高一数学之指数函数与对数函数
对数函数和指数函数的区别和知识点
对数函数和指数函数的区别和知识点对数函数和指数函数是两种重要的数学函数,它们在形式和性质上有很大的不同。
下面我们将从定义、图像、性质和应用四个方面来对比这两种函数。
一、定义1. 对数函数:对于正实数a(a>0)和自然数b(b>0),对数函数定义为log(a^b)=b。
也就是说,如果a的b次方等于c,那么log(a) c = b。
2. 指数函数:对于实数a(a≠0),指数函数定义为a^x。
也就是说,无论x 是什么实数,a的x次方都等于y。
二、图像1. 对数函数的图像:对数函数的图像在坐标系中是单调递增的。
当底数大于1时,图像位于第一象限和第二象限;当底数在0到1之间时,图像位于第二象限和第三象限。
2. 指数函数的图像:指数函数的图像也是单调递增的。
对于所有的实数a(a>0),图像都位于第一象限。
当a大于1时,图像在x轴上方递增;当0<a<1时,图像在x轴下方递增。
三、性质1. 对数函数的性质:对数函数是反函数,即如果log(a^b)=c,那么a^c=b。
此外,对数函数还有对数的换底公式,即log(a) b = c 可以转化为log(m) b = c/log(m) a。
2. 指数函数的性质:指数函数是幂运算的推广,具有连续性、周期性、奇偶性等性质。
指数函数也可以表示为exp(x),其中exp表示自然指数函数的底数,约等于2.71828。
四、应用1. 对数函数的应用:对数函数在科学、工程和经济学等领域有广泛的应用。
例如,在物理学中,声学和光学中的分贝和折射率可以通过对数函数计算;在金融学中,复利和折旧可以通过对数函数计算;在信息论中,对数函数用于描述信号强度和噪声的关系。
2. 指数函数的应用:指数函数在自然科学、社会科学和工程学等领域也有广泛的应用。
例如,在生物学中,细胞增长和繁殖可以用指数函数描述;在经济学中,复利和折现也可以用指数函数计算;在物理学中,放射性衰变和电路中的电压可以用指数函数描述。
指数函数和对数函数的引入
指数函数和对数函数的引入指数函数和对数函数是高中数学中的重要概念,引入这两个函数可以帮助我们更好地理解数学中的指数和对数运算,以及解决相关的问题。
指数函数和对数函数在数学、科学、经济等领域有着广泛的应用,掌握它们的性质和特点对于学生来说至关重要。
一、指数函数的引入指数函数可以看作是以某个正常数为底数、以自变量的幂次作为指数的函数。
指数函数由以下的函数关系所定义:\(y = a^x\)其中,\(a\) 是底数,\(x\) 是自变量,\(y\) 是函数的值。
指数函数的图像通常表现为指数曲线,曲线的走向和底数 \(a\) 的大小有关。
当 \(a > 1\) 时,曲线呈现增长趋势;当 \(0 < a < 1\) 时,曲线呈现下降趋势。
指数函数的引入可以帮助我们解决一些实际问题。
例如,人口增长问题可以用指数函数来描述。
假设某地的人口增长率为 1%,那么可以用指数函数来表示这种增长情况。
指数函数不仅仅是描述增长的情况,还可以用来表示剩余质量、金融投资等各种实际问题。
二、对数函数的引入对数函数可以看作是指数函数的逆运算。
对数函数由以下的函数关系所定义:\(y = \log_a x\)其中,\(a\) 是底数,\(x\) 是函数的值,\(y\) 是对数的值。
对数函数与指数函数是互为反函数的关系,即:\(y = \log_a a^x = x\)对数函数的图像通常表现为对数曲线,曲线的走向和底数 \(a\) 的大小有关。
当 \(a > 1\) 时,曲线呈现增长趋势;当 \(0 < a < 1\) 时,曲线呈现下降趋势。
对数函数在数学和科学中有着广泛的应用,特别是在解决指数运算的问题时。
例如,某个物质的衰减过程可以使用对数函数来描述。
对数函数还可以用来解决相关性分析、信号处理等方面的问题。
三、指数函数和对数函数的性质指数函数和对数函数有一些重要的性质需要我们掌握。
以下是其中几个常见的性质:1. 指数函数的性质:- \(a^0 = 1\),其中 \(a\) 是正常数。
高中数学指数函数与对数函数的运算与应用技巧
高中数学指数函数与对数函数的运算与应用技巧在高中数学中,指数函数与对数函数是非常重要的概念。
它们在各个领域中都有广泛的应用,包括科学、工程、经济等。
掌握指数函数与对数函数的运算与应用技巧,对于高中学生来说是非常重要的。
本文将通过举例、分析和说明来介绍这方面的知识。
一、指数函数的运算与应用技巧指数函数是以指数为自变量的函数,具有形如y=a^x的表达式。
其中,a称为底数,x称为指数。
指数函数的运算与应用技巧主要包括以下几个方面:1. 指数函数的图像特点对于指数函数y=a^x来说,当a>1时,函数的图像呈现上升趋势;当0<a<1时,函数的图像呈现下降趋势。
这一特点可以通过绘制函数图像来观察和验证。
2. 指数函数的性质指数函数具有一些特殊的性质,如指数函数的定义域为实数集,值域为正实数集;指数函数的奇偶性与底数的正负有关等。
掌握这些性质可以帮助我们更好地理解和运用指数函数。
3. 指数函数的运算规律指数函数的运算规律包括指数相加减、指数相乘除等。
例如,对于指数函数y=a^x和y=b^x,当指数相加时,即y=a^x+b^x,我们可以将其写成y=a^x(1+b/a)^x的形式,从而简化计算。
4. 指数函数的应用举例指数函数在实际应用中有很多例子。
例如,人口增长模型可以用指数函数来描述,即人口数量随时间的指数增长;放射性衰变也可以用指数函数来描述,即放射性物质的衰变速率随时间的指数减少等。
二、对数函数的运算与应用技巧对数函数是指以底数为自变量的函数,具有形如y=loga(x)的表达式。
其中,a 称为底数,x称为真数。
对数函数的运算与应用技巧主要包括以下几个方面:1. 对数函数的图像特点对于对数函数y=loga(x)来说,当0<a<1时,函数的图像呈现下降趋势;当a>1时,函数的图像呈现上升趋势。
这一特点可以通过绘制函数图像来观察和验证。
2. 对数函数的性质对数函数也具有一些特殊的性质,如对数函数的定义域为正实数集,值域为实数集;对数函数的奇偶性与底数的正负有关等。
高一数学指数函数对数函数知识点
高一数学指数函数对数函数知识点导语:在高中数学中,指数函数与对数函数是一个非常重要的数学概念和知识点。
它们在不同领域的应用非常广泛,比如金融、科学等。
本文将深入探讨高一数学中的指数函数和对数函数的基本概念、性质以及它们之间的关系。
一、指数函数的基本概念与性质1. 指数函数的定义指数函数是以常数e(自然对数的底)为底的函数,表示为f(x) = a^x,其中a > 0且a ≠ 1,x为实数。
举例来说,函数f(x) = 2^x就是一个指数函数,其中以2为底。
2. 指数函数的性质①指数函数的定义域为实数集, 即所有实数x。
②指数函数的值域为正数集, 即所有大于0的实数。
③指数函数是递增函数,即当x1 < x2时,a^x1 < a^x2。
④当a > 1时,指数函数的图像是递增的;当0 < a < 1时,指数函数的图像是递减的。
二、对数函数的基本概念与性质1. 对数函数的定义对数函数是指数函数的反函数。
以常数e为底的对数函数称为自然对数函数,记作ln(x)。
举例来说,函数g(x) = log2(x)就是一个以2为底的对数函数。
2. 对数函数的性质①对数函数的定义域为正数集,即只有正实数才有对数。
②对数函数的值域为实数集。
③对数函数是递增函数,即当x1 < x2时,log(x1) < log(x2)。
④对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x。
三、指数函数与对数函数之间的关系注意:以下的例子仅为了便于理解,具体数值仅供参考。
1. 自然对数与指数函数的关系e^x = a 可以转化为 ln(a) = x。
例如,e^2 = 7.39 可以转化为 ln(7.39) = 2。
2. 对数函数的性质与指数函数的性质对数函数的一些基本性质与指数函数的一些基本性质是相互关联的,如:① loga(xy) = loga(x) + loga(y)② loga(x/y) = loga(x) - loga(y)③ loga(x^y) = y * loga(x)④ loga(b) = logc(b) / logc(a)3. 指数函数与对数函数的实际应用指数函数与对数函数在实际中有着广泛的应用,主要体现在以下几个方面:①金融领域:在复利计算、投资分析等方面,指数函数与对数函数被广泛应用。
指数函数与对数函数(讲义)
指数函数与对数函数(讲义)指数函数和对数函数是数学中的基本函数之一。
指数函数的一般形式是$y=a^x$,其中$a$是底数,$x$是指数。
当$01$时,函数图像是上升的。
对数函数的一般形式是$y=\log_a x$,其中$a$是底数,$x$是真数。
当$01$时,函数图像是下降的。
指数函数和对数函数有许多重要的性质,例如它们的定义域和值域,单调性等。
比较大小时,可以利用指数函数和对数函数的单调性。
对于同底指数函数,可以直接比较大小。
对于异底指数函数,可以采用化同底、商比法、取中间值、图解法等方法。
对于同底数对数函数,可以直接利用单调性求解,但如果底数是字母,需要分类讨论。
对于异底数对数函数,可以采用化同底(换底公式)、寻找中间量(-1,1),或者借助图象高低数形结合来比较大小。
换底公式是比较常用的公式之一,可以用于将一个对数函数转化为以另一个底数为底的对数函数。
常用的变形包括$log_c a=\frac{1}{\log_a c}$,$log_a b^m=m\log_a b$,$a^{\log_a b}=b$等。
练题:1.若$3a=4b=6c$,则$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的值为(B)。
2.计算:1)若集合$\{x,xy,\log(xy)\}=\{0,|x|,y\}$,则$\log_8(x^2+y^2)$的值为$\frac{3}{2}$;2)设$g(x)=\begin{cases}e^x &(x\leq 1)\\ \ln x&(x>1)\end{cases}$,则$g(g(2))=\ln(e^2+1)$;3)若$f(x)=\begin{cases}f(x+3) &(x<6)\\ \log_2 x &(x\geq 6)\end{cases}$,则$f(-1)$的值为$\log_2 5$。
3.(1)函数$f(x)=\log_2(x^2+1-x)$是奇函数;2)设函数$f(x)$在定义域上是奇函数,则$f(0)=0$。
高中数学必修一指数函数对数函数知识点
高中数学必修一指数函数对数函数知识点高中数学必修一中,指数函数和对数函数是重要的知识点。
指数函数是一种以指数为自变量的函数,形式为y = a^x,其中a为底数,x为指数。
而对数函数是指数函数的逆运算,形式为y = loga(x),其中a为底数,x为真数。
以下是关于指数函数和对数函数的具体知识点。
一、指数函数的图像和性质1.指数函数的基本形式:-y=a^x,其中a>0且a≠12.指数函数的基本性质:-当0<a<1时,指数函数呈现递减的图像;-当a>1时,指数函数呈现递增的图像;-当a=1时,指数函数为常数函数y=1二、对数函数的图像和性质1.对数函数的基本形式:- y = loga(x),其中a > 0且a≠12.对数函数的基本性质:- 对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x;-对数函数的图像关于直线y=x对称;-对数函数的定义域为正实数集,值域为实数集。
三、指数函数和对数函数的运算性质1.指数函数的运算性质:-a^x*a^y=a^(x+y);- (a^x)^y = a^(xy);- (ab)^x = a^x * b^x;-a^0=1,其中a≠0。
2.对数函数的运算性质:- loga(xy) = loga(x) + loga(y);- loga(x^y) = y * loga(x);- loga(x/y) = loga(x) - loga(y);- loga(1) = 0,其中a≠0。
四、指数函数和对数函数的应用1.指数函数在生活中的应用:-经济增长模型中的应用;-指数衰减与物质的半衰期计算;-大自然中的指数增长现象。
2.对数函数在生活中的应用:-pH值的计算;-放大器的功率增益计算;-数字音乐的音量计算。
综上所述,指数函数和对数函数是高中数学必修一中的重要知识点。
掌握了指数函数和对数函数的基本形式、性质以及运算规律,能够理解其图像特征和在实际问题中的应用。
数学高一专题 指数函数与对数函数
数学高一专题 指数函数与对数函数一、指数函数:一般地,形如y=a x (a>0且a≠1) (x ∈R)的函数叫做指数函数。
也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。
(1)由指数函数y=a x 与直线x=1相交于点(1,a )可知:在y 轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a x 与直线x=-1相交于点(-1,a1)可知:在y 轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y 轴右边“底大图高”;在y 轴左边“底大图低”。
(如右图)。
(4)与的图像关于y 轴对称。
二、对数函数:对数的定义:一般地,函数y=logax (a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
值域:实数集R ,显然对数函数无界。
定点:函数图像恒过定点(1,0)。
单调性:a >1时,在定义域上为单调增函数; 0<a <1时,在定义域上为单调减函数。
奇偶性:非奇非偶函数 周期性:不是周期函数对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。
运算换底公式三、区别与联系:6)一般地,指数函数y=a x在a>1和0<a<1的情况下,它的图像特征和函数性质如下表所示.②值域:)③过点时y=1题型一:基础回顾1.若函数y =x 2+bx +c(x ∈[0,+∞))是单调函数,则实数b 的取值范围是( ) A .b ≥0 B .b ≤0 C .b>0 D .b<0 2.若,则. 3.若,则.变式练习6.(2016·福州模拟)若f(x)是幂函数,且满足f (4)f (2)=3,则f(12)=( )A .3B .-3 C.13D .-137.(2016·陕西宝鸡中学期中)设a =20.1,b =ln 52,c =log 3910,则a ,b ,c 的大小关系是( )A .b>c>aB .a>c>bC .b>a>cD .a>b>c8.(2014·山东理)已知实数x ,y 满足a x <a y (0<a<1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sinx>siny D .x 3>y 35.设a <b ,函数y =(x -a)2(x -b)的图像可能是( )9.(2015·安徽文)下列函数中,既是偶函数又存在零点的是( ) A .y =lnx B .y =x 2+1 C .y =sinxD .y =cosx10.对于定义在R 上的任意奇函数f(x),均有( ) A .f(x)-f(-x)>0 B .f(x)-f(-x)≤0 C .f(x)·f(-x)>0D .f(x)·f(-x)≤011.(2016·山东师大附中月考)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos2x ,x ∈RB .y =log 2|x|,x ∈R 且x ≠0C .y =x|x|,x ∈RD .y =x 3+1,x ∈R题型二:技能拓展1.设函数f(x)=|x +1|+|x +2|-a. (1)当a =5时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R ,试求a 的取值范围. 变式练习2.若函数f(x)=e xx 2+ax +a的定义域为R ,求实数a 的取值范围.3.已知函数y =log 21(x 2-ax +a)在区间(-∞,2)上是增函数,求实数a 的取值范围.1..(2016·山东理)已知[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f(x)=lnx -2x 的零点,则[x 0]等于________.2.(2015·福建理)若函数f(x)=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x>2(a>0,且a ≠1)的值域是[4,+∞),求实数a 的取值范围3.(2014.安徽理)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x ≥0,都有f(x +2)=-f(x),且当x ∈[0,2)时,f(x)=log 2(x +1),求: (1)f(0)与f(2)的值; (2)f(3)的值;(3)f(2 013)+f(-2 014)的值.课后练习1.(2014·上海理)设f(x)=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x>0.若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]2.函数y =|x|(x -1)的定义域为( ) A .{x|x ≥1} B .{x|x ≥1或x =0} C .{x|x ≥0} D .{x|x =0}3.若函数y =x 2-4x 的定义域是{x|1≤x<5,x ∈N },则其值域为( ) A .[-3,5) B .[-4,5) C .{-4,-3,0}D .{0,1,2,3,4} 4.已知函数f(x)=-x 2+4x 在区间[m ,n]上的值域是[-5,4],则m +n 的取值范围是( ) A .[1,7] B .[1,6] C .[-1,1] D .[0,6]1.(2014·天津理)函数()()4log 221-=x x f 的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)2.若0<a<1,则在区间(0,1)上函数f(x)=log a (x +1)是( ) A .增函数且f(x)>0 B .增函数且f(x)<0 C .减函数且f(x)>0D .减函数且f(x)<03.(2016·江南十校联考)设函数f(x)=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x>0.若f(a)=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或24.(2016·沧州七校联考)下列函数中,与函数y =-3|x|的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x|C .y =1-x 2D .y =x 3-15.下列四个数中最大的是( ) A .(ln2)2 B .ln(ln2) C .ln 2D .ln2 6.若二次函数g(x)满足g(1)=1,g(-1)=5,且图像过原点,则g(x)的解析式为( ) A .g(x)=2x 2-3x B .g(x)=3x 2-2x C .g(x)=3x 2+2xD .g(x)=-3x 2-2x7.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围。
指数函数与对数函数的性质证明
指数函数与对数函数的性质证明指数函数与对数函数是数学中常见的两类函数,它们具有许多重要的性质。
本文将就指数函数和对数函数的性质进行证明和解析。
一、指数函数的性质证明1. 指数运算法则:指数运算法则是指对于任意实数a,b和整数m,n,有以下等式成立:a^m * a^n = a^(m+n)(a^m)^n = a^(m*n)(a*b)^n = a^n * b^n证明:对于第一个等式,我们可以将a^m * a^n展开,得到a * a * ... * a * a * a(m个a)* a * a * ... * a * a * a(n个a)。
根据乘法的结合律,我们可以将这些a进行合并,得到a^(m+n)。
因此该等式成立。
对于第二个等式,我们可以将(a^m)^n展开,得到a^m * a^m * ... *a^m * a^m * a^m(n个a^m)。
根据乘法的结合律,我们可以将这些a^m进行合并,得到a^(m*n)。
因此该等式成立。
对于第三个等式,我们可以将(a*b)^n展开,得到(a*b) * (a*b) * ... * (a*b) * (a*b) * (a*b)(n个a*b)。
根据乘法的结合律,我们可以将这些a*b进行合并,得到(a^n) * (b^n)。
因此该等式成立。
2. 指数的负指数和零指数:对于任意实数a(a≠0),有以下等式成立:a^(-m) = 1/(a^m)a^0 = 1证明:对于第一个等式,我们可以将a^(-m)进行展开,得到1/(a^m),而1/a^m等价于1/a * 1/a * ... * 1/a(m个1/a)。
根据乘法的结合律,我们可以将这些1/a进行合并,得到1/(a^m)。
因此该等式成立。
对于第二个等式,任何数的0次方都等于1,即a^0 = 1。
因此该等式成立。
二、对数函数的性质证明1. 对数运算法则:对于任意正数a,b和正整数m,n,有以下等式成立:log_a (a^m * a^n) = log_a (a^(m+n))log_a (a^m) = mlog_a (m * n) = log_a (m) + log_a (n)证明:对于第一个等式,我们可以将log_a (a^m * a^n)进行展开,得到log_a (a^m) + log_a (a^n),而log_a (a^m) + log_a (a^n)等价于m + n,根据对数的定义,我们可以得到等式左边等于右边。
指数函数与对数函数的导数解析与归纳
指数函数与对数函数的导数解析与归纳指数函数与对数函数是数学中常见的两种函数类型,它们在微积分学中有着重要的地位。
本文将介绍指数函数和对数函数的导数的解析与归纳。
一、指数函数的导数解析与归纳1. 定义指数函数的一般形式为y = a^x,其中a为常数且a>0,a≠1。
它具有以下性质:- 当x = 0时,y = 1;- 当x>0时,y随x的增大而增大,且y是递增的;- 当0<a<1时,y是递减的;- 当a>1时,y是递增的。
2. 导数的解析表达式为了求解指数函数的导数,我们先对其进行变形。
将y = a^x取对数,得到lny = ln(a^x)。
根据对数的性质,可以进一步化简为lny = xlna。
然后对等式两边关于x求导,得到1/y * dy/dx = ln a。
因此,指数函数的导数可以表示为dy/dx = ylna。
3. 归纳总结根据以上导数解析表达式,我们可以发现指数函数的导数与自身存在倍数关系。
具体来说,对于y = a^x,其导数为dy/dx = a^x * ln a。
当a>1时,导数为正数,说明指数函数是递增的;当0<a<1时,导数为负数,说明指数函数是递减的。
二、对数函数的导数解析与归纳1. 定义对数函数的一般形式为y = logₐx,其中a为常数且a>0,a≠1。
它具有以下性质:- 当x = 1时,y = 0;- 当x>1时,y随x的增大而增大,且y是递增的;- 当0<x<1时,y是递减的。
2. 导数的解析表达式为了求解对数函数的导数,我们先对其进行变形。
将y = logₐx取指数,得到a^y = x。
然后对等式两边关于x求导,得到1 = dy/dx * ln a。
因此,对数函数的导数可以表示为dy/dx = 1 / (x * ln a)。
3. 归纳总结根据以上导数解析表达式,我们可以得出结论:对数函数的导数与自身的倒数成反比关系。
指数函数和对数函数
指数函数和对数函数指数函数和对数函数是高中数学中重要的两个函数类型。
它们在数学和实际应用中具有广泛的作用和重要性。
本文将介绍指数函数和对数函数的定义、性质以及它们在数学和实际中的应用。
一、指数函数指数函数是以底数为常数且指数为自变量的函数。
一般形式为 y =a^x,其中 a 是底数,x 是指数,y 是函数值。
指数函数的定义域为实数集,值域为正实数集。
指数函数的特点是当底数大于 1 时,随着指数的增加,函数值增加;当底数小于 1 且大于 0 时,随着指数的增加,函数值减小。
当底数为 1 时,指数函数为 y = 1,是一个常函数。
指数函数在数学中有广泛的应用,例如在复利计算、人口增长和物质衰变等方面。
在实际应用中,指数函数也常用于描述增长或衰变速度较快的现象,如病菌增长和药物浓度的降解等。
二、对数函数对数函数是指数函数的逆运算。
对数函数的一般形式为y = logₐ(x),其中 a 是底数,y 是指数,x 是函数值。
对数函数的定义域为正实数集,值域为实数集。
对数函数的特点是当底数大于 1 时,随着函数值的增加,指数也增加;当底数小于 1 且大于 0 时,随着函数值的增加,指数逐渐变小。
对数函数在数学中有广泛的应用,特别是在解决指数方程和指数不等式时常被用到,例如求解 2^x = 8 的 x 值时,可以通过对数函数得到log₂(x) = log₂(8),进而得到 x = 3。
在实际应用中,对数函数也常用于衡量物质的浓度、信号的强度和地震的能量等。
三、指数函数与对数函数的性质和关系1. 指数函数和对数函数是互为反函数的关系,即 y = a^x 和 x =logₐ(y) 互为反函数。
2. 指数函数和对数函数具有对称性,即 a^x 和logₐ(x) 以直线 y = x为对称轴对称。
3. 指数函数和对数函数的图像都经过点 (1, a),其中 a 是底数。
4. 指数函数和对数函数的增长速度都与底数 a 的大小相关,当 a 大于 1 时,函数增长速度较快,当 a 小于 1 且大于 0 时,函数增长速度较慢。
高一数学必修一第四章指数函数与对数函数
高一数学必修一第四章指数函数与对数函数指数函数和对数函数是高中数学中重要的两个函数,也是高一数学必修一中第四章需要掌握的重点内容。
在本章中,我们将深入了解指数函数和对数函数之间的关系,以及它们在日常生活中的广泛运用。
首先,让我们来回顾一下指数函数的定义,指数函数是以一个特定的基数为底的函数,它可以表示当x变化时会随之改变的一种量的数学表示。
指数函数的形式为 y = ax,这里的a是基数,当a = 1时,指数函数称为底数为1的单调函数。
指数函数在实际应用中有广泛的用途,例如在我们日常生活中,我们会碰到“一年涨三分”,“一年贴现百分之十”等概念,都属于指数函数的范畴。
接着,我们再来讨论一下对数函数,它的定义是以指数函数的反函数,它的形式为 y = logax,其中a又称为对数的底数。
在日常生活中,我们会经常碰到对数函数的应用,例如我们可以使用它来计算发动机的功率,照明强度,声音等等。
另外,指数函数和对数函数之间也有着重要的联系,它们之间具有逆函数关系,即y = axy = logax两个函数可以相互替换,也就是说当a是一个正数时,其两个函数的函数图形是可以经过对称轴翻转后对号入座的。
除此之外,我们还可以运用指数函数和对数函数中的经典公式来解决实际问题,例如以水的分解为例,水的分解可以用以下的指数函数公式来表示:
n = a1 + a2,其中a1代表水的分解率,a2是水的生成率。
当
a1等于2时,这个公式就可以转换为一个对数函数的形式:n = log2a2。
总之,指数函数和对数函数在实际应用中都是极为重要的,它们之间也存在着紧密的联系,它们被广泛地运用在人们日常生活中,而且也可以利用它们来解决实际问题。
2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)
人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。
高中数学-指数函数对数函数知识点
高中数学-指数函数对数函数知识点指数函数、对数函数知识点知识点内容:1.整数和有理指数幂的运算:当a≠0时,aⁿ×aᵐ=aⁿ⁺ᵐ;aⁿ÷aᵐ=aⁿ⁻ᵐ;(aⁿ)ᵐ=aⁿᵐ2.指数函数y=aᵐ⁄ⁿ(a>0.m,n∈N*,且n>1)的性质:①解析式:y=aᵐ⁄ⁿ(a>0.且a≠1)②图象:过点(0,1),在a>1时,在R上是增函数,在0<a<1时,在R上是减函数③单调性:在定义域R上当a>1时,在R上是增函数当0<a<1时,在R上是减函数④极值:在R上无极值(最大、最小值)⑤奇偶性:非奇非偶函数典型题:1.把0.9017x=0.5化为对数式为log0.9017(0.5)=x2.把lgx=0.35化为指数式为x=10⁰.³⁵3.计算:2×6⁴³=6⁴⁴⁹4.求解:(2+1)⁻¹+(2-1)⁻²sin45°=0.5915.指数函数y=aᵐ⁄ⁿ(a>0.m,n∈N*,且n>1)的图象过点(3,π),求f(0)、f(1)、f(-3)的值f(0)=a⁰⁄ⁿ=1f(1)=aᵐ⁄ⁿ=a³⁄ⁿf(-3)=a⁻⁹⁄ⁿ6.求下列函数的定义域:① y=2-x²,定义域为R② y=1⁄(4x-5)-2,定义域为R-{5⁄4}7.比较下列各组数的大小:① 1.2<2.5<1.2+0.5,0.4-0.1<0.4-0.2② 0.3=0.4=0.4=0.3,<2112③ (2³)²<(3²)³<(2²)³8.求函数y=(x²-6x+17)⁄2的最大值,最大值为159.函数y=(a-2)x在(-∞,+∞)上是减函数,则a的取值范围为a>310.函数y=(a²-1)x在(-∞,+∞)上是减函数,则a的取值范围为|a|>1x其中a为底数,x为真数,y为对数。
高中数学中的指数函数与对数函数
高中数学中的指数函数与对数函数指数函数和对数函数是高中数学中非常重要的概念。
指数函数是基于指数的函数关系,而对数函数则是指数函数的逆运算。
本文将从定义、性质和应用等方面综述高中数学中的指数函数与对数函数。
一、指数函数的定义与性质指数函数是以自然常数e为底的幂函数,其一般形式为 f(x) = a^x,其中a为常数且大于0且不等于1,x为自变量,f(x)为因变量。
指数函数的定义中,底数a决定了函数的增长速度。
当0<a<1时,指数函数呈现递减趋势;当a>1时,指数函数呈现递增趋势。
指数函数的性质包括:1. 任何指数函数f(x) = a^x都有f(0) = 1的性质,即对数轴上的横坐标为0处的函数值为1。
2. 指数函数的图像具有一定的对称性质,其对称轴为直线x = 0。
3. 当x1 < x2时,若指数函数f(x)的底数a > 1,则f(x1)<f(x2);若指数函数f(x)的底数0 < a < 1,则f(x1)>f(x2)。
二、对数函数的定义与性质对数函数是指数函数的逆运算。
设b是一个正实数且b ≠ 1,对数函数的一般形式为 f(x) = logb(x),其中x是正实数。
对数函数的定义中,底数b决定了函数的特性。
当0 < b < 1时,对数函数具有递增趋势;当b > 1时,对数函数具有递减趋势。
对数函数的性质包括:1. 任何对数函数f(x) = logb(x)都有f(1) = 0的性质,即对数轴上的横坐标为1处的函数值为0。
2. 对数函数的图像具有一定的对称性质,其对称轴为直线y = x。
3. 当x1 < x2时,若对数函数f(x)的底数b > 1,则f(x1) > f(x2);若对数函数f(x)的底数0 < b < 1,则f(x1) < f(x2)。
三、指数函数与对数函数的应用指数函数和对数函数在实际生活和科学研究中有着广泛的应用。
以下列举几个典型的应用场景:1. 经济增长模型:许多经济增长模型是基于指数函数的增长模式,例如Solow模型和经济增长中的人口增长模型。
指数与对数函数
指数与对数函数指数与对数函数是高中数学中常见的函数类型,它们在数学和科学领域中具有广泛的应用。
指数函数可以用来表示增长的速度,而对数函数则可以用来解决指数式的问题。
本文将介绍指数与对数函数的定义、性质以及实际应用。
一、指数函数指数函数是一种以常数为底数的幂函数,它的一般形式可以表示为f(x) = a^x,其中a是正实数且不等于1。
指数函数的定义域为整个实数集,值域为正实数集。
指数函数的图像呈现出一种特殊的形态,即当底数大于1时,随着自变量增大,函数值也随之增大,呈现出递增趋势;而当底数小于1且大于0时,随着自变量增大,函数值反而减小,呈现出递减趋势。
指数函数在现实生活中有着广泛的应用。
举例来说,经济增长模型中常常使用指数函数来描述经济的增长趋势。
此外,放射性衰变也可以用指数函数来表示,指数函数在核物理领域起着重要的作用。
二、对数函数对数函数是指以某个正实数为底数,将正实数x映射到满足a^y = x的实数y的函数。
对数函数的定义域为正实数集,值域为整个实数集。
对数函数的一般形式可以表示为f(x) = logₐ(x),其中a是正实数且不等于1。
对数函数与指数函数是互为反函数关系,即指数函数和对数函数的图像关于y=x对称。
对数函数的主要特点是,当底数大于1时,对数值随着自变量的增大而增大;当底数小于1且大于0时,对数值随着自变量的增大而减小。
对数函数广泛应用于科学和技术领域。
例如,在计算机科学中,对数函数在对数复杂性和算法分析中具有重要作用。
同时,在经济学和金融学中,对数函数常用于计算复利和持续增长的情况。
三、指数与对数函数的性质指数函数和对数函数具有一些重要的性质。
1. 指数与对数的互为反函数关系:对于任意的a>0且a≠1,和任意的x>0,有logₐ(a^x) = x和a^(logₐ(x)) = x。
也就是说,指数函数和对数函数是互为反函数的。
2. 指数与对数的运算规律:指数和对数具有一些重要的运算规律,如指数的乘方法则、指数函数的加法法则和对数的乘法法则等。
指数函数与对数函数的互逆关系
指数函数与对数函数的互逆关系指数函数与对数函数是数学中的两种重要函数,它们之间存在着互逆的关系。
在本文中,我们将详细介绍指数函数与对数函数的定义、性质以及它们之间的互逆关系。
一、指数函数的定义与性质指数函数是以自然常数e(约等于2.71828)为底的幂函数,可以表示为f(x) = a^x,其中a为底数,x为指数,a>0且a≠1。
指数函数的定义域为实数集R,值域为正数集R+。
指数函数具有以下性质:1. 当x为有理数时,指数函数满足指数运算法则,即a^(x+y) = a^x * a^y,其中x、y为有理数。
2. 指数函数的图像在x轴的正半轴上单调递增,且经过点(0,1)。
3. 当x趋近于无穷大时,指数函数趋近于正无穷大;当x趋近于负无穷大时,指数函数趋近于0。
4. 指数函数与直线y=0和x轴构成夹角,夹角的大小与底数大小有关。
二、对数函数的定义与性质对数函数是指数函数的逆运算,它可以表示为g(x) = logₐx,其中a为底数,x为真数,a>0且a≠1。
对数函数的定义域为正数集R+,值域为实数集R。
对数函数具有以下性质:1. 对数函数与指数函数互为反函数,即f(g(x)) = g(f(x)) = x。
2. 对数函数的图像在一、二象限中单调递增,且经过点(1,0)。
3. 当x趋近于0时,对数函数趋近于负无穷大;当x趋近于正无穷大时,对数函数趋近于正无穷大。
4. 对数函数和y轴、x轴分别构成夹角,夹角的大小与底数大小有关。
三、指数函数与对数函数的互逆关系指数函数和对数函数是互为反函数的关系,即f(g(x)) = x和g(f(x)) = x。
具体而言,指数函数和对数函数满足以下关系:1. a^(logₐx) = x,其中a为底数,x为正数。
2. logₐ(a^x) = x,其中a为底数,x为实数。
例如,对于底数为2的指数函数和对数函数,2^(log₂x) = x,log₂(2^x) = x。
指数函数与对数函数的增减性与极限性质
指数函数与对数函数的增减性与极限性质指数函数与对数函数是数学中常见的两种函数类型,它们在数学以及实际问题中具有重要的应用价值。
本文将重点讨论指数函数与对数函数的增减性与极限性质,并给出相应的证明和解释。
一、指数函数的增减性与极限性质指数函数是以某个正数a(a>0且a≠1)为底的函数 f(x) = a^x。
首先讨论指数函数的增减性。
1. 指数函数的增减性考虑指数函数 f(x) = a^x,其中a>0且a≠1。
根据指数函数的定义,我们知道当x1 < x2时,a^x1 < a^x2,即指数函数在其定义域上是递增的。
2. 指数函数的极限性质对于指数函数f(x) = a^x,其中a>0且a≠1,我们来讨论其极限性质。
当x趋向于负无穷时(记为x→-∞),指数函数 f(x) = a^x 的极限为0(记为lim(x→-∞) a^x = 0);当x趋向于正无穷时(记为x→+∞),指数函数 f(x) = a^x 的极限为正无穷(记为lim(x→+∞) a^x = +∞)。
证明:对于第一种情况,即当x趋向于负无穷时,我们需要证明lim(x→-∞) a^x = 0。
假设对于任意的正数ε(ε>0),存在一个实数M,使得当x < M时,有|a^x| < ε。
根据指数函数的性质,我们可以得到a^x < 1,即1/a^x > 1。
我们可以将指数函数 f(x) = a^x 转化为1/f(x),即1/a^x,求其极限。
由于lim(x→-∞) 1/a^x = +∞,即当x趋向于负无穷时,1/a^x的值会无限增大。
根据极限的定义,对于任意的正数M,当x < M时,有|1/a^x| > N,其中N为一个正数。
此时,我们可以将1/a^x写为|a^x|/a^x,即|a^x|/(a^x)^2。
我们可以取N = 1/(Ma),那么当x < M时,就有|a^x|/(a^x)^2 > N。
指数函数与对数函数
指数函数与对数函数指数函数与对数函数是高中数学中的重要内容,它们在数学和科学领域中有着广泛的应用。
本文将从定义、性质、图像和实际问题四个方面,介绍指数函数与对数函数的相关知识。
一、指数函数的定义与性质指数函数是以底数为常数的数学函数,其自变量为指数。
一般形式为 f(x) = a^x,其中 a > 0 且a ≠ 1。
指数函数具有以下基本性质:1. 当 x = 0 时,f(x) = a^0 = 1,即指数函数的零次幂等于1。
2. 指数函数的底数 a 大于1时,函数增长趋势明显,图像呈现上升趋势。
底数 a 在0和1之间时,函数呈现下降趋势。
3. 当 x 为正无穷大时,函数无穷逼近于正无穷大。
当 x 为负无穷大时,函数无穷逼近于0。
4. 指数函数具有对称性,即 f(-x) = 1 / a^x。
二、对数函数的定义与性质对数函数是指以某一正数为底数的对数运算与自变量的函数关系。
一般形式为f(x) = logₐ(x),其中 a > 0 且a ≠ 1。
对数函数具有以下基本性质:1. 对数函数的定义域为正实数集,即 x > 0。
2. 当 x = 1 时,f(x) = logₐ(1) = 0,即对数函数的底数为1时,结果为0。
3. 对数函数的底数 a 大于1时,函数增长趋势明显,图像呈现上升趋势。
底数 a 在0和1之间时,函数呈现下降趋势。
4. 当 x 为正无穷大时,函数无穷逼近于正无穷大。
当 x 为0时,函数无穷逼近于负无穷大。
三、指数函数与对数函数的图像与性质对应指数函数与对数函数是互为反函数的关系,其图像呈现镜像对称。
指数函数的增长趋势对应着对数函数的上升趋势,指数函数的收敛趋势对应着对数函数的下降趋势。
以底数为2的指数函数和对数函数为例,它们的图像如下所示:(插入图像)四、指数函数与对数函数的实际应用指数函数和对数函数在自然科学、经济学、生物学等领域中有着广泛的应用。
以下举几个例子:1. 化学反应速率:化学反应速率常常遵循指数函数的规律,通过实验测量反应物和生成物的浓度随时间变化的关系,可以确定反应速率常数。
对数函数与指数函数的函数变换
对数函数与指数函数的函数变换函数变换是数学中非常重要的一部分内容,它描述了一个函数如何通过改变自变量或者函数表达式来得到新的函数形式。
在函数变换的研究中,对数函数与指数函数是两个非常重要的函数类型。
它们在不同的领域和应用中都具有重要的作用,而它们之间的函数变换关系也有很多值得探讨的地方。
一、指数函数的函数变换指数函数是以指数为自变量的函数,通常的形式可以表示为f(x) =a^x,其中a为常数。
指数函数具有许多特殊的性质和变换规律,下面我们将针对指数函数的几种常见变换进行详细讨论。
1. 平移变换平移变换是一种常见的函数变换方式,它可以将函数图像在横轴或纵轴方向上平移一定的距离。
对于指数函数而言,平移变换可以表示为f(x) = a^(x-h) + k,其中h和k分别表示横轴和纵轴方向上的平移距离。
当h和k为正值时,函数图像向右平移h个单位,向上平移k个单位;当h和k为负值时,函数图像向左平移|h|个单位,向下平移|k|个单位。
2. 缩放变换缩放变换是一种改变函数图像尺寸的变换方式。
对于指数函数而言,缩放变换可以表示为f(x) = b*a^x,其中a为常数,b为比例系数。
当b大于1时,函数图像在纵轴方向上被拉伸,当0<b<1时,函数图像在纵轴方向上被压缩;当a大于1时,函数图像在横轴方向上被压缩,当0<a<1时,函数图像在横轴方向上被拉伸。
3. 翻转变换翻转变换是一种改变函数图像方向的变换方式。
对于指数函数而言,翻转变换可以表示为f(x) = a^(-x),即以y轴为对称轴进行翻转。
翻转变换后,函数图像关于y轴对称,即对于任意的x值,f(-x) = f(x)。
二、对数函数的函数变换对数函数是以对数为自变量的函数,通常的形式可以表示为f(x) = logₐx,其中a为底数。
对数函数也具有许多特殊的性质和变换规律,下面我们将针对对数函数的几种常见变换进行详细讨论。
1. 平移变换对数函数的平移变换可以表示为f(x) = logₐ(x-h) + k,其中h和k表示横轴和纵轴方向上的平移距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、填空: (1)log 3
= ;(2)e = ;
(3)5log 7
15-⎛⎫=
⎪
⎝⎭
;(4)252log 7log 5
4
5+= ;(5)13
log =
.
例2、求下列各式中的x : (1)已知
82log 3x =-
,则x = ;(2)
3
log 274x =
,则x = . (3)若()2log lg 1x =,则x = ;若()25log log 0x =,则x = . 例3、(1)已知lg 2a =,lg3b =,用 a 、b 表示lg15
例4、计算: (1)235log 25log 4log 9
⋅⋅ (2)
()
2
lg 25lg 2lg50lg 2+⋅+
例5、解答下列各题:
(1)设45100a b ==,求122a b ⎛⎫
+ ⎪⎝⎭的值;(2)若2.51000x =,0.251000y
=,求11x y
-的值.
例6、求下列函数的定义域: (1)y =)
12(log 2
1-x ; (2)
2log (164)
x y =-; (3)
()()
21log 6x y x x +=-++.
例7、作函数()2log 11
y x =++的图象
例8、比较大小: (1)1
2
4log 5与126
log 7; (2)12log 3与13log 3;
例9、(1)比较0.7log 6与6
0.7及0.7
6;(2)已知()lg f x x =,比较
13f ⎛⎫ ⎪
⎝⎭与()2f 的
大小.
例10、解不等式:()()22log 21log 5x x -<-+
例11、.求下列函数的单调区间及值域:
(1)232
13x x y -+⎛⎫= ⎪
⎝⎭
; (2)
23log (43)
y x x =+- .
1、已知log 162x =,则x =( ) A .4±; B .4; C .256; D .2.
2、若
12
log 16
x =,则x =( )
A .4-;
B .3-;
C .3;
D .4. 3、已知2log 3x =,则12
x -=( )
A .1
3; B
C
D
.
4、使
()()
1log 2x x -+有意义的x 的取值范围是( )
A .1x ≥;
B .1x <;
C .2x <-;
D .1x >且2x ≠. 5、已知3
2a
=,那么33log 82log 6-用a 表示是( )
A .2a -;
B .52a -;
C .2
3(1)
a a -+; D .2
3a a -.
6、2log (2)log log a a a M N M N -=+,则N M
的值为( )
A .41
; B .4; C .1; D .4
或1.
7、如果方程2
lg
(lg5lg 7)lg lg5lg 70x x +++⋅=的两根是α、β
,则αβ 的值是( )
A .lg5lg 7⋅;
B .lg 35;
C .35;
D .351
.
8、已知
732log [log (log )]0
x =,那么12
x -
等于( )
A .1
3; B
C
; D
9、函数
2lg 11y x ⎛⎫=- ⎪
+⎝⎭的图像关于( )
A .x 轴对称;
B .y 轴对称;
C .原点对称;
D .直线y x =对称.
10、函数(21)
log x y -= )
A .()2,11,3⎛⎫+∞ ⎪⎝⎭ ;
B .()1,11,2⎛⎫+∞ ⎪⎝⎭ ;
C .2,3
⎛⎫+∞ ⎪⎝⎭; D .1,2⎛⎫+∞ ⎪
⎝⎭. 11、函数
212
log (617)
y x x =-+的值域是( )
A .R ;
B .[)8,+∞;
C 、(),3-∞-;
D 、[)3,+∞. 12、
2
log 13a
<,则a 的取值范围是( )
A .()20,1,3⎛⎫+∞ ⎪⎝⎭ ;
B .2,3⎛⎫+∞ ⎪⎝⎭;
C .2,13⎛⎫ ⎪⎝⎭;
D .
220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭。