DC=b ,AD=a , ∴AE=b ,CE=EB=a ,∴AB=a+b .222a ab +. (2)S 梯形ABCD = 2DC AB +×AB= 2b a b ++×a= 2.解析:如答图所示.∵DC ∥AB ,DE ∥CB ,∴四边形DEBC 是平行四边形,∴DC=EB ,DE=CB ,∴L 梯形ABCD -L △ADE =(DC+AD+AB+BC )-(AD+AE+DE )=DC+EB=2DC .∵CD=4cm ,∴△ADE 的周长比梯形的周长少8cm .3.解析:依题意可知EM=EA .∵EM=23AB ,EA=23AB .∵M 是BC 边中点,∴MB= 12 BC .∵正方形ABCD , ∴∠B=90°,AB=BC=CD=DA ,∴S △AEM :S 正方形ABCD = 2AE MB ⨯:AB 2= 21322AB AB ⨯:AB 2=1:6. 4.解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥ND .∵AC ∥MN ,∴四边形ACQM ,APNC 是平行四边形(两组对边分别平行的四边形是平行四边形)∴AC=PN=MQ (平行四边形对边相等).5.如答图所示,∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形.∵AD 是△ABC 中∠A 的平分线,∴∠1=∠2,∴□AEDF 是菱形(对角线平分一组对角的平行四边形是菱形).∴EF 关于直线AD 对称.6.如答图所示,过A 点,B 点分别作AM ⊥DC 于M 点,BN ⊥DC 于N 点. ∵AB ∥DC ,∴AM=BN ,∵AD=AC ,∴DM=MC=12DC .∵AD ⊥AC ,∴∠ACD=45°, AM=MC=MD=12CD .∵DB=DC ,∴BN=AM=12DB ,∴∠BDC=30°,∴∠CEB=∠ACD+∠DCB=45°+30°=75°, ∠DCB=∠DBC=12(180°-∠BDC )=12(180°-30°)=75°, ∴∠DBC=∠CEB ,∴CE=CB .。

平行四边形练习题(3套)附答案

平行四边形练习题(3套)附答案

卷1一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm5.在ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是(). A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.12:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个.A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若ABCD•的周长为38cm,△ABD的周长比ABCD的周长少10cm,则ABCD的一组邻边长分别为______.14.在ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.22.如图所示,在ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.F C DAEB23.如图所示,ABCD的周长是103+62,AB的长是53,DE⊥AB于E,DF⊥CB交CB•的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.24.如图所示,ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△ABE=60,•求∠C的度数.27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN 于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF =S△EFC.答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130° • • 15.10 16.结论题设 17.同旁内角互补,两直线平行18.5.13 直角三、21.ABCD的周长为20cm 22.略23.(1)∠C=45°(2) 24.略25.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm28.提示:连结BD,取BD•的中点G,连结MG,NG29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略卷二一、填空题(每空2分,共28分)1.已知在 中,AB =14cm ,BC =16cm ,则此平行四边形的周长为 cm .2.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明 (只需填写一种方法)3.如图,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.4.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (第3题)(2)菱形可以由两个能够完全重合的 拼合而成;(3)矩形可以由两个能够完全重合的 拼合而成. 5.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm .6.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .7.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为 cm .8.根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .(第8题) (第10题) 9.已知平行四边形的两条对角线互相垂直且长分别为12cm 和6cm ,那么这个平行四边形 的面积为 2cm .10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB ⊥BC ;(4)AO=OC .其中正确的结论是 .(把你认为正确的结论的序号都填上)二、选择题(每题3分,共24分)11. 如果一个多边形的内角和等于一个三角形的外角和,那么这个多边形是( )A 、三角形B 、四边形C 、五边形D 、六边形12.下列说法中,错误的是 ( )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C. 平行四边形的对角相等D.对角线互相垂直的四边形是平行四边形13.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( )A.1个B.2个C.3个D.4个14. 四边形ABCD 中,AD//BC ,那么 的值可能是( )A 、3:5:6:4B 、3:4:5:6C 、4:5:6:3D 、6:5:3:415.如图,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( )A.变大B.变小C.不变D.无法确定 AB C D EF 1m 1m A B C a b ABCD A B CD O A B CD O l(第15题) (第16题) (第17题)16.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A. 15B. 30C. 45D. 6017.如图,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F , 那么四边形AFDE 的周长是 ( )A.5B.10C.15D.2018.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形;(3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是( )A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4)三、解答题(第19题8分,第20~23题每题10分,共48分)19.如图, 中,DB=CD , 70=∠C ,AE ⊥BD 于E .试求DAE ∠的度数. (第19题)20.如图,中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG , 100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.(第20题)21.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH ;(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: .A BC D EABCD A B C D F E GABCD(图①) (图②) (图③) (图④)(第21题)22.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.(第22题)ADBC答案1.60.2.平行四边形;有一组邻边相等.3.8. 提示:它们是.,,,,,,,ACDBCDABCABDAODCODBOCAOB∆∆∆∆∆∆∆∆4.(1)等腰直角三角形; (2)等腰三角形; (3)直角三角形.7.3.8.4. 提示:如图所示,将“十”字标志的某些边进行平移后可得到一个边长为1m的正方形,所以它的周长为4m.8题)9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半.10. (1)(2)(4). 提示:四边形ABCD是菱形.11.B. 12.D.13.C. 14.C.15.C. 提示:因为ABC∆的底边BC的长不变,BC边上的高等于直线ba,之间的距离也不变,所以ABC∆的面积不变.16.A. 提示:由于()BAFDAEFAEDAEFAE∠-=∠=∠∠∠9021,所以通过折叠后得到的是由. 17.B. 提示:先说明DF=BF,DE=CE,所以四边形AFDE的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC.18.C.19.因为BD=CD,所以,CDBC∠=∠又因为四边形ABCD是平行四边形,所以AD∥BC,所以,DBCD∠=∠因为20709090,,=-=∠-=∠∆⊥DDAEAEDBDAE中所以在直角.20.(1)因为四边形ABCD是平行四边形,所以AB=DC,又AF=CG,所以AB-AF=DC-CG,即GD=BF,又DG∥BF,所以四边形DFBG是平行四边形,所以DF=BG;(2)因为四边形DFBG是平行四边形,所以DF∥GB,所以AFDGBF∠=∠,同理可得DGEGBF∠=∠,所以100=∠=∠DGEAFD.21.(1)平行四边,两组对边分别相等的四边形是平行四边形;(2)矩,有一个是直角的平行四边形是矩形.22.如图所示,连结对角线AC、BD,过A、B、C、D分别作BD、AC、BD、AC的平行线,且这些平行线两两相交于E、F、G、H,四边形EFGH即为符合条件的平行四边形.ABCDEFGH练习31、把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.2、四边形ABCD 、DEFG 都是正方形,连接AE 、CG .(1)求证:AE =CG ;(2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想.3、将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.挑战自我:1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( )A .9B .8C .6D .4A B C D E F D ′ DC A B G H F E4、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。

八年级数学平行四边形单元测试(二)(北师版)(含答案)

八年级数学平行四边形单元测试(二)(北师版)(含答案)

平行四边形单元测试(二)(北师版)一、单选题(共10道,每道10分)1.若平行四边形一边长为10,则其两条对角线的长可能是( )A.3,8B.20,30C.6,8D.8,12答案:B解题思路:试题难度:三颗星知识点:平行四边形的性质2.一副三角板按如图所示方式叠放在一起,则图中∠α的度数是( )A.60°B.75°C.90°D.105°答案:D解题思路:试题难度:三颗星知识点:三角形的外角性质3.在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH的交点P在对角线BD上,图中面积相等的平行四边形有( )对.A.0B.1C.2D.3答案:D解题思路:试题难度:三颗星知识点:平行四边形的性质4.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B,C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是( )A.24B.18C.16D.12答案:C解题思路:试题难度:三颗星知识点:平行四边形的判定与性质5.如图,在平行四边形ABCD中,P是其内部任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为,则一定成立的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平移的性质6.在平面直角坐标系中,点A的坐标为(,3),以OA为边做等边三角形OAB,点B恰好落在x轴上,若沿AB边翻折△OAB使点O落在点C处,则点C的坐标是( )A.(3,)B.(,3)C.(,3)D.(,3)答案:C解题思路:试题难度:三颗星知识点:几何三大变化7.如图,在△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为( )A.3B.2C. D.1答案:C解题思路:试题难度:三颗星知识点:由三线合一想到等腰三角形8.如图,在△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F.若BC=6,则DF的长是( )A.2B.C.3D.4答案:C解题思路:试题难度:三颗星知识点:角平分线加平行会出现等腰三角形9.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=BC=3DE=6,则四边形DEFG的周长为( )A.6B.9C.11D.12答案:C解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半10.如图,平行四边形ABCD的对角线AC,BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.若点E,F同时运动,设运动时间为t秒,当t=( )时,四边形AECF是平行四边形.A.2sB.3sC.6sD.12s答案:A解题思路:试题难度:三颗星知识点:平行四边形判定与性质。

八年级初二数学下学期平行四边形单元 易错题难题学能测试试卷 (2)

八年级初二数学下学期平行四边形单元 易错题难题学能测试试卷 (2)

八年级初二数学下学期平行四边形单元 易错题难题学能测试试卷一、解答题1.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.2.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 . (2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.3.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+4.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.5.如图,ABC 是等腰直角三角形,90,ACB ∠=︒分别以,AB AC 为直角边向外作等腰直角ABD △和等腰直角,ACE G 为BD 的中点,连接,,CG BE ,CD BE 与CD 交于点F .(1)证明:四边形ACGD 是平行四边形;(2)线段BE 和线段CD 有什么数量关系,请说明理由;(3)已知2,BC =求EF 的长度(结果用含根号的式子表示).6.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.7.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.8.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)9.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).10.猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]①②【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析;(23;(3)2【分析】(1)由线段垂直平分线的性质可得BE=DE,BF=DF,可得∠EBD=∠EDB,∠FBD=∠FDB,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF,可证BE∥DF,DE∥BF,可得四边形DEBF是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF的长;(3)过点D作BC的垂线,垂足为H,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH的长度,再利用底乘高得出结果.【详解】解:证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵EF垂直平分BD,∴BE=DE,BF=DF,∵∠EBD=∠EDB,∠FBD=∠FDB,∴∠EBD=∠BDF,∠EDB=∠DBF,∴BE∥DF,DE∥BF,∴四边形DEBF是平行四边形,且BE=DE,∴四边形BEDF是菱形;(2)过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE=2,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=12DF=1,FH=3DH=3,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=1,∴FC=FH+CH=3+1;(3)过点D作BC的垂线,垂足为H,∵四边形BEDF是菱形,∠BDE=15°,∴∠DBF=∠BDF=∠ABD=15°,∴∠DFH=∠ABC=30°,∵DE=DF=2,∴DH=1,∴菱形BEDF的面积=BF×DH=2×1=2.【点睛】本题考查了菱形的判定和性质,线段垂直平分线的性质,直角三角形的性质等知识,掌握菱形的判定方法是本题的关键.2.(1332);(2)存在,点D的坐标为(0,3)或(231)或(0,-1);(3)OM=32或212【分析】 (1)过点B 作BD ⊥y 轴于D ,利用30°所对的直角边是斜边的一半和勾股定理求出OB ,再利用30°所对的直角边是斜边的一半和勾股定理求出BD 和OD 即可得出结论;(2)根据题意和等边三角形的性质分别求出点A 、B 、C 的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论; (3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角形的直角顶点分类讨论,分别画出对应的图形,利用直角三角形斜边上的中线等于斜边的一半、平行四边形的判定及性质、等腰三角形的判定及性质求解即可.【详解】解:(1)如图2,过点B 作BD ⊥y 轴于D由图1中,点A 的坐标为()1,0-,30ABO ∠=︒,∠AOB=90° ∴OA=1,AB=2OA=2由勾股定理可得223AB OA -=∵将此直角三角板绕点O 顺时针旋转30∴∠BOD=30°∴BD=132OB =∴2232OB BD -=∴点B 332) 332); (2)在图2的基础上继续将直角三角板绕点O 顺时针60︒,此时点A 落在y 轴上,点B 落在x 轴上∴点A 的坐标为(0,1),点B 30)∵△ABC 为等边三角形∴∠ABC=60°,AB=BC=AC=2∴∠OBC=90°∴点C的坐标为(3,2)设点D的坐标为(a,b)如图所示,若四边形ABCD为菱形,连接BD,与AC交于点O ∴点O既是AC的中点,也是BD的中点∴03312022ab⎧++=⎪⎨++⎪=⎪⎩解得:3 ab=⎧⎨=⎩∴此时点D的坐标为(0,3);当四边形ABDC为菱形时,连接AD,与BC交于点O ∴点O既是AD的中点,也是BC的中点∴033212022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:31ab⎧=⎪⎨=⎪⎩∴此时点D的坐标为(231);当四边形ADBC为菱形时,连接CD,与AB交于点O∴点O既是AB的中点,也是CD的中点∴03322 10222ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:1ab=⎧⎨=-⎩∴此时点D的坐标为(0,-1);综上:点D的坐标为(0,3)或(23,1)或(0,-1);(3)∵OB=3,∠ABO=30°∴OP=12OB=32∴BP=2232OB OP-=当∠OMB=90°时,如下图所示,连接BM∵F为OB的中点∴PF=12OB,MF=12OB,OF=BF∴PF=MF∴四边形OPBM为平行四边形∴OM=BP=32;当∠OBM=90°时,如下图所示,连接OM,∴∠PBM=∠PBO +∠OBM=120°∵点F 为OB 的中点∴FP=FB∴∠FPB=∠FBP=30°∴∠BMP=180°-∠PBM -∠FPB=30°∴∠BMP=∠BPM∴BM=BP=32在Rt △OBM 中,22212OB BM +=; 综上:OM=32或212. 【点睛】 此题考查的是直角三角形的性质、菱形的性质、平行四边形的判定及性质、等边三角形的性质,掌握30°所对的直角边是斜边的一半、勾股定理、直角三角形斜边上的中线等于斜边的一半、菱形的性质、平行四边形的判定及性质、等边三角形的性质是解决此题的关键.3.(1)证明见解析;(2)62BE =3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AEDG CG CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论. 【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC ,∴∠E=∠EGD ,∠H=∠DFG ,∵∠CGH=∠EGD ,∠DFG=∠AFE ,∴∠E=∠CGH ,∠H=∠AFE ,∵//EH AC ,AB//CD ,∴四边形ACGE 是平行四边形,∴AE=CG ,∴△AEF ≌△CGH (AAS );(2)∵四边形ABCD 为平行四边形,∴AB//CD ,AB=CD ,∴∠E=∠EGD ,∠D=∠EAF ,∵F 是AD 的中点,∴AF=FD ,∴△AEF ≌△DGF (AAS );由(1)得△AEF ≌△CGH (AAS );∴△DGF ≌△CGH, ∴12AE DG CG CD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴242AB CD AD ,∴22AE =,∴62BE AB BE =+=;(3)如下图,∵四边形ABCD 为平行四边形,∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD ,∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==,且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键.4.(1)详见解析;(2)是,详见解析;(3)【分析】(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG,再判断出AB=BE,进而得出BE=CD,即可判断出△BEG≌△DCG(SAS),再判断出∠CGE=60°,进而得出△BDG是等边三角形,即可得出结论;(3)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【详解】(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=12∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵BE CDBEM DCM EM CM=⎧⎪∠=∠⎨⎪=⎩,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴22221024AB AD++=26,∴2DM BD == 【点睛】 本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质,正方形的判定与性质,等腰直角三角形的判定和性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.5.(1)见解析;(2)BE =CD ,理由见解析;(3)EF【分析】(1)利用等腰直角三角形的性质易得BD=2BC ,因为G 为BD 的中点,可得BG=BC ,由∠CGB=45°,∠ADB=45得AD ∥CG ,由∠CBD+∠ACB=180°,得AC ∥BD ,得出四边形ACGD 为平行四边形;(2)利用全等三角形的判定证得△DAC ≌△BAE ,由全等三角形的性质得BE=CD ;首先证得四边形ABCE 为平行四边形,再利用全等三角形的判定定理得△BCE ≌△CAD ,易得∠CBE=∠ACD ,由∠ACB=90°,易得∠CFB=90°,得出结论.(3)先证明△DBF 是直角三角形,再利用勾股定理进行计算,即可求出答案.【详解】解:(1)∵△ABC 和△ABD 都是等腰直角三角形∴∠CAB =∠ABD = 45°,BDABBC =2BC =2AC∴AC ∥BD又∵G 为BD 的中点,∴BD =2DG ,∴AC =DG ,AC ∥DG∴四边形ACGD 为平行四边形;(2)BE =CD ,理由如下∵△AEC 和△ABD 都是等腰直角三角形AE =AC ,AB =AD∠EAB =∠EAC +∠CAB =90°+45°=135°,∠CAD =∠DAB +∠BAC =90°+45°=135°,∴∠EAB =∠CAD ,在△DAC 与△BAE 中, AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌△BAE ,∴BE =CD ;(3) ∵△DAC ≌△BAE∴∠AEB=∠ACD又∵∠EAC=90°∴∠EFC=∠DFB=90°∴ △DBF 是直角三角形∵BC =2, ∴BD =22, 根据勾股定理得CD =10,∴11••22CD BF BC BD = ∴1210⨯BF =122⨯•22 ∴BF =2105∴EF =BE -BF =CD -BF = 102105-= 3105. 【点睛】本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.6.(1)四边形AEFD 能够成为菱形,理由见解析;(2)5t =,理由见解析.【分析】(1)能;首先证明四边形AEFD 为平行四边形,当AE =AD 时,四边形AEFD 为菱形,即40﹣4t =2t ,解方程即可解决问题;(2)当∠FDE =90°时,AEFD 为矩形,再根据线段的长度关系列方程求得.【详解】解:(1)四边形AEFD 能够成为菱形,理由如下:在DFC ∆中,90,30DFC C ∠=︒∠=︒,4DC t =,∴2DF t =,又∵2AE t =,∴AE DF =,∵,AB BC DF BC ⊥⊥,∴//AE DF ,又∵AE DF =,∴四边形AEFD 为平行四边形,如图1,当AE AD =时,四边形AEFD 为菱形,即4042t t -=,解得203t =.∴当203t =秒时,四边形AEFD 为菱形.(2)如图2,当90FDE ∠=︒时,四边形EBFD 为矩形,在Rt AED ∆中,60A ∠=︒,则30ADE ∠=︒,∴2AD AE =,即4044t t -=,解得5t =.【点睛】本题考查平行四边形的判定和性质、菱形的判定、直角三角形的判定和性质、矩形的性质等知识,解题的关键是方程思想,学会构建方程解决问题.7.(1)B (12,4);(2)52t s =;(3)58,4,3,4,2,4,,42 【分析】(1)由四边形OABC 是平行四边形,得到OA BC =,//OA BC ,于是得到 10OA =,2OE AF ,可求出点B 的坐标; (2)根据四边形PCDA 是平行四边形,得到PC AD =,即1025t -=,解方程即可得到结论;(3)如图2,可分三种情况:①当5PD OD 时,②当5PO OD 时,③当 PD OP =时分别讨论计算即可.【详解】解:如图1,过C 作CE OA ⊥于E ,过B 作BF OA ⊥于 F ,四边形OABC 是平行四边形,OA BC ,//OA BC ,A ,C 的坐标分别为(10,0), (2,4), 10OA ∴=,2OEAF , 10BC ∴=,(12,4)B ;(2)设点P 运动t 秒时,四边形PCDA 是平行四边形,由题意得:102PC t =-,点D 是OA 的中点, 152OD BC AD OA ,四边形PCDA 是平行四边形,PC AD ,即1025t -=,52t ∴=, ∴当52t =秒时,四边形PCDA 是平行四边形; (3)如图2,①当5PDOD 时,过1P 作1PE OA 于 E ,则14PE ,3DE ∴=,1(8,4)P ,又D ,C 的坐标分别为()5,0,(2,4), ∴225245CD ,即有,当点P 与点C 重合时,5PDOD ,2,4P ; ②当5POOD 时,过2P 作2P G OA 于 G , 则24P G ,3OG ∴=,2(3,4)P ;③当PD OP =时,过3P 作3P FOA 于 F , 则34P F ,52OF =, 35(2P ,4); 综上所述:当ODP ∆是等腰三角形时,点P 的坐标为(8,4), 5(2,4),(3,4),(2,4). 【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.8.(1)见解析;(2)222MN BN DM =+,理由见解析;(3)【分析】(1)由直角三角形的性质得AO=MO=12BE=BO=EO ,得∠ABO=∠BAO ,∠OBM=∠OMB ,证出∠AOM=∠AOE+∠MOE=2∠ABO+2∠MBO=2∠ABD=90°即可;(2)在AD 上方作AF ⊥AN ,使AF=AN ,连接DF 、MF ,证△ABN ≌△ADF (SAS ),得BN=DF ,∠DAF=∠ABN=45°,则∠FDM=90°,证△NAM ≌△FAM (SAS ),得MN=MF ,在Rt △FDM 中,由勾股定理得FM 2=DM 2+FD 2,进而得出结论;(3)作P 关于直线CQ 的对称点E ,连接PE 、BE 、CE 、QE ,则△PCQ ≌△ECQ ,∠ECQ=∠PCQ=135°,EQ=PQ=9,得∠PCE=90°,则∠BCE=∠DCP ,△PCE 是等腰直角三角形,得CE=CP=2PE ,证△BCE ≌△DCP (SAS ),得∠CBE=∠CDB=∠CBD=45°,则∠EBQ=∠PBE=90°,由勾股定理求出BE=PE=6,即可得出PC 的长.【详解】解:(1)证明:四边形ABCD 是正方形,90ABC BAD ∴∠=∠=︒,45ABD ADB ∠=∠=︒,ME BD ⊥,90BME ∴∠=︒, O 是BE 的中点,12AO MO BE BO EO ∴====, ABO BAO ∴∠=∠,OBM OMB ∠=∠,22290AOM AOE MOE ABO MBO ABD ∴∠=∠+∠=∠+∠=∠=︒;(2)222MN BN DM =+,理由如下:在AD 上方作AF AN ⊥,使AF AN =,连接DF 、MF ,如图2所示:则90NAF ∠=︒,四边形ABCD 是正方形,AB AD ∴=,90BAD NAF ∠=∠=︒,BAN DAF ∴∠=∠,45NAM ∠=︒,45FAM NAM ∴∠=︒=∠,在ABN ∆和ADF ∆中,AB AD BAN DAF AN AF =⎧⎪∠=∠⎨⎪=⎩,()ABN ADF SAS ∴∆≅∆,BN DF ∴=,45DAF ABN ∠=∠=︒,90FDM ADB ADF ∴∠=∠+∠=︒,45NAM ∠=︒,45FAM NAM ∴∠=︒=∠,在NAM ∆和FAM ∆中,AN AF NAM FAM AM AM =⎧⎪∠=∠⎨⎪=⎩,()NAM FAM SAS ∴∆≅∆,MN MF ∴=,在Rt FDM ∆中,222FM DM FD =+,即222MN BN DM =+;(3)作P 关于直线CQ 的对称点E ,连接PE 、BE 、CE 、QE ,如图3所示: 则PCQ ECQ ∆≅∆,135ECQ PCQ ∠=∠=︒,9EQ PQ ==,36090PCE PCQ ECQ ∴∠=︒-∠-∠=︒,BCE DCP ∴∠=∠,PCE ∆是等腰直角三角形,2CE CP ∴==, 在BCE ∆和DCP ∆中,BC DC BCE DCP CE CP =⎧⎪∠=∠⎨⎪=⎩,()BCE DCP SAS ∴∆≅∆,45CBE CDB CBD ∴∠=∠=∠=︒,90EBQ ∴∠=︒,90PBE ∴∠=︒,2PB =,9PQ =,7BQ PQ PB ∴=-=,22229742BE EQ BQ ∴=--=22222(42)6PE PB BE ∴++,232PC ∴==; 故答案为:32【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的判定、勾股定理、轴对称的性质等知识;本题综合性强,熟练掌握正方形的性质和勾股定理,证明三角形全等是解题的关键.9.(1)见解析;(2)FG=EP ,理由见解析;(32【分析】(1)证△ODE ≌△OFB (ASA ),即可得出OE=OF ;(2)连AC ,由(1)可知OE=OF ,OB=OD ,证△AOE ≌△COF (SAS ),得AE=CF ,由折叠性质得AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1,则∠D=∠B 1,证△A 1PE ≌△CGF (AAS ),即可得出FG=EP ;(3)作OH ⊥BC 于H ,证四边形ABCD 是矩形,则∠ABC=90°,得∠OBC=30°,求出AC=8,由勾股定理得BC=43CF=3,由等腰三角形的性质得BH=CH=12BC=3HF=423-,OH=12OB=2,由勾股定理得OF=2622,进而得出答案. 【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ODE=∠OBF ,∠OED=∠OFB ,∵AE=CF ,∴AD-AE=BC-CF ,即DE=BF ,在△ODE 和△OFB 中, ODE OBF DE BFOED OFB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODE ≌△OFB (ASA ),∴OE=OF ;(2)FG=EP ,理由如下:连AC ,如图②所示:由(1)可知:OE=OF ,OB=OD ,∵四边形ABCD 是平行四边形,∴AC 过点O ,OA=OC ,∠BAD=∠BCD ,∠D=∠B , 在△AOE 和△COF 中,OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (SAS ),∴AE=CF ,由折叠性质得:AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1, ∴∠D=∠B 1,∵∠A 1PE=∠DPH ,∠PHD=∠B 1HG ,∴∠DPH=∠B 1GH ,∵∠B 1GH=∠CGF ,∴∠A 1PE=∠CGF ,在△A 1PE 和△CGF 中,111A PE CGF A FCG A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A 1PE ≌△CGF (AAS ),∴FG=EP ;(3)作OH ⊥BC 于H ,如图③所示:∵△AOB 是等边三角形,∴∠ABO=∠AOB=∠BAO=60°,OA=OB=AB=4, ∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∴AC=BD ,∴四边形ABCD 是矩形,∴∠ABC=90°,∴∠OBC=∠OCB=30°,∵AB=OB=BF=4,∴AC=BD=2OB=8,由勾股定理得:BC=2222=84AC AB --=43,∴CF=43-4, ∵OB=OC ,OH ⊥BC ,∴BH=CH=12BC=23, ∴HF=4-23,OH=12OB=2, 在Rt △OHF 中,由勾股定理得:OF=22OH HF +=()222423+-=2622-,∴434226222CF OF -===-, 故答案为:2.【点睛】本题是四边形综合题,考查了平行四边形的性质、矩形的判定与性质、翻折变换的性质、全等三角形的判定与性质、等腰三角形的性质、含30°角的直角三角形的性质、等边三角形的性质、勾股定理等知识;本题综合性强,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,属于中考压轴题.10.猜想与证明:猜想DM 与ME 的数量关系是:DM =ME ,证明见解析;拓展与延伸:(1)DM =ME ,DM ⊥ME ;(2)证明见解析【分析】猜想:延长EM 交AD 于点H ,利用△FME ≌△AMH ,得出HM=EM ,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM 交AD 于点H ,利用△FME ≌△AMH ,得出HM=EM ,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC ,AC 和EC 在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【详解】解:猜想与证明:猜想DM 与ME 的数量关系是:DM =ME.证明:如图①,延长EM 交AD 于点H.①∵四边形ABCD 、四边形ECGF 都是矩形,∴AD ∥BG ,EF ∥BG ,∠HDE =90°.∴AD ∥EF.∴∠AHM =∠FEM.又∵AM =FM ,∠AMH =∠FME ,∴△AMH ≌△FME.∴HM =EM.又∵∠HDE =90°,∴DM =12EH =ME ; (1)∵四边形ABCD 和CEFG 是正方形,∴AD ∥EF ,∴∠EFM=∠HAM ,又∵∠FME=∠AMH ,FM=AM ,在△FME 和△AMH 中,EFM HAM FM AMFME AMH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FME ≌△AMH (ASA )∴HM=EM ,在RT △HDE 中,HM=EM ,∴DM=HM=ME ,∴DM=ME .∵四边形ABCD 和CEFG 是正方形,∴AD=CD ,CE=EF ,∵△FME ≌△AMH ,∴EF=AH ,∴DH=DE ,∴△DEH 是等腰直角三角形,又∵MH=ME ,故答案为:DM =ME ,DM ⊥ME ;(2)证明:如图②,连结AC.②∵四边形ABCD、四边形ECGF都是正方形,∴∠DCA=∠DCE=∠CFE=45°,∴点E在AC上.∴∠AEF=∠FEC=90°.又∵点M是AF的中点,∴ME=12 AF.∵∠ADC=90°,点M是AF的中点,∴DM=12 AF.∴DM=ME.∵ME=12AF=FM,DM=12AF=FM,∴∠DFM=12(180°-∠DMF),∠MFE=12(180°-∠FME),∴∠DFM+∠MFE=12(180°-∠DMF)+12(180°-∠FME)=180°-12(∠DMF+∠FME)=180°-12∠DME.∵∠DFM+∠MFE=180°-∠CFE=180°-45°=135°,∴180°-12∠DME=135°.∴∠DME=90°.∴DM⊥ME.【点睛】本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.。

四平市八年级数学下册第三单元《平行四边形》检测卷(包含答案解析)

四平市八年级数学下册第三单元《平行四边形》检测卷(包含答案解析)

一、选择题1.图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .已知图甲中,45F ∠=︒,15H ∠=︒,图乙中 2MN =,则图2中正方形的对角线AC 长为( )A .22B .23C .231+D .232+ 2.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .一组对边平行,另一组对边相等的四边形是平行四边形C .对于所有自然数n ,237n n -+的值都是质数D .三角形一条边的两个顶点到这条边上的中线所在直线的距离相等3.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°4.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 5.已知平行四边形ABCD 的一边长为5,则对角线AC ,BD 的长可取下列数据中的( )A .2和4B .3和4C .4和5D .5和6 6.已知矩形ABCD ,下列条件中不能判定这个矩形是正方形的是( ) A .AC BD ⊥ B .AC BD = C .AC 平分BAD ∠ D .ADB ABD ∠=∠7.下列命题中,正确的命题是( ) A .菱形的对角线互相平分且相等 B .顺次联结菱形各边的中点所得的四边形是矩形 C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形8.如图,在Rt ABC 中,90C =∠,30A ∠=,D 是 AC 边的中点,DE AC ⊥于点D ,交AB 于点E ,若83AC =,则DE 的长是( )A .8B .6C .4D .29.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③ 10.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,30ACD ∠=︒,若ABC 的周长比AOB 的周长大10,则AB 的长为( ).A .103B .53C .10D .2011.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O处,折痕为BE,点E在边CD上,则CE的长为()A.12a B.25a C.32a D.33a12.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案二、填空题13.已知菱形的面积为962cm,两条对角线之比为3∶4,则菱形的周长为__________.14.如图,点O是菱形ABCD对角线的交点,DE//AC,CE//BD,连接OE,设AC=12,BD =16,则OE的长为_____.15.如图,正方形ABCD的边长为2,O是对角线BD上一动点(点O与端点B,D不重合),OM⊥AD于点M,ON⊥AB于点N,连接MN,则MN长的最小值为_____.16.如图,在正八边形ABCDEFGH中,AE是对角线,则EAB的度数是__________.17.在△ABC 中, AD 是BC 边上的高线,CE 是AB 边上的中线,CD =AE ,且CE <AC .若AD =6,AB =10,则CE =___________18.如图,在正方形ABCD 中,有面积为4的正方形EFGH 和面积为2的正方形PQMN 、点E F P Q 、、、分别在边AB BC CD AD 、、、上,点M N 、在边HG 上,且组成的图形为轴对称图形,则正方形ABCD 的面积为__________.19.如图,A B 、两点分别位于山脚的两端,小明想测量A B 、两点间的距离,于是想了个主意,先在地上取一个可以直接达到A B 、两点的点C ,找到AC BC 、的中点D 、E ,并且测出DE 的长为15m ,则A B 、两点间的距离为_________m .20.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.三、解答题21.如图,在ABCD中,对角线AC与BD相交于点O,点M,N分别为OB,OD的中=,连接CE,CN.点,连接AM并延长至点E,使EM AM≌;(1)求证:ABM CDN(2)当AB与AC满足什么数量关系时,四边形MECN是矩形?请说明理由;(3)连接AN,EN.当ANE满足什么条件时,四边形MECN是正方形?请说明理由.22.已知:如图,在正方形ABCD中,点E为边AB的中点,连结DE,点F在DE上⊥交AD于点G.=,过点F作FG FCCF CD=;(1)求证:GF GD⊥.(2)联结AF,求证:AF DE∠、23.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分BCD CF平分GCDEF BC交CD于点O.∠,//=;(1)求证:OE OF(2)若点O为CD的中点,求证:四边形DECF是矩形.AF BE DF CE.24.如图,点E在ABCD内部,//,//(1)求证:BCE ADF ≅∆;(2)求证:AEDF 1S 2ABCD S =四边形25.如图,已知四边形ABCD 是平行四边形,E 是AB 延长线上一点且BE AB =,连接CE ,BD .(1)求证:四边形BECD 是平行四边形(2)连接DE ,若4AB BD ==,22DE =,求BECD 的面积.26.正方形ABCD 中,点E 是BD 上一点,过点E 作EF AE ⊥交射线CB 于点F ,连结CE .(1)若AB BE =,求DAE ∠度数;(2)求证:CE EF =【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接HF ,过点G 作GI HF 交HF 于点I ,根据甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD ,可得EFH △是等腰直角三角形,则可求得45GFI ,30GHI ,根据勾股定理,可得:1GI =,3HI,则有1FI GI ,31EF HF HI FI ,根据正方形的对角线2AC EF =可求出答案.解:如图示,连接HF ,过点G 作GI HF 交HF 于点I ,∵甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .∴根据题意,根据对称性可得EFH △是等腰直角三角形,则有:90EFH,45EHF HEF ∵45GFE ,15EHG , ∴45GFI ,30GHI ,又∵GI HF ,2MN =, ∴根据勾股定理,可得:1GI =,3HI , 则有1FIGI , ∴31EF HF HI FI , ∴正方形的对角线2231232ACEF ,故选:D .【点睛】 本题考查了正方形的性质,勾股定理,直角三角形的性质,熟悉相关性质是解题的关键. 2.D解析:D【分析】根据钝角三角形的高的交点在三角形外部可对A 进行判断;根据平行四边形的判定对B 进行判断;取n=6可对C 进行判断;根据三角形全等的知识可对D 进行判断.【详解】解:A 、钝角三角形的三条高线相交于三角形外一点,所以A 选项错误;B 、一组对边平行,另一组对边也平行的四边形是平行四边形,所以B 选项错误;C 、当n=6时,n 2-3n+7=25,25不是质数,所以C 选项错误;D 、通过证明三角形全等,可以证明三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D 选项准确.故选:D .【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.也考查了平行四边形的判定及全等三角形的判定和性质.3.A【分析】根据平行四边形的对角相等求出∠B 即可得解.【详解】解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题. 4.C解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积21122BE AE a =⨯=⨯=,ADF ∆的面积21122DF AF b =⨯=⨯,平行四边形ABCD 的面积BC AE a =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.5.D解析:D【分析】由三角形三边关系可得三角形两边之和大于第三边,两边之差小于第三边.【详解】解:由于两条对角线的一半与平行四边形的一边组成一个三角形, 所以12(AC-BD )<5<12(AC+BD ), 由题中数据可得,AC 和BD 的长可取5和6,故选D .【点睛】本题考查了平行四边形对角线互相平分及三角形三边关系问题,能够熟练求解此类问题. 6.B解析:B【分析】根据矩形的性质及正方形的判定进行分析即可.【详解】 解:四边形ABCD 是矩形,AC BD ⊥,∴矩形ABCD 是正方形;四边形ABCD 是矩形,//AD BC ∴,DAC BCA ∴∠=∠, AC 平分BAD ∠,BAC DAC ∴∠=∠,BAC ACB ∴∠=∠,∴AB BC =,∴矩形ABCD 是正方形;ADB ABD ∠=∠,∴AB AD =,∴四边形ABCD 是矩形,∴矩形ABCD 是正方形;故选:B .【点睛】本题考查矩形的判定,解题的关键是掌握正方形的判定方法.7.B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.8.C解析:C【分析】根据直角三角形的性质得到AB=2BC ,利用勾股定理求出BC ,再根据三角形中位线定理求出DE .【详解】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC,设BC=x,则AB=2x,∴()222483x x=+,解得:x=8或-8(舍),∴BC=8,∵D是AC边的中点,DE AC⊥,∴DE=12BC=4,故选C.【点睛】本题考查了含30°角的直角三角形的性质,三角形的中位线的性质,熟练掌握直角三角形的性质是解题的关键.9.D解析:D【分析】①设∠EDC=x,则∠DEF=90°-x从而可得到∠DBE=∠DEB=180°-(90°-x)-45°=45°+x,∠DBM=∠DBE-∠MBE=45°+x-45°=x,从而可得到∠DBM=∠CDE;③由△BDM≌△DEF,可知DF=BM,由直角三角形斜边上的中线的性质可知BM=12 AC;④可证明△BDM≌△DEF,然后可证明:△DNB的面积=四边形NMFE的面积,所以△DNB 的面积+△BNE的面积=四边形NMFE的面积+△BNE的面积;【详解】解:①设∠EDC=x,则∠DEF=90°-x,∵BD=DE,∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∴∠DBM=∠DBE-∠MBE=45°+x-45°=x.∴∠DBM=∠CDE,故①正确;②由①得∠DBM=∠CDE,如果BN=DN,则∠DBM=∠BDN,∴∠BDN=∠CDE,∴DE为∠BDC的平分线,∴△BDE≌△FDE,∴EB ⊥DB ,已知条件∠ABC=90°,∴②错误的;③在△BDM 和△DEF 中,DBM CDE DMB DFE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDM ≌△DEF (AAS ),∴BM=DF ,∵∠ABC=90°,M 是AC 的中点,∴BM=12AC , ∴DF=12AC , 即AC=2DF ;故③正确.④由③知△BDM ≌△DEF (AAS )∴S △BDM =S △DEF ,∴S △BDM -S △DMN =S △DEF -S △DMN ,即S △DBN =S 四边形MNEF .∴S △DBN +S △BNE =S 四边形MNEF +S △BNE ,∴S △BDE =S 四边形BMFE ,故④错误;故选D .【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质,利用面积法证明S △BDE =S 四边形BMFE 是解题的关键.10.A解析:A【分析】由矩形的性质和已知条件求出,BC=10,即可得出答案.【详解】解:∵四边形ABCD 是矩形,∴AO=CO=DO=BO ,AD=BC ,∠ABC=90°,AB ∥CD ,∴∠BAC=∠ACD=30°,∴,∵△ABC 的周长=AB+AC+BC=AB+AO+OC+BC ,△AOB 的周长=AB +AO +BO ,又∵ABC 的周长比△AOB 的周长长10,∴AB+AC+BC-(AB +AO +BO )=BC=10,∴故选:A .【点睛】本题考查了矩形的性质、含30°角的直角三角形的性质等知识,熟练掌握矩形的性质,求出BC的长是解题的关键.11.D解析:D【分析】首先证明△OBC是等边三角形,在Rt△EBC中求出CE即可解决问题;【详解】解:∵四边形ABCD是矩形,∴OB=OC,∠BCD=90°,由翻折不变性可知:BC=BO,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE,根据勾股定理得:故选:D.【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC是等边三角形.12.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题13.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x和4x由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x和4x,由题意可得:134962x x=,解得:x=±4(负值舍去)∴对角线长分别为12cm、16cm,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长,则菱形的周长为40cm.故答案为:40cm.【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.14.10【分析】由菱形的性质和勾股定理求出CD=20证出平行四边形OCED为矩形得OE=CD=10即可【详解】解:∵DEACCEBD∴四边形OCED为平行四边形∵四边形ABCD是菱形∴AC⊥BDOA=O解析:10【分析】由菱形的性质和勾股定理求出CD=20,证出平行四边形OCED为矩形,得OE=CD=10即可.【详解】解:∵DE//AC,CE//BD,∴四边形OCED为平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD=8,∴∠DOC=90︒,CD=10,∴平行四边形OCED为矩形,∴OE=CD=10,故答案为:10.【点睛】本题考查了菱形的性质、矩形的判定与性质以及平行四边形判定与性质等知识;熟练掌握特殊四边形的判定与性质是解题的关键.15.1【分析】连接AO可证四边形AMON是矩形可得AO=MN当AO⊥BD时AO有最小值即MN有最小值由等腰直角三角形的性质可求解【详解】解:如图连接AO∵四边形ABCD是正方形∴AB=AD=BD=AB=解析:1.【分析】连接AO ,可证四边形AMON 是矩形,可得AO =MN ,当AO ⊥BD 时,AO 有最小值,即MN 有最小值,由等腰直角三角形的性质可求解.【详解】解:如图,连接AO ,∵四边形ABCD 是正方形,∴AB =AD 2BD 2=2,∠DAB =90°,又∵OM ⊥AD ,ON ⊥AB ,∴四边形AMON 是矩形,∴AO =MN ,∵当AO ⊥BD 时,AO 有最小值,∴当AO ⊥BD 时,MN 有最小值,此时AB =AD ,∠BAD =90°,AO ⊥BD ,∴AO =12BD =1, ∴MN 的最小值为1,故答案为:1.【点睛】本题考查了正方形的性质,矩形的判定和性质,垂线段最短,等腰直角三角形的性质,利用矩形的对角线相等,把线段MN 的最小值转化为线段AO 的最小值是解题的关键. 16.【分析】根据正多边形的性质求解即可【详解】解:∵八边形是正八边形∴=∠HAB=×=故答案为:【点睛】本题主要考查多边形的内角和定理正多边形的性质掌握相关定理是解题的关键解析:67.5︒【分析】根据正多边形的性质求解即可【详解】解:∵八边形ABCDEFGH 是正八边形,∴EAB ∠=12∠HAB=12×()821808-⨯=67.5︒. 故答案为:67.5︒.【点睛】本题主要考查多边形的内角和定理,正多边形的性质,掌握相关定理是解题的关键. 17.【分析】先根据勾股定理求得AB 再做△ABD 的中位线EF 可得EF=3BF=DF=4从而可得CF=1再次利用勾股定理即可求得CE 【详解】解:∵AD 是BC 边上的高线AD=6AB=10∴∠D=90°∵CE 是 解析:10 【分析】先根据勾股定理求得AB ,再做△ABD 的中位线EF ,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE .【详解】解:∵AD 是BC 边上的高线,AD =6,AB =10,∴∠D=90°,22BD AB AD 8=-=,∵CE 是AB 边上的中线,CD =AE ,∴152CD AE BE AB ====, 取BD 的中点F,连接CF ,∴EF 为△ABD 的中位线,∴132EF AD ==,EF//AD , ∴∠EFB=∠D=90°, 在Rt △BEF 中,根据勾股定理,2222534BF BE EF =-=-=,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,22221310CE CF EF +=+=10【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.18.【分析】连接交于交于交于依据轴对称图形的性质即可得到的长进而得到正方形的面积【详解】解:如图连接交于交于交于正方形中有面积为4的正方形和面积为2的正方形又组成的图形为轴对称图形为对称轴为等腰直角三角 解析:279242+ 【分析】 连接BD ,交PQ 于R ,交HG 于S ,交EF 于K ,依据轴对称图形的性质,即可得到BD 的长,进而得到正方形ABCD 的面积.【详解】解:如图,连接BD ,交PQ 于R ,交HG 于S ,交EF 于K ,正方形ABCD 中,有面积为4的正方形EFGH 和面积为2的正方形PQMN , 2EH EF ∴==,2MQ QP ==,又组成的图形为轴对称图形,BD ∴为对称轴,BEF ∴∆、DPQ ∆为等腰直角三角形,四边形EKSH 、四边形MSRQ 为矩形, 112EK BK EF ∴===,11222DR QR PQ ===,2KN EH ==,2RS MQ ==, 1312223222BD ∴=+++=+, ∴正方形ABCD 的面积22113279(32)222242BD ==⨯+=+, 故答案为:279242+.【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.19.30【分析】由DE 分别是边ACAB 的中点首先判定DE 是三角形的中位线然后根据三角形的中位线定理求得AB 的长即可【详解】解:∵DE 分别是ACBC 的中点∴DE 是△ABC 的中位线根据三角形的中位线定理得:解析:30【分析】由D ,E 分别是边AC ,AB 的中点,首先判定DE 是三角形的中位线,然后根据三角形的中位线定理求得AB 的长即可.【详解】解:∵D、E分别是AC、BC的中点,∴DE是△ABC的中位线,根据三角形的中位线定理,得:AB=2DE=30m.故答案为:30.【点睛】本题考查了三角形中位线定理的运用;熟记三角形中位线定理是解决问题的关键.20.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.三、解答题21.(1)见解析;(2)AC=2AB,理由见解析;(3)当AN=EN且∠ENA=90°时,四边形MECN是正方形.【分析】(1)根据SAS证明三角形全等即可.(2)先根据等腰三角形的性质可得∠NMA=90°,再根据有一个角是直角的平行四边形是矩形证明即可.(3)先根据直角三角形斜边上的中线等于斜边的一半得出MN=EM,再根据有一个角是直角的菱形是正方形证明即可.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABM=∠CDN,∵点M,N分别为OB,OD的中点,∴11,22==BM OB DN OD ∴BM=DN ,在△ABM 和△CDN 中, AB CD ABM CDN BM DN =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△CDN .(2)当AC=2AB 时,四边形MECN 是矩形,理由如下:∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵四边形ABCD 是平行四边形,∴AC=2OA ,∵AC=2AB ,∴AB=OA ,∵M 是OB 的中点,∴AM ⊥OB ,∴∠NMA=90°,∴∠NME=90°,∴平行四边形MECN 是矩形.(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形;理由如下:连接AN 、EN∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵EM AM =,∠ENA=90°∴MN=EM ,∴平行四边形EMNC 是菱形,∵AN=EN ,AM=EM∴∠NME=90°,∴四边形EMNC 是正方形.【点睛】本题考查了正方形的判定、平行四边形的性质和判定、全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)见解析;(2)见解析【分析】(1)由CF CD =可证得CFD CDF ∠=∠,因为90ADC GFC ∠∠==,所以GFD GDF ∠=∠,再由等腰三角形的判定即可得证;(2)因为,CF CD GF GD ==,所以GC 是FD 的垂直平分线,再证DAE CDG △≌△由全等三角形对应边相等可得AE DG =,这样AG GD GF ==即可解决问题;【详解】证明:(1)四边形ABCD 是正方形,90ADC ∴∠=,FG FC ⊥,90GFC ∠∴=,CF CD =CFD CDE ∴∠=∠,GFC CFD ADC CDE ∠∠∠∠∴-=-,即GFD GDF ∠=∠,GF GD ∴=.(2)如图,连结CG .,CF CD GF GD ==∴点G 、C 在线段FD 的中垂线上,GC DE ∴⊥,90CDF DCG ∠∠∴+=,90CDF ADE ∠∠+=,DCG ADE ∠∠∴=.四边形ABCD 是正方形,,90AD DC DAE CDG ∠∠∴===,DAE CDG ∴△≌△,AE DG ∴=,点E 是边AB 的中点,∴点G 是边AD 的中点,AG GD GF ∴==,,DAF AFG GDF GFD ∠∠∠∠∴==180DAF AFG GFD GDF ∠∠∠∠+++=,22180AFG GFD ∠∠∴+=90AFD ∠∴=,即AF DE ⊥.【点睛】本题是正方形的综合题,考查了正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,线段垂直平分线的判定等知识,侧重考查了学生的逻辑推理能力和对知识的应用能力.23.(1)见解析;(2)见解析【分析】(1)由角平分线的定义及平行线的性质可证得DCE FEC ∠=∠,EFC DCF ∠=∠,得OE OC =,OF OC =,即可得出结论;(2)先证得四边形DECF 是平行四边形,再利用角平分线的定义可求得90ECF ∠=︒,则可证得四边形DECF 为矩形.【详解】证明:(1)∵CE 平分BCD ∠、CF 平分GCD ∠∴BCE DCE ∠=∠,DCF GCF ∠=∠∵EF ∥BC ,∴BCE FEC ∠=∠,EFC GCF ∠=∠∴DCE FEC ∠=∠,EFC DCF ∠=∠∴OE OC =,OF OC =,∴OE OF =.(2)∵点O 为CD 的中点,∴OD OC =,又OE OF =,∴四边形DECF 是平行四边形∵CE 平分BCD ∠、CF 平分GCD ∠, ∴12DCE BCD ∠=∠,12DCF DCG ∠=∠ ∴()11=9022DCE DCF BCD DCG BCG ∠+∠=∠+∠∠=︒∵DCE DCF ECF ∠+∠=∠,∴90ECF ∠=︒∵四边形DECF 是平行四边形,∴平行四边形DECF 是矩形.【点睛】本题主要考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定以及平行线的性质等知识,掌握相关性质定理正确推理论证是解题关键.24.(1)见解析;(2)见解析【分析】(1)先证明CBE DAF ∠=∠,BCE ADF ∠=∠,然后利用ASA 证明:△BCE ≌△ADF ; (2)根据点E 在ABCD 内部,可知:S △BEC +S △AED =12S ▱ABCD ,可得结论. 【详解】解:()1四边形ABCD 是平行四边形, ,//AD BC AD BC =,180,ABC BAD ∴∠+∠=//,AF BE180,EAB BAF ∴∠+∠=︒,CBE DAF ∴∠=∠同理得,BCE ADF ∠=∠()BCE ADF ASA ∴∆≅∆()2点E 在ABCD 内部, ∴12BEC AED ABCD S S S ∆∆+=,由()1知: ,BCE ADF ∆≅∆BCE ADF S S ∆∆∴= ∴AEDF 1S 2ADF AED BEC AED ABCD S S S S S ∆∆∆∆=+=+=四边形.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.25.(1)见解析;(2)BECD S =菱形【分析】(1)根据四边形ABCD 是平行四边形,得到AB CD =,//AB CD ,再根据BE AB =,得到BE CD =,利用一组对边平行且相等的四边形BECD 是平行四边形去判定.(2)先利用已知条件证四边形BECD 是菱形,再在Rt BOE △中,利用勾股定理求BO ,进而求BC ,则可求菱形面积.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形.(2)如图,连接DE ,交BC 于点O ,∵4AB BD ==,BE AB =,∴4BD BE ==,由(1)得四边形BECD 是平行四边形,∴BECD 是菱形,∴DE BC ⊥, ∵22DE =, ∴122OE DE ==, 在Rt BOE △中,22224(2)14BO BE OE =-=-=, ∴2214BC BO ==,∴11214224722BECD S BC DE =⋅=⨯⨯=菱形. 【点睛】 本题考查了平行四边形、菱形性质和判定的综合应用,熟练掌握相关知识是解答此题的关键.26.(1)22.5︒;(2)见解析.【分析】(1)用正方形对角线平分对角,等腰三角形性质计算即可;(2)借助正方形的性质,证明三角形全等,运用等角对等边证明即可.【详解】(1)∵ABCD 为正方形,∴45ABE ∠=︒.又∵AB BE =, ∴()11804567.52BAE ∠=⨯︒-︒=︒. ∴9067.522.5DAE ∠=︒-︒=︒(2)证明:∵正方形ABCD 关于BD 对称,∴ABE CBE △△≌,∴BAE BCE ∠=∠.又∵90ABC AEF ∠=∠=︒,∴BAE EFC ∠=∠,∴BCE EFC ∠=∠,∴CE EF =.【点睛】本题考查了正方形的性质,等腰三角形的性质,三角形的全等,等腰三角形的判定,运用正方形的性质,证明三角形的全等是解题的关键.。

初二年级数学下册《平行四边形》试卷

初二年级数学下册《平行四边形》试卷

初二年级数学下册《平行四边形》试卷一.选择题(每题5分,共25分)1. 已知四边形ABCD ,以下有四个条件.(1) (2)AB AD AB BC ==,(3)A B C D ∠=∠∠=∠,(4)AB CD AD BC ∥,∥ 能判四边形ABCD 是平行四边形的有( )A.1个 B.2个 C.3个 D.4个 2. ABCD 中,:::A B C D ∠∠∠∠的值可以是( )A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:23. 如果平行四边形的两条对角线长分别是8和12,那么它的边长不能是( ) A.10 B.8 C.7 D.64、在平行四边形ABCD 中,∠B =110°,延长AD 至F ,延长CD至E ,连结EF ,则∠E +∠F =( )A .110°B .30°C .50°D .70°5.设P 为平行四边形ABCD 内的一点,△PAB 、△PBC 、△PDC 、△PDA•的面积分别记为S 1、 S 2、S 3、S 4,则有( )A .S 1=S 4B .S 1+S 2=S 3+S 4C .S 1+S 3=S 2+S 4D .以上都不对二.填空题(每题5分,共25分)6、平行四边形ABCD 中,∠A=50°,AB=30cm ,则∠B=__ __,DC=__ __7、菱形的两条对角线分别长10cm ,24cm ,则菱形的边长为__ ___ cm ,面积为__ ____ cm 2.8、在□ABCD 中,(1)若添加一个条件_____ __,则四边形ABCD 是矩形;(2)若添加一个条件 , 则四边形ABCD 是菱形.9、如图,在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为15,AB =6,那么对角线AC +BD = .10、在平面直角坐标系中,四边形AOBC 是菱形。

若点A 的坐标是(3 , 4),且点B 在x 轴上,则菱形的周长为 ,点C 的坐标是三、解答题。

八年级初二数学下学期平行四边形单元测试提优卷试题

八年级初二数学下学期平行四边形单元测试提优卷试题

八年级初二数学下学期平行四边形单元测试提优卷试题一、解答题1.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF . (1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形; ②当折痕经过点A 时,BE 与AE 的数量关系为 . (2)深入探究:在矩形ABCD 中,AB =3,BC =23. ①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.2.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =;(2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.3.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F . (1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想; (3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.4.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上. (1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形. (2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.5.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN : ①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).6.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,. ①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.7.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.8.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE. (1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.9.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD +=.10.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上. (1)若n =1,AF ⊥DE . ①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CFBF的值是_____________(结果用含n 的式子表示).【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①等腰;②2BE ;(2)①2;②存在,351 2【分析】(1)①由折叠的性质得EF=BF,即可得出结论;②当折痕经过点A时,由折叠的性质得AF垂直平分BE,由线段垂直平分线的性质得AE=BE,证出ABE是等腰直角三角形,即可得出BE2AE;(2)①由等边三角形的性质得BF=BE,∠EBF=60°,则∠ABE=30°,由直角三角形的性质得BE=2AE,AB33,则AE=1,BE=2,得BF=2即可;②当点F在边BC上时,得S△BEF≤12S矩形ABCD,即当点F与点C重合时S△BEF最大,由折叠的性质得CE=CB=3EF=3当点F在边CD上时,过点F作FH∥BC交AB于点H,交BE于点K,则S△EKF=1 2KF•AH≤12HF•AH=12S矩形AHFD,S△BKF=12KF•BH≤12HF•BH=12S矩形BCFH,得S△BEF≤12S矩形ABCD =3,即当点F为CD的中点时,BEF的面积最大,此时,DF=12CD=32,点E与点A重合,由勾股定理求出EF即可.【详解】解:(1)①由折叠的性质得:EF=BF,∴BEF是等腰三角形;故答案为:等腰;②当折痕经过点A时,由折叠的性质得:AF垂直平分BE,∴AE=BE,∵四边形ABCD是矩形,∴∠ABC=∠A=90°,∴ABE是等腰直角三角形,∴BE=2AE;故答案为:BE=2AE;(2)①当BEF是等边三角形时,BF=BE,∠EBF=60°,∴∠ABE=90°﹣60°=30°,∵∠A=90°,∴BE=2AE,AB=3AE=3,∴AE=1,BE=2,∴BF=2;②存在,理由如下:∵矩形ABCD中,CD=AB=3,BC=23,∴矩形ABCD的面积=AB×BC=3×23=6,第一种情况:当点F在边BC上时,如图1所示:此时可得:S△BEF≤12S矩形ABCD,即当点F与点C重合时S△BEF最大,此时S△BEF=3,由折叠的性质得:CE=CB=23,即EF=23;第二种情况:当点F在边CD上时,过点F作FH∥BC交AB于点H,交BE于点K,如图2所示:∵S△EKF=12KF•AH≤12HF•AH=12S矩形AHFD,S△BKF=12KF•BH≤12HF•BH=12S矩形BCFH,∴S△BEF=S△EKF+S△BKF≤12S矩形ABCD=3,即当点F为CD的中点时,BEF的面积最大,此时,DF=12CD=32,点E与点A重合,BEF的面积为3,∴EF=22AD DF+=51;综上所述,BEF的面积存在最大值,此时EF的长为23或51.【点睛】此题考查的是矩形与折叠问题,此题难度较大,掌握矩形的性质、折叠的性质、等边三角形的性质和勾股定理是解决此题的关键.2.(1)①7;②证明见解析;(2)93,理由见解析【分析】(1)①如图1中,延长BC交DE的延长线于T,过点T作TH⊥BD于H,设BD=2x.证明△BDT是等腰直角三角形,四边形ACTE是矩形,进而利用勾股定理构建方程求解即可;②如图2中,延长BC交DE的延长线于T,连接TF,进而利用全等三角形的性质证明△CEF是等腰直角三角形即可解决问题;(2)如图3中,根据题意设∠EAD=x,则∠BAC=2x.证明△ABC是等边三角形,再根据垂线段最短即可解决问题.【详解】解:(1)①如图1中,延长BC交DE的延长线于T,过点T作TH⊥BD于H,设BD=2x.∵∠ACB=90°,∠ACB+∠AED=180°,∴∠AED=90°,∵CA=CB,EA=ED,∴∠B=∠D=45°,∴∠BTD=90°,∵∠TCA=∠CTE=∠TEA=90°,∴四边形ACTE是矩形,∴22 EC AT==∵TH⊥BD,∴BH=HD=x,∴TH=HB=HD=x,∵AB=3,∴AH=x-3,在Rt △ATH 中,则有22252(())23x x =-+, 解得:72x =或12-(不符合题意舍弃), ∴BD=2x=7.②证明:如图2中,延长BC 交DE 的延长线于T ,连接TF .∵∠B=∠D=45°, ∴TB=TD ,∵∠BTD=90°,BF=DF , ∴TF ⊥BD ,∠FTE=∠BTF=45°, ∴TF=BF ,∠BFT=90°, ∵四边形ACTE 是矩形, ∴TE=AC , ∴AC=BC , ∴BC=TE , ∵∠B=∠FTE=45°, ∴△FBC ≌△FTE (SAS ), ∴FC=EF ,∠BFC=∠TFE , ∴∠CFE=∠BFT=90°, ∴△CFE 是等腰直角三角形, ∴EC=2EF .(2)如图3中,设∠EAD=x ,则∠BAC=2x .∵EA=ED ,∴∠EAD=∠EDA=x , ∴2x+∠AED=180°, ∵∠ACB+∠AED=180°, ∴∠ACB=2x , ∵CB=CA , ∴∠B=∠CAB=2x , ∴∠C=∠B=∠CAB , ∴△ABC 是等边三角形, ∴∠CAB=60°,∠EAD=30°, 当AD ⊥BC 时,△ADE 的面积最小, ∵AB=BC=AC=3, ∴32AD =, ∴S △ADE 的最小值13239322416=⨯⨯=. 【点睛】本题属于三角形综合题,考查等腰直角三角形的判定和性质,等边三角形的判定和性质,矩形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.3.(1)详见解析;(2)DE EF =,理由详见解析;(3)DE EF =,理由详见解析 【分析】(1)根据90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF ,连接NE ,在DA 边上截取DN=EB ,证出△DNE ≌△EBF 即可得出答案;(3)在DA 边上截取DN EB =,连接NE ,证出()DNE EBF ASA ≌即可得出答案. 【详解】(1)证明:∵90DAB DEF ∠=∠=︒,∴90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒, ∴ADE FEM ∠=∠; (2) ;DE EF =理由如下:如图,取AD 的中点N ,连接NE ,∵四边形ABCD 为正方形, ∴AD AB = ,∵,N E 分别为,AD AB 中点∴11,22AN DN AD AE EB AB ====, ∴,DN BE AN AE ==又∵90A ∠=︒ ∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒, 又∵90CBM ∠=︒,BF 平分CBM ∠ ∴45,135CBF EBF ∠=︒∠=︒. ∴DNE EBF ∠=∠ 在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF = (3) DE EF =.理由如下:如图,在DA 边上截取DN EB =,连接NE ,∵四边形ABCD 是正方形, DN EB =, ∴AN AE =,∴AEN △为等腰直角三角形, ∵45ANE ∠=︒∴18045135DNE ∠=︒-︒=︒, ∵BF 平分CBM ∠, AN AE =, ∴9045135EBF ∠=︒+︒=︒, ∴DNE EBF ∠=∠, 在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DNE EBF ASA ≌,∴DE EF =.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE ≌△EBF .4.(1)见详解;(2)722x =-【分析】(1)连接MN ,由勾股定理求出AC=5,证出四边形ABNM 是矩形,得MN=AB=3,证△AME ≌△CNF (SAS ),得出EM=FN ,∠AEM=∠CFN ,证EM ∥FN ,得四边形EMFN 是平行四边形,求出MN=EF ,即可得出结论;(2)连接MN ,作MH ⊥BC 于H ,则MH=AB=3,BH=AM=x ,得HN=BC-BH-CN=4-2x ,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN ,如图1所示:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∠B=90°,∴∠EAM=∠FCN ,2222345AB BC +=+=,∵M ,N 分别是AD ,BC 的中点,∴AM=DM=BN=CN ,AM ∥BN ,∴四边形ABNM 是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x ,∵四边形EMFN 为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得:32+(4-2x )2=42,解得:x=72±, ∵0<x <2,∴x=72- 【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键.5.(1)见解析;(2)7PA =4217BH 3)①(423,23)M +2635 【分析】(1)利用直角三角形斜边中线的性质可得DO=DA ,推出∠AEO=60°,进一步得出BC ∥AE ,CO ∥AB ,可得结论;(2)先计算出OA=43PB=23AP=7,再利用面积法计算BH 即可;(3)①求出直线PM 的解析式为3,再利用两点间的距离公式计算即可; ②易得直线BC 的解析式为y=33-x+4,联立直线BC 和直线PM 的解析式成方程组,求得点G 的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=12OB,OD=BD=12OB,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:在Rt△AOB中,∠AOB=30°,OB=8,∴AB=4,∴OA=∵四边形ABCE是平行四边形,∴PB=PE,PC=PA,∴PB=∴PC PA===∴1122ABCS AC BH AB BE∆=⋅⋅=⋅⋅,即114 22BH⨯=⨯⨯∴BH(3)①∵C(0,4),设直线AC的解析式为y=kx+4,∵P(0),∴0=,解得,k=3-,∴y=x+4,∵∠APM=90°,∴直线PM的解析式为,∵P(0),∴0=2×, 解得,m=-3,∴直线PM 的解析式为, 设M (x,2x-3), ∵AP=∴(x-2+)2=(2, 化简得,x 2x-4=0,解得,x 1=4,x 2=4(不合题意舍去),当x=4时,y=2×(4)-3= ∴M(4,故答案为:(4,②∵(0,4),C B∴直线BC的解析式为:43y x =-+,联立34y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,解得65x y ⎧=⎪⎪⎨⎪=⎪⎩,∴6)5G ,161=4252PBG PBA S S S ∆∆∴+=⨯+⨯=阴 【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.6.(1)9或5;(2)①见解析,②见解析【分析】(1)分两种情况:①如图1-1,得出正方形ABCD 的边长为3,求出正方形ABCD 的面积为9;②如图1-2,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,证明△ABE ≌△BCF (AAS ),得出AE=BF=2由勾股定理求出(2)①过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,证明△ABE ≌△BCF (AAS ),得出AE=BF ,同理△CDM ≌△BCF (AAS ),得出△ABE ≌△CDM (AAS ),得出BE=DM 即可; ②由①得出AE=BF=h 2+h 3=h 2+h 1,得出正方形ABCD 的面积S=AB 2=AE 2+BE 2,即可得到答案.【详解】解:(1)①如图,当点B D ,分别在14,l l 上时,面积为:339⨯=;②如图,当点B D ,分别在23,l l 上时,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF ,在△ABE 和△BCF 中90ABE BCF AEB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF (AAS ),∴AE=BF=2,∴AB=2222215AE BE +=+=,∴正方形ABCD 的面积=AB 2=5;综上所述,正方形ABCD 的面积为9或5;(2)①证明:过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,如图所示:则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF ,在△ABE 和△BCF 中,90ABE BCF AEB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF (AAS ),∴AE=BF ,同理△CDM ≌△BCF (AAS ),∴△ABE ≌△CDM (AAS ),∴BE=DM ,即h 1=h 3.②解:由①得:AE=BF=h 2+h 3=h 2+h 1,∵正方形ABCD 的面积:S=AB 2=AE 2+BE 2,∴S=(h 2+h 1)2+h 12=2h 12+2h 1h 2+h 22.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.7.(1)12;(2)2S 1=36 +S 2.【分析】(1)根据已知条件证得四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,利用HL 证得Rt △ABG ≌Rt △ACE ,得到∠GAB=∠EAC,GB=CE ,再利用45DAE ︒∠=证得△GAD ≌△EAD ,得到DE=GB+BD ,由此求得DOE ∆的周长;(2) 在OB 上取点F ,使AF=AE ,根据HL 证明Rt △ABF ≌Rt △ACE ,得到∠FAE=∠ABC=90︒,再证明△ADE ≌△ADF ,利用面积相加关系得到四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,根据三角形全等的性质得到2S △ADE =S 正方形ABOC +S △OD E ,即可得到2S △ADE =36 +S △ODE .【详解】(1)∵点A 的坐标为(6,6)-,AB x ⊥轴,AC y ⊥轴,∴AB=BO=AC=OC=6,∴四边形ABOC 是菱形,∵∠BOC=90︒,∴四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,∵四边形ABOC 是正方形,∴AB=AC ,∠ABG=∠ACE=90︒,∴Rt △ABG ≌Rt △ACE ,∴∠GAB=∠EAC,GB=CE ,∵∠BAE+∠EAC=90︒,∴∠GAB+∠BAE=90︒,即∠GAE=90︒,∵45DAE ︒∠=∴∠GAD=45DAE ︒∠=,又∵AD=AD,AG=AE ,∴△GAD ≌△EAD ,∴DE=GD=GB+BD,∴DOE ∆的周长=DE+OD+OE=GB+BD+OD+OE=OB+OC=6+6=12(2) 2S 1=36 +S 2,理由如下:在OB 上取点F ,使AF=AE ,∵AB=AC ,∠ABF=∠ACE=90︒,∴Rt △ABF ≌Rt △ACE ,∴∠BAF=∠CAE,∴∠FAE=∠ABC=90︒,∵∠DAE=45︒,∴∠DAF=∠DAE=45︒,∵AD=AD ,∴△ADE ≌△ADF ,∵四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,∴2S △ADE =S 正方形ABOC +S △OD E ,∴2S △ADE =36 +S △ODE.即:2S 1=36 +S 2【点睛】此题考查三角形全等的判定及性质,根据题中的已知条件证得三角形全等,即可利用性质得到边长相等,面积相等的关系,(2)中需根据面积的加减关系进行推导,这是此题的难点.8.(1)①45;②△ADE≌△ECF,理由见解析;(2)25.【分析】(1)①根据矩形的性质得到90ABC BCD ∠=∠=︒,根据角平分线的定义得到45EBC ∠=︒,根据三角形内角和定理计算即可;②利用ASA 定理证明ADE ECF ≅;(2)连接HB ,证明四边形NBEH 是矩形,得到NE BH =,根据勾股定理求出BH 即可.【详解】(1)①∵四边形ABCD 为矩形,∴∠ABC=∠BCD=90°,∵BE 平分∠ABC,∴∠EBC=45°,∴∠BEC=45°,故答案为45;②△ADE≌△ECF,理由如下:∵四边形ABCD 是矩形,∴∠ABC=∠C=∠D=90°,AD=BC .∵FE⊥AE,∴∠AEF=90°.∴∠AED+∠FEC=180°-∠AEF=90°.∵∠AED+∠DAE=90°,∴∠FEC=∠EAD,∵BE 平分∠ABC,∴∠BEC=45°.∴∠EBC=∠BEC.∴AD=EC.在△ADE 和△ECF 中,DAE CEF AD ECADE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△ECF;(2)连接HB ,如图2,∵FH∥CD,∴∠HFC=180°-∠C=90°.∴四边形HFCD 是矩形.∴DH=CF,∵△ADE≌△ECF,∴DE=CF.∴DH=DE.∴∠DHE=∠DEH=45°.∵∠BEC=45°,∴∠HEB=180°-∠DEH -∠BEC=90°.∵NH∥BE,NB∥HE,∴四边形NBEH 是平行四边形.∴四边形NBEH 是矩形.∴NE=BH.∵四边形ABCD 是矩形,∴∠BAH=90°.∵在Rt△BAH 中,AB=4,AH=2,【点睛】本题考查的是矩形的判定和性质、全等三角形的判定和性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.9.(1)32)见详解.(1)根据所给的60°,判断出等边三角形,得出BE=6,根据所给比例关系,求出CE ,然后求出三角形面积;(2)利用已知条件能够求出ABF ≌ADH ,之后需要构造全等图形,使所求的BG+GD 转化在同一直线上,然后根据含有30°的特殊直角三角形的关系,即可证明出结果.【详解】解:(1) 如图:过A 点作AN ⊥BE ,交BE 于N .∵60ABC ∠=︒,6AB AE ==∴△ABE 为等边三角形,∴AB=BE=AE=6即:AN=33∵:5:2BC CE =∴:5:3BC BE =∵BE=6∴BC=10∴EC=4 ∴113346322ACE S AN EC ==⨯=即:ACE △的面积为3.(2)如图:延长GD 至P 使DP=BG ,连接AP ,∵AH=AF ,∴∠AFH=∠AHF即:∠AFB=∠AHD ,又∵AF=AH ,BF=DH ,∴ABF ≌ADH∴AB=AD又∵180ABG ADG ∠+∠=︒,180ADP ADG ∠+∠=︒,∴∠ABG=∠ADP∵BG=DP ,∴ABG ≌ADP △∴AG=AP ,∠BAG=∠DAP∵∠ABC=60°∴∠BAD=120°即:∠GAP=120°∴∠AGP=∠APG=60°,又∵AM ⊥GD∴3,∵BG=GP∴BG+GD=GD+DP=GP即:3.【点睛】本题重点考察在平行四边形中利用平行四边形的性质证明图形面积,以及构造全等图形求多边之间的关系,构造全等三角形是本题的解题关键.10.(1)①证明见解析;②证明见解析;(2)241n -.【分析】(1)①先根据1n =可得AD AB =,再根据矩形的性质可得90DAE ABF ∠=∠=︒,然后根据直角三角形的性质、垂直的定义可得DEA AFB ∠=∠,最后根据三角形全等的判定定理与性质即可得证;②如图(见解析),先根据(1)的结论可得AE BF =,再根据等腰三角形的三线合一可得HAF DAF ∠=∠,然后根据矩形的性质、平行线的性质可得AFG DAF ∠=∠,从而可得HAF AFG ∠=∠,最后根据等腰三角形的定义可得AG GF =,由此即可得证; (2)如图(见解析),先根据线段中点的定义可得AE BE =,再根据角平分线的性质可得,AE EM DM AD nAB ===,从而可得BE EM =,然后根据直角三角形全等的判定定理与性质可得BF MF =,设BF MF x ==,最后在Rt CDF 中,利用勾股定理求出x 的值,从而可得BF 、CF 的值,由此即可得出答案.【详解】(1)①当1n =时,AD AB =四边形ABCD 是矩形90DAE ABF ∴∠=∠=︒90BAF AFB ∴∠+∠=︒AF DE ⊥90BAF DEA ∴∠+∠=︒DEA AFB ∴∠=∠在ADE 和BAF △中,90DAE ABF DEA AFB AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAF AAS ∴≅AE BF ∴=;②如图,过点A 作AF DH ⊥,交BC 于点F由(1)可知,AE BF =,AH AD AF DH =⊥HAF DAF ∴∠=∠(等腰三角形的三线合一)四边形ABCD 是矩形//AD BC ∴AFG DAF ∴∠=∠HAF AFG ∴∠=∠AG GF ∴=又GF BF BG AE BG =+=+AE BG AG ∴+=;(2)如图,过点E 作EM DF ⊥于点M ,连接EF四边形ABCD 是矩形,,90AD BC nAB AB CD A B C ∴===∠=∠=∠=︒点E 是AB 的中点 12AE BE AB ∴==,,ADE EDF EA AD EM DF ∠=∠⊥⊥,AE EM DM AD nAB ∴===BE EM ∴=在Rt BEF △和Rt MEF 中,BE ME EF EF =⎧⎨=⎩()Rt BEF Rt MEF HL ∴≅∴=BF MF设BF MF x ==,则CF BC BF nAB x =-=-,DF DM MF nAB x =+=+ 在Rt CDF 中,222+=CD CF DF ,即222()()AB nAB x nAB x +-=+解得14x AB n= 14BF AB n ∴=,214144n CF nAB AB AB n n-=-= 则224144114n AB CF n n BF AB n-==- 故答案为:241n -.【点睛】本题考查了矩形的性质、等腰三角形的三线合一、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。

人教版八年级初二数学第二学期平行四边形单元测试综合卷学能测试试卷

人教版八年级初二数学第二学期平行四边形单元测试综合卷学能测试试卷

人教版八年级初二数学第二学期平行四边形单元测试综合卷学能测试试卷一、选择题1.如图,在Rt△ABC中,∠A=30°,BC=2,点D,E分别是直角边BC,AC的中点,则DE 的长为()A.2 B.3 C.4 D.232.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=12AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.其中正确的是()A.①④B.①③④C.①②③D.②③④3.如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A 出发,以每秒3cm的速度沿折线A-B-C-D方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动、已知动点P,Q同时出发,当点Q运动到点C时,点P,Q停止运动,设运动时间为t秒,在这个运动过程中,若△BPQ的面积为20cm2,则满足条件的t的值有()A.1个B.2个C.3个D.4个4.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是()A.14B.116C.132D.1645.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥;④2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④6.如图,在菱形ABCD 中,若E 为对角线AC 上一点,且CE CD =,连接DE ,若5,8AB AC ==,则DE AD=( )A .104B .105C .35D .457.在ABCF 中,2BC AB =,CD AB ⊥于点D ,点E 为AF 的中点,若50ADE ∠=︒,则B 的度数是( )A .50︒B .60︒C .70︒D .80︒8.如图,已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (10,0),点B (0,6),点P 为BC 边上的动点,将△OBP 沿OP 折叠得到△OPD ,连接CD 、AD .则下列结论中:①当∠BOP =45°时,四边形OBPD 为正方形;②当∠BOP =30°时,△OAD 的面积为15;③当P 在运动过程中,CD 的最小值为234﹣6;④当OD ⊥AD 时,BP =2.其中结论正确的有( )A .1个B .2个C .3个D .4个9.如图,已知△ABC 的面积为12,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF=4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .2B .3C .4D .510.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC=EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中:①OH ∥BF ,②GH=14BC ,③BF=2OD ,④∠CHF=45°.正确结论的个数为( )A .4个B .3个C .2个D .1个二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC ,则平行四边形ABCD 的周长等于______________ .12.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______13.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.14.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.15.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.16.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.17.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.18.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.23.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 的面积为3cm 2; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.24.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)25.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果) 26.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF平分∠AEC .(1)如图1,求证:CF ⊥EF; (2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.27.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC =_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.28.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm /秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC = cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.29.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ的长(用含t的代数式表示);(2)当四边形ABQP是平行四边形时,求t的值;(3)当325t=时,点O是否在线段AP的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:在Rt△ABC中,∠A=30°,∴AB=2BC=4,∵D,E分别是直角边BC,AC的中点,∴122DE AB==,故选:D.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,三角形的中位线平行于第三边,且等于第三边的一半.2.A解析:A【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=12CD=12AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=12AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;③不正确;即可得出结果.【详解】∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,AB ∥CD ,OA =OC ,OB =OD ,AC ⊥BD , ∴∠BAG =∠EDG ,△ABO ≌△BCO ≌△CDO ≌△AOD , ∵CD =DE ,∴AB =DE ,在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△DEG (AAS ),∴AG =DG ,∴OG 是△ACD 的中位线,∴OG =12CD =12AB , ∴①正确;∵AB ∥CE ,AB =DE , ∴四边形ABDE 是平行四边形,∵∠BCD =∠BAD =60°,∴△ABD 、△BCD 是等边三角形,∴AB =BD =AD ,∠ODC =60°,∴OD =AG ,四边形ABDE 是菱形,④正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,OD AG ODC BAG 60AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABG ≌△DCO (SAS ),∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG , ∴②不正确;∵OB =OD ,AG =DG ,∴OG 是△ABD 的中位线,∴OG ∥AB ,OG =12AB , ∴△GOD ∽△ABD ,△ABF ∽△OGF ,∴△GOD 的面积=14△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF :OF =2:1, ∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;③不正确;正确的是①④.故选A .【点睛】 本题考查菱形的判定与性质, 全等三角形的判定与性质,三角形中位线的性质,熟练掌握性质,能通过性质推理出图中线段、角之间的关系是解题关键.3.B解析:B【解析】【分析】过A 作AH ⊥DC ,由勾股定理求出DH 的长.然后分三种情况进行讨论:即①当点P 在线段AB 上,②当点P 在线段BC 上,③当点P 在线段CD 上,根据三种情况点的位置,可以确定t 的值.【详解】解:过A 作AH ⊥DC ,∴AH =BC =8cm ,DH =22AD AH - =10064-=6. i )当P 在AB 上时,即1003t ≤≤时,如图,1110382022BPQ S BP BC t =⋅=-⨯=(),解得:53t =;ii )当P 在BC 上时,即103<t ≤6时,BP =3t -10,CQ =16-2t ,113101622022BPQ S BP CQ t t =⋅=-⨯-=()(),化简得:3t 2-34t +100=0,△=-44<0,∴方程无实数解.iii )当P 在线段CD 上时,若点P 在线段CD 上,若点P 在Q 的右侧,即6≤t ≤345,则有PQ=34-5t,13458202BPQS t=-⨯=(),295t=<6(舍去);若点P在Q的左侧时,即3485t≤<,则有PQ=5t-34,15348202BPQS t=-⨯=();t=7.8.综上所述:满足条件的t存在,其值分别为15 3t=,t2=7.8.故选B.【点睛】本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.4.D解析:D【分析】易得第二个菱形的面积为(12)2,第三个菱形的面积为(12)4,依此类推,第n个菱形的面积为(12)2n-2,把n=4代入即可.【详解】解:已知第一个菱形的面积为1;则第二个菱形的面积为原来的(12)2,第三个菱形的面积为(12)4,依此类推,第n个菱形的面积为(12)2n-2,当n=4时,则第4个菱形的面积为(12)2×4-2=(12)6=164.故选:D.【点睛】本题考查了三角形的中位线定理及矩形、菱形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.A解析:A【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【详解】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵AD CDADM CDM DM DM⎧⎪∠∠⎨⎪⎩===,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵90CBF CDEBC CDBCF DCE∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=x,则AM=AF=2x,3AN x =,DN=MN=x , ∴AD=AB= 3(31)x x x +=+,∴DE=BF=AB-AF=(31)2(31)x x x +-=-,∴ 22(31)26BF MD x x x +=-+=,∵BC=AD= (31)6x x +≠, 故④错误; 所以本题正确的有①②③;故选:A .【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM 是等边三角形是解题的关键.6.B解析:B【分析】连接BD ,与AC 相交于点O ,则AC ⊥BD ,142AO AC ==,由5AD AB ==,根据勾股定理求出DO ,求出EO ,由勾股定理求出DE ,即可得到答案.【详解】解:连接BD ,与AC 相交于点O ,则AC ⊥BD ,在菱形ABCD 中,142AO AC ==, ∵5AD AB CD ===, 在Rt △AOD 中,由勾股定理,得:22543DO =-=,∵=5CE CD =,8AC =,∴853AE =-=,∴431OE =-=,在Rt △ODE 中,由勾股定理,得223110DE =+=,∴10DE AD =. 故选:B.【点睛】本题考查了菱形的性质,勾股定理,以及线段的和差关系,解题的关键是正确作出辅助线,利用勾股定理求出DE 的长度.7.D解析:D【分析】连结CE ,并延长CE ,交BA 的延长线于点N ,根据已知条件和平行四边形的性质可证明△NAE ≌△CFE ,所以NE =CE ,NA =CF ,再由已知条件CD ⊥AB 于D ,∠ADE =50°,即可求出∠B 的度数.【详解】解:连结CE ,并延长CE ,交BA 的延长线于点N ,∵四边形ABCF 是平行四边形,∴AB ∥CF ,AB =CF ,∴∠NAE =∠F ,∵点E 是的AF 中点,∴AE =FE ,在△NAE 和△CFE 中,NAE F AE FEAEN FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△NAE ≌△CFE (ASA ),∴NE =CE ,NA =CF ,∵AB =CF ,∴NA =AB ,即BN =2AB ,∵BC =2AB ,∴BC =BN ,∠N =∠NCB ,∵CD ⊥AB 于D ,即∠NDC =90°且NE =CE ,∴DE =12NC =NE , ∴∠N =∠NDE =50°=∠NCB ,∴∠B =80°.故选:D .【点睛】本题考查了平行四边形的性质,综合性较强,难度较大,解答本题的关键是正确作出辅助线,构造全等三角形,在利用等腰三角形的性质解答.8.D解析:D【分析】①由矩形的性质得到90OBC ∠=︒,根据折叠的性质得到OB OD =,90PDO OBP ,BOP DOP ∠=∠,推出四边形OBPD 是矩形,根据正方形的判定定理即可得到四边形OBPD 为正方形;故①正确;②过D 作DH OA ⊥于H ,得到10OA =,6OB =,根据直角三角形的性质得到132DH OD ,根据三角形的面积公式得到OAD ∆的面积为113101522OA DH ,故②正确; ③连接OC ,于是得到OD CD OC ,即当OD CD OC +=时,CD 取最小值,根据勾股定理得到CD 的最小值为6;故③正确;④根据已知条件推出P ,D ,A 三点共线,根据平行线的性质得到OPBPOA ,等量代换得到OPAPOA ,求得10AP OA ,根据勾股定理得到1082BP BC CP ,故④正确.【详解】解:①四边形OACB 是矩形,90OBC ∴∠=︒,将OBP ∆沿OP 折叠得到OPD ∆, OB OD ∴=,90PDO OBP ,BOP DOP ∠=∠,45BOP ,45DOP BOP ,90BOD =∴∠︒,90BOD OBP ODP , ∴四边形OBPD 是矩形,OB OD =,∴四边形OBPD 为正方形;故①正确;②过D 作DH OA ⊥于H ,点(10,0)A ,点(0,6)B ,10OA ∴=,6OB =,6OD OB,30BOP DOP,DOA,301DH OD,32∴∆的面积为1131015OADOA DH,故②正确;22③连接OC,则OD CD OC,+=时,CD取最小值,即当OD CD OCOA=,AC OB,1062222OC OA AC,106234CD OC OD,2346即CD的最小值为2346;故③正确;OD AD,④⊥∴∠=︒,ADO90ODP OBP,90ADP,180P∴,D,A三点共线,OA CB,//OPB POA,OPB OPD,OPA POA,10AP OA,AC=,622CP,1068BP BC CP,故④正确;1082故选:D.【点睛】本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.9.C解析:C【分析】想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题.【详解】连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=13×12=4,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=4,∴S阴=4.故选C.【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.10.B解析:B【分析】①只要证明OH是△DBF的中位线即可得出结论;②根据OH是△BFD的中位线,得出GH=12CF,由GH<14BC,可得出结论;③易证得△ODH是等腰三角形,继而证得OD=12 BF;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论.【详解】解:∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF,∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF,∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;∴OH=12BF,∠DOH=∠CBD=45°,∵OH是△BFD的中位线,∴DG=CG=12BC,GH=12CF,∵CE=CF,∴GH=12CF=12CE∵CE<CG=12 BC,∴GH<14BC,故②错误.∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故④正确;∴∠ODH=∠BDC+∠CDF=67.5°,∴∠OHD=180°-∠ODH-∠DOH=67.5°,∴∠ODH=∠OHD,∴OD=OH=12BF;故③正确.故选:B.【点睛】此题考查了全等三角形的判定和性质、等腰三角形的判定与性质以及正方形的性质.解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.二、填空题11.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222=-=-=,BE AB AE543∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222BE AB AE543-=-,∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.12.2【分析】过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.【详解】解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE 线段长转移到线段BO 上.13.4:9【分析】设DP =DN =m ,则PN m ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PN m ,∴m=MC ,,∴BC =CD =PC+DP=3m ,∵四边形HMPN 是正方形,∴GF ⊥BC∵∠ACB =45︒,∴△FGC 是等腰直角三角形,∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2, ∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.14.【分析】设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点,∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC =2x =5 故答案为:5【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.15.5【分析】过点B 作BD ⊥l 2,交直线l 2于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则22OE BE +OABC 是平行四边形,所以OA=BC ,又由平行四边形的性质可推得∠OAF=∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,从而可求.【详解】解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .∵四边形OABC 是平行四边形,∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,∵直线l 1与直线l 2均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN=∠NCM ,∴∠OAF=∠BCD ,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC ,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴OB=22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.16.83或4433 【分析】 连接AC 交BD 于O ,由菱形的性质可得AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,可证四边形BEGF 是菱形,可得∠ABG=30°,可得点B ,点G ,点D 三点共线,由直角三角形性质可求3AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】如图,连接AC 交BD 于O ,∵菱形ABCD 的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,∵EG ∥BC ,FG ∥AB ,∴四边形BEGF 是平行四边形,又∵BE=BF ,∴四边形BEGF 是菱形,∴∠ABG=30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD=30°,∴AO=12AB=2,22224223AB AO --= ∴BD=3AC=4,同理可求3BE ,即3, 若AD=DG'=4时,∴BG'=BD-DG'=434,∴BE'4343433==-; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,∴AH=HD=2,∵∠ADB=30°,G''H ⊥AD ,∴DG''=2HG'',∵222HD HG''DG''+=,解得:HG''23=,DG''=2HG''43= ∴BG''=BD-DG''=438343-= ∴BE''=83, 综上所述:BE 为83或434-【点睛】本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.17.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可18.4【分析】过点E 作EM ∥AD ,由△ABO 是等腰三角形,根据三线合一可知点E 是AO 的中点,可证得EM=12AD=12BC ,根据已知可求得∠CEF=∠ECF=45°,从而得∠BEF=45°,△BEF 为等腰直角三角形,可得BF=EF=FC=12BC ,因此可证明△BFP ≌△MEP (AAS ),则EP=FP=12FC ,在Rt △BFP 中,利用勾股定理可求得x ,即得答案.【详解】 过点E 作EM ∥AD ,交BD 于M ,设EM=x ,∵AB=OB ,BE 平分∠ABO ,∴△ABO 是等腰三角形,点E 是AO 的中点,BE ⊥AO ,∠BEO=90°,∴EM 是△AOD 的中位线,又∵ABCD 是平行四边形,∴BC=AD=2EM=2x ,∵EF ⊥BC , ∠CAD=45°,AD ∥BC ,∴∠BCA=∠CAD=45°,∠EFC=90°,∴△EFC 为等腰直角三角形,∴EF=FC ,∠FEC=45°,∴∠BEF=90°-∠FEC=45°,则△BEF 为等腰直角三角形,∴BF=EF=FC=12BC=x , ∵EM ∥BF , ∴∠EMP=∠FBP ,∠PEM=∠PFB=90°,EM=BF ,则△BFP ≌△MEP (ASA ), ∴EP=FP=12EF=12FC=12x , ∴在Rt △BFP 中,222BP BF PF =+,即:2221(5)()2x x =+,解得:2x =,∴BC=2x =4,故答案为:4.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键. 19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3由DM=122AD =,则BM=3AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3 ∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.20.答案不唯一,例AC=BD 等【分析】连接AC 、BD ,先证明四边形ABCD 是平行四边形,再根据菱形的特点添加条件即可.【详解】连接AC ,∵点E 、F 分别是AB 、BC 的中点,∴EF 是△ABC 的中位线,∴EF ∥AC ,EF=12AC , 同理HG ∥AC ,HG=12AC, ∴EF ∥HG ,EF=HG ,∴四边形EFGH 是平行四边形,连接BD ,同理EH=FG,EF ∥FG ,当AC=BD 时,四边形EFGH 是平行四边形,故答案为:答案不唯一,例AC=BD 等.【点睛】此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。

八年级数学下册 18 平行四边形综合检测题2 新人教版(2021年整理)

八年级数学下册 18 平行四边形综合检测题2 新人教版(2021年整理)

八年级数学下册18 平行四边形综合检测题2 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册18 平行四边形综合检测题2 (新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册18 平行四边形综合检测题2 (新版)新人教版的全部内容。

平行四边形一、选择题1.在□ABCD中,AB=3cm,AD=4cm,∠A=120°,则□ABCD的面积是( ).A.315D。

3126C。

33 B.32.课外活动时,王老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm2,则两条对角线所用的竹条至少需( ).A。

cm60230B。

30cm C。

60cm D.cm23.在□ABCD中,∠B=60°,那么下列各式中,不能成立的是()A. ∠D=60°B。

∠A=120°C。

∠C+∠D=180°D。

∠C+∠A=180°4. 如图所示,在菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为()A。

23cm B. 33cm C. 43cm D。

3cm5.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C沿顺时针方向旋转90°得到△DCF,连接EF.若∠BEC= 60°,则∠EFD的度数为 ( )A。

10° B.15°C.20° D。

25°6. 如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C。

2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (135)

2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (135)

浙教版初中数学试卷八年级数学下册《平行四边形》测试卷学校:__________一、选择题1.(2分)平行四边形的一边为32,则它的两条对角线长不可能是()A.20和40 B.30和50 C.40和50 D.20和602.(2分)下列图形中,是中心对称图形的是()A.等腰三角形B.直角三角形C.正五边形D.平行四边形3.(2分)如图,在□ABCD中,∠ABC的平分线与∠BCD的平分线相交于点O,则∠BOC 的度数为()A.90°B.60°C.120°D.不能确定4.(2分)如图,已知知形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点.•当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定5.(2分)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是()A.5 B.10 C.15 D.206.(2分)已知□ABCD的周长是8 cm,△ABC的周长是7 cm,则对角线AC的长是()A.1 cm B.2 cm C.3 cm D.4 cm7.(2分)如果把多边形的边数增加l倍,它的内角和是2160°,那么原多边形的边数是()A.24 B.12 C.7 D.6二、填空题8.(3分)与三角形的稳定性相反,四边形具有___________的特点.9.(3分)在□ABCD中,∠A-∠B=40°,则∠C=_______°.10.(3分)若一个多边形内角和为900°,那么这多边形是_______边形.11.(3分)如图,四边形的四条边AB、BC、CD和DA,它们的长分别是2、 5 .5、4,其中∠B=90°,那么四边形ABCD的面积为 .12.(3分)如果平行四边形的周长为180cm,相邻两边的长度比为5∶4,那么它的较长边为 cm.13.(3分)一个多边形的每个外角都等于45°,这个多边形的边数是.14.(3分)设将一张正方形纸片沿图中虚线剪开后,能拼成右边四个图形,则其中是中心对称图形的是 (填序号).15.(3分)命题“所有的偶数都能被2整除”的逆命题是.16.(3分)定理“到一条线段两端点距离相等的点,在这条线段的垂直平分线上”的逆定理是.17.(3分)一个五边形的三个内角都是直角,另两个内角的度数都是n,则n= .18.(3分)正五边形每个内角是,正六边形每个内角是,正n边形每个内角是.19.(3分)如果一个多边形的每一个外角都相等,且小于45°,那么这个多边形的边数最少是.评卷人得分三、解答题20.(6分)李大伯家有一个如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动. 如果要求新池塘成平行四边形的形状. 请问李大伯的愿望能否实现?若能,请画出你的设计图;若不能,请说明理由.AB C D E F12321.(6分)如图,在四边形ABCD 中,AD ∥BC ,BE ⊥AC ,DF ⊥AC ,E ,F 分别为垂足,且∠CDF=∠ABE ,试说明四边形BEDF 是平行四边形.22.(6分)写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题,•这个逆命题是真命题吗?请证明你的判断.23.(6分)已知:如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点.求证:四边形DFGE 是平行四边形.24.(6分)如图,已知:在□ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,求DF 的长.25.(6分)在四边形ABCD中,∠A=∠B,∠C=∠D,且∠A∶∠C=1∶2,求四边形ABCD各内角的度数.26.(6分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可找出个平行四边形.27.(6分)如图所示,□ABCD中,以BC,CD为边分别向外作两个正三角形BCE和CDF.求证:△AFF是等边三角形.28.(6分)如图.在四边形ABCD中,∠1=∠2,∠3=∠4,且∠C=∠D=120°,求∠AOB 的度数.29.(6分)求证:平行四边形对角线的交点到一组对边的距离相等.30.(6分)如图所示,已知AB∥EF.求∠B+∠C+∠D+∠E的度数.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.D3.A4.C5.B6.C7.C评卷人得分二、填空题8.不稳定9.110010.711.6+ 512.5013.814.②15.能被2整除的数都是偶数16.线段垂直平分线上的点到这条线段两端点的距离相等17.135°18.108°,l20°,(2)180 nn19.9评卷人得分三、解答题20.能;设计图不唯一,如:21.方法不唯一,如:先证四边形ABCD为□,再证//DF BE22.逆命题:一边上的中线等于这边的一半的三角形是直角三角形,是真命题.证明如下:如图,已知△ABC中,CD是AB边上的中线,CD=12 AB.求证:△ABC是直角三角形.证明:∵CD是AB边上的中线,CD=12 AB,•∴CD=AD=BD,∴∠1=∠A,∠2=∠B,∵∠1+∠2+∠A+∠B=180°,∴∠1+∠2=90°,•即∠ACB=90°,∴△ABC是直角三角形23.提示:DE//FG.24.3cm.25.60°,60°,120°,120°.26.1527.只要证△ABE≌△FDA≌△FCE得AE=AF=EF即可28.60°29.略30.540°。

平行四边形画宽训练小卷

平行四边形画宽训练小卷

平行四边形画宽训练小卷
平行四边形是个有趣且常见的几何形状,它具有两对平行边。

本文档将提供一些关于平行四边形画宽训练的简单策略和方法。

策略1:测量边长
首先,我们可以通过测量平行四边形的边长来练画宽。

使用直尺或卷尺测量每条边的长度,并记录下来。

确保测量的边与其对应的平行边相等。

策略2:构建平行线
其次,使用直尺和铅笔,在一个纸张上绘制平行四边形的一条边。

然后,使用直尺与这条边平行,绘制另外一条平行线。

这两条平行线将成为平行四边形的两个边。

策略3:连接顶点
接下来,将直尺放在第一条边的一个顶点上,使其与另外一条边相交。

用铅笔勾勒出这个顶点。

然后,将直尺放在第二条边的相应顶点上,与第一条边相交。

再次用铅笔勾勒出这个顶点。

最后,用直尺将两个顶点连接起来,形成第三个边。

策略4:完成四边形
现在,我们已经画好了三条边,只剩下最后一条边要完成平行四边形。

使用直尺将第三条边的顶点与第一条边的相应顶点连接起来,形成最后一条边。

注意事项
- 在以上练中,确保直尺与纸张保持平行,以保证绘制出准确的平行四边形。

- 可以使用彩色铅笔或者记号笔来突出显示平行四边形的各条边。

以上是一些简单的平行四边形画宽训练方法。

通过反复练习,您将更加熟练地绘制平行四边形,并加深对其特性的理解。

祝您练习顺利!。

八年级初二数学下学期平行四边形单元测试题试题

八年级初二数学下学期平行四边形单元测试题试题

八年级初二数学下学期平行四边形单元测试题试题一、选择题1.如图,平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,且AB AE =,延长AB 与DE 的延长线交于点F ,连接AC ,CF .下列结论:①ABC EAD ∆∆≌;②ABE ∆是等边三角形;③AD BF =;④BEF ACD S S ∆∆=;⑤CEF ABE S S ∆∆=中正确的有( )A .1个B .2个C .3个D .4个2.如图,分别以Rt ACB ∆的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .给出下列结论:①CE BG =;②EC BG ⊥③22222FG BF BD BC +=+④222222BC GE AC AB +=+其中正确的是( )A .②③④B .①②③C .①②④D .①②③④ 3. 如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE=∠BAP ;⑤PD=2EC .其中正确结论的番号是( )A .①②④⑤B .①②③④⑤C .①②④D .①④4.如图,正方形ABCD (四边相等、四内角相等)中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE =FC =4,BE =DF =3,则EF 的平方为( )A .2B .125C .3D .45.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,依此下去,第n 个正方形的面积为( )A .(2)n ﹣1B .2n ﹣1C .(2)nD .2n6.如图,矩形ABCD 中,AB =10,AD =4,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .1B .103C .4D .1437.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=,FO FC =,则下列结论:①FB OC ⊥,OM CM =;②EOB CMB ≅;③四边形EBFD 是菱形;④:3:2MB OE =.其中正确结论的个数是( )A .1B .2C .3D .48.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;②∠GDH =∠GHD ;③图中有8个等腰三角形;④CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .49.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为( )A .0.5B .2.5C .2D .110.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;②EOB CMB △≌△;③四边形EBFD 是菱形;④23MB =.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.在平行四边形ABCD 中,30,3,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.12.如图,菱形ABCD 的BC 边在x 轴上,顶点C 坐标为(3,0)-,顶点D 坐标为(0,4),点E 在y 轴上,线段//EF x 轴,且点F 坐标为(8,6),若菱形ABCD 沿x 轴左右运动,连接AE 、DF ,则运动过程中,四边形ADFE 周长的最小值是_______.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.14.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80 ,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).15.如图,正方形ABCD 的边长为6,点E 、F 分别在边AD 、BC 上.将该纸片沿EF 折叠,使点A 的对应点G 落在边DC 上,折痕EF 与AG 交于点Q ,点K 为GH 的中点,则随着折痕EF 位置的变化,△GQK 周长的最小值为____.16.如图,在正方形ABCD 中,2,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.17.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.18.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,19.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)20.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 23.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上.(1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EM FN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为_______(结果用含n 的式子表示).24.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______; ②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______; 25.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).26.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程: (2)如图4,过点C 作CG ON ⊥,垂足为点G 则90CGB ∠=90GCB CBG ∴∠+∠=又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中,(类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .27.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.28.如图,等腰直角三角形OAB 的三个定点分别为(0,0)O 、(0,3)A 、(3,0)B -,过A 作y 轴的垂线1l .点C 在x 轴上以每秒32的速度从原点出发向右运动,点D 在1l 上以每秒332+的速度同时从点A 出发向右运动,当四边形ABCD 为平行四边形时C 、D 同时停止运动,设运动时间为t .当C 、D 停止运动时,将△OAB 沿y 轴向右翻折得到△1OAB ,1AB 与CD 相交于点E ,P 为x 轴上另一动点.(1)求直线AB 的解析式,并求出t 的值.(2)当PE+PD 取得最小值时,求222PD PE PD PE ++⋅的值.(3)设P 的运动速度为1,若P 从B 点出发向右运动,运动时间为x ,请用含x 的代数式表示△PAE 的面积.29.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.30.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由平行四边形的性质得出AD ∥BC ,AD=BC ,由AE 平分∠BAD ,可得∠BAE=∠DAE ,可得∠BAE=∠BEA ,得AB=BE ,由AB=AE ,得到△ABE 是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS 证明△ABC ≌△EAD ,①正确;由△FCD 与△ABD 等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF ,⑤正确.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴△ABE 是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE ,BC=AD ,在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS );①正确;∵△FCD 与△ABC 等底(AB=CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;⑤正确;若AD 与AF 相等,即∠AFD=∠ADF=∠DEC ,即EC=CD=BE ,即BC=2CD ,题中未限定这一条件,∴③④不一定正确;故选C .【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.2.C解析:C【分析】利用SAS 证明△AGB ≌△ACE ,即可判断①;证明∠BNM=∠MAE=90︒,即可判断②;假设③成立,利用勾股定理对等式变形证得AC =BC ,而AC 与BC 不一定相等,即可判断③;利用勾股定理证得2222BC EG BE CG +=+,从而证得结论④成立.【详解】∵四边形ACFG 和四边形ABDE 都是正方形,∴AC=AG ,AB=AE ,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△AGB 和△ACE 中,∵AG AC GAB CAE AB AE ⎧⎪∠∠⎨⎪⎩===,∴△AGB ≌△ACE(SAS),∴GB=CE ,故①正确;设BA 、CE 相交于点M ,∵△AGB ≌△ACE ,∴∠GBA=∠CEA ,又∵∠BMN=∠EMA ,∴∠BNM=∠MAE=90︒,∴EC BG ⊥,故②正确;设正方形ACFG 和正方形ABDE 的边长分别为a 和b ,∵ACB 为直角三角形,且AB 为斜边,∴22222AB AC b a BC -=-=,假设22222FG BF BD BC +=+成立,则有()22222a a BC b BC ++=+,整理得:()2222a BC b a =-,即2a BC BC =,∴a BC =,即AC BC =,∵AC 与BC 不一定相等,∴假设不成立,故③不正确;连接CG ,BE ,设BG 、CE 相交于N ,∵EC BG ⊥,∴222222222222BC EG BN NC EN NG BN EN NC NG BE CG +=+++=+++=+, ∵四边形ACFG 和四边形ABDE 都是正方形,∴222BE AB =,222CG AC =,∴222222BC EG AB AC +=+,故④正确;综上,①②④正确,故选:C .【点睛】本题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,灵活运用勾股定理是解题的关键.3.A解析:A【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=2EC.【详解】证明:过P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB-GB,FP=GF-GP=AB-GB,∴AG=PF,∴△AGP≌△FPE,①∴AP=EF;∠PFE=∠GAP∴④∠PFE=∠BAP,②延长AP到EF上于一点H,∴∠PAG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴⑤DP=2EC.∴其中正确结论的序号是①②④⑤.故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.4.A解析:A【分析】根据AB=5,AE=4,BE=3,可以确定△ABE为直角三角形,延长BE构建出直角三角形,在利用勾股定理求出EF的平方即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,如图,延长BE交CF于点G,∵AB=5,AE=4,BE=3,∴AE2+BE2=AB2,∴△ABE是直角三角形,同理可得△DFC是直角三角形,∵AE=FC=4,BE=DF=3,AB=CD=5,∴△ABE≌△CDF,∴∠BAE=∠DCF,∵∠ABC=∠AEB=902,∴∠CBG=∠BAE,同理可得,∠BCG=∠CDF=∠ABE,△ABE≌△BCG,∴CG=BE=3,BG=AE=4,∴EG=4-3=1,GF=4-3=1,∴EF2=EG2+GF2=1+1=2故选择:A【点睛】此题考查三角形的判定,勾股定理的运用,根据已知条件构建直角三角形求值是解题的关键.5.B解析:B【解析】【分析】先求出第一个正方形面积、第二个正方形面积、第三个正方形面积,…探究规律后,即可解决问题.【详解】第一个正方形的面积为1=20,第二个正方形的面积为(2)2=2=21,第三个正方形的边长为22,…第n个正方形的面积为2n﹣1,故选B.【点睛】本题考查了规律型:图形的变化类,正方形的性质,根据前后正方形边长之间的关系找到S n的规律是解题的关键.6.D解析:D【分析】过点F作FH⊥CD,交直线CD于点Q,则∠EHF=90°,易证∠ADE=∠EHF,由正方形的性质得出∠AEF=90°,AE=EF,证得∠AED=∠EFH,由AAS证得△ADE≌△EHF得出AD=EH=4,则t+2t=4+10,即可得出结果.【详解】过点F作FH⊥CD,交直线CD于点Q,则∠EHF=90°,如图所示:∵四边形ABCD为矩形,∴∠ADE=90°,∴∠ADE=∠EHF,∵在正方形AEFG中,∠AEF=90°,AE=EF,∴∠AED+∠HEF=90°,∵∠HEF+∠EFH=90°,∴∠AED=∠EFH,在△ADE和△EHF中,ADE EHF AED EFH AE EF ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADE ≌△EHF (AAS ),∴AD=EH=4,由题意得:t+2t=4+10,解得:t=143, 故选D .【点睛】本题考查了正方形的性质、矩形的性质、全等三角形的判定与性质等知识,熟练掌握正方形与矩形的性质,通过作辅助线证明三角形全等是解题的关键.7.C解析:C【分析】①证明△OBC 是等边三角形,即可得OB=BC ,由FO=FC ,即可得FB 垂直平分OC ,①正确;②由FB 垂直平分OC ,根据轴对称的性质可得△FCB ≌△FOB ,根据全等三角形的性质可得∠BCF=∠BOF=90°,再证明△FOC ≌△EOA ,所以FO=EO ,即可得OB 垂直平分EF ,所以△OBF ≌△OBE ,即△EOB ≌△FCB ,②错误;③证明四边形DEBF 是平行四边形,再由OB 垂直平分EF ,根据线段垂直平分线的性质可得BE=BF ,即可得平行四边形DEBF 为菱形,③正确;④由OBF ≌△EOB ≌△FCB 得∠1=∠2=∠3=30°,在Rt △OBE 中,可得OE=,在Rt △OBM 中,可得BM=2OB ,即可得BM :OE =3:2,④正确. 【详解】①∵矩形ABCD 中,O 为AC 中点,∴OB=OC ,∵∠COB=60°,∴△OBC 是等边三角形,∴OB=BC ,∵FO=FC ,∴FB 垂直平分OC ,∴FB ⊥OC ,OM=CM ;①正确;②∵FB 垂直平分OC ,根据轴对称的性质可得△FCB ≌△FOB ,∴∠BCF=∠BOF=90°,即OB ⊥EF ,∵OA=OC ,∠FOC=∠EOA ,∠DCO=∠BAO ,∴△FOC ≌△EOA ,∴FO=EO ,∴OB垂直平分EF,∴△OBF≌△OBE,∴△EOB≌△FCB,②错误;③∵△FOC≌△EOA,∴FC=AE,∵矩形ABCD,∴CD=AB,CD∥AB,∴DF∥EB,DF=EB,∴四边形DEBF是平行四边形,∵OB垂直平分EF,∴BE=BF,∴平行四边形DEBF为菱形;③正确;④由OBF≌△EOB≌△FCB得∠1=∠2=∠3=30°,在Rt△OBE中,OE =33OB,在Rt△OBM中,3∴BM :3:3OB=3:2.④正确;所以其中正确结论的个数为3个;故选C.【点睛】本题考查了矩形的性质、等腰三角形的性质、全等三角形的性质和判定、线段垂直平分线的性质、菱形的判定及锐角三角函数,是一道综合性较强的题目,解决问题的关键是会综合运用所学的知识分析解决问题.8.B解析:B【分析】关键结合图形证明△CHG≌△EGD,即可逐项判断求解【详解】解:∵DF=BD ,∴∠DFB=∠DBF ,∵AD ∥BC ,DE=BC ,∴四边形DBCE 是平行四边形,∠DFB=∠GBC ,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB ,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE ,∵DE=DC ,∴∠DEG=∠DCE ,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°-(∠BGD+∠EGF ),=180°-(∠BGD+∠BGC ),=180°-(180°-∠DCG )÷2,=180°-(180°-45°)÷2,=112.5°,∴∠GHC=∠DGE ,∴△CHG ≌△EGD ,∴∠EDG=∠CGB=∠CBF ,∴∠GDH=90°-∠EDG ,∠GHD=∠BHC=90°-∠CGB ,∴∠GDH=∠GHD故②正确;∴∠GDH=∠GHD又∠EFB=22.5°,∴∠DHG=∠GDH=67.5°∴∠GDF=90°-∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF∴HF=2HG,显然CE≠HF=2HG,故①正确;∵△CHG ≌△EGD ,∴CHG EGD S S ∆∆=∴CHG DHG EGD DHG S S S S ∆∆∆∆+=+,即CDG DHGE S S △四边形=而=EFG DHGE DHF S S S ∆+四边形△,故CDG DHF S S ≠△△故④不正确;结合前面条件易知等腰三角形有△ABD,△CDB,△BDF,△CDE,△BCG,△DGH,△EGF,△CDG,△DGF共9个,∴③错误;故正确的有①②,有2个,故选:B【点睛】本题主要考查对三角形的内角和定理,全等三角形的判定和性质,等腰三角形的性质和判定,正方形的性质,等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.9.B解析:B【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,如图,将ΔEFB绕点E旋转60°,使EF与EG重合,得到ΔEFB≅ΔEHG,从而可知ΔEBH为等边三角形,点G在垂直于HE的直线HN上,如图,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则1351=2.5222CM MP CP HE EC=+=+=+=.故选B.【点睛】本题考查了线段极值问题,构造图形计算,是极值问题中比较典型的类型.分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是解本题的关键.10.B解析:B【分析】连接BD,先证明△BOC是等边三角形,得出BO=BC,又FO=FC,从而可得出FB⊥OC,故①正确;因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM,故②错误;再证明四边形EBFD是平行四边形,由OB⊥EF推出四边形EBFD是菱形,故③正确;先在Rt△BCF 中,可求出BC的长,再在Rt△BCM中求出BM的长,从而可知④错误,最后可得到答案.【详解】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,又FO=FC,BF=BF,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,∴①正确;∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∵OB=OD,∴四边形EBFD是平行四边形.又∠EBO=∠OBF,OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确;∵由①②知△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误,∴②错误;∵FC=2,∠OBC=60°,∠OBF=∠CBF,∴∠CBF=30°,∴BF=2CF=4,∴3,∴CM=12BC=3,∴BM=3,故④错误. 综上可知其中正确结论的个数是2个.故选:B .【点睛】本题考查矩形的性质、菱形的判定、等边三角形的判定和性质、全等三角形的判定和性质、含30°的直角三角形的性质以及勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.二、填空题11.43或23【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E ,在Rt ADE △中,30A ∠=︒,23AD =, 132DE AD ∴==,332AE AD ==, 在Rt BDE △中,2BD =,22222(3)1BE BD DE ∴=-=-=,如图1,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=,如图2,2AB =,∴平行四边形ABCD 的面积2323AB DE ===,如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =-, 30A ∠=︒,3BE x =, 在Rt BDE △中,2BD =, 22232()(23)x x ∴=+-, 3x ∴=,23x =(不合题意舍去),1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=,如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==,故答案为:323【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键.12.18【分析】由题意可知AD 、EF 是定值,要使四边形ADFE 周长的最小,AE +DF 的和应是最小的,运用“将军饮马”模型作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,此时AE +DF 的和即为E 1F 1,再求四边形ADFE 周长的最小值.【详解】在Rt △COD 中,OC =3,OD =4,CD 22OC +OD =5,∵ABCD 是菱形,∴AD =CD =5,∵F 坐标为(8,6),点E 在y 轴上,∴EF =8,作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,则E 1(0,2),F 1(3,6),则E 1F 1即为所求线段和的最小值,在Rt △AE 1F 1中,E 1F 1=22211EE +EF =-+(8-5)=52(62), ∴四边形ADFE 周长的最小值=AD +EF +AE +DF = AD +EF + E 1F 1=5+8+5=18.【点睛】本题考查菱形的性质、“将军饮马”作对称点求线段和的最小值,比较综合,难度较大. 13.24【分析】由菱形的性质可得OD =OB ,∠COD =90°,由直角三角形的斜边中线等于斜边的一半,可得OH =12BD =OB ,可得∠OHB =∠OBH ,由余角的性质可得∠DHO =∠DCO ,即可求解. 【详解】 【解答】解:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∠DAB =∠DCB =48°,∵DH ⊥AB ,∴OH =12BD =OB , ∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=12∠DCB=24°,故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH是BD的一半,和∠DHO=∠DCO是解决本题的关键.14.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=12EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF 和△DMF 中,A FDM AF DF AFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF(ASA),∴EF=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴CF=12EM=EF , ∴∠FEC=∠ECF ,∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC ,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB ∥CD ,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°, ∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF ≌△DMF 是解题关键.15.【分析】取AB 的中点M ,连接DQ ,QM ,DM .证明QM =QK ,QG =DQ ,求出DQ +QM 的最小值即可解决问题.【详解】取AB 的中点M ,连接DQ ,QM ,DM .∵四边形ABCD是正方形,∴AD=AB=6,∠DAM=∠ADG=90°,∵AM=BM=3,∴DM222263AB AM+=+5,∵GK=HK,AB,GH关于EF对称,∴QM=QK,∵∠ADG=90°,AQ=QG,∴DQ=AQ=QG,∵△QGK的周长=GK+QG+QJ=3+DQ+QM.又∵DQ+QM≥DM,∴DQ+QM≥5∴△QGK的周长的最小值为5,故答案为5【点睛】本题考查了折叠的性质、正方形的性质、勾股定理、最值问题,解题的关键是取AB的中点M,确定QG+QK=QD+QM,属于中考常考题型.16.32【详解】解析:∵在正方形ABCD中,AC=62∴AB=AD=BC=DC=6,∠EAD=45°设EF与AD交点为O,O是AD的中点,∴AO=3以AD为对角线的所有▱AEDF中,当EF⊥AC时,EF最小,即△AOE是直角三角形,∵∠AEO=90°,∠EAD=45°,232,∴EF=2OE=3217.6【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,可证点B,点A,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB ∥CD ,S △ABC =1242⨯=12cm 2,∵在同一平面内将△ABC 沿AC 翻折,得到△AB ′C ,∴∠BAC=∠B'AC=90°,AB=AB',S △ABC =S △AB'C =12cm 2,∴∠BAB'=180°,∴点B ,点A ,点B'三点共线,∵AB ∥CD ,AB'∥CD ,∴四边形ACDB'是平行四边形,∴B'E=CE ,∴S △ACE =12S △AB'C =6cm 2, 故答案为:6.【点睛】本题考查了翻折变换,平行四边形的判定和性质,证明点B ,点A ,点B'三点共线是本题的关键.18.2【分析】根据EM 是Rt ABE △斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半即可求出EM 的长;根据已知条件推导出DME 是等边三角形,且边长为2,进一步计算即可得解.【详解】解:∵AD BC ⊥,M 为AB 边的中点,4AB =∴在Rt ABD △中,114222DM AM AB ===⨯= 同理,在Rt ABE △中,114222EM AM AB ===⨯= ∴MDA MAD ∠=∠,MEA MAE ∠=∠∵2BME MEA MAE MAE ∠=∠+∠=∠,2BMD MDA MAD MAD ∠=∠+∠=∠ ∴DME BME BMD ∠=∠-∠22MAE MAD =∠-∠()2MAE MAD =∠-∠2DAC =∠60=︒∵=DM EM∴DME 是等边三角形,且边长为2∴122EDM S =⨯=故答案是:2【点睛】本题考查了直角三角形斜边上的中线的性质、三角形的外角定理、角的和差以及等边三角形的判定和性质,熟练掌握相关知识点是进行推理论证的前提.19.①②③⑤【分析】根据三角形中位线定理得到EF=12AB,EF∥AB,根据直角三角形的性质得到DF=12AC,根据三角形内角和定理、勾股定理计算即可判断.【详解】∵E,F分别是BC,AC的中点,∴EF=12AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正确;∵∠ADC=90°,F是AC的中点,∴DF=CF=12 AC,∵AB=AC,EF=12 AB,∴EF=DF,故②正确;∵∠CAD=∠ACD=45°,点F是AC中点,∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴CD ,∵AB=AC ,∴AB CD ,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.20.4【分析】过点E 作EM ∥AD ,由△ABO 是等腰三角形,根据三线合一可知点E 是AO 的中点,可证得EM=12AD=12BC ,根据已知可求得∠CEF=∠ECF=45°,从而得∠BEF=45°,△BEF 为等腰直角三角形,可得BF=EF=FC=12BC ,因此可证明△BFP ≌△MEP (AAS ),则EP=FP=12FC ,在Rt △BFP 中,利用勾股定理可求得x ,即得答案.【详解】过点E 作EM ∥AD ,交BD 于M ,设EM=x ,∵AB=OB ,BE 平分∠ABO ,∴△ABO 是等腰三角形,点E 是AO 的中点,BE ⊥AO ,∠BEO=90°,∴EM 是△AOD 的中位线,又∵ABCD 是平行四边形,∴BC=AD=2EM=2x ,∵EF ⊥BC , ∠CAD=45°,AD ∥BC ,∴∠BCA=∠CAD=45°,∠EFC=90°,∴△EFC 为等腰直角三角形,∴EF=FC ,∠FEC=45°,∴∠BEF=90°-∠FEC=45°,则△BEF 为等腰直角三角形,∴BF=EF=FC=12BC=x , ∵EM ∥BF , ∴∠EMP=∠FBP ,∠PEM=∠PFB=90°,EM=BF ,则△BFP ≌△MEP (ASA ),∴EP=FP=12EF=12FC=12x , ∴在Rt △BFP 中,222BP BF PF =+,即:2221()2x x =+,解得:2x =,∴BC=2x =4,故答案为:4.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S 四边形 OBEC=OC•OB=8×6=48, 即四边形 OBEC 的面积为 48.
10.【解答】解:在 Rt△ABD 中,∠ADB=90°,
由勾股定理,得 DB=
=8.
∵四边形 ABCD 是平行四边形, ∴DO= BD=4,CO=AO.
第 6页(共 7页)
在 Rt△ADO 中,∠ADO=90°,

第 1页(共 7页)
5.如图:在四边形 ABCD 中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB 于 E,若四边形 ABCD 的面
积为 16,则 DE 的长为

6.如图,在正方形 ABCD 中,E 是 CD 上的点,若 BE=3,CE=1,则正方形 ABCD 的对角线的长


7.△ABC 与▱ DEFG 按如图方式放置,点 D、G 分别在边 AB、AC 上,点 E、F 分别在边 BC 上,
第 4页(共 7页)
∴∠OCD= ∠AOD= ×60°=30°,
又∵∠ADC=90°, ∴AC=2AD=2×2=4. 故答案为 4. 5.【解答】解:过点 C 作 CF⊥DE 交 DE 于 F,
∵AD=CD,∠ADE=90°﹣∠CDF=∠DCF,∠AED=∠DFC=90°, ∴△ADE≌△DCF(AAS), ∴DE=CF=BE, 又四边形 ABCD 的面积为 16,即 S 矩形 BCFE+2S△CDF=16, 即 BE•EF+2× CF•DF=16,
平行四边形小卷 2
一.选择题(共 3 小题) 1.如图,在▱ ABCD 中,DB=DC,∠C=65°,AE⊥BD 于点 E,则∠DAE 等于( )
A.20°
B.25°
C.30°
D.35°
2.如图,菱形花坛 ABCD 的面积为 24 平方米,其中沿对角线 AC 修建的小路长为 6 米,则沿
对角线 BD 修建的小路长为( )
∴BE=DF,
∴AF=EC,
∴四边形 AECF 是平行四边形,
∴AE=CF.
9.【解答】解:(1)∵四边形 ABCD 为菱形,
∴∠DOC=90°,
∴OC=
=
=8,
即 OC 的长为 8,
(2)∵四边形 ABCD 为菱形,
∴∠BOC=90°,OB=OD=6,Biblioteka 又∵CE∥DB,BE∥AC,
∴四边形 OBEC 为矩形,
若 BE=DE,CF=FG,则∠A 的大小为
度.
三.解答题(共 4 小题) 8.如图,延长▱ ABCD 的边 AD 到 F,使 DF=DC,延长 CB 到点 E,使 BE=BA,分别连结点 A、E
和 C、F.求证:AE=CF.
第 2页(共 7页)
9.如图,菱形 ABCD 对角线 AC 与 BD 的交于点 O,CD=10,OD=6,过点 C 作 CE∥DB,过点 B 作 BE∥AC,CE 与 BE 相交于点 E.
由勾股定理,得 AO=
=2 .
∴CO=2 .
11.【解答】证明:(1)∵四边形 ABCD 是平行四边形,
∴AD∥BC,
∴∠ADB=∠DBC.
∵BD 平分∠ABC,
∴∠ABD=∠DBC.
∴∠ABD=∠ADB.
∴AB=AD.
∴平行四边形 ABCD 是菱形.
(2)∵四边形 ABCD 是菱形,
∴AB∥CD,AD=CD.
=4.
第 5页(共 7页)
∵四边形 DEFG 是平行四边形, ∴∠DEF+∠EFG=180°, ∴ (∠DEF+∠EFG)=∠B+∠C=90°,
∴∠A=90°.
故答案为:90.
三.解答题(共 4 小题)
8.【解答】证明:∵四边形 ABCD 是平行四边形,
∴AD=BC,AD∥BC,
∴AF∥EC,
∵DF=DC,BE=BA,
∴∠DCE=∠ABC=45°.
∵DE⊥BC,
∴∠E=90°.
∴∠CDE=45°.
∴∠CDE=∠DCE.
∴DE=CE=2.
∴CD=

∴AD=2 .
声明:试 题解析著作权 属菁优网所有 ,未经书面同 意,不得复制 发布
日期:2018/12/13 23:35:49 ;用户: 数学;邮箱: ccys13@;学号: 22386886
第 3页(共 7页)
平行四边形小卷 2
参考答案与试题解析
一.选择题(共 3 小题) 1.【解答】解:∵DB=DC,∠C=65°, ∴∠DBC=∠C=65°, ∵四边形 ABCD 是平行四边形, ∴AD∥BC, ∴∠ADE=∠DBC=65°, ∵AE⊥BD, ∴∠AEB=90°, ∴∠DAE=90°﹣∠ADE=25°. 故选:B. 2.【解答】解:∵S 菱形 ABCD= AC•BD,
(1)求 OC 的长. (2)求四边形 OBEC 的面积.
10.如图,在▱ ABCD 中,对角线 AC、BD 交于点 O,BD⊥AD.若 AD=6,AB=10,求 CO 的长.
11.如图,在▱ ABCD 中,对角线 BD 平分∠ABC,过点 D 作 DE⊥BC,交 BC 延长线于点 E. (1)求证:四边形 ABCD 是菱形; (2)若∠ABC=45°,DE=2,求 AD 的长.
A.4 米
B.6 米
C.8 米
D.9 米
3.如图,在▱ ABCD 中,对角线 AC 的垂直平分线分别交 AD、BC 于点 E、F,连结 CE.若▱ ABCD
的周长为 16,则△CDE 的周长是( )
A.16
B.10
C.8
D.6
二.填空题(共 4 小题)
4.如图,矩形 ABCD 的两条对角线相交于点 O,若∠AOD=60°,AD=2,则 AC 的长为
第 7页(共 7页)
∴ ×6×BD=24,
∴BD=8. 故选:C. 3.【解答】解:∵对角线 AC 的垂直平分线分别交 AD 于 E. ∴AE=CE, ∵四边形 ABCD 是平行四边形, ∴AD=BC,DC=AB, ∴DC+AD=8, ∴△CDE 的周长=DE+EC+CD=DE+EA+DC=DA+DC=8, 故选:C. 二.填空题(共 4 小题) 4.【解答】解:在矩形 ABCD 中,OC=OD, ∴∠OCD=∠ODC, ∵∠AOD=60°,
BE•DE=BE•BE=16,解得 DE=4. 故此题答案为 4. 6.【解答】解:连接 BD.
∵ABCD 为正方形, ∴∠A=∠C=90°. 在 Rt△BCE 中,BC=
=2 .
在 Rt△ABD 中,BD=
=
故答案为:4. 7.【解答】解:∵BE=DE,CF=FG, ∴∠B=∠BDE,∠C=∠CGF, ∠DEF=∠B+∠BDE=2∠B,则∠EFG=2∠C,
相关文档
最新文档