人教A版数学必修一高一数指数函数、对数函数

合集下载

人教A版高中数学必修一课件 《函数的零点与方程的解》指数函数与对数函数

人教A版高中数学必修一课件 《函数的零点与方程的解》指数函数与对数函数

探究一
探究二
探究三
思想方法 随堂演练
课堂篇 探究学习
解析:(1)令f(x)=log3x+x-3,则f(1)=log31+1-3=-
2<0,f(2)=log32+2-3=log3<0,f(3)=log33+3-3=1>0,f(4)=log34+43=log312>0,则函数f(x)的零点所在的区间为(2,3),所以方程 log3x+x=3的实数解所在的区间为(2,3).
(2)记f(x)=ex-x-2,则该函数的零点就是方程ex-x-2=0的实数解. 由题表可知f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.394>0,f(3)=20.09-5>0.由零点存在定理可得f(1)f(2)<0,故函数的零点 所在的区间为(1,2).所以k=1.
探究一
探究二
探究三
思想方法 随堂演练
变式训练本例已知条件不变,求a为何值时: (1)方程有唯一实数解; (2)方程的一个解大于1,一个解小于1.
解:(1)令f(x)=ax2-2(a+1)x+a-1.
课堂篇 探究学习
探究一
探究二
探究三
思想方法 随堂演练
例3 (1)方程log3x+x=3的解所在的区间为 ( )
A.(0,2)
B.(1,2) C.(2,3) D.(3,4)
(2)根据表格中的数据,可以判定方程ex-x-2=0的一个实数解所在
的区间为(k,k+1)(k∈N),则k的值为
.
分析:(1)构造函数f(x)=log3x+x-3,转化为确定函数f(x)的零点所 在的区间;(2)构造与方程对应的函数,然后根据表格判断函数值的 符号,从而确定零点所在的区间,再求k值.

人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)

人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)

【解】 (1)loge16=a,即 ln16=a. (2)log6414=-13. (3)32=9. (4)xz=y.
将下列指数式与对数式互化:
(1)log216=4;
(2)log127=-3; 3
(3)43=64; (4)14-2=16. 解:(1)由 log216=4 可得 24=16.
(2)由
1.对数的概念 一 般 地 , 如 果 ax = N(a>0 , 且 a≠1) , 那 么 数 x 叫 做 _以___a_为___底__N__的__对__数____ , 记 作 _x_=___lo_g_a_N__ , 其 中 a 叫 做 ___对__数__的__底__数____,N 叫做真 __数___.
把对数式 loga49=2 写成指数式为( )
A.a49=2
B.2a=49
C.492=a
D.a2=49
答案:D
log32x- 5 1=0,则 x=________.
答案:3
指数式与对数式的互化
将下列指数式与对数式互化: (1)ea=16; (2)64-13=14; (3)log39=2; (4)logxy=z(x>0 且 x≠1,y>0).
log127=-3 3
可得13-3=27.
(3)由 43=64 可得 log464=3.
(4)由14-2=16
可得
log116=-2. 4源自利用对数式与指数式的关系求值
求下列各式中 x 的值: (1)log27x=-23; (2)logx16=-4; (3)lg10100=x; (4)-lne-3=x.
4.3对数 第一课时 对数
的概念
第四章 指数函数与对数函数
考点
学习目标

人教A版高中数学必修一 《指数》指数函数与对数函数PPT课件

人教A版高中数学必修一 《指数》指数函数与对数函数PPT课件

考点
学习目标
利用指数幂的性质化 理解指数幂的含义及其
简求值
运算性质
会根据已知条件,利用
条件求值问题
指数幂的运算性质、 根式的性质进行相关求
值运算
核心素养 数学运算
数学运算
问题导学 预习教材 P104-P109,并思考以下问题: 1.n 次方根是怎样定义的? 2.根式的定义是什么?它有哪些性质? 3.有理数指数幂的含义是什么?怎样理解分数指数幂? 4.有理指数幂有哪些运算性质?
A. (-5)2=-5
4 B.
a4=a
C. 72=7
3 D.
(-π)3=π
解析:选 C.由于 (-5)2=5,4 a4=|a|,3 (-π)3=-π, 故 A,B,D 项错误,故选 C.
2.化简( a-1)2+ (1-a)2+3 (1-a)3=________.
解析:由( a-1)2 知 a-1≥0,a≥1. 故原式=a-1+|1-a|+1-a=a-1. 答案:a-1
1
4 =
4 x3
1x3(x>0),
故③正确;对于④,x-13= 1 ,故④错误.综上,故填③. 3 x
答案:③
2.用分数指数幂的形式表示下列各式(a>0,b>0): (1)a2 a;(2)3 a2· a3;(3)(3 a)2· ab3;(4) a2 .
6 a5 解:(1)原式=a2a12=a2+12=a52. (2)原式=a23·a32=a23+32=a163. (3)原式=(a13)2·(ab3)12=a32a12b32=a32+12b23=a67b32. (4)原式=a2·a-56=a2-56=a76.
4.1 指 数
第四章 指数函数与对数函数

高一上学期数学人教A版必修第一册第四章《指数函数与对数函数》函数的零点与方程的解(二)同步练测

高一上学期数学人教A版必修第一册第四章《指数函数与对数函数》函数的零点与方程的解(二)同步练测

4.5.1函数的零点与方程的解(二)同步练测考试时间:120分钟满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.A .(]4,16B .[)4,+∞C .(),4-∞-D .[)16,4--二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.参考答案:1.B【解析】由题意知,αβ是二次函数236y x x =+-的两个零点,故,αβ是2360x x +-=的两个根,则2360αα+-=,且+3αβ=-,则236αα+=且3βα=--,故22233(3)5αβαααα-=-++=+-=-=,故选:B 2.B【解析】令()ln 24f x x x =+-,显然()ln 24f x x x =+-单调递增,又因为()12420f =-=-<,()2ln 244ln 20f =+-=>,由零点存在性定理可知:()ln 24f x x x =+-的零点所在区间为()12,,所以ln 42x x =-的根所在区间为()12,.故选:B 3.B【解析】函数()23x f x x a =++在区间(0,1)内存在零点,且函数在定义域内单调递增,由零点存在性定理知(0)(1)0f f ⋅<,即()()150a a ++<,解得51a -<<-所以实数a 的取值范围是(5,1)--,故选:B 4.A【解析】要使函数()()g x f x a =-有三个零点,则()f x a =有三个不相等的实根,即()f x 与y a =的图象有三个交点,当1x ≤-时,()113x f x +=-在(],1-∞-上单调递减,[)()0,1f x Î;当10-<≤x 时,()131x f x +=-在(]1,0-上单调递增,(]()0,2f x Î;当0x >时,()ln f x x =在()0,∞+上单调递增,()f x ∈R ;由()f x 与y a =的图象有三个交点,结合函数图象可得()0,1a ∈,故选:A.由图像可知01a b <<<<由()()f a f b =得lg a =联立2y x y x =⎧⎨=-⎩,得由图象可知,直线9.BCf x对应的二次方程根的判别式【解析】函数()可观察出①当1a >时,方程(f ()220()xf a a R --=∈有方程()1f t =-的解为1(0,1)t t =∈,2(,0)t t =∈-∞,即1()f x t =,2()f x t =,在同一坐标系中作出函数()y f x =和1y t =,2y t =的图象,由图可知函数()y f x =和1y t =,2y t =有4个交点,所以函数[()]1y f f x =+有4个零点.当0a ≤时,方程()1f t =-的解为3(0,1)t t =∈,即3()f x t =,在同一坐标系中作出函数()y f x =和3y t =的图象,由图可知函数()y f x =和3y t =有1个交点,所以函数[()]1y f f x =+有1个零点.故选:AD13.1【解析】解法一:令()0f x =,可得方程2ln 30x x +-=,即2ln 3x x =-,故原函数的零点个数即为函数ln y x =与23y x =-图象的交点个数.在同一平面直角坐标系中作出两个函数的大致图象(如图).由图可知,函数23y x =-与ln y x =的图象只有一个交点,故函数()2ln 3f x x x =+-只有一个零点,故答案为:1解法二:∵()21ln11320f =+-=-<,()22ln 223ln 210f =+-=+>,∴()()120f f <,又()2ln 3f x x x =+-的图象在()1,2上是不间断的,∴()f x 在()1,2上必有零点,又()2ln 3f x x x =+-在()0,∞+上是单调递增的,∴函数()f x 的零点有且只有一个,故答案为:114.(]()1,34,+∞ 【解析】由于4y x =-在R 上只有一个零点4,函数243y x x =-+在R 上的两个零点为1和3,若4λ>,此时4y x =-在x λ≥上没有零点,函数243y x x =-+在x λ<上的两个零点为1和3,满足题意,当34λ<≤时,此时4y x =-在x λ≥上有零点4,函数243y x x =-+在x λ<上有零点为1和3,不满足题意,舍去当13λ<≤时,此时4y x =-在x λ≥上有零点4,函数243y x x =-+在x λ<上有零点为1,满足题意,当1λ≤时,此时4y x =-在x λ≥上有零点4,函数243y x x =-+在x λ<上没有零点,不满足题意,舍去,因为函数()12xf x ⎛⎫= ⎪⎝⎭点212,log x x ⎛⎫ ⎪⎝⎭与点⎛⎝由图象可知,-当0a >时,12116a a <<,解得111612a <<;当a 11,⎛⎫⎧⋃。

高一上学期数学人教A版必修第一册4.2指数函数(指数函数的概念+指数函数的图像和性质)课件

高一上学期数学人教A版必修第一册4.2指数函数(指数函数的概念+指数函数的图像和性质)课件
第4章 指数函数与对数函数
4.2 指数函数
导问:创设情境,引入主题
给我一个支点,我能够撬动地球。
----阿基米德
给我一张足够大的纸,
我能够上月球,你信吗?
给你一张纸,你能折几次呢?
导问:创设情境,引入主题
如果你有一张面积无限、强度无
限,厚度为0.01毫米的纸,如果
折叠能力无限,那么多次对折,
纸张的厚度会变成多少呢?
导问:创设情境,引入主题
导问:创设情境,引入主题
问题1:一张薄薄的纸,却折叠出了惊天的气势,蕴含着神秘的数学知识。
若把纸张的初始厚度设为1,经过x次对折后, 纸张厚度y与对折次数x之间
的关系是什么?
对折次数
纸张厚度
每折叠一次,得到的纸张的厚度都约
0
1
1
为前一次的2倍.也就是每次的厚度相
比于折叠之前都增长了100%,我们称
这节课我们都学了什么?
R
对称性
定义域
定义
值域




奇偶性




非奇非偶函数
单调性
过定点(0,1)
在第一象限内“底大图高”
感谢凝听!
2
3
···
这个100%为增长率。
···
增长率为常数的变化方式,我们称为指数增长。
导问:创设情境,引入主题
问题2:《庄子·天下篇》 中写道: “一尺之棰,日取其半,万世不竭。“
设原长度为1,设
取x天之后,剩
1
长度都变为前一天的
2
一半.也就是每天的长
3
度相比于前一天都衰
下y,请完成表格:
···

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)
解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。

高一必修一数学人教a版知识点

高一必修一数学人教a版知识点

高一必修一数学人教a版知识点一、函数与方程1. 直角坐标系直角坐标系由x轴和y轴组成,地面上平行于坐标轴的线为直线。

2. 函数的概念函数是一种特殊的关系,它将每一个自变量值映射到唯一的因变量值上。

3. 函数的表示方式函数可以用显式表达式、隐式表达式、参数方程等形式表示。

4. 函数的图像与性质函数的图像是在直角坐标系上表示的,它可以反映函数的变化趋势、单调性、奇偶性等性质。

5. 一次函数一次函数的图像为一条通过原点的直线,具有重要的实际应用。

6. 二次函数二次函数的图像为抛物线,可以通过顶点坐标、对称轴、开口方向等性质进行分析。

7. 指数函数指数函数的图像为递增或递减的曲线,具有快速增长或衰减的特点。

8. 对数函数对数函数的图像为递增的曲线,可以将指数运算转化为对数运算,简化计算。

9. 幂函数幂函数的图像为一条通过原点的曲线,表现出不同幂次的增长或衰减。

10. 函数的复合函数的复合是指将一个函数的输出作为另一个函数的输入,形成一个新的函数。

11. 方程的解与方程组方程的解是使得方程成立的未知数的取值,方程组是由多个方程组成的系统。

12. 一元一次方程与一元二次方程一元一次方程与一元二次方程是常见的数学模型,可以用于解决实际问题。

13. 不等式不等式是由一个或多个不等关系符号连接的代数式,可以用于描述范围或区间。

二、几何与图形1. 角的概念与性质角是由两条有公共起点的射线组成,可以通过角的度数来分类和比较大小。

2. 直线与平面直线是由无限多个点组成的,平面是由无限多个直线组成的。

3. 三角形的性质与分类三角形根据边长和角度的关系可以分为等边三角形、等腰三角形、直角三角形等。

4. 直角三角形的性质与勾股定理直角三角形的两条直角边的平方和等于斜边的平方,这就是著名的勾股定理。

5. 四边形的性质与分类四边形是由四条线段组成的图形,可以根据边长和角度的关系进行分类。

6. 平行线与平行四边形平行线是在同一个平面内永不相交的直线,平行四边形是有两组平行边的四边形。

高中数学必修第一册人教A版(2019)第四章 《指数函数与对数函数》本章教材分析

高中数学必修第一册人教A版(2019)第四章 《指数函数与对数函数》本章教材分析

《指数函数与对数函数》本章教材分析一、本章知能对标二、本章教学规划本章在研究指数幂和对数的基础上,以研究函数概念与性质的一般方法为指导,借鉴研究幂函数的过程与方法,学习指数函数和对数函数,帮助学生学会用函数图象和代数运算的方法研究它们的性质,理解这两类函数中蕴含的变化规律;运用函数思想和方法,探索用二分法求方程的近似解;通过建立指数函数、对数函数模型解决简单的实际问题,体会指数函数、对数函数在解决实际问题中的作用,从而进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具,提升数学抽象、数学建模、数学运算、直观想象和逻辑推理等数学核心素养.三、本章教学目标1.指数函数:通过了解指数的拓展过程,让学生掌握指数幂的运算性质;了解指数函数的实际意义,理解指数函数的概念.能借助描点法、信息技术画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.2.对数函数:通过具体事例,让学生理解对数的概念和运算性质,掌握换底公式;了解对数函数的概念,能画对数函数的图象,了解对数函数的单调性与特殊点;知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).3.二分法与求方程近似解:结合指数函数和对数函数的图象,让学生了解函数的零点与方程解的关系、函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.4.函数与数学模型:利用计算工具,比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.四、本章教学重点难点重点:实数指数幂及其运算,对数及其运算,指数函数和对数函数的概念、图象、性质及其应用. 难点:抽象概括指数函数和对数函数的概念及性质.五、课时安排建议本章教学约需11课时,具体安排如下:六、本章教学建议1.注重引导学生按研究函数的基本思路展开研究本章教学要注重让学生再次经历研究函数的基本过程:背景—概念—图象和性质—应用.要注意引导学生通过计算分析具体实例的数据中蕴含的变化规律抽象形成相应的函数概念,利用教科书中的问题引导学生思考和总结.2.用函数的观点联系相关内容,培养学生的数学整体观本章的核心内容是指数函数和对数函数,全章都应该围绕核心内容展开教学,以更好地帮助学生形成函数观点和思想方法.指数幂的运算、对数的概念及其运算性质和公式、指数和对数的关系,是学习指数函数、对数函数必备的基础,运用这些运算性质,通过运算,解决具体的问题教学中要从整体上把握上述运算性质、函数概念、图象、性质以及应用的关系.3.加强“形”与“数”的融合,循序渐进地研究指数函数和对数函数为了能选择合适的函数类型构建数学模型,刻画现实问题的变化规律,教学时可以依据教科书,从两个方面帮助学生体会不同函数模型增长的差异:一是通过观察函数图象,利用图象直观比较指数函数与线性函数、对数函数与线性函数增长速度的差异;二是通过教科书中的实例,结合具体问题情境理解不同函数增长的差异,教学的关键是从局部到整体,从不同角度观察、比较不同函数图象增长变化的差异,从而直观体会直线的增长、指数爆炸、对数增长的含义4.加强背景和应用,发展学生数学建模素养数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养.教学中,应注意参考教科书,结合这些素材,引导学生从数学的视角发现问题、提出问题,构建指数函数和对数函数模型,确定模型中的参数,计算求解,检验结果,改进模型,最终解决问题,让学生体会数学的来源与应用,丰富学生对数学的认识,提升数学建模素养.5.注重借助信息技术工具研究指数函数和对数函数在不同函数增长差异的教学中,利用信息技术可以作出函数在两个不同范围的图象,帮助学生从不同角度观察到不同函数增长的差异.6.注意通过无理数指数幂的教学渗透极限思想教科书通过“用有理数指数幂逼近无理数指数幂”的思想方法引入无理数指数幂.教学中,可以类比初中用有理数逼近无理数,让学生充分经历从“过剩近似值”和“不足近似值”两个方向,用有理数指数幂逼近无理数指数幂的过程;通过在数轴上表示这些“过剩近似值”和“不足近似值”的对应点,发现这些点逼近一个确定的点,其对应的数就是这个无理数指数幂.这样从“数”与“形”的两个角度,加强了逼近和极限思想的渗透,有助于学生从中初步体会这一重要思想.。

新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数函数讲义

新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数函数讲义

最新课程标准:(1)通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.(2)知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).(3)收集、阅读对数概念的形成与发展的历史资料,撰写小论文,论述对数发明的过程以及对数对简化运算的作用.知识点一对数函数的概念函数y=log a x (a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).错误!形如y=2log2x,y=log2错误!都不是对数函数,可称其为对数型函数.知识点二对数函数的图象与性质a>10<a<1图象性质定义域(0,+∞)值域R过点(1,0),即当x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数错误!底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.知识点三反函数一般地,指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的定义域与值域正好互换.[教材解难]1.教材P130思考根据指数与对数的关系,由y =错误!5730x(x ≥0)得到x =log 573012y (0<y ≤1).如图,过y 轴正半轴上任意一点(0,y 0)(0<y 0≤1)作x 轴的平行线,与y =错误!5730x(x ≥0)的图象有且只有一个交点(x 0,y 0).这就说明,对于任意一个y ∈(0,1],通过对应关系x =log 573012y ,在[0,+∞)上都有唯一确定的数x 和它对应,所以x 也是y 的函数.也就是说,函数x =log 573012y ,y ∈(0,1]刻画了时间x 随碳14含量y 的衰减而变化的规律.2.教材P 132思考利用换底公式,可以得到y =log 12x =—log 2x .因为点(x ,y )与点(x ,—y )关于x轴对称,所以y =log 2x 图象上任意一点P (x ,y )关于x 轴的对称点P 1(x ,—y )都在y =log 12x 的图象上,反之亦然.由此可知,底数互为倒数的两个对数函数的图象关于x 轴对称.根据这种对称性,就可以利用y =log 2x 的图象画出y =log 12x 的图象.3.教材P 138思考一般地,虽然对数函数y =log a x (a >1)与一次函数y =kx (k >0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,log a x可能会大于kx,但由于log a x的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有log a x<kx.4.4.1对数函数的概念[基础自测]1.下列函数中是对数函数的是()A.y=log14xB.y=log14(x+1)C.y=2log14xD.y=log14x+1解析:形如y=log a x(a>0,且a≠1)的函数才是对数函数,只有A是对数函数.答案:A2.函数y=错误!ln(1—x)的定义域为()A.(0,1)B.[0,1)C.(0,1] D.[0,1]解析:由题意,得错误!解得0≤x<1;故函数y=错误!ln(1—x)的定义域为[0,1).答案:B3.函数y=log a(x—1)(0<a<1)的图象大致是()解析:∵0<a<1,∴y=log a x在(0,+∞)上单调递减,故A,B可能正确;又函数y=log a(x—1)的图象是由y=log a x的图象向右平移一个单位得到,故A正确.答案:A4.若f(x)=log2x,x∈[2,3],则函数f(x)的值域为________.解析:因为f(x)=log2x在[2,3]上是单调递增的,所以log22≤log2x≤log23,即1≤log2x≤log23.答案:[1,log23]题型一对数函数的概念例1下列函数中,哪些是对数函数?(1)y=log a错误!(a>0,且a≠1);(2)y=log2x+2;(3)y=8log2(x+1);(4)y=log x6(x>0,且x≠1);(5)y=log6x.【解析】(1)中真数不是自变量x,不是对数函数.(2)中对数式后加2,所以不是对数函数.(3)中真数为x+1,不是x,系数不为1,故不是对数函数.(4)中底数是自变量x,而非常数,所以不是对数函数.(5)中底数是6,真数为x,系数为1,符合对数函数的定义,故是对数函数.用对数函数的概念例如y=log a x(a>0且a≠1)来判断.方法归纳判断一个函数是对数函数的方法跟踪训练1若函数f(x)=(a2—a+1)log(a+1)x是对数函数,则实数a=________.解析:由a2—a+1=1,解得a=0或a=1.又底数a+1>0,且a+1≠1,所以a=1.答案:1对数函数y=log a x系数为1.题型二求函数的定义域[教材P130例1]例2求下列函数的定义域:(1)y=log3x2;(2)y=log a(4—x)(a>0,且a≠1).【解析】(1)因为x2>0,即x≠0,所以函数y=log3x2的定义域是{x|x≠0}.(2)因为4—x>0,即x<4,所以函数y=log a(4—x)的定义域是{x|x<4}.真数大于0.教材反思求定义域有两种题型,一种是已知函数解析式求定义域,常规为:分母不为0;0的零次幂与负指数次幂无意义;偶次根式被开方式(数)非负;对数的真数大于0,底数大于0且不等于1.另一种是抽象函数的定义域问题.同时应注意求函数定义域的解题步骤.跟踪训练2求下列函数的定义域:(1)y=lg(x+1)+错误!;(2)y=log(x—2)(5—x).解析:(1)要使函数有意义, 需错误!即错误!∴—1<x <1,∴函数的定义域为(—1,1). (2)要使函数有意义,需错误!∴错误! ∴定义域为(2,3)∪(3,5).真数大于0,偶次根式被开方数大于等于0,分母不等于0,列不等式组求解. 题型三 对数函数的图象问题例3 (1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )(2)已知函数y =log a (x +3)—1(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f (log 32)=________.(3)如图所示的曲线是对数函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象,则a ,b ,c ,d 与1的大小关系为________.【解析】 (1)A 中,由y =x +a 的图象知a >1,而y =log a x 为减函数,A 错;B 中,0<a <1,而y =log a x 为增函数,B 错;C 中,0<a <1,且y =log a x 为减函数,所以C 对;D 中,a <0,而y =log a x 无意义,也不对.(2)依题意可知定点A (—2,—1),f (—2)=3—2+b =—1,b =—错误!,故f (x )=3x —错误!,f (log 32)=33log 2—错误!=2—错误!=错误!.(3)由题干图可知函数y=log a x,y=log b x的底数a>1,b>1,函数y=log c x,y=log d x的底数0<c<1,0<d<1.过点(0,1)作平行于x轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c,d,a,b,显然b>a>1>d>c.【答案】(1)C (2)错误!(3)b>a>1>d>c错误!(1)由函数y=x+a的图象判断出a的范围.(2)依据log a1=0,a0=1,求定点坐标.(3)沿直线y=1自左向右看,对数函数的底数由小变大.方法归纳解决对数函数图象的问题时要注意(1)明确对数函数图象的分布区域.对数函数的图象在第一、四象限.当x趋近于0时,函数图象会越来越靠近y轴,但永远不会与y轴相交.(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a的取值范围是a>1,还是0<a<1.(3)牢记特殊点.对数函数y=log a x(a>0,且a≠1)的图象经过点:(1,0),(a,1)和错误!.跟踪训练3(1)如图所示,曲线是对数函数y=log a x(a>0,且a≠1)的图象,已知a取错误!,错误!,错误!,错误!,则相应于C1,C2,C3,C4的a值依次为()A.错误!,错误!,错误!,错误!B.错误!,错误!,错误!,错误!C.错误!,错误!,错误!,错误!D.错误!,错误!,错误!,错误!(2)函数y=log a|x|+1(0<a<1)的图象大致为()解析:(1)方法一作直线y=1与四条曲线交于四点,由y=log a x=1,得x=a(即交点的横坐标等于底数),所以横坐标小的底数小,所以C1,C2,C3,C4对应的a值分别为错误!,错误!,错误!,错误!,故选A.方法二由对数函数的图象在第一象限内符合底大图右的规律,所以底数a由大到小依次为C1,C2,C3,C4,即错误!,错误!,错误!,错误!.故选A.增函数底数a>1,减函数底数0<a<1.(2)函数为偶函数,在(0,+∞)上为减函数,(—∞,0)上为增函数,故可排除选项B,C,又x=±1时y=1,故选A.先去绝对值,再利用单调性判断.答案:(1)A (2)A课时作业231.下列函数是对数函数的是()A.y=2+log3xB.y=log a(2a)(a>0,且a≠1)C.y=log a x2(a>0,且a≠1)D.y=ln x解析:判断一个函数是否为对数函数,其关键是看其是否具有“y=log a x”的形式,A,B,C全错,D正确.答案:D2.若某对数函数的图象过点(4,2),则该对数函数的解析式为()A.y=log2xB.y=2log4xC.y=log2x或y=2log4xD.不确定解析:由对数函数的概念可设该函数的解析式为y=log a x(a>0,且a≠1,x>0),则2=log a4即a2=4得a=2.故所求解析式为y=log2x.答案:A3.设函数y=错误!的定义域为A,函数y=ln(1—x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(—2,1)D.[—2,1)解析:由题意可知A={x|—2≤x≤2},B={x|x<1},故A∩B={x|—2≤x<1}.答案:D4.已知a>0,且a≠1,函数y=a x与y=log a(—x)的图象只能是下图中的()解析:由函数y=log a(—x)有意义,知x<0,所以对数函数的图象应在y轴左侧,可排除A,C.又当a>1时,y=a x为增函数,所以图象B适合.二、填空题5.若f(x)=log a x+(a2—4a—5)是对数函数,则a=________.解析:由对数函数的定义可知错误!,∴a=5.答案:56.已知函数f(x)=log3x,则f错误!+f(15)=________.解析:f错误!+f(15)=log3错误!+log315=log327=3.答案:37.函数f(x)=log a(2x—3)(a>0且a≠1)的图象恒过定点P,则P点的坐标是________.解析:令2x—3=1,解得x=2,且f(2)=log a1=0恒成立,所以函数f(x)的图象恒过定点P(2,0).答案:(2,0)三、解答题8.求下列函数的定义域:(1)y=log3(1—x);(2)y=错误!;(3)y=log7错误!.解析:(1)由1—x>0,得x<1,∴函数y=log3(1—x)的定义域为(—∞,1).(2)由log2x≠0,得x>0且x≠1.∴函数y=错误!的定义域为{x|x>0且x≠1}.(3)由错误!>0,得x<错误!.∴函数y=log7错误!的定义域为错误!.9.已知f(x)=log3x.(1)作出这个函数的图象;(2)若f(a)<f(2),利用图象求a的取值范围.解析:(1)作出函数y=log3x的图象如图所示(2)令f(x)=f(2),即log3x=log32,解得x=2.由图象知,当0<a<2时,恒有f(a)<f(2).∴所求a的取值范围为0<a<2.[尖子生题库]10.已知函数y=log2x的图象,如何得到y=log2(x+1)的图象?y=log2(x +1)的定义域与值域是多少?与x轴的交点是什么?解析:y=log2x错误!y=log2(x+1),如图.定义域为(—1,+∞),值域为R,与x轴的交点是(0,0).。

新教材人教A版高一数学必修一知识点与题型方法总结 第四章指数函数与对数函数

新教材人教A版高一数学必修一知识点与题型方法总结 第四章指数函数与对数函数

新教材人教A版高一数学必修一知识点与题型方法总结第四章指数函数与对数函数【考纲要求】序号考点课标要求1指数函数①通过对有理数指数幂且为整数,且,实数指数幂含义的认识,了解指数幂的拓展过程,掌握指数幂的运算性质。

了解②通过具体实例,了解指数函数的实际意义,理解指数函数的概念了解③能用描点法或借助计算工具画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

掌握2对数函数①理解对数的概念,及运算性质,知道用换底公式能将一般对数转化成自然对数和常用对数理解②通过具体实例,了解对数函数的概念,能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点掌握③知道对数函数与指数函数互为反函数.了解3二分法与求方程近似解①结合学过的函数图象,了解函数零点与方程解的关系了解②结合具体连续函数及其图象的特点,了解函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性。

掌握4函数与数学模型①理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具。

在实际情境中,会选择合适的函数类型刻画现实问题的变化规律。

理解②结合现实情境中的具体问题,利用计算公具,比较对数函数、一元一次函数、指数函数增长速度的差异,理解“对数增长”、“直线上升”、“指数爆炸”等术语的现实含义。

理解③收集、阅读一些现实生活、生产实际或者经济领域中的数学模型,体会人们是如何借助函数刻画实际问题的,感悟数学模型中参数的现实意义。

了解4.1 指数知识点总结4.1.1 次方根与分数指数幂一、次方根的概念与性质1.次方根(1)定义:一般地,如果,那么叫做的次方根,其中,且。

(2)次方根的性质①当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。

这时,的次方根用符号表示。

例如:,,。

②当是偶数时,正数的次方根有两个,这两个数互为相反数。

这时,正数的正的次方根用符号表示,负的次方根用符号表示。

听课记录:新2024秋季高一必修数学第一册人教A版第四章指数函数与对数函数《对数》

听课记录:新2024秋季高一必修数学第一册人教A版第四章指数函数与对数函数《对数》

听课记录:新2024秋季高一必修数学第一册人教A版第四章指数函数与对数函数《对数》教学目标(核心素养)1.数学抽象:学生能够理解对数的概念,掌握对数的基本性质,并能从具体情境中抽象出对数模型。

2.逻辑推理:通过推导对数的基本性质,培养学生的逻辑推理能力,学会运用对数进行简单的推理和证明。

3.数学建模:初步培养学生将对数应用于解决实际问题的建模能力,体会对数在解决实际问题中的重要作用。

导入教师行为•情境创设:“同学们,假设你们在一个古董拍卖会上,听到一件古董的拍卖价格是以‘万’为单位,且主持人说这是上一轮价格的10倍。

如果我们知道上一轮的价格是2万,那么这一轮的价格是多少呢?如果上一轮的价格是未知的,但我们知道它是这一轮价格的十分之一,又该如何表示这个未知的价格呢?”•引出主题:“这就是我们今天要学习的内容——对数,它可以帮助我们更简洁地表示和计算这类问题。

”学生活动•学生被拍卖会的情境吸引,开始思考如何用数学方式表示价格的增长和逆增长。

部分学生尝试用倍数关系来描述,但对如何表示未知的价格感到困惑。

过程点评•导入环节通过贴近生活的情境设置,有效激发了学生的好奇心和求知欲,为后续对数概念的引入做了良好的铺垫。

教学过程教师行为1.定义讲解:•“对数是一种特殊的数学运算,它表示一个数(真数)是另一个数(底数)的多少次幂。

例如,如果ax=N(a>0,a=1),那么数x叫做以a为底N的对数,记作x=log aN。

”•在黑板上写出对数的定义,并标注关键要素(底数、真数、对数)。

2.性质推导:•“接下来,我们一起来推导对数的几个基本性质。

首先,如果log a N=x,那么根据对数的定义,我们有ax=N。

那么,ax+y等于什么呢?它与N有什么关系?”引导学生推导出对数的加法性质。

•类似地,推导对数的其他性质(如乘法性质、换底公式等)。

3.例题讲解:•选择几个具有代表性的例题,展示如何运用对数的定义和性质进行求解。

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷含答案解析(21)

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷含答案解析(21)

人教A 版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷(共22题)一、选择题(共10题)1. 设 f (x ) 是定义在 R 上的周期函数,周期 T =4,对于任意 x ∈R 都有 f (−x )=f (x ),且当 x ∈[−2,0] 时,f (x )=(12)x−1,若在区间 (−2,6] 内关于 x 的方程 f (x )−log a (x +2)=0(a >1) 恰有 3 个不同的实根,则 a 的取值范围是 ( ) A . (1,2)B . (2,+∞)C . (1,√43)D . (√43,2)2. 已知 log x 3=3,log y 7=6,z =717,则实数 x ,y ,z 的大小关系是 ( ) A . x <z <y B . z <x <y C . x <y <z D . z <y <x3. 已知定义在 R 上的函数 f (x ) 满足:①f (x )+f (2−x )=0;②f (x −2)=f (−x );③ 当 x ∈[−1,1] 时,f (x )={√1−x 2,x ∈[−1,0]cos (π2x),x ∈(0,1];则函数 y =f (x )−(12)∣x∣在区间 [−3,3] 上的零点个数为 ( ) A . 5B . 6C . 7D . 84. 在同一坐标系中函数 y =2−x 与 y =log 2x 的图象是 ( )A .B .C .D .5. 设 a 是函数 f (x )=2x −log 12x 的零点,若 x 0>a ,则 f (x 0) 满足 ( )A . f (x 0)=0B . f (x 0)>0C . f (x 0)<0D .以上都有可能6. 在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线 y =f (x ),另一种是平均价格曲线 y =g (x ),如 f (2)=3 表示股票开始买卖后 2 小时的即时价格为 3 元;g (2)=3 表示 2 小时内的平均价格为 3 元,下面给出了四个图象,实线表示 y =f (x ),虚线表示 y =g (x ),其中可能正确的是 ( )A .B .C .D .7. 已知偶函数 f (x ) 的定义域为 R ,对 ∀x ∈R ,f (x +2)=f (x )+f (1),且当 x ∈[2,3] 时,f (x )=−2(x −3)2,若函数 F (x )=log a (∣x∣+1)−f (x )(a >0,a ≠1) 在 R 上恰有 6 个零点,则实数 a 的取值范围是 ( ) A . (0,√55)B . (√55,√33)C . (√55,1)D . (√33,1)8. 方程 x 3−2x 2+3x −6=0 在区间 [−2,4] 上的根必定在 ( ) A . [−2,1] 内 B . [52,4] 内C . [1,74] 内D . [74,52] 内9. log 212 的值为 ( ) A . √2B . −√2C . 1D . −110. 若 log a b +3log b a =132,则用 a 表示 b 的式子为 ( )A . b =a 6B . b =√aC . b =a 6 或 b =√aD . b =a 6 且 b =√a二、填空题(共6题)11. 已知函数 f (x )={log 2x,x >04x ,x ≤0,若函数 g (x )=f (x )−k 存在两个零点,则实数 k 的取值范围是 .12. 函数 f (x )=log a (x −2)+1(a >0,a ≠1) 的图象恒过定点 P ,则点 P 的坐标是 .13. 若正数 a ,b 满足 log 2a =log 5b =lg (a +b ),则 1a +1b 的值为 .14. 对于实数 a 和 b ,定义运算“∗”:a ∗b ={a (a −b )3,a ≤bb (b −a )3,a >b,设 f (x )=(2x–1)∗(x–1),若函数 g (x )=f (x )−mx 2(m ∈R ) 恰有三个零点 x 1,x 2,x 3,则 m 的取值范围是 ;x 1x 2x 3 的取值范围是 .15. 函数 f (x )=log a (x +2)+3(a >0,且 a ≠1)的图象恒过定点 .16. 如果函数 y =lg (x 2−ax +1) 的值域为 R ,那么实数 a 的取值范围是 .三、解答题(共6题)17. 某地区今年 1 月,2 月,3 月患某种传染病的人数分别为 52,54,58,为了预测以后各月的患病人数,甲选择了模型 f (x )=ax 2+bx +c ,乙选择了模型 y =p ⋅q x +r ,其中 y 为患病人数,x 为月份数,a ,b ,c ,p ,q ,r 都是常数,结果 4 月,5 月,6 月份的患病人数分别为 66,82,115.(1) 你认为谁选择的模型较好?(需说明理由)(2) 至少要经过多少个月患该传染病的人数将会超过 2000 人?试用你认为比较好的模型解决上述问题.18. 若存在常数 k (k >0),使得对定义域 D 内的任意 x 1,x 2(x 1≠x 2),都有 ∣f (x 1)−f (x 2)∣≤k∣∣x 1−x 2∣ 成立,则称函数 f (x ) 在其定义域 D 上是“k − 利普希兹条件函数”. (1) 若函数 f (x )=√x (1≤x ≤4) 是“k − 利普希兹条件函数”,求常数 k 的取值范围; (2) 判断函数 f (x )=log 2x 是否是“2− 利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3) 若 y =f (x )(x ∈R ) 是周期为 2 的“1− 利普希兹条件函数”,证明:对任意的实数 x 1,x 2,都有 ∣f (x 1)−f (x 2)∣≤1.19. 求下列函数的零点:(1) f (x )=−x 2−4x −4 (2) f (x )=(x−1)(x 2−4x+3)x−3(3) f (x )=2x +x −1 (4) f (x )=log 3(x +1)20. 零点存在定理一般地,如果函数 y =f (x ) 在区间 [a,b ] 上的图象是一条连续不断的曲线,且有 f (a )⋅f (b )<0,那么在区间 (a,b ) 内至少存在一个实数 c ,使得 f (c )=0,即 y =f (x ) 在 (a,b ) 上至少有一个零点.如何理解零点存在性?21. 计算:(1) (−78)0+813+(√32)2×(214)−12−(0.25)0.5.(2) lg25+lg2×lg50+(lg2)2.22. 已知 f (x )=log a (a x −1)(a >0 且 a ≠1).(1) 求证:函数 y =f (x ) 的图象在 y 轴的一侧; (2) 求证:函数 y =f (x ) 在定义域上是增函数.答案一、选择题(共10题) 1. 【答案】D【解析】因为对于任意 x ∈R 都有 f (−x )=f (x ),所以函数 f (x ) 是定义在 R 上的偶函数,因为在区间 (−2,6] 内关于 x 的方程 f (x )−log a (x +2)=0(a >1) 恰有 3 个不同的实数解, 所以函数 y =f (x ) 与 y =log a (x +2) 在区间 (−2,6] 上有三个不同的交点, 因为当 x ∈[−2,0] 时,f (x )=(12)x−1, 故函数图象如图所示, 又 f (−2)=f (2)=f (6)=3, 则有 log a 4<3,且 log a 8>3,解得 √43<a <2.故 a 的取值范围是 (√43,2).【知识点】函数的奇偶性、函数的周期性、函数的零点分布2. 【答案】D【解析】因为 log x 3=3,所以 x =313,同理可得:y =716=(√7)13, 因为函数 y =7x为单调增函数,且 16>17,故 716>717,即 z >y ,因为函数 y =x 13为单调增函数,且 3>√7, 所以 313>(√7)13,即 x >y , 所以综上,x >y >z .【知识点】对数函数及其性质、指数函数及其性质3. 【答案】A【解析】由 ①f (x )+f (2−x )=0, 可得 f (x ) 的图象关于点 (1,0) 对称,由 ②f (x −2)=f (−x ),可得 f (x ) 的图象关于直线 x =−1 对称, 作出 f (x ) 在 [−1,1] 的图象,再由对称性,作出 f (x ) 在 [−3,3] 的图象, 作出函数 y =(12)∣x∣在 [−3,3] 的图象,由图象观察可得它们故有 5 个交点,即有函数 y =f (x )−(12)∣x∣在区间 [−3,3] 上的零点个数为 5.【知识点】函数的零点分布4. 【答案】A【解析】因为 y =2−x 为减函数,y =log 2x 在 (0,+∞) 上为增函数. 【知识点】对数函数及其性质、指数函数及其性质5. 【答案】B【解析】画出 y =2x 与 y =log 12x 的图象(图略),可知当 x 0>a 时,2x 0>log 12x 0,故f (x 0)>0.【知识点】零点的存在性定理6. 【答案】C【知识点】函数模型的综合应用7. 【答案】B【解析】令 x =−1,则 f (1)=f (−1)+f (1)=2f (1),所以 f (1)=0, 所以 f (x +2)=f (x ),即函数的周期为 2.若 F (x )=f (x )−log a (∣x∣+1) 恰有 6 个零点,则 0<a <1, 则 y =f (x ) 的图象与 y =log a (∣x∣+1) 有 6 个不同的交点,因为 y =f (x ) 和 y =log a (∣x∣+1) 均为偶函数且 f (0)=f (2)=−2≠0=log a (∣x∣+1), 故 y =f (x ) 的图象与 y =log a (∣x∣+1) 在 (0,+∞) 上有三个不同的交点. 画出函数 y =f (x ) 和 y =log a (∣x∣+1) 的图象如下图所示,由图可知: f (2)=−2=log a 3,得 a =√33,f (4)=−2=log a 5,得 a =√55, a ∈(√55,√33).(或 {f (2)<log a 3,f (4)>log a 5即 {−2<log a 3,−2>log a 5, 故 a ∈(√55,√33))【知识点】函数的零点分布8. 【答案】D【解析】令 f (x )=x 3−2x 2+3x −6, 因为 f (−2)=−28<0,f (4)=38>0,且 f (−2+42)=f (1)=−4<0,所以 f (x ) 的零点在区间 [1,4] 内. 又 f (1+42)=f (52)=378>0,所以 f (x ) 的零点在区间 [1,52] 内. 又 f (1+522)=f (74)=−9764<0,所以 f (x ) 的零点在区间 [74,52] 内,即方程 x 3−2x 2+3x −6=0 在 [−2,4] 上的根在 [74,52] 内. 【知识点】零点的存在性定理9. 【答案】D【解析】 log 212=log 22−1=−1.【知识点】对数的概念与运算10. 【答案】C【解析】由 log a b +3log b a =132 得 log a b +3logab=132,即 2(log a b )2−13log a b +6=0,解得 log a b =6 或 log a b =12,所以 b =a 6 或 b =√a . 【知识点】对数的概念与运算二、填空题(共6题)11. 【答案】0<k≤1【解析】由g(x)=f(x)−k=0,得f(x)=k,令y=k与y=f(x),作出函数y=k与y=f(x)图象如图:当x≤0时,0<f(x)≤1;当x>0时,f(x)∈R.所以要使函数g(x)=f(x)−k存在两个零点,则k∈(0,1].【知识点】函数的零点分布12. 【答案】(3,1)【知识点】对数函数及其性质13. 【答案】1【解析】设log2a=log5b=lg(a+b)=k,所以a=2k,b=5k,a+b=10k,所以ab=10k,所以a+b=ab,则1a +1b=1.【知识点】对数函数及其性质14. 【答案】{14};{0}【知识点】二次函数的性质与图像、函数的零点分布、分段函数15. 【答案】(−1,3)【解析】本题考查对数函数的图象.当x+2=1时,x=−1,f(−1)=log a(−1+2)+3=3,所以函数f(x)=log a(x+2)+3的图象恒过定点(−1,3).【知识点】对数函数及其性质16. 【答案】(−∞,−2]∪[2,+∞)【解析】由题意知x2−ax+1应能取到大于0的一切实数,因此g(x)=x2−ax+1应与x轴有交点,所以Δ=a2−4≥0.【知识点】对数函数及其性质三、解答题(共6题)17. 【答案】(1) 由题意,把 x =1,2,3 代入 f (x ) 得:{a +b +c =52,4a +2b +c =54,9a +3b +c =58,解得 a =1,b =−1,c =52,所以 f (x )=x 2−x +52,所以 f (4)=42−4+52=64,f (5)=52−5+52=72,f (6)=62−6+52=82, 则 ∣f (4)−66∣=2,∣f (5)−82∣=10,∣f (6)−115∣=33; 把 x =1,2,3 代入 y =g (x )=p ⋅q x +r ,得:{pq +r =52,pq 2+r =54,pq 3+r =58,解得 p =1,q =2,r =50,所以 g (x )=2x +50,所以 g (4)=24+50=66,g (5)=25+50=82,g (6)=26+50=114, 则 ∣g (4)−66∣=0,∣g (5)−82∣=0,∣g (6)−115∣=1.因为 g (4),g (5),g (6) 更接近真实值,所以应将 y =2x +50 作为模拟函数.(2) 令 2x +50>2000,解得 x >log 21950≈10.9, 所以至少经过 11 个月患该传染病的人数将会超过 2000 人.【知识点】函数模型的综合应用18. 【答案】(1) 由题意得:对任意 x 1,x 2∈[1,4],x 1≠x 2,都有 ∣∣√x 1−√x 2∣≤k∣∣x 1−x 2∣ 成立, 所以 k ≥√x +√x .因为 x 1,x 2∈[1,4],x 1≠x 2, 所以√x +√x <12,所以常数 k 的取值范围是 [12,+∞).(2) 取 x 1=18,x 2=1,则 ∣f (x 1)−f (x 2)∣=3,而 2∣∣x 1−x 2∣=74, 所以 x 1=18,x 2=1 不满足 ∣f (x 1)−f (x 2)∣≤2∣∣x 1−x 2∣, 所以函数 f (x )=log 2x 不是“2− 利普希兹条件函数”.(3) 若 x 1,x 2∈[0,2],①当 ∣x 1−x 2∣≤1 时,∣f (x 1)−f (x 2)∣≤∣x 1−x 2∣≤1, ②当 ∣x 1−x 2∣>1 时,设 0≤x 1<1<x 2≤2,则 ∣f (x 1)−f (x 2)∣=∣f (x 1)−f (0)+f (2)−f (x 2)∣≤∣f (x 1)−f (0)∣+∣f (2)−f (x 2)∣≤∣x 1∣+∣2−x 2∣=x 1+2−x 2<1.因此对任意x1,x2∈[0,2],都有∣f(x1)−f(x2)∣≤1,因为y=f(x)(x∈R)周期为2,所以对任意x1,x2∈R,都存在p1,p2∈[0,2],使f(x1)=f(p1),f(x2)=f(p2),所以∣f(x1)−f(x2)∣=∣f(p1)−f(p2)∣≤1.【知识点】对数函数及其性质、函数的周期性、幂函数及其性质19. 【答案】(1) 令−x2−4x−4=0,解得x=−2,所以函数f(x)的零点为−2.(2) 令(x−1)(x2−4x+3)x−3=0,解得x=1,所以函数f(x)的零点为1.(3) 在同一平面直角坐标系中作出函数y=2x,y=−x+1的图象,由图可知函数f(x)的零点为0.(4) 令log3(x+1)=0,解得x=0,所以函数f(x)的零点为0.【知识点】函数零点的概念与意义20. 【答案】(1)当函数y=f(x)同时满足:①函数的图象在[a,b]上是连续曲线;② f(a)⋅f(b)<0.则可判定函数y=f(x)在区间(a,b)内至少有一个零点,但是不能明确肯定有几个零点,也不是说可能有1个、2个、3个、4个、⋯⋯零点.(2)不满足零点存在性定理并不能说明不存在零点,即当函数y=f(x)的图象在[a,b]上是连续的曲线,但是不满足f(a)⋅f(b)<0时,函数y=f(x)在区间(a,b)内可能存在零点,也可能不存在零点.【知识点】零点的存在性定理21. 【答案】(1)(−78)+813+(√32)2×(214)−12−(0.25)0.5=1+2+34×√49−(14)12=1+2+34×23−12=1+2+12−12.(2)lg25+lg2×lg50+(lg2)2 =2lg5+lg2×(lg50+lg2) =2lg5+lg2×lg(2×50) =2lg5+lg2×lg100=2lg5+2lg2=2×(lg5+lg2)= 2.【知识点】对数的概念与运算、幂的概念与运算22. 【答案】(1) 当0<a<1时,定义域为(−∞,0),当a>1时,定义域为(0,+∞),所以y=f(x)的图象总在y轴的一侧.(2) 当0<a<1时,y=a x−1在区间(−∞,0)上是严格减函数,又0<a<1,y=f(x)在区间(−∞,0)上是严格增函数.当a>1时,y=a x−1在区间(0,+∞)上是严格增函数,又a>1,y=f(x)在区间(0,+∞)上是严格增函数.【知识点】对数函数及其性质、函数的单调性11。

高一数学必修第一册2019(A版)-4.2.1-指数函数的概念-教学设计(1)

高一数学必修第一册2019(A版)-4.2.1-指数函数的概念-教学设计(1)

第四章 指数函数与对数函数4. 2.1 指数函数的概念本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第四章第4.2.1节《指数函数的概念》。

从内容上看它是学生学习了一次函数、二次函数、反比例函数,以及函数性质基础上,通过实际问题的探究,建立的第四个函数模型。

其研究和学习过程,与先前的研究过程类似。

先由实际问题探究,建立指数函数的模型和概念,再画函数图像,然后借助函数图像讨论函数的性质,最后应用建立的指数函数模型解决问题。

体现了研究函数的一般方法,让学生充分感受,数学建模、直观想象、及由特殊到一般的思想方法。

重点:理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法. 难点:理解指数函数增长变化迅速的特点;多媒体教学过程设计意图核心教学素养目标(一)、创设问题情境对于幂a x(a>0),我们已经把指数x的范围拓展到了实数.上一章学习了函数的概念和基本性质,通过对幂函数的研究,进一步了解了研究一类函数的过程和方法.下面继续研究其他类型的基本初等函数.(二)、探索新知问题1随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式.由于旅游人数不断增加,A,B两地景区自2011年起采取了不同的应对措施,A地提高了景区门票价格,而B地则取消了景区门票.下表给出了A,B两地景区2011年至2015年的游客人次以及逐年增加量.比较两地景区游客人次的变化情况,你发现了怎样的变化规律?为了有利于观察规律,根据表,分别画出A,B两地景区采取不同措施后的15年游客人次的图开门见山,通过对指数幂运算及函数概念和性质学习的铺垫,提出研究课题:指数函数。

培养和发展数学抽象和数学建模的核心素养。

探究问题:探究1.通过景区门票价格制定与参观景区人数,两个变量函数关系的建立,体会数学源于生活,发展学生数学抽象、数学建模和数学运算核心素养;观察图象和表格,可以发现,A地景区的游客人次近似于直线上升(线性增长),年增加量大致相等(约为10万次);B地景区的游客人次则是非线性增长,年增加量越来越大,但从图象和年增加量都难以看出这时游客给A地带来的收入和B地差不多;此后,给B地带来的收入超过了A地;由于年,B地的收入已经比A地多三、当堂达标1.下列函数一定是指数函数的是【答案】C[由指数函数的增长速度及定义,可知C正确.]3.已知函数f(x)=(2a-1)x是指数函数,则实数a的取值范围是________⎧2a-1>0,。

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1 .1 集合2 .3 变量间的相关关系阅读与思考相关关系的强与弱2.5等比数列的前n项和1 .2 函数及其表示1 .3 函数的基本性质第三章概率3 .1 随机事件的概率第三章不等式第二章基本初等函数(Ⅰ)2.1 指数函数2 .2 对数函数2 .3 幂函数阅读与思考天气变化的认识过程3 .2 古典概型3 .3 几何概型3.1不等关系与不等式3.2一元二次不等式及其解法第三章函数的应用3.1 函数与方程3 .2 函数模型及其应用必修 4第一章三角函数1 .1 任意角和弧度制1 2 .任意角的三角函数3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域1 .3 三角函数的诱导公式必修21 .4 三角函数的图象与性质1 .5 函数 y=Asin (ωx+ψ) 3.3.2 简单的线性规划问题第一章空间几何体1 .6 三角函数模型的简单应1 .1 空间几何体的结构用1 .2 空间几何体的三视图和 3.4 基本不等式直观图1 .3 空间几何体的表面积与第二章平面向量体积 2 .1 平面向量的实际背景及第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2 .2 直线、平面平行的判定基本概念2 .2 平面向量的线性运算2 .3 平面向量的基本定理及坐标表示2 4 .平面向量的数量积2 5 .平面向量应用举例选修1-1第一章常用逻辑用语1.1命题及其关系及其性质2 .3 直线、平面垂直的判定及其性质第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式1.2充分条件与必要条件3 .2 简单的三角恒等变换第三章直线与方程1.3简单的逻辑联结词3.1 直线的倾斜角与斜率3 .2 直线的方程必修 51.4全称量词与存在量词 3 .3 直线的交点坐标与距离公式第一章解三角形必修31.1正弦定理和余弦定理第二章圆锥曲线与第一章算法初步1 .1 算法与程序框图 1.2应用举例方程1 .2 基本算法语句1 .3 算法案例阅读与思考割圆术1.3实习作业2.1椭圆2.2双曲线第二章统计2 .1 随机抽样阅读与思考一个著名的案第二章数列2.3抛物线例阅读与思考广告中数据的可靠性2.1数列的概念与简单表示法用第三章导数及其应阅读与思考如何得到敏感性问题的诚实反应2.2等差数列2 .2 用样本估计总体阅读与思考生产过程中的2.3等差数列的前n 项和质量控制图2.4等比数列3.1变化率与导数3.2导数的计算1人教A版高中数学目录选修 2-12.6导数在研究函数中 1.3 导数在研究函数的应用中的应用第一章常用逻辑用2.7生活中的优化问题 1.4 生活中的优化问语举例题举例3.4命题及其关系3.3.2定积分的概念1.5充分条件与必要选修1-21.4微积分基本定理条件第一章统计案例 1.7 定积分的简单应1.3 简单的逻辑联结用词1.1 回归分析的基本思想及其初步应用2.4全称量词与存在量词第二章推理与证明 1.2 独立性检验的基本思想及其初步应用2.5合情推理与演绎推理第二章圆锥曲线与方程第二章推理与证明 2.2 直接证明与间接证明 2.1 曲线与方程2.1 合情推理与演绎证明 2.3 数学归纳法2.2 椭圆2.2 直接证明与间接2.3 双曲线证明3.3抛物线第三章数系的扩充与复数的引入第三章数系的扩充 3.1 数系的扩充和复与复数的引入数的概念第三章空间向量与立体几何3.1 数系的扩充和复数 3.2 复数代数形式的的概念四则运算3.1空间向量及其运算3.2 复数代数形式的四则运算3.2立体几何中的向选修2-3 量方法第一章计数原理第四章框图选修 2-21.1分类加法计数原4.1 流程图理与分步乘法计数原理第一章导数及其应4.2 结构图1.2 排列与组合用1.3二项式定理 1.1 变化率与导数1.2导数的计算2人教A版高中数学目录第二章随机变量及第二讲直线与圆的其分布位置关系选修 3-22.8离散型随机变量第三讲圆锥曲线性及其分布列质的探讨选修 3-3 2.2 二项分布及其应用选修4-2 第一讲从欧氏几何3.5离散型随机变量看球面的均值与方差第一讲线性变换与二阶矩阵第二讲球面上的距3.6正态分布离和角第二讲变换的复合第三章统计案例与二阶矩阵的乘法第三讲球面上的基本图形3.3.3回归分析的基本第三讲逆变换与逆思想及其初步应用矩阵第四讲球面三角形3.3.4独立性检验的基第五讲球面三角形第四讲变换的不变本思想及其初步应用量与矩阵的特征向量的全等第六讲球面多边形与欧拉公式选修3-1 选修4-3第七讲球面三角形的第一讲早期的算术边角关系选修4-4 与几何第八讲欧氏几何与第一讲坐标系第二讲古希腊数学非欧几何第二讲参数方程第三讲中国古代数学瑰宝选修 3-4第四讲平面解析几选修4-5 何的产生第一讲平面图形的对称群第一讲不等式和绝第五讲微积分的诞对值不等式生第二讲代数学中的对称与抽象群的概念第二讲证明不等式第六讲近代数学两的基本方法巨星第三讲对称与群的故事第三讲柯西不等式第七讲千古谜题与排序不等式第八讲对无穷的深第四讲数学归纳法入思考选修 4-1证明不等式第九讲中国现代数第一讲相似三角形学的开拓与发展的判定及有关性质3人教 A 版高中数学目录2 .4 向量的应用 选修 4-6第二章 函数 2 .1 函数第一讲 整数的整除2 .2 一次函数和二次函数 2 .3 函数的应用(Ⅰ) 第三章 三角恒等变换3.1 和角公式2 .4 函数与方程3 .2 倍角公式和半角公式 第二讲 同余与同余 3 .3 三角函数的积化和差与方程和差化积 第三章 基本初等函数 (Ⅰ) 3 .1 指数与指数函数 程第三讲 一次不定方3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ) 必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理第四讲 数伦在密码中的应用必修二第一章 立体几何初步1 .2 应用举例 第二章 数列1.1 空间几何体 2 .1 数列 1 .2 点、线、面之间的位置 2 .2 等差数列 关系 2 .3 等比数列 选修 4-7第三章 不等式 第二章 平面解析几何初步第一讲 优选法 2 .1 平面真角坐标系中的基 本公式3 .1 不等关系与不等式 3 .2 均值不等式第二讲试验设计初2 .2 直线方程 2 .3 圆的方程3 .3 一元二次不等式及其解 法 步3 .4 不等式的实际应用 2 .4 空间直角坐标系3 .5 二元一次不等式(组) 与简单线性规划问题必修三选修 4-8选修 4-9第一章 算法初步1.1 算法与程序框图1 .2 基本算法语句1 .3 中国古代数学中的算法 案例选修 1-1 第一章 常用逻辑用语 1.1 命题与量词 1 .2 基本逻辑联结词1 .3 充分条件、必要条件与命题的四种形式第一讲 风险与决策的基本概念第二章 统计 2.1 随机抽样2 .2 用样本估计总体2 .3 变量的相关性第二章 圆锥曲线与方程2.1 椭圆2 .2 双曲线2 .3 抛物线第二讲 决策树方法第三章 概率 3 1 . 随机现象第三讲 风险型决策3 2第三章 导数及其应用3 .1 导数3 .2 导数的运算 3 .3 导数的应用WORD格式.古典概型的敏感性分析33.随机数的含义与应用34.概率的应用第四讲马尔可夫型决策简介必修四选修 1-2第一章统计案例第二章推理与证明第一章基本初等函( Ⅱ)高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1 .2 集合之间的关系与运算1 .1 任意角的概念与弧度制1 .2 任意角的三角函数1 .3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2 .3 平面向量的数量积第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1 2 .基本不等式4WORD格式人教A版高中数学目录1 .3 绝对值不等式的解法1 .4 绝对值的三角不等式1 .5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2 .2 排序不等式2 .3 平均值不等式( 选学)2 .4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3 .2 用数学归纳法证明不等式,贝努利不等式5。

对数函数(高一新教材A版必修第一册)

对数函数(高一新教材A版必修第一册)

对数函数第1课时对数函数的概念、图象及性质1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).思考1:函数y=2log3x,y=log3(2x)是对数函数吗?提示:不是,其不符合对数函数的形式.2.对数函数的图象及性质a的范围0<a<1a>1图象定义域(0,+∞)值域R性质定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数提示:底数a与1的关系决定了对数函数的升降.当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.3.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.1.函数y =log a x 的图象如图所示,则实数a 的可能取值为( ) A .5 B.15 C.1e D.12 A [由图可知,a >1,故选A.]2.若对数函数过点(4,2),则其解析式为________.f (x )=log 2x [设对数函数的解析式为f (x )=l o g a x (a >0且a ≠1).由f (4)=2得l o g a 4=2,∴a =2,即f (x )=l o g 2x .]3.函数f (x )=log 2(x +1)的定义域为________.(-1,+∞) [由x +1>0得x >-1,故f (x )的定义域为(-1,+∞).]对数函数的概念及应用【例1】 (1)下列给出的函数:①y =log 5x +1; ②y =log a x 2(a >0,且a ≠1);③y =log (3-1)x ;④y =13log 3x ;⑤y =log x 3(x >0,且x ≠1); ⑥y =log 2πx .其中是对数函数的为( ) A .③④⑤ B .②④⑥ C .①③⑤⑥D .③⑥(2)若函数y =log (2a -1)x +(a 2-5a +4)是对数函数,则a =________. (3)已知对数函数的图象过点(16,4),则f ⎝ ⎛⎭⎪⎫12=__________.(1)D (2)4 (3)-1 [(1)由对数函数定义知,③⑥是对数函数,故选D. (2)因为函数y =log (2a -1)x +(a 2-5a +4)是对数函数,所以⎩⎨⎧2a -1>0,2a -1≠1,a 2-5a +4=0,解得a =4.(3)设对数函数为f (x )=log a x (a >0且a ≠1), 由f (16)=4可知log a 16=4,∴a =2, ∴f (x )=log 2x ,∴f⎝⎛⎭⎪⎫12=log212=-1.]判断一个函数是对数函数的方法1.若函数f(x)=(a2+a-5)log a x是对数函数,则a=________.2[由a2+a-5=1得a=-3或a=2.又a>0且a≠1,所以a=2.]对数函数的定义域【例2】求下列函数的定义域:(1)f(x)=1log12x+1;(2)f(x)=12-x+ln(x+1);(3)f(x)=log(2x-1)(-4x+8).[解](1)要使函数f(x)有意义,则log12x+1>0,即log12x>-1,解得0<x<2,即函数f(x)的定义域为(0,2).(2)函数式若有意义,需满足⎩⎨⎧x+1>0,2-x>0,即⎩⎨⎧x>-1,x<2,解得-1<x<2,故函数的定义域为(-1,2).(3)由题意得⎩⎨⎧-4x+8>0,2x-1>0,2x-1≠1,解得⎩⎪⎨⎪⎧x<2,x>12,x≠1.故函数y=log(2x-1)(-4x+8)的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪12<x<2,且x≠1.求对数型函数的定义域时应遵循的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负. (3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.2.求下列函数的定义域: (1)f (x )=lg(x -2)+1x -3; (2)f (x )=log (x +1)(16-4x ).[解] (1)要使函数有意义,需满足⎩⎨⎧x -2>0,x -3≠0,解得x >2且x ≠3,所以函数定义域为(2,3)∪(3,+∞).(2)要使函数有意义,需满足⎩⎨⎧16-4x >0,x +1>0,x +1≠1,解得-1<x <0或0<x <4, 所以函数定义域为(-1,0)∪(0,4). 对数函数的图象问题[探究问题]1.如图,曲线C 1,C 2,C 3,C 4分别对应y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,你能指出a 1,a 2,a 3,a 4以及1的大小关系吗?提示:作直线y =1,它与各曲线C 1,C 2,C 3,C 4的交点的横坐标就是各对数的底数,由此可判断出各底数的大小必有a 4>a 3>1>a 2>a 1>0.2.函数y =a x 与y =log a x (a >0且a ≠1)的图象有何特点? 提示:两函数的图象关于直线y =x 对称.【例3】 (1)当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象为( )A B C D(2)已知f(x)=log a|x|,满足f(-5)=1,试画出函数f(x)的图象.[思路点拨](1)结合a>1时y=a-x=⎝⎛⎭⎪⎫1ax及y=log a x的图象求解.(2)由f(-5)=1求得a,然后借助函数的奇偶性作图.(1)C[∵a>1,∴0<1a<1,∴y=a-x是减函数,y=log a x是增函数,故选C.](2)[解]∵f(x)=log a|x|,∴f(-5)=log a5=1,即a=5,∴f(x)=log5|x|,∴f(x)是偶函数,其图象如图所示.1.把本例(1)的条件“a>1”去掉,函数“y=log a x”改为“y=log a(-x)”,则函数y=a-x与y=log a(-x)的图象可能是()C[∵在y=log a(-x)中,-x>0,∴x<0,∴图象只能在y轴的左侧,故排除A,D;当a>1时,y=log a(-x)是减函数,y=a-x=⎝⎛⎭⎪⎫1ax是减函数,故排除B;当0<a<1时,y=log a(-x)是增函数,y=a-x=⎝⎛⎭⎪⎫1ax是增函数,∴C满足条件,故选C.]2.把本例(2)改为f(x)=||log2(x+1)+2,试作出其图象.[解]第一步:作y=log2x的图象,如图(1)所示.(1)(2)第二步:将y=log2x的图象沿x轴向左平移1个单位长度,得y=log2(x+1)的图象,如图(2)所示.第三步:将y=log2(x+1)的图象在x轴下方的部分作关于x轴的对称变换,得y=|log2(x+1)|的图象,如图(3)所示.第四步:将y=|log2(x+1)|的图象沿y轴向上平移2个单位长度,即得到所求的函数图象,如图(4)所示.(3)(4)函数图象的变换规律(1)一般地,函数y=f(x±a)+b(a,b为实数)的图象是由函数y=f(x)的图象沿x轴向左或向右平移|a|个单位长度,再沿y轴向上或向下平移|b|个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y=f(|x-a|)的图象是关于直线x =a对称的轴对称图形;函数y=|f(x)|的图象与y=f(x)的图象在f(x)≥0的部分相同,在f(x)<0的部分关于x轴对称.1.判断一个函数是不是对数函数关键是分析所给函数是否具有y=log a x(a>0且a≠1)这种形式.2.在对数函数y=log a x中,底数a对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.1.思考辨析(1)对数函数的定义域为R.()(2)函数y=log a(x+2)恒过定点(-1,0).()(3)对数函数的图象一定在y 轴右侧.( ) (4)函数y =log 2x 与y =x 2互为反函数.( ) [答案] (1)× (2)√ (3)√ (4)× 2.下列函数是对数函数的是( ) A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1)D .y =ln xD [结合对数函数的形式y =l o g a x (a >0且a ≠1)可知D 正确.] 3.函数f (x )=lg x +lg(5-3x )的定义域是( ) A.⎣⎢⎡⎭⎪⎫0,53 B.⎣⎢⎡⎦⎥⎤0,53 C.⎣⎢⎡⎭⎪⎫1,53 D.⎣⎢⎡⎦⎥⎤1,53 C [由⎩⎨⎧lg x ≥0,5-3x >0,得⎩⎪⎨⎪⎧x ≥1,x <53,即1≤x <53.]4.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围. [解] (1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由图象知:当0<a <2时,恒有f (a )<f (2). 所以所求a 的取值范围为0<a <2.课后作业 对数函数的概念、图象及性质(建议用时:60分钟)[合格基础练]一、选择题 1.函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)C [要使函数有意义,则⎩⎨⎧x -2>0,log 2(x -2)≠0,解得x >2且x ≠3,故选C.]2.若函数y =f (x )是函数y =3x 的反函数,则f ⎝ ⎛⎭⎪⎫12的值为( )A .-log 23B .-log 32 C.19D. 3B [由题意可知f (x )=log 3x , 所以f ⎝ ⎛⎭⎪⎫12=log 312=-log 32,故选B.]3.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( ) A .0<a <b <1 B .0<b <a <1 C .a >b >1 D .b >a >1B [作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1.]4.函数y=log2x的定义域是[1,64),则值域是()A.R B.[0,+∞)C.[0,6) D.[0,64)C[由函数y=l o g2x的图象可知y=l o g2x在(0,+∞)上是增函数,因此,当x∈[1,64)时,y∈[0,6).] 5.函数f(x)=log a(x+2)(0<a<1)的图象必不过()A.第一象限B.第二象限C.第三象限D.第四象限A[∵f(x)=log a(x+2)(0<a<1),∴其图象如下图所示,故选A.]二、填空题6.(2018·全国卷Ⅰ)已知函数f(x)=log2(x2+a).若f(3)=1,则a=________.-7[由f(3)=1得l o g2(32+a)=1,所以9+a=2,解得a=-7.]7.已知函数y=log a(x-3)-1的图象恒过定点P,则点P的坐标是________.(4,-1)[y=l o g a x的图象恒过点(1,0),令x-3=1,得x=4,则y=-1.]8.已知对数函数f(x)的图象过点(8,-3),则f(22)=________.-32[设f(x)=log a x(a>0,且a≠1),则-3=log a8,∴a=1 2,∴f(x)=log 12x,f(22)=log12(22)=-log2(22)=-32.]三、解答题9.若函数y=log a(x+a)(a>0且a≠1)的图象过点(-1,0).(1)求a的值;(2)求函数的定义域.[解](1)将(-1,0)代入y=log a(x+a)(a>0,a≠1)中,有0=log a(-1+a),则-1+a=1,所以a=2.(2)由(1)知y=log2(x+2),由x+2>0,解得x>-2,所以函数的定义域为{x |x >-2}.10.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的表达式,并画出大致图象.[解] ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ),∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎨⎧lg x +1,x >0,0,x =0,-lg 1-x ,x <0,∴f (x )的大致图象如图所示.[等级过关练]1.函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1]D .[0,1]B [由⎩⎨⎧x ≥0,1-x >0,得0≤x <1,故选B.]2.已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是( )A B C DB [由lg a +lg b =0,得lg(ab )=0,所以ab =1,故a =1b ,所以当0<b <1时,a >1;当b >1时,0<a <1.又因为函数y =-log b x 与函数y =log b x 的图象关于x 轴对称.利用这些信息可知选项B 符合0<b <1且a >1的情况.]3.已知函数f (x )=⎩⎨⎧log 2x ,x >0,2x ,x ≤0,若f (a )=12,则a =________.-1或2 [当x >0时,f (x )=log 2x , 由f (a )=12得log 2a =12,即a = 2.当x ≤0时,f (x )=2x ,由f (a )=12得2a =12,a =-1. 综上a =-1或 2.]4.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 019)=8,则f (x 21)+f (x 22)+…+f (x 22 019)的值等于________.16 [∵f (x 21)+f (x 22)+f (x 23)+…+f (x 22 019) =log a x 21+log a x 22+log a x 23+…+log a x 22 019=log a (x 1x 2x 3…x 2 019)2=2log a (x 1x 2x 3…x 2 019)=2×8=16.]5.若不等式x 2-log m x <0在⎝ ⎛⎭⎪⎫0,12内恒成立,求实数m 的取值范围.[解] 由x 2-log m x <0,得x 2<log m x ,在同一坐标系中作y =x 2和y =log m x 的草图,如图所示.要使x 2<log m x 在⎝ ⎛⎭⎪⎫0,12内恒成立,只要y =log m x 在⎝ ⎛⎭⎪⎫0,12内的图象在y =x 2的上方,于是0<m <1.∵x =12时,y =x 2=14,∴只要x =12时,y =log m 12≥14=log m m 14,∴12≤m 14,即116≤m . 又0<m <1,∴116≤m <1. 即实数m 的取值范围是⎣⎢⎡⎭⎪⎫116,1.第2课时对数函数及其性质的应用比较对数值的大小【例1】比较下列各组值的大小:(1)log534与log543;(2)log132与log152;(3)log23与log54.[解](1)法一(单调性法):对数函数y=log5x在(0,+∞)上是增函数,而34<43,所以log534<log543.法二(中间值法):因为log534<0,log543>0,所以log534<log543.(2)法一(单调性法):由于log132=1log213,log152=1log215,又因对数函数y=log2x在(0,+∞)上是增函数,且13>15,所以0>log213>log215,所以1log213<1log215,所以log132<log152.法二(图象法):如图,在同一坐标系中分别画出y=log13x及y=log15x的图象,由图易知:log132<log152.(3)取中间值1,因为log23>log22=1=log55>log54,所以log23>log54.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.1.比较下列各组值的大小:(1)log 230.5,log230.6;(2)log1.51.6,log1.51.4;(3)log0.57,log0.67;(4)log3π,log20.8.[解](1)因为函数y=log 23x是减函数,且0.5<0.6,所以log230.5>log230.6.(2)因为函数y=log1.5x是增函数,且1.6>1.4,所以log1.51.6>log1.51.4.(3)因为0>log70.6>log70.5,所以1log70.6<1log70.5,即log0.67<log0.57.(4)因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.解对数不等式【例2】已知函数f(x)=log a(x-1),g(x)=log a(6-2x)(a>0,且a≠1).(1)求函数φ(x)=f(x)+g(x)的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x的取值集合.(2)分a>1和0<a<1求解不等式得答案.[解] (1)由⎩⎨⎧x -1>0,6-2x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ), ①当a >1时,不等式等价于⎩⎨⎧1<x <3,x -1≤6-2x ,解得1<x ≤73;②当0<a <1时,不等式等价于⎩⎨⎧1<x <3,x -1≥6-2x ,解得73≤x <3.综上可得,当a >1时,不等式的解集为⎝ ⎛⎦⎥⎤1,73;当0<a <1时,不等式的解集为⎣⎢⎡⎭⎪⎫73,3.常见的对数不等式的三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解;(3)形如log a x >log b x 的不等式,可利用图象求解.2.(1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. [解] (1)由log a 12>1得log a 12>log a a . ①当a >1时,有a <12,此时无解. ②当0<a <1时,有12<a ,从而12<a <1. 所以a 的取值范围是⎝ ⎛⎭⎪⎫12,1.(2)因为函数y =log 0.7x 在(0,+∞)上为减函数,所以由log 0.7(2x )<log 0.7(x -1)得⎩⎨⎧2x >0,x -1>0,2x >x -1,解得x >1.即x 的取值范围是(1,+∞). 对数函数性质的综合应用[探究问题]1.类比y =a f (x )单调性的判断法,你能分析一下y =log 12(2x -1)的单调性吗? 提示:形如y =a f (x )的单调性满足“同增异减”的原则,由于y =log 12(2x -1)由函数y =log 12t 及t =2x -1复合而成,且定义域为2x -1>0,即x >12,结合“同增异减”可知,y =log 12(2x -1)的减区间为⎝ ⎛⎭⎪⎫12,+∞. 2.如何求形如y =log a f (x )的值域?提示:先求y =f (x )的值域,注意f (x )>0,在此基础上,分a >1和0<a <1两种情况,借助y =log a x 的单调性求函数y =log a f (x )的值域.【例3】 (1)已知y =log a (2-ax )是[0,1]上的减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2)D .[2,+∞)(2)函数f (x )=log 12(x 2+2x +3)的值域是________.[思路点拨] (1)结合对数函数及y =2-ax 的单调性,构造关于a 的不等式组,解不等式组可得. (2)先求真数的范围,再根据对数函数的单调性求解.(1)B (2)(-∞,-1] [(1)∵f (x )=l o g a (2-ax )在[0,1]上是减函数,且y =2-ax 在[0,1]上是减函数, ∴⎩⎨⎧f (0)>f (1),a >1,即⎩⎨⎧ log a 2>log a (2-a ),a >1,∴⎩⎨⎧a >1,2-a >0,∴1<a <2. (2)f (x )=log 12(x 2+2x +3)=log 12[(x +1)2+2], 因为(x +1)2+2≥2,所以log 12[(x +1)2+2]≤log 122=-1,所以函数f (x )的值域是(-∞,-1].]1.求本例(2)的函数f(x)在[-3,1]上的值域.[解]∵x∈[-3,1],∴2≤x2+2x+3≤6,∴log 126≤log12(x2+2x+3)≤log122,即-log26≤f(x)≤-1,∴f(x)的值域为[-l o g26,-1].2.求本例(2)的单调区间.[解]∵x2+2x+3=(x+1)2+2>0,又y=log 12t在(0,+∞)为减函数,且t=x2+2x+3在(-∞,-1)上为减函数,在[-1,+∞)上为增函数,故由复合函数单调性可知,y=log 12(x2+2x+3)单调递增区间为(-∞,-1),单调递减区间为[-1,+∞).1.已知对数型函数的单调性求参数的取值范围,要结合复合函数的单调性规律,注意函数的定义域求解;若是分段函数,则需注意两段函数最值的大小关系.2.求对数型函数的值域一般是先求真数的范围,然后利用对数函数的单调性求解.1.比较两个对数值的大小及解对数不等式问题,其依据是对数函数的单调性,若对数的底数是字母且范围不明确,一般要分a>1和0<a<1两类分别求解.2.解决与对数函数相关的问题时要树立“定义域优先”的原则,同时注意数形结合思想和分类讨论思想在解决问题中的应用.1.思考辨析(1)y=log2x2在[0,+∞)上为增函数.()(2)y=log 12x2在(0,+∞)上为增函数.()(3)ln x<1的解集为(-∞,e).()(4)函数y=log 12(x2+1)的值域为[0,+∞).()[答案] (1)× (2)× (3)× (4)×2.设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >aD .c >a >bD [a =l o g 32<l o g 33=1;c =l o g 23>l o g 22=1,由对数函数的性质可知l o g 52<l o g 32,∴b <a <c ,故选D.]3.函数f (x )=log 2(1+2x )的单调增区间是______.⎝ ⎛⎭⎪⎫-12,+∞ [易知函数f (x )的定义域为-12,+∞,又因为函数y =log 2x 和y =1+2x 都是增函数,所以f (x )的单调增区间是⎝ ⎛⎭⎪⎫-12,+∞.]4.已知a >0且满足不等式22a +1>25a -2. (1)求实数a 的取值范围;(2)求不等式log a (3x +1)<log a (7-5x )的解集;(3)若函数y =log a (2x -1)在区间[1,3]上有最小值为-2,求实数a 的值.[解] (1)∵22a +1>25a -2,∴2a +1>5a -2,即3a <3,∴a <1,即0<a <1.∴实数a 的取值范围是(0,1).(2)由(1)得,0<a <1,∵log a (3x +1)<log a (7-5x ),∴⎩⎨⎧3x +1>0,7-5x >0,3x +1>7-5x ,即⎩⎪⎨⎪⎧x >-13,x <75,x >34,解得34<x <75.即不等式的解集为⎝ ⎛⎭⎪⎫34,75.(3)∵0<a <1,∴函数y =log a (2x -1)在区间[1,3]上为减函数,∴当x =3时,y 有最小值为-2,即log a 5=-2,∴a -2=1a 2=5,解得a =55.课后作业 对数函数及其性质的应用(建议用时:60分钟)[合格基础练]一、选择题1.若lg(2x -4)≤1,则x 的取值范围是( ) A .(-∞,7] B .(2,7] C .[7,+∞)D .(2,+∞)B [由lg(2x -4)≤1,得0<2x -4≤10, 即2<x ≤7,故选B.]2.函数f (x )=|log 12x |的单调递增区间是( ) A.⎝ ⎛⎦⎥⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)D [f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).]3.已知log a 13>log b 13>0,则下列关系正确的是( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <bA [由log a 13>0,log b 13>0,可知a ,b ∈(0,1), 又log a 13>log b 13,作出图象如图所示, 结合图象易知a >b ,∴0<b <a <1.]4.若a =20.2,b =log 4(3.2),c =log 2(0.5),则( ) A .a >b >c B .b >a >c C .c >a >bD .b >c >aA [∵a =20.2>1>b =l o g 4(3.2)>0>c =l o g 2(0.5),∴a >b >c .故选A.]5.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A.14 B.12 C .2 D .4B [当a >1时,a +log a 2+1=a ,log a 2=-1,a =12(舍去). 当0<a <1时,1+a +log a 2=a , ∴log a 2=-1,a =12.] 二、填空题6.函数y =log 0.4(-x 2+3x +4)的值域是________. [-2,+∞) [-x 2+3x +4=-⎝ ⎛⎭⎪⎫x -322+254≤254,∴有0<-x 2+3x +4≤254,∴根据对数函数y =log 0.4x 的图象(图略)即可得到: log 0.4(-x 2+3x +4)≥log 0.4254=-2, ∴原函数的值域为[-2,+∞).]7.若log a 23<1,则a 的取值范围是________. ⎝ ⎛⎭⎪⎫0,23∪(1,+∞) [原不等式等价于⎩⎪⎨⎪⎧0<a <1,23>a 或⎩⎪⎨⎪⎧a >1,23<a ,解得0<a <23或a >1,故a 的取值范围为⎝ ⎛⎭⎪⎫0,23∪(1,+∞).]8.若y =log a (ax +3)(a >0且a ≠1)在区间(-1,+∞)上是增函数,则a 的取值范围是________. (1,3] [因为y =log a (ax +3)(a >0且a ≠1)在区间(-1,+∞)上是增函数,所以⎩⎨⎧-a +3≥0,a >1,a >0且a ≠1,解得1<a ≤3.故a 的取值范围是(1,3].]三、解答题9.已知函数f (x )=ln(3+x )+ln(3-x ). (1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性.[解] (1)要使函数有意义,则⎩⎨⎧3+x >0,3-x >0,解得-3<x <3,故函数y =f (x )的定义域为(-3,3).(2)由(1)可知,函数y =f (x )的定义域为(-3,3),关于原点对称. 对任意x ∈(-3,3),则-x ∈(-3,3). ∵f (-x )=ln(3-x )+ln(3+x )=f (x ),∴由函数奇偶性可知,函数y =f (x )为偶函数. 10.已知函数y =(log 2x -2)⎝ ⎛⎭⎪⎫log 4x -12,2≤x ≤8.(1)令t =log 2x ,求y 关于t 的函数关系式,并写出t 的范围; (2)求该函数的值域.[解] (1)y =12(t -2)(t -1)=12t 2-32t +1,又2≤x ≤8,∴1=log 22≤log 2x ≤log 28=3,即1≤t ≤3. (2)由(1)得y =12⎝ ⎛⎭⎪⎫t -322-18,1≤t ≤3,当t =32时,y min =-18;当t =3时,y max =1,∴-18≤y ≤1, 即函数的值域为⎣⎢⎡⎦⎥⎤-18,1.[等级过关练]1.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数A [f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg 1(x 2+1)-x 2=lg 1=0, ∴f (x )为奇函数,故选A.]2.当0<x ≤12时,4x <log a x ,则a 的取值范围是( ) A .(2,2) B .(1,2) C.⎝ ⎛⎭⎪⎫22,1 D.⎝⎛⎭⎪⎫0,22C [当0<x ≤12时,函数y =4x 的图象如图所示,若不等式4x <log a x 恒成立,则y =log a x 的图象恒在y =4x 的图象的上方(如图中虚线所示),∵y =log a x 的图象与y =4x 的图象交于⎝ ⎛⎭⎪⎫12,2点时,a =22,故虚线所示的y =log a x 的图象对应的底数a 应满足22<a <1,故选C.]3.函数f (x )=log 2x ·log 2(2x )的最小值为________.-14 [f (x )=log 2x ·log 2(2x )=12log 2x ·2log 2(2x )=log 2x (1+log 2x ).设t =log 2x (t ∈R ),则原函数可以化为y =t (t +1)=⎝ ⎛⎭⎪⎫t +122-14(t ∈R ),故该函数的最小值为-14.故f (x )的最小值为-14.]4.设常数a >1,实数x ,y 满足log a x +2log x a +log x y =-3,若y 的最大值为2,则x 的值为________.18[实数x ,y 满足log a x +2log x a +log x y =-3,化为log a x +2log a x +log a ylog ax =-3.令log a x =t ,则原式化为log a y =-⎝ ⎛⎭⎪⎫t +322+14.∵a >1,∴当t =-32时,y 取得最大值2, ∴log a2=14,解得a =4,∴log 4x =-32,∴x =4-32=18.]5.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1. (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值. [解] (1)要使函数有意义,则有⎩⎨⎧1-x >0,x +3>0,解得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4.因为0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )min =log a 4,由log a 4=-4,得a -4=4,所以a =4-14=22.第3课时不同函数增长的差异三种函数模型的性质y=a x(a>1)y=log a x(a>1)y=kx(k>0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴平行随x增大逐渐近似与x轴平行保持固定增长速度增长速度①y=a x(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=log a x(a>1)的增长速度越来越慢;②存在一个x0,当x>x0时,有a x>kx>log a x1.已知变量y=1+2x,当x减少1个单位时,y的变化情况是()A.y减少1个单位B.y增加1个单位C.y减少2个单位D.y增加2个单位C[结合函数y=1+2x的变化特征可知C正确.]2.下列函数中随x的增大而增大且速度最快的是()A.y=e x B.y=ln xC.y=2x D.y=e-xA[结合指数函数、对数函数及一次函数的图象变化趋势可知A正确.]3.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________.②③[结合图象可知②③正确,故填②③.]几类函数模型的增长差异【例1】(1)下列函数中,增长速度最快的是()A.y=2 019x B.y=2019C.y=log2 019x D.y=2 019x(2)下面对函数f(x)=log12x,g(x)=⎝⎛⎭⎪⎫12x与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是()A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快(1)A(2)C[(1)指数函数y=a x,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.(2)观察函数f (x )=log 12x ,g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=-2x 在区间(0,+∞)上的图象(如图)可知: 函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象递减速度不变.]常见的函数模型及增长特点 (1)线性函数模型线性函数模型y =kx +b (k >0)的增长特点是直线上升,其增长速度不变. (2)指数函数模型指数函数模型y =a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y =log a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.1.四个变量y 1,y 2,y 3,y 4随变量x 变化的数据如表: x 1 5 10 15 20 25 30 y 1 2 26 101 226 401 626 901 y 2 2 32 1 024 37 768 1.05×1063.36×1071.07×109y 3 2 10 20 30 40 50 60 y 424.3225.3225.9076.3226.6446.907y 2 [以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y 1,y 2,y 3,y 4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y 2的增长速度最快,画出它们的图象(图略),可知变量y 2关于x 呈指数型函数变化.故填y 2.]指数函数、对数函数与一次函数模型的比较【例2】 函数f (x )=2x 和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f ⎝ ⎛⎭⎪⎫32与g ⎝ ⎛⎭⎪⎫32,f (2 019)与g (2 019)的大小.[解] (1)C 1对应的函数为g (x )=2x ,C 2对应的函数为f (x )=2x . (2)∵f (1)=g (1),f (2)=g (2)从图象上可以看出,当1<x <2时,f (x )<g (x ), ∴f ⎝ ⎛⎭⎪⎫32<g ⎝ ⎛⎭⎪⎫32; 当x >2时,f (x )>g (x ), ∴f (2 019)>g (2 019).由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.2.函数f (x )=lg x ,g (x )=0.3x -1的图象如图所示. (1)试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f (x ),g (x )的大小进行比较). [解] (1)C 1对应的函数为g (x )=0.3x -1,C 2对应的函数为f (x )=lg x .(2)当x <x 1时,g (x )>f (x );当x 1<x <x 2时,f (x )>g (x );当x >x 2时,g (x )>f (x );当x =x 1或x =x 2时,f (x )=g (x ).直线上升、指数爆炸、对数增长对于直线y =kx +b (k ≥0)、指数函数y =a x (a >1)、对数函数y =log b x (b >1),当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,并且直线上升,其增长量固定不变.1.思考辨析(1)函数y=2x比y=2x增长的速度更快些.()(2)当a>1,n>0时,在区间(0,+∞)上,对任意的x,总有log a x<kx<a x成立.()(3)函数y=log12x衰减的速度越来越慢.()[答案](1)×(2)×(3)√2.下列函数中,随x的增大,增长速度最快的是()A.y=1B.y=xC.y=3x D.y=log3xC[结合函数y=1,y=x,y=3x及y=l o g3x的图象可知(图略),随着x的增大,增长速度最快的是y=3x.]3.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.乙、甲、丙[将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.]4.画出函数f(x)=x与函数g(x)=14x2-2的图象,并比较两者在[0,+∞)上的大小关系.[解]函数f(x)与g(x)的图象如图所示.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).课后作业不同函数增长的差异(建议用时:60分钟)[合格基础练]一、选择题1.当a>1时,有下列结论:①指数函数y=a x,当a越大时,其函数值的增长越快;②指数函数y=a x,当a越小时,其函数值的增长越快;③对数函数y=log a x,当a越大时,其函数值的增长越快;④对数函数y=log a x,当a越小时,其函数值的增长越快.其中正确的结论是()A.①③B.①④C.②③D.②④B[结合指数函数及对数函数的图象可知①④正确.故选B.]2.y1=2x,y2=x2,y3=log2x,当2<x<4时,有()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1B[在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=l o g2x,故y2>y1>y3.]3.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是()A.y=0.2x B.y=110(x2+2x)C.y=2x10D.y=0.2+log16xC[用排除法,当x=1时,排除B项;当x=2时,排除D项;当x=3时,排除A项.] 4.在某实验中,测得变量x和变量y之间对应数据,如表.A.y=2x B.y=x2-1C.y=2x-2 D.y=log2xD[根据x=0.50,y=-1.01,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=l o g2x,可知满足题意.故选D.]5.四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2xD[显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.]二、填空题6.函数y=x2与函数y=x ln x在区间(0,+∞)上增长较快的一个是________ .y=x2[当x变大时,x比ln x增长要快,∴x2要比x ln x增长的要快.]7.下列各项是四种生意预期的收益y关于时间x的函数,从足够长远的角度看,更为有前途的生意是________.①y=10×1.05x;②y=20+x1.5;③y=30+lg(x-1);④y=50.①[结合三类函数的增长差异可知①的预期收益最大,故填①.]8.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应________;B对应________;C对应________;D对应________.(4)(1)(3)(2)[A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应.]三、解答题9.函数f(x)=1.1x,g(x)=ln x+1,h(x)=x12的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).[解]由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=x12,曲线C3对应的函数是g(x)=ln x+1.由题图知,当x<1时,f(x)>h(x)>g(x);当1<x<e时,f(x)>g(x)>h(x);当e<x<a时,g(x)>f(x)>h(x);当a<x<b时,g(x)>h(x)>f(x);当b<x<c时,h(x)>g(x)>f(x);当c<x<d时,h(x)>f(x)>g(x);当x>d时,f(x)>h(x)>g(x).10.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)12345 6h(米)0.61 1.3 1.5 1.6 1.7由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.将(2,1)代入到h=log a(t+1)中,得1=log a3,解得a=3.即h=log3(t+1).当t=8时,h=log3(8+1)=2,故可预测第8年松树的高度为2米.[等级过关练]1.函数y=2x-x2的图象大致是()A B C DA[分别画出y=2x,y=x2的图象,由图象可知(图略),有3个交点,∴函数y=2x-x2的图象与x轴有3个交点,故排除B,C;当x<-1时,y<0,故排除D,故选A.]2.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为()A B C DD [设该林区的森林原有蓄积量为a ,由题意可得ax =a (1+0.104)y ,故y =l o g 1.104x (x ≥1),所以函数y =f (x )的图象大致为D 中图象,故选D.]3.若已知16<x <20,利用图象可判断出x 12和log 2x 的大小关系为________.x 12>log 2x [作出f (x )=x 12和g (x )=log 2x 的图象,如图所示:由图象可知,在(0,4)内,x 12>log 2x ;x =4或x =16时,x 12=log 2x ;在(4,16)内,x 12<log 2x ;在(16,20)内,x 12>log 2x .]4.已知某工厂生产某种产品的月产量y 与月份x 满足关系y =a ·0.5x +b ,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.1.75 [∵y =a ·0.5x +b ,且当x =1时,y =1,当x =2时,y =1.5,则有⎩⎨⎧1=a ×0.5+b ,1.5=a ×0.25+b ,解得⎩⎨⎧a =-2,b =2,∴y =-2×0.5x +2.当x =3时,y =-2×0.125+2=1.75(万件).]5.某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y (单位:万元)随生源利润x (单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y =0.2x ,y =log 5x ,y =1.02x ,其中哪个模型符合该校的要求?[解] 借助工具作出函数y =3,y =0.2x ,y =log 5x ,y =1.02x 的图象(如图所示).观察图象可知,在区间[5,60]上,y =0.2x ,y =1.02x 的图象都有一部分在直线y =3的上方,只有y =log 5x 的图象始终在y =3和y =0.2x 的下方,这说明只有按模型y =log 5x 进行奖励才符合学校的要求.。

新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数的运算讲义

新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数的运算讲义

知识点一对数的运算性质若a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=log a M+log a N,(2)log a错误!=log a M—log a N,(3)log a M n=n log a M(n∈R).错误!对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立 . 例如,log2[(—3)·(—5)]=log2(—3)+log2(—5)是错误的.知识点二对数换底公式log a b=错误!(a>0,a≠1,c>0,c≠1,b>0).特别地:log a b·log b a=1(a>0,a≠1,b>0,b≠1).错误!对数换底公式常见的两种变形(1)log a b·log b a=1,即错误!=log b a ,此公式表示真数与底数互换,所得的对数值与原对数值互为倒数 .(2)log N n M m=错误!log N M,此公式表示底数变为原来的n次方,真数变为原来的m次方,所得的对数值等于原来对数值的错误!倍.[教材解难]换底公式的推导设x=log a b,化为指数式为a x=b,两边取以c为底的对数,得log c a x=log c b,即x log c a=log c b.所以x=错误!,即log a b=错误!.[基础自测]1.下列等式成立的是()A.log2(8—4)=log28—log24B.错误!=log2错误!D.log2(8+4)=log28+log24解析:由对数的运算性质易知C正确.答案:C2.错误!的值为()A.错误!B.2C.错误!D.错误!解析:原式=log39=2.答案:B3.2log510+log50.25=()A.0 B.1C.2D.4解析:原式=log5102+log50.25=log5(102×0.25)=log525=2.答案:C4.已知ln 2=a,ln 3=b,那么log32用含a,b的代数式表示为________.解析:log32=错误!=错误!.答案:错误!题型一对数运算性质的应用[教材P124例3]例1求下列各式的值:(1)lg 错误!;(2)log2(47×25).【解析】(1)lg错误!=lg 10015=错误!lg 100=错误!;(2)log2(47×25)=log247+log225=7×2+5×1=19.利用对数运算性质计算.教材反思1.对于同底的对数的化简,常用方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成对数的和(差).2.对数式的化简、求值一般是正用或逆用公式,要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.跟踪训练1(1)计算:lg错误!+2lg 2—错误!—1=________.(2)求下列各式的值.1log53+log5错误!2(lg 5)2+lg 2·lg 503lg 25+错误!lg 8+lg 5·lg 20+(lg 2)2.解析:(1)lg错误!+2lg 2—错误!—1=lg 5—lg 2+2lg 2—2=(lg 5+lg 2)—2=1—2=—1.(2)1log53+log5错误!=log5错误!=log51=0.2(lg 5)2+lg 2·lg 50=(lg 5)2+(1+lg 5)lg 2=(lg 5)2+lg 2+lg 2·lg 5=lg 5(lg 5+lg 2)+lg 2=lg 5+lg 2=lg 10=1.3原式=lg 25+lg 823+lg错误!·lg(10×2)+(lg 2)2=lg 25+lg 4+(lg 10—lg 2)(lg 10+lg 2)+(lg 2)2=lg 100+(lg 10)2—(lg 2)2+(lg 2)2=2+1=3.答案:(1)—1(2)见解析利用对数运算性质化简求值.题型二对数换底公式的应用[经典例题]例2(1)已知2x=3y=a,错误!+错误!=2,则a的值为()A.36 B.6C.2错误!D.错误!(2)计算下列各式:1log89·log2732.22lg 4+lg 5—lg 8—错误!2 -3.364错误!+lg 4+2lg 5.【解析】(1)因为2x=3y=a,所以x=log2a,y=log3a,所以错误!+错误!=错误!+错误!=log a2+log a3=log a6=2,所以a2=6,解得a=±错误!.又a>0,所以a=错误!.(2)1log89·log2732=错误!·错误!=错误!·错误!=错误!·错误!=错误!.22lg 4+lg 5—lg 8—错误!2-3=lg 16+lg 5—lg 8—错误!=lg错误!—错误!=1—错误!=错误!.364错误!+lg 4+2lg 5=4+lg(4×52)=4+2=6.【答案】(1)D (2)见解析错误!1.先把指数式化为对数式,再用换底公式,把所求式化为同底对数式,最后用对数的运算性质求值.2.先用换底公式将式子变为同底的形式,再用对数的运算性质计算并约分.方法归纳(1)换底公式中的底可由条件决定,也可换为常用对数的底,一般来讲,对数的底越小越便于化简,如a n为底的换为a为底.(2)换底公式的派生公式:log a b=log a c·log c b;log an b m=错误!log a b.跟踪训练2(1)式子log916·log881的值为()A.18 B.错误!C.错误!D.错误!(2)(log43+log83)(log32+log98)等于()A.错误!B.错误!C.错误!D.以上都不对解析:(1)原式=log3224·log2334=2log32·错误!log23=错误!.(2)原式=错误!·错误!=错误!·错误!=错误!×错误!log32=错误!.答案:(1)C (2)B利用换底公式化简求值.题型三用已知对数表示其他对数例3已知log189=a,18b=5,用a,b表示log3645.解析:方法一因为log189=a,所以9=18a.又5=18b,所以log3645=log2×18(5×9)=log2×1818a+b=(a+b)·log2×1818.又因为log2×1818=错误!=错误!=错误!=错误!=错误!,所以原式=错误!.方法二∵18b=5,∴log185=b.∴log3645=错误!=错误!=错误!=错误!=错误!=错误!.错误!方法一对数式化为指数式,再利用对数运算性质求值.方法二先求出a、b,再利用换底公式化简求值.方法归纳用已知对数的值表示所求对数的值,要注意以下几点:(1)增强目标意识,合理地把所求向已知条件靠拢,巧妙代换;(2)巧用换底公式,灵活“换底”是解决这种类型问题的关键;(3)注意一些派生公式的使用.跟踪训练3(1)已知log62=p,log65=q,则lg 5=________;(用p,q表示)(2)1已知log147=a,14b=5,用a,b表示log3528.2设3x=4y=36,求错误!+错误!的值.解析:(1)lg 5=错误!=错误!=错误!.(2)1∵log147=a,14b=5,∴b=log145.∴log3528=错误!=错误!=错误!=错误!.2∵3x=36,4y=36,∴x=log336,y=log436,∴错误!=错误!=错误!=log363,错误!=错误!=错误!=log364,∴错误!+错误!=2log363+log364=log36(9×4)=1.答案:(1)错误!(2)1错误!21(1)利用换底公式化简.(2)利用对数运算性质化简求值.课时作业22一、选择题1.若a>0,a≠1,x>y>0,下列式子:1log a x·log a y=log a(x+y);2log a x—log a y=log a(x—y);3log a错误!=log a x÷log a y;4log a(xy)=log a x·log a y.其中正确的个数为()A.0个B.1个C.2个D.3个解析:根据对数的性质知4个式子均不正确.答案:A2.化简错误!log612—2log6错误!的结果为()A.6错误!B.12错误!C.log6错误!D.错误!解析:错误!log612—2log6错误!=错误!(1+log62)—log62=错误!(1—log62)=错误!log63=log6错误!.答案:C3.设lg 2=a,lg 3=b,则错误!=()A.错误!B.错误!C.错误!D.错误!解析:错误!=错误!=错误!=错误!.答案:C4.若log34·log8m=log416,则m等于()A.3B.9C.18 D.27解析:原式可化为log8m=错误!,错误!=错误!,即lg m=错误!,lg m=lg 27,m=27.故选D.答案:D二、填空题5.lg 10 000=________;lg 0.001=________.解析:由104=10 000知lg 10 000=4,10—3=0.001得lg 0.001=—3,注意常用对数不是没有底数,而是底数为10.答案:4—36.若log5错误!·log36·log6x=2,则x等于________.解析:由换底公式,得错误!·错误!·错误!=2,lg x=—2lg 5,x=5—2=错误!.答案:错误!7.错误!·(lg 32—lg 2)=________.解析:原式=错误!×lg错误!=错误!·lg 24=4.答案:4三、解答题8.化简:(1)错误!;(2)(lg 5)2+lg 2lg 50+211+log25 2.解析:(1)方法一(正用公式):原式=错误!=错误!=错误!.方法二(逆用公式):原式=错误!=错误!=错误!.(2)原式=(lg 5)2+lg 2(lg 5+1)+21·22log =lg 5·(lg 5+lg 2)+lg 2+2错误!=1+2错误!.9.计算:(1)log 1627log 8132;(2)(log 32+log 92)(log 43+log 83). 解析:(1)log 1627log 8132=错误!×错误! =错误!×错误!=错误!×错误!=错误!. (2)(log 32+log 92)(log 43+log 83) =错误!错误!=错误!错误! =错误!log 32×错误!log 23=错误!×错误!×错误!=错误!.[尖子生题库]10.已知2x =3y =6z ≠1,求证:错误!+错误!=错误!. 证明:设2x =3y =6z =k (k ≠1),∴x =log 2k ,y =log 3k ,z =log 6k ,∴错误!=log k 2,错误!=log k 3,错误!=log k 6=log k 2+log k 3, ∴错误!=错误!+错误!.。

高一上学期数学人教A版必修第一册4.4.2对数函数的图象和性质

高一上学期数学人教A版必修第一册4.4.2对数函数的图象和性质
探究I 1、点 P(1,0)关于 y x 的对称点P1( ) ; 2、点P(0,1) 关于 y x 的对称点 P2( );
3、点P(1,2) 关于y x 的对称点P3( ) ;
4、点 P(a,b) 关于 y x 的对称点P4( ) 。
探究II
II.在同一坐标第中,画出 y= 2x与 y=log2x
图象,你能发现两个函数的图象有什么对
称关系?再画出 y=(1)x 与 y=log1 x 图象验证
2
2
y=2x
y. . 1. .
O. 1
y=x
y
y=(
1 2
)x=
0.50
. . y=log2x
. . 1 .
x
O
1
y=x
. .x
y=log1 x 2 = 0.50
III.取函数y 2x 的图象上的几个点,如:
y 2x
的图象上,那么
P0 (x0 , y0 )关于
直线 y x的对称点的坐标是什么?
它在函数 y log2 x 的图象上吗?为什么?你得到什么结论?
问题V:上述结论对于指数函数 y ax (a 0,a 1) 及其反函数y loga x(a 0,a 1) 也成立吗?为 什么?
问题V:上述结论对于指数函数 y ax(a 0,a 1)及其反函
y log2 x 的图象上?为什么?
答:
P1

P2

P3
关于直线
y
x
的对称点的坐标分别为
P1,(
1 2
,-1)

P(2,1,0), P(3,2,1)。
因为
log2
1 2
1
,log2
1

第4章指数函数与对数函数(复习课件)高一数学(人教A版必修第一册)课件

第4章指数函数与对数函数(复习课件)高一数学(人教A版必修第一册)课件
应为减函数,可知B项正确;而对C项,由y=ax的图象知
y=ax为减函数,则0<a<1,y=loga(-x)为增函数,与C项中
y=loga(-x)的图象不符.
答案:B
典例
例3(2)若直线y=2a与函数y=|ax-1|+1(a>0,且a≠1)的图象
有两个公共点,则a的取值范围是
.
解析:当a>1时,通过平移变换和翻折变换可得如图(1)所示的图
往往是选择题,常借助于指数函数、对数函数的图象特
征来解决;二是判断方程的根的个数时,通常不具体解方
程,而是转化为判断指数函数、对数函数等图象的交点
个数问题.这就要求画指数函数、对数函数的图象时尽
量准确,特别是一些关键点要正确,比如,指数函数的图象
必过点(0,1),对数函数的图象必过点(1,0).
题型四 函数的零点与方程的根
4. 恒成立问题,采用分离参数,转化为求最值问题.
专题三
指数函数、对数函数图象的应用
典例
例3(1)已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象可能是( )
解析:由y=loga(-x)的定义域为(-∞,0)知,图象应在y轴左
侧,可排除A,D选项.当a>1时,y=ax应为增函数,y=loga(-x)
f(3)=20,g(3)≈6.7,h(3)≈12.5.
由此可得h(x)更接近实际值,所以用h(x)模拟比较合理.
(2)因为h(x)=30|log2x-2|在x≥4时是增函数,h(16)=60,
所以整治后有16个月的污染度不超过60.
以有2m-3<1,解得m<2.故实数m的取值范围为(-∞,2).
解题技能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档